
Adiabatically compressed wave dark matter
halo and intermediate-mass-ratio inspirals

Hyungjin Kim ,1,* Alessandro Lenoci ,1,† Isak Stomberg,1,‡ and Xiao Xue 2,1,§

1Deutsches Elektronen-Synchrotron DESY, Notkestr.85, 22607 Hamburg, Germany
2II. Institute of Theoretical Physics, Universität Hamburg, 22761 Hamburg, Germany

(Received 1 February 2023; accepted 20 March 2023; published 5 April 2023)

The adiabatic growth of a central massive black hole could compress the surrounding dark matter halo,
leading to a steeper profile of the dark matter halo. This phenomenon is called adiabatic compression. We
investigate the adiabatic compressionofwave darkmatter—a light bosonic darkmatter candidatewith itsmass
smaller than a few eV. Using the adiabatic theorem, we show that the adiabatic compression leads to a much
denserwave darkmatter halo similar to the particle darkmatter halo in the semiclassical limit. The compressed
wave halo differs from that of the particle halo near the center where the semiclassical approximation breaks
down, and the central profile dependson darkmatter and the central black holemass as they determinewhether
the soliton and low angular momentum modes can survive over the astrophysical timescale without being
absorbed by the black hole. Such a compressed profile has several astrophysical implications.As one example,
we study the gravitational waves from the inspiral between a central intermediate-mass black hole and a
compact solar-mass object within the wave dark matter halo. Due to the enhanced mass density, the
compressed wave dark matter halo exerts stronger dynamical friction on the orbiting object, leading to
the dephasing of the gravitational waves. The pattern of dephasing is distinctive from that of inspirals in the
particle dark matter halo because of the difference in density profile and because of the relatively suppressed
dynamical friction force, originating from the wave nature of dark matter. We investigate the prospects of
future gravitational wave detectors, such as the Laser Interferometer Space Antenna, and identify physics
scenarios where the wave dark matter halo can be reconstructed from gravitational wave observations.
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I. INTRODUCTION

The cold dark matter paradigm successfully explains
large-scale structures of the universe. Observational results
from several hundred-kiloparsec scales to megaparsec
scales can be explained by introducing collisionless non-
luminous matter, which takes roughly 30% of total energy
density in the present universe. The evolution of dark
matter on galactic scales becomes nonlinear at some point,
and it eventually collapses to form dark matter halos,
hosting galaxies in the universe. Numerical simulations
found a universal profile for the dark matter halo, which
follows a broken power-law; ρ ∝ r−γ with γ ∼ 3 for the
outer part and with γ ∼ 1 for the inner part of the halo [1,2].1

Much less is known for the structure of dark matter halo
on subgalactic scales. Indeed, the inner part of the dark
matter halo can be affected by the evolution of baryonic

matter. If a black hole at the center of the system has
formed and grown adiabatically or a baryonic gas cloud
sinks to the center of the system throughdissipation, the inner
profile of dark matter halo could be much steeper than its
initial profile [4–7]. This phenomenon—adiabatic compres-
sion—leads to a dark matter halo with a characteristic cusp
ρ ∝ r−γsp with γsp > γ. This cuspy profile is often referred to
as dark matter spike to avoid possible confusion with a usual
Navarro-Frenk-White-like (NFW) cuspy profile.
Such a steeper dark matter profile provides interesting

opportunities for new physics searches. Since the darkmatter
density is greatly enhanced, it may enhance dark matter
indirect signals [8]. Due to the enhanced mass density,
celestial objects orbiting inside the adiabatically compressed
halo experience larger dynamical friction. Such dynamical
friction could change the gravitational wave signals emitted
from black hole binaries embedded in the halo [9–14], which
could be detected by future gravitational wave detectors such
as the Laser Interferometer Space Antenna (LISA). It might
also be used to test interactions between dark matter and
standard model particles [15,16]. Interestingly, indirect
evidence of the dark matter spike is recently reported from
the observations of anomalously fast orbital decays of
companion stars near black holes [17].
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1The inner slope of dark matter halo of observed galaxies

might be shallower than γ ∼ 1. See Ref. [3] for a recent review.
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Wave dark matter provides an interesting alternative dark
matter candidate. Wave dark matter refers to a light bosonic
dark matter with a mass smaller than a few eV and with a
large occupation number. Wave dark matter arises from
various beyond the standard models, for instance, QCD
axion models [18–23] for the strong CP problem, dynami-
cal solutions to the electroweak hierarchy problem [24–32],
and ultraviolet theories with compact extradimensions
[33,34]. Due to the large occupation number, wave dark
matter candidate behaves closer to classical waves, leading
to a number of interesting and qualitatively distinctive
phenomenological signatures in the early universe as well
as in the late universe. See [35,36] for recent review.
The aim of this work is two-fold. First, we investigate

how the wave dark matter responds to the adiabatic change
of the system, such as the growth of the central black hole
or the collapse of molecular clouds at the center of the
system.We show that the adiabatic compression takes place
in a similar way as in the particle dark matter halo, while the
central density profile in the compressed wave halo is
distinctive from that of the particle halo. Second, we study
the dephasing of gravitational waves from a compact solar-
mass object orbiting around the central black hole within the
compressed wave halo. Gravitational wave emission from
the binary within the compressed halo has been studied in
the context of compressed particle halo (dark matter spike)
[9–14]. We investigate how the microscopical nature of dark
matter changes the gravitational wave emission in such
compressed halos, paying particular attention to the differ-
ence and similarity to the particle halo. We show that in
certain physics scenarios, gravitational wave observations
could provide an interesting opportunity to probe wave dark
matter around m ∼ 10−13 eV.
The paper is organized as follows. In Sec. II, we discuss

how the wave dark matter halo responds to the adiabatic
change of the system. In Sec. III, we study the gravitational
wave signals from an inspiral between a central massive
black hole and a solar-mass companion object as one
example of astrophysical implications of the compressed
halo. We show that the compressed wave halo, or wave
spike, exerts a dynamical friction force and affects the
phase of gravitational waves emitted from a binary
embedded in the halo. We show that such signals are
distinctive from other scenarios such as gravitational waves
from compressed particle halo and that they can be
detectable in future gravitational wave detectors, such as
the Laser Interferometer Space Antenna (LISA). In Sec. IV,
we discuss how the assumptions and approximations that
we made in the analysis affect our results.

II. ADIABATIC COMPRESSION

A. Review

Before we study the adiabatic compression of the wave
dark matter halo, we review how the particle halo responds

to the adiabatic change of the system. We are interested in
scenarios such as the adiabatic growth of a central black
hole or the collapse of a molecular cloud through dis-
sipation. For the following discussion, we first discuss the
phase space distribution of a given density profile, inves-
tigate how the phase space distribution evolves under the
adiabatic change of the system, and compute the density
profile during and after the adiabatic change of the system.
The dark matter density profile is given by the phase

space integral of the phase space distribution fðx; vÞ,

ρðxÞ ¼
Z

d3vfðx; vÞ ¼
Z

dE
Z

dL
4πL
r2vr

fðE;LÞ; ð1Þ

where vr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðE −ΦÞ − L2=r2

p
is the radial velocity. We

consider a spherically symmetric halo in this work. Here E
and L denote energy and angular momentum per unit mass.
In the second expression, we assume that the phase space
distribution only depends on the energy E and the absolute
value of angular momentum L ¼ jLj.
The above expression can be inverted. If the phase space

distribution depends only on the energy E, the phase space
distribution for a density profile ρðxÞ is [37]

fðEÞ ¼ 1

2
ffiffiffi
2

p
π2

d
dE

�Z
0

E
dΦ

dρ=dΦffiffiffiffiffiffiffiffiffiffiffiffiffi
Φ − E

p
�
: ð2Þ

Suppose now that the system changes slowly:

H0 ¼ Hðt0Þ → H1 ¼ Hðt1Þ:

By slowly, we mean that the Hamiltonian changes on a
timescale longer than the crossing timescale but shorter
than the halo relaxation timescale. Under the adiabatic
change of the system, the adiabatic invariants, such as the
radial action Jr ¼ 1

