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Searches for mass-asymmetric compact binary coalescence events
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We present the results of the search for the coalescence of compact binary mergers with very asymmetric
mass configurations using convolutional neural networks and the Laser Interferometer Gravitational Wave
Observatory/Virgo data for the third observation period (O3). Two-dimensional images in time and
frequency are used as input. Masses in the range of 0.01 —20M are considered. We explore neural
networks trained with input information from a single interferometer, pairs of interferometers, or all three
interferometers together, indicating that the use of the maximum information available leads to an improved
performance. A scan over the O3 dataset using the convolutional neural networks for detection results in no
significant excess from an only noise hypothesis. The results are translated into 90% confidence level upper
limits on the merger rate as a function of the mass parameters of the binary system.
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I. INTRODUCTION

Since the discovery of gravitational waves (GWs) in
2015 [1], generated by a compact binary coalescence
(CBC) of black holes (BHs), the Laser Interferometer
Gravitational Wave Observatory (LIGO) and Virgo experi-
ments have improved their sensitivity and observed an
increasing number of GW signals, including also events
attributed to the coalescence of neutron stars (NSs), as well
as the coalescence of BH-NS binary systems. The latest
catalog of events, from the first through third observation
runs (O1, O2, and O3), collects a total of 90 events,
dominated by BH-BH candidates [2—4]. The data indicate
that the masses in the binary systems range between 1.17M
(GW191219_163120) and 105M, (GW190426_190642),
with a mass ratio ¢ = m, /m,, where m, denotes the heaviest
of the two objects, in the range between 1.1 (GW170817)
and 26.5 (GW191219_163120). The LIGO and Virgo
Collaborations use matched-filtering techniques to extract
the events from the much larger background (for a compre-
hensive review of the experimental techniques, see Ref. [5]).
The use of machine learning tools has been extensively
explored in LIGO and Virgo (for acomprehensive review, see
Refs. [6,7]). In particular, the presence of a distinct chirplike
shape in the CBC events, when represented in spectrograms
showing the signal in the frequency-time domain, makes
the use of a convolutional neural network (CNN) a valid
alternative suitable for GW detection [8—17]. In addition, the
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use of CNNs has been explored to distinguish between
families of glitches or cleaning the data [18-21].

In this paper, we explore the implementation of a CNN
for the identification of CBC events with very asymmetric
mass configurations with g < 2000, and m; and m, in the
range between 1-20M and 0.01-1M, respectively. This
is motivated by the search for CBC candidates with the
presence of subsolar-mass (SSM) BHs. Since there is no
well-established astrophysical explanation for the origin of
SSM BHs, their discovery would point to the presence of
new physics. The presence of SSM BHs is predicted by
different models, including primordial black holes from the
collapse of overdensities in the early Universe [22-25],
gravitational collapse of dark matter halos [26-29], the
accumulation of dark matter by neutron stars leading to
SSM BHs [30], or SSM boson stars [31-33]. As illustrated
in Fig. 1, this study complements the phase space in mass
considered by previous searches for SSM events using O3
data and matched-filtering-based selections [4,34-36].
Previous results using other observational periods are
included in Refs. [37-40].

II. DATA PREPARATION

The study uses the O3 data from LIGO-Hanford (H1),
LIGO-Livingston (L1), and Virgo (V1) interferometers with
4096 Hz sampling rate. After imposing quality requirements,
dealing with the understanding of the interferometer sta-
tionary noise budget, as well as the identification and
suppression of glitches and spectral noise contributions
(for a comprehensive discussion, see Refs. [41,42]),
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FIG. 1. Region of interest compared to other recent searches.
The blue region is the one searched by the LVK Collaboration as
part of the GWTC-3 catalog [4], the magenta hatched region
corresponds to the LVK subsolar mass targeted search performed
over O3 data [34,36], while the green hatched region corresponds
to the broad search performed by Nitz and Wang over the O3
data [35].

the H1-LL1-V1 combined samples have a total duration of
155 days. The H1-L1-V1 O3 data are used for constructing
an image containing a spectrogram with only background
and background plus injected signal for the purposes of the
CNN training. Special precaution was taken in the prepara-
tion of the background images to exclude any of the
identified GW events in O3, as collected in the third
Gravitational-Wave Transient Catalog (GWTC-3) [4]. A
total of 142,944 images was used. The results obtained
(see below) show that this number of images is enough for an
adequate training and validation of the network. The images
are divided as follows: 115,200 (80.6%) for training, 12,800
(9.0%) for validating, and 14,944 (10.4%) for testing, evenly
distributed into background-only and background with a
signal injected.