2π

H
drvr ¼ 1

2π

H
dr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðE −ΦÞ − L2=r2

p
and the angular momentum L, are conserved. From the
conservation of adiabatic invariants, it is straightforward to
show that the distribution function at the end of the
adiabatic evolution is given by [4]

fðE1; L1Þ ¼ fðE0ðE1; L1ÞÞ: ð3Þ

Note that the subscript 0,1 denotes quantities at the
beginning (t0) and the end (t1) of adiabatic evolution.
Since the angular momentum is conserved, we find
L0 ¼ L1 ¼ L. The relation between final energy and initial
energy can be found by solving

Jr;1ðE1; L1Þ ¼ Jr;0ðE0; L0Þ: ð4Þ

From the above equation, one obtains E0 ¼ E0ðE1; L1Þ.
The final mass density is written as
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ρ1ðrÞ ¼
Z

0

Φ1ðrÞ
dE1

Z
L1;max

L1;min

dL1

4πL1

r2vr
fðE0ðE1; L1ÞÞ: ð5Þ

Although the initial distribution does not depend on the
angular momentum, the final distribution function depends
on the angular momentum in general, causing a mild
velocity anisotropy of the compressed dark matter
halo [38].
As an example, let us consider an initial power-law

profile ρ0ðrÞ ¼ ρsðrs=rÞγ . Suppose that a central
Schwarzschild black hole of mass MBH has formed and
grown via adiabatic processes. The final mass density
profile at the end of adiabatic evolution is

ρ1ðrÞ ≈ ρsp

�
rsp
r

�
γsp
�
1 −

2RS

r

�
γsp
; ð6Þ

where γsp ¼ ð9 − 2γÞ=ð4 − γÞ [6,8], ρsp ¼ ρ0ðrspÞ, and
RS ¼ 2GMBH. Since γsp > γ, the adiabatic compression
provides a steeper dark matter profile. The above profile is
valid up to rsp ¼ 0.2rh

rsp ¼
�ð3 − γspÞ0.23−γspMBH

2πρsp

�
1=3

ð7Þ

where rh is defined as a radius such that the enclosedmass is
twice the central black hole mass, Mencðr < rhÞ ¼ 2MBH
[38]. The profile converges to the initial profile, ρ1ðrÞ≃
ρ0ðrÞ, for r > rsp. An additional factor ð1 − 2RS=rÞγsp is
introduced as the central black hole inevitably absorbs
particles with angular momentum smaller than L ≃ 2RS.
This approximate profile matches to relativistic results in
Sadeghian et al. [39] with an error less than 20% over
all radii.

B. Construction of wave DM halo

We now investigate how the wave dark matter halo
responds to the adiabatic change of the system. The key
observation from the previous section is the conservation of
adiabatic invariants and the relation between initial and
final phase space distribution Eq. (3). To see how it can be
generalized to the discussion of wave halo, we first discuss
the initial wave dark matter halo profile and its decom-
position into eigenmodes, which provides a description
corresponding to the phase space distribution in the particle
limit. Then, we use the Schrödinger equation and the
adiabatic theorem to prove that the response of wave dark
matter is similar to that of particle dark matter in the
semiclassical limit. Near the center of the compressed wave
halo, where we cannot use the semiclassical approximation,
there could be a characteristic core, whose profile is given
by the ground state solution of a hydrogenlike atom. This
core may or may not survive over the astrophysical

timescale depending on the dark matter and the central
black hole mass, which will be discussed shortly.

1. Density profile

Numerical simulations of ultralight dark matter found
that the wave dark matter halo consists of an NFW-like
profile and soliton core. We assume that the wave halo is
given by

ρðrÞ ¼
�
ρcðrÞ r < rt
ρ0ðrÞ r ≥ rt

ð8Þ

where ρcðrÞ is the core profile, ρ0ðrÞ is some unspecified
NFW-like profile and ρ0ðrtÞ ¼ ρcðrtÞ. The core density
ρcðrÞ and the core mass Mc are [40]

ρcðrÞ ≃
2M⊙=pc3

½1þ 0.091ðr=rcÞ2�8
�
kpc
rc

�
4
�
10−23 eV

m

�
2

; ð9Þ

Mc ¼ 6 × 109M⊙

�
10−23 eV

m

�
2
�
kpc
rc

�
: ð10Þ

The core mass Mc is defined as the mass enclosed within
the core radius rc, which is defined as ρcð0Þ ¼ 2ρcðrcÞ.
This relation holds as long as the central core object is the
ground state solution to the Schrödinger-Poisson equation.
The total soliton mass is related to the core mass
as Mc ≃ 0.24Msol.
The core radius rc is a free parameter. It is due to the

scaling symmetry of the Schrödinger-Poisson equation. We
determine the core radius as

rc ¼
cr

mvcðrcÞ
ð11Þ

with some constant cr ∼Oð1Þ. Here vc is the circular
velocity. This implicit equation fixes the core radius to the
typical wavelength of dark matter.
The core radius connects the property of the host halo to

the soliton radius. The easiest way to see this is by rewriting
the expression as rc ¼ c2r=GMencðrcÞm2. The ground state
solution to the Schrödinger-Poisson equation predicts rc ¼
2.67=GMsolm2 [41,42]. Imposing the core radius relation
(11) is equivalent to say that the soliton mass is determined
by the enclosed mass of halo within the typical wavelength
of dark matter.
Numerical simulations have also found a so-called the

soliton-host halo relation [40,43], relating the properties of
host halo to the soliton properties. This soliton-host halo
relation can be written as GMcm ¼ ðE=MÞ1=2halo [40,43] or
equivalently as ðK=MÞ1=2sol ¼ ðK=MÞ1=2halo [44–46], where
ðE=MÞhalo is the energy of halo per unit mass, and
ðK=MÞsol and ðK=MÞhalo are the kinetic energy per unit
mass in soliton and in halo, respectively. These can be
written as
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rc ∼
1

mvvir
: ð12Þ

Comparing to Eq. (11), the only difference is that the
circular velocity is being replaced with the virial velocity of
the halo.2

The difference between (11) and (12) is negligible as
long as the size of the system is comparable to the
wavelength of dark matter. Stating it differently, the circular
velocity at the core radius is similar to the virial velocity if
the core radius is not much smaller than the scale radius of
the halo. This is indeed the case for most of the numerical
simulations, e.g., [40,43,49,50].
A subtlety arises when the wavelength of dark matter is

hierarchically smaller than the size of the system. In this
case, the wave dark matter can probe the inner part of the
halo, and a direct application of usual soliton-host halo
relation (12) could underestimate the size of the soliton; it
may significantly overestimate the soliton mass [48]. On
the other hand, the relation (11) predicts a smooth transition
from NFW-like profile to cored profile when the radius is
around the wavelength of dark matter. Since we are
interested in a wide range of wave dark matter mass, for
instance up to m ≃ 10−13 eV, we use the core radius (11)
for our analysis.

2. Eigenmode decomposition

Having discussed the density profile of wave dark
matter, we consider an effective description of wave dark
matter halo with eigenmode decomposition, following
previous works by Lin et al. [51] and Yavets et al. [52].
The occupation number for each eigenmode plays a similar
role as the phase space distribution in the particle halo.
We begin with an action of a massive scalar field

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
gμν∂μϕ∂νϕ −

1

2
m2ϕ2

�
ð13Þ

where gμν is the metric tensor. The line element is ds2 ¼
ð1þ 2ΦÞdt2 − ð1 − 2ΦÞδijdxidxj with the gravitational
potential Φ. We ignore the self-interaction in this work.
In the nonrelativistic limit, we expand the field as

ϕðx; tÞ ¼
X
i

1ffiffiffiffiffiffiffi
2m

p ½aiψ iðx; tÞe−imt þ a†iψ
�
i ðx; tÞeþimt�;

where ai and a†i are annihilation and creation operator, and
ψðx; tÞ is the wave function that evolves according to the
Schrödinger-Poisson equation,

iℏ
∂ψ

∂t
¼
�
−
ℏ2∇2

2m
þmΦ

�
ψ ;

∇2Φ ¼ 4πGmjψ j2: ð14Þ

The wave function is normalized as 1 ¼ R d3xjψðx; tÞj2. In
the wave limit, the operator ai can be thought as a
commuting random variable αi whose probability density
function pðαiÞ is given by [53],

pðαiÞ ¼
1

πfi
exp

�
−
jαij2
fi

�
ð15Þ

where fi is the mean occupation number of the mode i. The
modulus jαij follows the Rayleigh distribution; the phase
argðαiÞ follows the uniform distribution.
We model the wave dark matter halo as a superposition

of eigenmodes of the Schrödinger-Poisson equation (14),

hρi≡ ρ̄ ¼ m
X
i

fijψ iðxÞj2; ð16Þ

where fi is the occupation number for each mode ψ i and
the angle bracket denotes an ensemble average with respect
to the probability density pðαiÞ. To find the eigenmodes, we
assume time-independent gravitational potential Φt

obtained from the Poisson equation ∇2Φt ¼ 4πGρt, where
ρt is an initial target density profile given by the soliton and
NFW-like profile (8). The eigenmodes then can be found
by solving the time-independent Schrödinger equation,

0 ¼
�
∇2 − 2m2ðΦt − EiÞ

�
ψ i; ð17Þ

where Ei is the energy eigenvalue divided by the particle
mass. We find the occupation number for each mode fi
such that ρ̄ ≈ ρt. Practically, this can be done by minimiz-
ing the cost function Dðρt; ρ̄Þ ¼ 1

r

R
r
0 drðρt − ρ̄Þ2=ρ2t as

discussed in Yavetz et al. [52]. To find a self-consistent
profile, we iterate the above fitting procedure several times
by updating the target density profile and gravitational
potential until the density profile converges.
This construction is qualitatively identical to the particle

halo construction with phase space distribution. In the
particle halo, we assume that the DM particle is distributed
according to the phase space distribution, fðx; vÞ, where
each trajectory evolves according to the Hamiltonian of the
system, which is constructed with the mean potential of the
system Φ. The density profile ρ ¼ R d3vfðv;xÞ should
then satisfy the Poisson equation, ∇2Φ ¼ 4πGρ, for the
self-consistency. In the wave dark matter halo, we follow
the same procedure with the additional step of solving the
Schrödinger equation to find eigenfunctions.
Since we consider a spherically symmetric system, it is

more convenient to decompose the wave function into a
radial wave function and spherical harmonics,

2Note that the soliton-host relation has been debated. See [47]
for a recent review. See also [48] for the discussion on the validity
of soliton-host halo relation for larger particle mass.
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ψ iðxÞ → ψnlml
ðxÞ ¼ RnlðrÞYml

l ðθ;ϕÞ ¼ χnlðrÞ
r

Yml
l ðθ;ϕÞ

where the radial wave function satisfies χ00nl þ
½2m2ðEnl −ΦÞ − lðlþ 1Þ=r2�χnl ¼ 0. The mean density
is then given by

ρ̄ðrÞ ¼ m
4π

X
nl

ð2lþ 1ÞfnljRnlðrÞj2 ð18Þ

where we assume that the occupation number does not
depend on the magnetic quantum number as we consider a
spherically symmetric system.
For the following discussion, it is useful to see how the

above wave dark matter construction (18) compares to the
particle dark matter (1). The correspondence between
particle and wave halo becomes clearer in the semiclassical
limit [52]. We may approximate the discrete sum in
Eq. (18) with the continuous integral as

ρ̄ ≈
Z

dE
Z

dL
4πL
vrr2

�
m4

ð2πÞ3 fnl
��

π

m
dn
dE

�
ðvrjχnlj2Þ;

where dn=dE is the density of the state. In the semiclassical
limit mvr ≫ 1, the WKB approximation can be used to
find a radial wave function as

χnl ¼ N nlffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mvrðrÞ

p cos

�
m
Z

r

rmin

dr0vrðr0Þ −
π

4

�
ð19Þ

with the normalization constant

jN nlj2 ≈
�Z

rmax

rmin

dr
2mvrðrÞ

�
−1
: ð20Þ

Due to the boundary condition, one obtains the Bohr-
Sommerfeld semiclassical quantization condition,

ðnþ 1=2Þπ ¼ m
Z

rmax

rmin

dr0vrðr0Þ; ð21Þ

from which one can compute the density of the states,

dn
dE

¼ m
π

Z
rmax

rmin

dr
vrðrÞ

: ð22Þ

Here rmax and rmin are turning points at which vrðrÞ ¼ 0.
Combining these expressions, we find

ρ̄ ≈
Z

dE
Z

dL
4πL
vrr2

�
m4

ð2πÞ3 fnl
�

ð23Þ

where we have replaced 2 cos2½m R r dr0vrðr0Þ − π=4� ≈ 1.
The correspondence between the occupation number and
classical phase space distribution is found as [52]

fðEÞ ≃ m4

ð2πÞ3 fnl: ð24Þ

This allows us to interpret the occupation number as a
phase space distribution in the semiclassical limit.
In Fig. 1, we show the density profile constructed

according to the method described above as well as the
occupation number. As an example, we consider an initial
soliton and NFW profile (gray line) with scale density
ρs ¼ 106 M⊙=pc3, the scale radius rs ¼ 10 kpc, and par-
ticle mass m ¼ 8 × 10−23 eV. This mass is only used to
demonstrate the adiabatic compression of wave dark matter.
We then obtain the gravitational potential from this target
density profile, solve the Schrödinger equation, and find a
set of occupation numbers for each mode that reproduces

FIG. 1. Top: the initial and compressed wave halo profile for
m ¼ 8 × 10−23 eV. The initial target profile is given by Eq. (8),
where ρ0ðrÞ ¼ ρs=½ðr=rsÞð1þ r=rsÞ2� with ρs ¼ 10−3 M⊙=pc3

and rs ¼ 10 kpc (gray). The black solid line is the density
profile obtained by fitting the occupation numbers such that
ρ̄ ≃ ρt. The blue line is the compressed wave halo, which
consists of the central solitonic core and outer spike profile
that is similar to the particle dark matter halo. For this, we
assume an adiabatic formation of the central black hole of mass
MBH ¼ 3 × 109M⊙. Bottom: the dotted line is the phase space
distribution of NFW profile, the dashed line is the phase space
distribution of target density profile obtained by the inversion
formula (2), and the crosses are the corresponding occupation
numbers for wave halo ½m4=ð2πÞ3�fnl.
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the initial profile closest. More specifically, we bin energy
eigenvalues and assign the same occupation number to
modes that have the energy eigenvalue in the same energy
bin. We iterate the procedure three times to ensure the self-
consistency of the halo. The resulting halo constructed
from the superposition of eigenmodes is shown as a black
line. The corresponding occupation number is shown in the
bottom panel of Figure 1. As expected, the occupation
number fnl½m4=ð2πÞ3� closely follows the classical phase
space distribution fðEÞ except for the ground state. The
ground state occupation number is simply given by f0 ≃
Msol=m with the total soliton mass Msol.

C. Compression of wave DM halo

We now consider the adiabatic change of the system.
Suppose that the initial Hamiltonian H0 ¼ Hðt0Þ adiabati-
cally changes to H1 ¼ Hðt1Þ as before. According to the
adiabatic theorem, an eigenstate of the Hamiltonian at an
initial time (t0) remains as an instantaneous eigenstate of
the Hamiltonian as the system evolves. If the initial density

profile is given by ρ̄0ðrÞ ¼ m
P

i fijψ ð0Þ
i ðrÞj2 where ψ ð0Þ

i is
the eigenmode of the initial Hamiltonian H0, the final
density profile is given by

ρ̄1ðrÞ ¼ m
X
i

fijψ ð1Þ
i ðrÞj2

¼ m
4π

X
nl

ð2lþ 1ÞfnljRð1Þ
nl ðrÞj2 ð25Þ

with the eigenmode ψ ð1Þ
i ¼ Rð1Þ

nlY
ml
l of the final

HamiltonianH1. The occupation number remains the same,
fn0l0 ¼ fnl, throughout the adiabatic evolution.
To see how this compressed wave halo compares to

the compressed particle halo, we consider the semiclassical
limit, mvr ≫ 1. In the semiclassical limit, the wave
dark matter density profile is approximated as
ρ ¼ R dEdL 4πL

vrr2
fðE;LÞ with a substitution fðE;LÞ →

½m4=ð2πÞ3�fnl andL2 ¼ lðlþ 1Þ=m2. Since the eigenstate
stays in the same eigenstate during the adiabatic evolution,
the quantum number before and after the adiabatic evolution
is the same;n0 ¼ n andl0 ¼ l. The conservation of quantum
numbers is translated into the conservation of classical
adiabatic invariants. For instance, the condition l0 ¼ l leads
to L0 ¼ L1 ¼ L, while the condition n0 ¼ n leads toI

dr0vr;0ðr0Þ ¼
I

dr0vr;1ðr0Þ ð26Þ

from the semiclassical Bohr-Sommerfeld quantization con-
dition (21). Since the radial action is defined as
Jr ¼ 1

2π

H
drvrðrÞ, this condition is identical to the conser-

vation of the radial action, Jr;1ðE0; L0Þ ¼ Jr;1ðE1; L1Þ,
which we use to derive E0 ¼ E0ðE1; L1Þ for the particle
halo compression. From these arguments, we see that the

adiabatic compression proceeds in the same way as in the
particle case as long as the semiclassical approximation
is valid.
The semiclassical approximation breaks down at small r.

At small radii, the profile is dominated by low angular
momentum modes, and especially the ground state solu-
tion. Assuming that the ground state dominates the central
profile, the core profile before the adiabatic compression is
given by

ρc;0 ¼ mf0jψ ð0Þ
0 ðrÞj2 ¼ Msoljψ ð0Þ

0 ðrÞj2; ð27Þ

where ψ ð0Þ
0 is the ground state wave function of initial

system H0 and f0 ¼ Msol=m is the occupation number for
the ground state. The above form is a simple reparamet-
rization of the soliton profile ρcðrÞ (9). Since the occupa-
tion number is conserved, the final core profile is

ρc;1 ¼ mf0jψ ð1Þ
0 ðrÞj2 ¼ Msoljψ ð1Þ

0 ðrÞj2: ð28Þ

Here ψ ð1Þ
0 is the ground state of the final HamiltonianH1. If

the central black hole dominates the gravitational potential
of the final system, the Hamiltonian H1 can be approxi-
mated as

H1 ≈
p2

2m
−
GMBH

r
;

and, therefore, the ground state wave function is given by
the ground state wave function of the hydrogen atom,

ψ0ðrÞ ¼
e−r=affiffiffi
π

p
a3=2

ð29Þ

with a gravitational Bohr radius a ¼ 1=ðmαGÞ ¼
1=ðGMBHm2Þ. The final compressed wave dark matter
halo consists of the central soliton and the outer cuspy
profile

ρ1ðrÞ ¼
�
ρc;1ðrÞ r < rt;

ρspðrsp=rÞγsp rt < r < rsp;
ð30Þ

where rt is defined such that ρspðrsp=rtÞγsp ¼ ρc;1ðrtÞ. The
profile for r > rt is the same as the compressed particle
halo, ρspðrsp=rÞγsp , which is valid up to r ≃ rsp. In summary,
the central part is replaced by the soliton and the outer part
is the same as compressed particle dark matter halo.
In the top panel of Fig. 1, we show the compressed wave

halo by solving the Schrödinger equation of the final
Hamiltonian H1 with the occupation number obtained in
the previous section. For the illustration, we choose the
central black hole mass MBH ¼ 3 × 109M⊙. The resulting
compressed profile (blue solid) consists of the central core,
and outer spike profile similar to the compressed particle
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halo. The central density profile is given by the hydrogen
ground state wave function. We also show the analytical
profile given in Eq. (30) (red dashed), which agrees with
the numerical result. To ensure the self-consistency of the
compressed halo, we also perform three iterations to obtain
this result.

D. Survival of the core

If a massive black hole is at the center of halo, it may
swallow the low angular momentum modes over the
astrophysical timescale. It is exactly this reason why the
particle halo density profile sharply drops at r ¼ 2Rs.
The central black hole can absorb wave modes in a

similar fashion. Whether a certain wave mode can survive
depends on the central black hole mass and the wave dark
matter mass. To investigate this, we take the Schwarzschild
black hole for simplicity. While the system is identical to
the hydrogen atom in the nonrelativistic limit, the energy
eigenvalue develops an imaginary part due to the boundary
condition at the black hole horizon. The imaginary part of
the energy eigenvalue is interpreted as a decay rate and is
given by

Γnl

m
≈ α4lþ5

G
24lþ3ðnþ lÞ!

n2lþ4ðn − l − 1Þ!
�

l!
ð2lÞ!ð2lþ 1Þ!

�
2

×
Yl
k¼1

½k2 þ ð4αGÞ2� ð31Þ

where we take the Schwarzschild limit of the result obtained
in theKerr geometry [54,55].HereαG ¼ GMBHm. Including
the possible decay of modes into the black hole, the wave
dark matter halo density at a given time is

ρ̄ðrÞ ¼ m
4π

X
nl

ð2lþ 1ÞjRnlðrÞj2e−2Γnlthalo : ð32Þ

where thalo is the age of the darkmatter halo. Compared to the
previous wave dark matter profile, we have an additional
exponential decay factor due to the absorption. The above
estimation assumes that the central black hole dominates the
dynamics of the system. We only consider such cases in this
work. The decay of the central soliton given by Eq. (31)
agrees with full numerical simulations [56].
The decay rate of the ground state scales as Γ ∝ mα5G.

For the example shown in Fig. 1, the gravitational fine
structure constant is αG ∼ 2 × 10−3 and the decay rate is
Γ ∼ ð103 GyrÞ−1; the solitonic core of the compressed
wave halo survives over the age of the universe in this
case. Note, however, that whether the soliton and low
angular momentum modes can survive over the age of the
halo crucially depends on αG ¼ GMBHm. In the example to
be discussed in the following section, low angular momen-
tum modes are indeed unstable over the age of the halo as
the central black hole absorbs them. The decay of wave

modes leads to a distinctive compressed wave halo com-
pared to the one studied above. In particular, it can be
described with a broken power-law profile, which will be
discussed in the next section.

III. APPLICATION: INTERMEDIATE-MASS
RATIO INSPIRALS

The adiabatic growth of the black hole concentrates the
dark matter mass density near the center. As discussed in
previous works (e.g., Ref. [9]), a compressed dark matter
profile could lead to the dephasing of gravitational wave
signals from a binary system, which could be observed by
future gravitational wave detectors such as LISA. In this
section, we investigate an intermediate-mass ratio inspiral
—an inspiral between an intermediate-mass black hole
(m1) at the center of the halo and a solar-mass compact
object (m2)—to see if one can extract information on the
surrounding wave dark matter halo from gravitational wave
observations.
We consider a halo formed at z ¼ 20 with the virial mass

Mvir ≃ 106M⊙, which was considered in Eda et al. [10]. We
model the initial (outer) profile as

ρ0ðrÞ ¼
ρs

ðr=rsÞγð1þ r=rsÞ3−γ
ð33Þ

with the scale density ρs ≃ 5.3 M⊙=pc3 and the scale radius
rs ≃ 23 pc. We consider an intermediate-mass black hole of
mass m1 ¼ 103–105M⊙ formed at the center of a halo via
the collapse of Population III stars [57] or a direct collapse
of a gas cloud [58], where their formation compresses the
surrounding dark matter halo as described in the previous
section.3 The radius of gravitational influence of such
intermediate black holes is smaller than rs, and therefore,
the adiabatic compression takes place in the inner part of
the halo where the density profile is well approximated by a
single power-law, ρ0ðrÞ ≈ rsðrs=rÞγ . Such intermediate-
mass black holes could be seeds for supermassive black
holes observed at high redshifts [65–67].
After the adiabatic compression, a dark matter spike has

formed. For the particle halo and also for the outer part of
the wave halo, the density profile is given as ρ1ðrÞ ≈
ρspðrsp=rÞγsp with γsp ¼ ð9 − 2γÞ=ð4 − γÞ. The spike den-
sity and radius are

ρsp ¼ ρs

�
2πρsr3s

ð3 − γspÞ0.23−γspm1

� γ
3−γ
; ð34Þ

3See the review [59] for details on the formation of inter-
mediate-mass black holes. Note that the compressed halo might
be compromised due to off-center formation, merger events, and
DM-star interactions [60–62]. We refer readers to Ref. [63,64] for
detailed discussion on this and for an estimate on the number of
compressed halos without major merger events.
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rsp ¼ rs

�ð3 − γspÞ0.23−γspm1

2πρsr3s

� 1
3−γ

; ð35Þ

which can be easily derived from ρsp ¼ ρ0ðrspÞ and
rsp ¼ ½ð3 − γspÞ0.23−γspm1=ð2πρspÞ�1=3.
Consider now the inspiral between the central inter-

mediate-mass black hole and a solar-mass object in a
quasicircular orbit within the compressed wave halo.4 The
change of the orbital energy of the companion object is

dEo

dt
¼ −

�
dEGW

dt
þ dEf

dt

�
; ð36Þ

where Eo ¼ −Gm1m2=2r is the orbital energy, m1 is
the mass of the central black hole, andm2 is the companion
mass.
The first term dEGW=dt represents the energy loss due to

gravitational wave emission. It is given as

dEGW

dt
¼ 32

5G
ðGMcπfGWÞ10=3; ð37Þ

where the chirp mass is Mc ¼ μ3=5M2=5 with the reduced
mass μ ¼ m1m2=ðm1 þm2Þ and the total mass
M ¼ m1 þm2. The gravitational wave frequency is

fGW ¼ 2fo ¼
1

π

ffiffiffiffiffiffiffiffi
GM
r3

r
ð38Þ

with the orbital frequency fo ¼ vc=2πr.
The second term dEf=dt is due to the friction induced by

the dark matter halo, called dynamical friction. The
dynamical friction energy loss can be written as

dEf

dt
≈
4πðGm2Þ2ρð< vÞ

v
CðvÞ ð39Þ

where v ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
GM=r

p
is the circular velocity of the

companion object and ρð< vÞ ¼ 4π
R
v
0 dv0v02fðv0Þ ≃ 0.6 ×

ρðrÞ is the mass density of particle whose velocity is
smaller than the circular velocity. The microscopic nature
of dark matter affects both the density ρðrÞ and the
Coulomb logarithm factorCðvÞ. It is this dynamical friction
energy loss that can potentially allow us to probe the nature
of dark matter. We are, therefore, interested in how the
dynamical friction changes the waveform of gravitational
waves during five years of inspiral before the coalescence.

A. Compressed wave halo

To compute the dynamical friction force, let us revisit the
compressed halo density profile. In the previous section,

the solitonic core survives for an astrophysical timescale,
and the final density profile consists of the ground state of a
hydrogenlike atom (soliton) and the outer dark matter
spike. For the benchmark halo we study in this section,
the conclusion is different: the central soliton as well as low
angular momentum modes cannot survive over an astro-
physical timescale, and the profile is approximately
described by a broken power-law instead of a spike profile
with a characteristic solitonic core.
To illustrate this, let us consider the wave dark

matter mass around m ≃ 10−14 eV. The Bohr radius is
a ¼ 1=Gm1m2 ∼ 10−8 pc, which roughly coincides with
the radial position of the companion (m2) five years before
the coalescence. In this case, the gravitational fine structure
constant is αG ¼ 0.3 × ðm1=103M⊙Þðm=10−14 eVÞ, while
the decay rate of the ground state is Γ ∼mα5G. It is
straightforward to see that the ground state decays and
cannot survive over the Gyr timescale; the central black
hole swallow the whole soliton in a short timescale. This
conclusion holds for the parameter ranges of interest: the
mass of the central black hole, m1 ∼ 103–105M⊙, and the
Bohr radius, a ∼ 10−9 − 10−8 pc, which is comparable to
the radial position of the companion several years before
the coalescence.5

The most straightforward way to compute the density
profile including the decay is to use Eq. (32), which is shown
in Figure 2. For this figure, we choose m1 ¼ 104M⊙,
m2 ¼ M⊙, γsp ¼ 7=3, and a ¼ 1=mαG ¼ 1=Gm1m2 ∈
½10−12; 10−9� pc. As one can see, the core is absent and
the inner part of density profile is replaced by a power-law
profile of ρ ∼ r2lc where the critical angularmomentumlc is
defined such thatmaxn 2Γnlc thalo ¼ 1; themodeswithlc are
the modes with the lowest angular momentum that survive
over thalo.
For a later numerical purpose, we provide a simple

analytical expression for the density profile. Since low
angular momentum modes are absorbed, and the density
profile begins to have nonvanishing value at r ≫ a, taking
the continuum limit is a good approximation in most cases.
We approximate the discrete sum to the continuous integral
in Eq. (32), and then introduce the lower bound on angular
momentum integral in Eq. (1) as Lc ¼ lcðlc þ 1Þ=m2,
where lc is the solution of

2max
n

Γnlthalo ¼ 1:

Here the principal quantum number is chosen as
n ¼ maxðlþ 1; 1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðlþ 1Þðlþ 2Þð2lþ 3Þp Þ, which is
an approximate value maximizing the decay rate for a
given angular momentum l. The resulting density profile is

4See Ref. [68] for discussion on circularization of the orbit
with dynamical friction.

5See Refs. [69,70] for the discussions on response of ultralight
dark matter soliton to external perturbations.
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ρðrÞ ≈ ρsp

�
rsp
r

�
γsp
�
1 −

Rc

2r

�
γsp ð40Þ

with Rc ¼ alcðlc þ 1Þ. This approximation reliably repro-
duces the profile from the discrete summation for lc ≫ 1.

B. Dynamical friction

The dimensionless coefficient CðvÞ in Eq. (39) enco-
des the microscopic nature of dark matter. For particle dark
matter, one finds [37,42]

CpðvÞ ¼
1þ Λ
Λ

log

�
1þ Λþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λð2þ ΛÞ

p �
−

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

Λ

r

ð41Þ

with Λ ¼ v2r=ðGm2Þ. Note that Λ ¼ bmax=b90 where
bmax ¼ r is the maximum impact parameter and b90 ¼
Gm2=v2 is the impact parameter at which the encounter
results in 90° deflection of the trajectory. In the limit
Λ ≫ 1, the above expression reproduces Cp ≈ ln 2Λ.
For the wave dark matter, the C-factor becomes [42]

CwðkrÞ ≈ cinð2krÞ − 1þ sinð2krÞ
2kr

ð42Þ

where k ¼ mv is the wave number of dark matter. This
expression is valid when b90=λdB ¼ Gm2m=v ≪ 1, which

is always satisfied in our case. The cosine integral is
defined as cinðzÞ ¼ R z0 ð1 − cos tÞdt=t.

C. Backreaction

Due to dynamical friction, the orbit of the companion
decays faster. As a result, the companion injects energy into
the halo, and the injected energy could change the density
profile of the halo, especially when it is of the order of the
gravitational binding energy. The implications of this
backreaction to the halo were first investigated in the work
of Kavanagh et al. [11] by numerically solving the kinetic
equation. It was found that the injected energy can be
significant for q ¼ m2=m1 ≳ 10−4 such that it greatly
reduces the importance of dynamical friction.
To include the backreaction effect without solving the

kinetic equation numerically, we instead model the back-
reaction effect in the following way. Suppose the
companion object is located at the radial position r. If
the orbital energy loss via dynamical friction is larger than
the gravitational binding energy of the halo, this energy
heats the dark matter particles and suppresses the dark
matter density, effectively halting the dynamical friction.
Based on this observation, we assume that the maximum
amount of energy that can be dissipated from the
companion is limited by the kinetic energy stored in a
shell of halo of thickness Δr at r, which is roughly half of
the corresponding gravitational binding energy; the maxi-
mum energy loss is given by minðΔEf;ΔU=2Þ, where ΔU
is the gravitational binding energy of the halo,

ΔU ¼ −
G½m1 þmencðrÞ�

r
4πr2ρðrÞΔr

with the enclosed mass menc ¼ 4π
R
r
0 dr

0r02ρðr0Þ. In other
words, the dynamical friction fore is replaced as

dEf

dt
→ min

�
dEf

dt
;
1

2

dU
dt

�
≈ ð1= _Ef þ 2= _UÞ−1 ð43Þ

where the second expression represents the practical
implementation of the model in our numerical analysis.
This model of backreaction reproduces the numerical result
obtained by Kavanagh et al. [11], which is shown in
Appendix B.

D. Waveform

We investigate how the dynamical friction from com-
pressed halo affects the waveform of the emitted gravita-
tional waves. The detector output without noise is
h̃ðfÞ ¼ Fþh̃þðfÞ þ F×h̃×ðfÞ, where Fþ;× are the detector
pattern functions and h̃þ;× are the strains for each polari-
zation state. For simplicity, we consider the strain averaged
over the sky position, polarization angle, and inclination
angle. The angle-averaged strain is then given by [71]

FIG. 2. The density profile of compressed wave halo. The
soliton as well as other low angular momentum modes are
absorbed by the central black hole, leading to a broken power-law
profile. At large radii, the profile behaves as ρ ∝ r−γsp while at
small radii, it behaves as ρ ∝ r2lc . The black dashed line is the
profile of particle dark matter halo Eq. (6). Colored lines show the
compressed wave halo profiles for different values of the Bohr
radius a ¼ 1=Gm1m2. The dashed lines are the analytical
approximation given in Eq. (40). Here r5 yr is the radial position
of a solar-mass compact object at which it coalesces with the
central black hole in five years.
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h̃ðfÞ ¼
ffiffiffi
4

5

r
AðfÞeiΨðfÞ: ð44Þ

The amplitude and the phase are given by

AðfÞ ¼ 2

DL

ðGMcÞ5=3ðπfÞ2=3
_f1=2

; ð45Þ

ΨðfÞ ¼ 2πf½t0 þ tðfÞ� −Φ0 −ΦðfÞ − π=4; ð46Þ

where DL is the luminosity distance of the event, t0 and Φ0

are some reference time and constant phase factor, and

tðfÞ ¼
Z

f
df0ð1= _f0Þ; ð47Þ

ΦðfÞ ¼ 2π

Z
f
df0ðf0= _f0Þ: ð48Þ

Since the dynamical friction modifies the gravitational
wave frequency evolution, it affects the waveform by
changing the amplitude AðfÞ and the phase ΨðfÞ.
The change in the amplitude AðfÞ turns out to be a small

effect. If we consider the evolution of the inspiral several
years before it coalesces, the orbital energy loss due to the
dynamical friction is subdominant to the energy loss due to
the gravitational wave emission in most cases. That is, the
evolution _f=f is dominated by the gravitational wave, and
therefore, the amplitude AðfÞ is determined by the gravi-
tational wave emission to the leading order; the dynamical
friction plays a subleading role for AðfÞ.
The phase, however, can be significantly modified by the

dynamical friction as it accumulates over time. To illustrate
this, we compute the phase difference between the gravi-
tational waves from the black hole binary with and without
the dynamical friction from the compressed halo. In
particular, we compute

ΔΦðfÞ ¼ 2π

Z
fISCO

f
df0
�
ðf0= _f0Þ − ðf0= _f0ÞV

�
ð49Þ

where ð _f=fÞV ¼ ð96=5ÞðπfÞ8=3ðGMcÞ5=3 is the gravita-
tional wave frequency evolution without the dynamical
friction. In the top panel of Fig. 3, we show this phase
difference, or dephasing, for the particle halo and wave halo
with respect to the vacuum case for which there is no
compressed halo at all. We see that the phase difference
accumulated over several years could be many orders of
magnitude larger than unity.
In the bottom panel of Fig. 3, we also show the phase

difference of gravitational waves from the wave halo with
respect to the particle halo. Due to the difference in density
profile and the Coulomb logarithm factor, the phase
difference is large for the chosen Bohr radii.

E. Parameter estimation

A natural question is if the phase difference allows us to
reconstruct the compressed wave halo parameters, such as
the Bohr radius or the wave dark matter mass. To answer
this question, we perform a parameter estimation analysis
with the sensitivity of LISA. There are 5 parameters related
to the system:

θ ¼ fMc; q; ρ6; γsp; ag ð50Þ

where Mc ¼ ðm1m2Þ3=5=ðm1 þm2Þ1=5 is the chirp mass,
q ¼ m2=m1, γsp is the index of the compressed halo profile,
and a is the gravitational Bohr radius. Instead of ρsp, we use

FIG. 3. Top: the dephasing of gravitational waves from a
compressed dark matter halo with respect to those without a
compressed halo. The gray line represent the result from the
particle dark matter halo. The blue, orange, and green lines
are the results from wave halos with the Bohr radii
a ¼ 10−11; 10−10; 10−9 pc, respectively. We also show the par-
ticle mass for each line. Bottom: the phase difference of
gravitational waves from wave dark matter halo and from the
particle dark matter halo. The color code is the same in both
figures. Here f5 yr denotes the frequency of gravitational waves
five years before the coalescence.
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the density at r6 ¼ 10−6 pc, and ρ6 ¼ ρspðrsp=r6Þγsp fol-
lowing [12]. There are three more parameters in the
waveform, θc ¼ fDL; t0;Φ0g, but for the parameter esti-
mation, we choose maximum likelihood values for these
parameters for a given θ to reduce the computational
burden.
The detector output is dðtÞ ¼ hðtÞ þ nðtÞ where hðtÞ is

the gravitational wave and nðtÞ is Gaussian detector noise.
The likelihood function is

Lðθ; θcÞ ¼ N exp

�
−
1

2
ðd − hjd − hÞ

�
; ð51Þ

where N is the normalization constant. The inner product
ðajbÞ is defined as

ðajbÞ ¼ Re
Z

∞

−∞
df

a�ðfÞbðfÞ
1
2
SnðfÞ

ð52Þ

Here SnðfÞ is the noise power spectral density defined as
hnðfÞn�ðf0Þi ¼ 1

2
δðf − f0ÞSnðfÞ. For the LISA sensitivity,

we use SnðfÞ provided in Robson et al. [71].
After fixing θc to the maximum likelihood values, the

log-likelihood becomes [72]

lnLðθÞ ¼
2maxt0

��� R∞0 dfe2πift0 h̃�ðfÞdðfÞ=SnðfÞ
���2R∞

0 dfjh̃ðfÞj2=SnðfÞ
: ð53Þ

Here the waveform should be understood as h̃ðf; θÞ ¼
h̃ðf; θÞjΦ0¼0;t0¼0. The quantity in the numerator is simply

the maximum of the Fourier transformation of h̃�ðfÞdðfÞ=
SnðfÞ. For the parameter estimation, we inject the signal
according to the compressed wave dark matter halo, while
ignoring the detector noise, i.e., d ¼ hðθtrueÞwith θtrue given
by the benchmark values in Table I. The lower frequency for
the above integral is chosen to be the frequency of GWs five
years before the coalescence, and the upper frequency is
chosen to be fupper ¼ minð1 Hz; fISCOÞ where fISCO is the
frequency of gravitational waves at the inner most stable
circular orbit rISCO ¼ 6Gm1.

F. Result

For the parameter estimation, we choose the following
benchmark for θtrue: In terms of black hole masses, the
above corresponds to m1 ¼ 104M⊙ and m2 ¼ M⊙. The
density ρ6 is obtained from the benchmark halo in Eq. (33)
with the central black hole m1 ¼ 104M⊙. We assume that
LISA measures the last five years of inspiral before the
coalescence. For the numerical computation of the pos-
terior distribution, we use the publicly available nested
sampler dynesty [73]. The above benchmark corre-
sponds to a signal-to-noise ratio SNR ≃ 15.

In Fig. 4, we show 1D and 2D marginalized posterior
distribution for the wave dark halo for the above benchmark
scenario. Some of the parameters, such as the chirp mass
Mc, the mass ratio q, and the Bohr radius a, have resolved
peaks around the true value with relatively small errors as
one can see in their 1D marginalized distribution. On the
other hand, the posterior distribution for the above bench-
mark does not provide strong information on the other two
parameters, ρ6 and γsp. We also observe strong degeneracy
among parameters, for instance, between ρ6 and γsp, and
between ρ6 and log10 q. The chosen gravitational Bohr
radius corresponds to m ≃ 10−13 eV.
We also compute the Bayes factor to see if the gravi-

tational waves from wave halo can be distinguished from
those of a particle halo. The Bayes factor is defined as

BðdÞ ¼ ZwðdÞ
ZpðdÞ

ð54Þ

where the evidence Zi is given

Zi ¼
Z

dθLiðθÞπiðθÞ; ð55Þ

with i ¼ w, p representing the wave and the particle halo
model, respectively. To compute the evidence, we inject
the signal according to a wave dark matter halo, and
compute the evidence with the wave halo model and also
with the particle halo model. For the Bayes factor
computation, we choose three benchmarks shown in
Table II. Each benchmark corresponds to SNR ≃ 15. B1
corresponds to m1 ¼ 1400M⊙ andm2 ¼ 1.4M⊙, while B3
corresponds to m1 ¼ 105M⊙ and m2 ¼ M⊙. B2 is the
same as the one considered for the posterior distribution.
We compute the Bayes factor while varying the gravita-
tional Bohr radius for a ∈ ½10−12; 2 × 10−10� pc. In each
case, the prior range is chosen as Mc=M⊙ ¼ Mc;true=
M⊙ � 10−2, log10 q ¼ log10 qtrue � 0.5, γsp ∈ ½2.25; 2.5�,
and log10 a=pc ∈ ½−13;−9�. For ρ6, we choose
ρ6=ð1015M⊙=pc3Þ ∈ ½0; 20�; ½0; 100�; ½0; 500� for B1, B2,
B3, respectively.
The Bayes factor is shown in Fig. 5. In all cases, the log-

Bayes factor is close to zero for sufficiently small Bohr
radius, meaning that the particle halo is able to fit the data
even though the data is generated according to the wave
model. This is because the wave density profile converges
to that of particle halo for small Bohr radius. While there is
always some difference induced by the Coulomb logarithm,

TABLE I. Benchmark values for the wave halo for the
parameter estimation.

Mc ½M⊙� q ρ6 ½1015 M⊙=pc3� γsp a [pc] DL [Mpc]

θtrue 39.8 10−4 25 7=3 10−11 203
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such difference is not sufficient to distinguish the wave halo
from the particle halo. As the gravitational Bohr radius
increases, the log-Bayes factor increases, indicating that the
wave model is preferred over the particle model. Especially
for B2, the log-Bayes factor increases to Oð1Þ values at
relatively smaller Bohr radius, a ≃Oð1Þ × 10−12 pc, pro-
viding the most promising physics scenarios to identify the
wave nature of dark matter from gravitational wave
observations.

FIG. 4. Posterior distribution for an intermediate-mass ratio inspiral within the compressed wave halo. The signal-to-noise ratio is
S=N ≃ 15. Quoted numbers on the top of 1D histogram represents 2.5% and 97.5% quantiles; the contours in 2D histogram represents
0.5; 1; 1.5; 2σ levels. The compressed wave halo can be reconstructed with five years of gravitational wave observations before its
coalescence. We choose a ¼ 10−11 pc in this example, which corresponds to the particle mass m ≃ 10−13 eV.

TABLE II. Benchmark scenarios for the evidence computation.

Mc ½M⊙� q ρ6 ½1015 M⊙=pc3� γsp DL [Mpc]

B1 22.2 10−3 6.8 7=3 83
B2 39.8 10−4 25 7=3 203
B3 102 10−5 120 7=3 750

FIG. 5. The difference of the log-evidence between the wave
and the particle halo models, when the input is generated
according to a black hole binary in the compressed wave halo.
We consider the benchmark scenarios listed in Table II.
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IV. DISCUSSION

We discuss several assumptions and approximations that
we have made in the previous sections and investigate how
they affect our results.

A. Accretion

We have assumed that the companion mass m2 is
constant. If the companion is a black hole, it may accrete
masses from the surrounding dark matter halo. This would
affect the dynamical friction (dEf=dt ∝ m2

2) as well as the
gravitational wave emission (dEGW=dt ∝ m2

2).
The mass accretion rate is

dm2

dt
¼ ρðσabsvÞ; ð56Þ

where the absorption cross section σabs is computed by
Unruh [74]. For v ≲ 2πGm2m, σabs ¼ 32π2ðGm2Þ3m=v2;
for v≳ 2πGm2m, σabs ¼ 16πðGm2Þ2=v. The circular
velocity for r < r5 yr is larger than 2πGm2m ¼
7 × 10−4ðm2=1.4M⊙Þðm=10−14 eVÞ, and therefore, the
accretion rate can be approximated as dm2=dt≈
16πðGm2Þ2ρ. We check numerically that the accretion
over five years before the coalescence remains at
Δm2=m2 ∼Oð10−4Þ for all cases. More detailed analyses
can be found in [75,76], where the dynamical friction and
the accretion effect are derived in a consistent framework.

B. Relaxation

Gravitational interaction among wave dark matter can
modify the halo profile over time through the relaxation
process. It is therefore important to check if the relaxation
takes place in the system that we considered in the previous
section.
We estimate the relaxation timescale. In the wave halo,

the relaxation can be understood as a result of gravitational
interaction between quasiparticles, whose size is the wave-
length of dark matter and whose mass is the total mass
enclosed within the de Broglie volume [42]. The relaxation
timescale is defined as the timescale during which these
quasiparticles exchange the kinetic energy by an order one
factor. More specifically, the relaxation timescale can be
estimated as [37,77]

trel ¼
σ2

D½ðΔvjjÞ2�
����
v¼ ffiffi

3
p

σ

≃ 0.08
m3σ6

G2ρ2 lnΛ
ð57Þ

where σ2 ≈ v2c=ð1þ γspÞ is the velocity dispersion and the
diffusion coefficient D½ðΔvjjÞ2� is

D½ðΔvjjÞ2� ≃ 13 ×
G2ρ2ðrÞ lnΛ

m3σ4
ð58Þ

where lnΛ ≃ lnmσr is the Coulomb logarithm. The
numerical coefficient has a mild dependence on γsp; it
changes from 13.4 to 12 for γsp ∈ ½2.25; 2.5�. After the
relaxation timescale, wave modes have exchanged energy
by an order one factor, replenishing low angular momen-
tum modes that are subsequently absorbed by the central
black hole, suppressing the wave halo density further. A
detailed derivation of the relaxation timescale on com-
pressed halo is discussed in Appendix A.
Since the most important contribution to the dephasing

arises around r ∼ r5 yr, we compute the relaxation timescale
at r5 yr for each benchmark B1, B2, and B3. In Fig. 6, we
show the relaxation timescale of the halo as a function of
the Bohr radius. For B1, the relaxation timescale becomes
smaller than Gyr scale for the Bohr radius a≳ 10−11 pc
(m≲ 2 × 10−13 eV). In such cases, the wave halo is subject
to the relaxation, and hence, the density profile is further
suppressed from what we discussed in the previous section.
To correctly model the density profile, one needs to
investigate the dynamical evolution of the wave modes
due to gravitational interactions, which is beyond the scope
of this work. We also compute the relaxation timescale for
the other benchmark scenarios. As the mass of central black
hole increases, the relaxation timescale also increases at a
given Bohr radius. In the figure, we see that the relaxation
timescale for these two benchmark scenarios can be Gyr
timescale even for a ≳ 10−11 pc, where the log-Bayes
between wave and particle halo begins to exceed unity.
Since the relaxation timescale is comparable to the age of
halo, we expect that the wave profile is approximately
given by the form (32), and does not significantly change
over the age of halo.

FIG. 6. The relaxation timescale at r5 yr for each benchmark
introduced in the previous section. As we increase the mass of the
central black hole, the relaxation timescale generally increases. If
the relaxation timescale is significantly smaller than Gyr time-
scale, it is expected that the wave halo profile is further
suppressed as the low angular momentum will be replenished
through the relaxation process.
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C. Stochastic heating

Numerical simulations of fuzzy dark matter observed
granular structures, which represent fluctuations of the
gravitational potential [43]. These fluctuations of the wave
DM halo can be described as quasiparticles, whose size is
of the order of its de Broglie wavelength and the mass is
given by the mass enclosed within the de Broglie volume
[42,78]. Depending on their mass, quasiparticles could
impart non-negligible kinetic energy to stellar objects. Such
stochastic heating effect affects the orbital evolution of the
companion object, and therefore, could potentially change
the dephasing pattern.
To estimate the stochastic heating effect, we beginwith the

change of the energy of the object m2 due to its interaction
with the dark matter halo, which can be written as

dEf

dt
¼ D½ΔE�: ð59Þ

The energy diffusion coefficientD½ΔE� denotes the change in
energy per unit time. It can be rewritten in terms of velocity
diffusion coefficients by noticing ΔE=m2 ¼ 1

2
ðvþ ΔvÞ−

1
2
v2 ¼ v · Δvþ 1

2
ðΔvÞ2. This leads to

D½ΔE� ¼ m2

	
v ·D½Δv� þ 1

2
D½ðΔvÞ2�



; ð60Þ

where thediffusion coefficients for velocities in thewave limit
are computed in [78–80]. The first term is the one we used to
compute the dephasing of the gravitational wave, i.e.,
Eq. (39); the second term is due to the stochastic heating
with quasiparticles. In our analysis, we ignored the sec-
ond term.
The relative importance of the second term is

cooling
heating

≈
_Ef

D½ðΔvjjÞ2�
∼

m2

meff
ð61Þ

where meff ¼ ρðrÞð ffiffiffiffiffiffi
2π

p
=mvcÞ3 is roughly the mass

enclosed within de Broglie volume, which can be inter-
preted as the mass of quasiparticles. The numerator _Ef is
the usual dynamical friction force (39), and the denomi-
nator is the second velocity diffusion coefficient, which is
already obtained in the previous section, Eq. (58). A
detailed derivation of the diffusion coefficient is given in
Appendix A. We see that the stochastic heating can be
neglected as long as the quasiparticle mass is smaller than
the companion mass.
As it is clear from the expression, the quasiparticle mass

increases as r decreases, indicating that the stochastic
heating would be the largest at the smallest r. In Fig. 7,
we compute the mass of quasiparticle at the radius
r ¼ Rc ¼ alcðlc þ 1Þ. We see that the stochastic heating
is negligible to the dynamical friction in all the benchmarks
we consider in this work.

V. CONCLUSION

We discussed how the wave dark matter responds to the
adiabatic growth of the black hole. Using the adiabatic
theorem, we showed that the wave halo is compressed in a
similar fashion as the particle halo is compressed in the
semiclassical limit. The difference arises near the central
region,where the compressedwave halomayhave a solitonic
core. The existence of the solitonic core depends on the
system, as it can be completely swallowed by the cen-
tral black hole. We considered one example where
the central soliton in the compressed halo survives over
the astrophysical timescale, and one example where it does
not. If the soliton and other low angular momentum modes
are absorbed, the wave density profile behaves as a broken-
power law, where it follows the usual spike profile at large
radii, ρ ∝ r−γsp , while at small radii, it behaves ρ ∝ r2lc ,
where lc is the lowest angular momentum that can survive
for the age of the halo thalo.
Having discussed the adiabatic compression of wave

dark matter, we considered one interesting astrophysical
application regarding gravitational waves from intermedi-
ate mass-ratio inspirals. In the presence of compressed
wave dark matter, the inspiral certainly experiences addi-
tional energy dissipation due to the dynamical friction. This
additional dissipation of orbital energy causes a dephasing
of gravitational wave signals. Due to the difference in the
mass density and the Coulomb logarithm factor, the
companion object experiences a dynamical friction force
from the wave halo that is distinctive from the force that it
would experience in the particle halo. We showed that the
wave halo can be reconstructed by the gravitational wave
observations with the sensitivity given by future LISA
mission for certain benchmark values, and that it can also
be distinguished from particle halo. This provides an
interesting way to probe the microscopical nature of the
dark matter. Although we only considered wave halo in this

FIG. 7. The effective mass of quasiparticles for each bench-
mark. For all range of the gravitational Bohr radius, the effective
mass is several orders of magnitude smaller than the companion
mass.
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work, it could be interesting to investigate other types of
particle dark matter such as self-interacting dark matter or
degenerate fermionic dark matter as they can form cored
profile and predict distinctive Coulomb logarithm factor for
the dynamical friction [81].
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APPENDIX A: DERIVATION
OF RELAXATION TIMESCALE

We derive the relaxation timescale Eq. (57) in this
appendix.
Before we compute the diffusion coefficient, let us

consider the phase space distribution, which allows us to
compute the diffusion coefficient as well as the velocity
dispersion of the compressed halo. The phase space
distribution of the compressed halo is determined by the
initial phase space distribution as in Eq. (3)

fðE1; L1Þ ¼ fðE0ðE1; L1ÞÞ
where L0 ¼ L1 ¼ L and the relation between E1 and E0 is
determined by the radial action. The final phase space
distribution in this way depends on the angular momentum.
Instead of using this distribution, we approximate the final
distribution obtained from Eddington’s formula Eq. (2)
with ρðrÞ ¼ ρspðrsp=rÞγsp . In this case, we find

fðEÞ ¼ ρðrÞ
ð−2πΦÞ3=2

Γðγsp þ 1Þ
Γðγsp − 1=2Þ

�
Φ
E

�
3=2−γsp

: ðA1Þ

This approximate distribution fully reproduces the density
profile, and provide a reasonable approximation for the
diffusion coefficient computation.
Having found the approximate phase space distribution

of the compressed halo, we can compute the velocity
dispersion as

σ2 ¼ 1

3ρ

Z
d3vv2fðvÞ ¼ v2c

1þ γsp
: ðA2Þ

Here v2c ¼ Gm1=r is the circular velocity.

The diffusion coefficient for the wave dark matter
is [79,80]

D½ðΔvjjÞ2� ¼
32π2G2 lnΛ

3

ð2πÞ3
m3

×

�
1

v3

Z v2
2
þΦ

Φ
dE½2ðE −ΦÞ�32f2ðEÞ

þ
Z

0

v2
2
þΦ

dEf2ðEÞ
�

¼ 32π2G2 lnΛ
3

ρ2ðrÞ
m3v4c

�
Γðγsp þ 1Þ
Γðγsp − 1

2
Þ
�
2

Iðv=vc; γspÞ

ðA3Þ
where lnΛ ≃ lnðmσrÞ is the Coulomb logarithm in the
wave limit and I is defined as

Iðx; γspÞ ¼
1

x3

Z
1

1−x2
2

dϵ
½2ð1 − ϵÞ�3=2

ϵ3−2γsp
þ
Z

1−x2
2

0

dϵ
ϵ3−2γsp

:

With this diffusion coefficient, we find

trel ¼
m3σ6

G2ρ2 lnΛ

"
3

32π2

 
Γ
	
γsp − 1

2



Γðγsp þ 1Þ

!2

ð1þ γspÞ2
Iðv=vc; γspÞ

#

where v ¼ ffiffiffi
3

p
σ. The quantity in the square brackets has a

mild dependence on γsp; it takes values [0.075, 0.083]
for γsp ∈ ½2.25; 2.5�.

APPENDIX B: COMPARISON
TO PREVIOUS WORKS

To check if our backreaction model correctly reproduces
the numerical result of Kavanagh et al. [11], we compare
the number-of-cycles difference in the particle dark matter

FIG. 8. The number of cycles of gravitational waves counted
from the innermost stable circular orbit. The solid line is
obtained from our analytical modeling described in the main
text, while the dots are numerical results taken from Ref. [11].
For this figure, we choose m1 ¼ 1400M⊙, m2 ¼ 1.4M⊙,
γsp ¼ 7=3, and ρsp ¼ 226 M⊙=pc3.
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halo, defined as

NðfÞ ¼
Z

tISCO

t
dt0½fpðt0Þ − fvðt0Þ�

¼
Z

fISCO

f
df0½ðf0= _f0Þp − ðf0= _f0Þv� ðB1Þ

where the subscript p and v denotes the evolution of
gravitational wave frequencies with and without a particle
dark matter halo (6). The result obtained by our analytical
model and the numerical result in [11] are shown in Fig. 8.
Over the relevant frequency range, our backreaction model
(43) overestimates the number of cycle roughly by 20% or
less, compared to the numerical result in [11].
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