Waveforms for GW signals are generated using PyCBC
[43—45] with the iIMRPhenombD [46,47] model and combined
with data segments from the different interferometers, after
taking into account the proper relative orientations, times of
arrival, and antenna factors. This waveform family is not
fully calibrated for the whole parameter space considered
and, in particular, for large q. However, the use of very
different waveform families results in a small impact on the
spectrograms themselves, as input to the neural network,
which is able to detect the event as long as the signal remains
visible on the two-dimensional image. The parameters
considered are uniformly sampled, as described in Table I,
and zero spin components are assumed. Masses in the range
between 1 and 20M, (0.01 and 1M ) are considered for m,
(m,), and the corresponding luminosity distance Dy is
limited to nearby events in the range 1-100 Mpc. Other
parameters related to the position in the sky and orientation of
the source are taken as homogeneously distributed.

TABLE 1. Range of the uniformly sampled variables for the
training set, (m;,m,) being the component masses, D; the
luminosity distance, y the inclination of the orbit with respect
to the line of sight, 8,y the polarization of the gravitational wave,
and (a, 6) the right ascension and declination, respectively.

my(Mg) my(Mg) Dy(Mpc) 74
[1,20] [0.01, 1] [1, 100] [0,7z/2]

cos(6)
-L.1]

0y a
[0,7] [0,27]

The injected signals are limited to a fixed maximum
duration of 5 s. The 5-s window is computed backward
from the merger time to remove low-amplitude mono-
chromaticlike parts of the waveform and avoid confusing
the network during training. A low-frequency threshold of
45 Hz is applied in order to control the duration of the
injected signal. Finally, the signals are randomly placed
within the 5-s window. Once the GW signals are injected in
the different H1, L1, and V1 background segments, the data
are processed. First, the time series is whitened following
the same prescription as in Refs. [5,48]. Two-dimensional
arrays holding spectrogram data are then produced using Q
transforms [49-51] in order to arrive at the desired images
in terms of amplitude vs time vs frequency, with 400 bins in
time and 100 bins in frequency. Figure 2 presents an
example of spectrograms corresponding to a binary BH
event with m; = 2.6M and m, = 0.35M, at a distance of
3.4 Mpc. In the case of HI and L1, the characteristic chirp
is clearly observed.
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FIG. 2. Spectrograms for a binary system with m; = 2.6M
and m, = 0.35M, and a distance Dy = 3.4 Mpc, as seen in H1,
L1, and V1.
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In order to account for the presence of glitches in the
data, not completely suppressed by the whitening process
and leading to instabilities in the CNN training [52], the
contents in each image are renormalized in such a way that
they have an average equal to 0 and a variance equal to 1,
following the same prescription as in Ref. [12].

III. NEURAL NETWORK DEFINITION
AND TRAINING

This study closely follows that of Ref. [12], using a
ResNet50 architecture [53,54] (see Table II) with modifi-
cations in the last layer, for which average pooling and
a fully connected dense layer (1-d fc) with a sigmoid
activation function are implemented. For the loss function,
a binary cross-entropy is employed. Finally, a learning rate
of 0.01 alongside an Adam optimizer [55-57] and a batch
size of 32 are used for a total of 10 epochs. With all these
parameters, different CNNs have been trained using the
graphics processing unit enhanced capabilities of KERAS
and TensorFlow [58].

We train seven different CNNs. Three CNNs are trained
separately for HI, L1, and V1 data. In addition, three CNN’s
are trained for HI-L1, H1-V1, and L1-V1 pairs of input
data, and one CNN is trained for HI-L.1-V1 combined input
data, where information from two or three interferometers

TABLE II. CNN architecture and the associated hyperpara-
meters. Building blocks are shown in brackets, with the numbers
of blocks stacked. Downsampling is performed by conv3_1,
conv4_1, and conv5_1 with a stride of 2 (partially taken
from [53]).

Layer name Output size Layer structure

Convl 112 x 112 7 x 1, 64, stride 2
3 x 3 max pool, stride 2
1x1,64
Conv2_x  56x56 {3“’64}“
1 x1,256
1x1,128
Conv3_x 28 x 28 {3 X 3, 128} X 4
1x1,512
1x1,256
Conv4_x 14 x 14 { 3 x 3,256 } X 6
1x1,1024
1x1,512
Conv5_x 7x7 {3x3,512} x 3
1 x1,2048
1x1 Global average pool, 1-d fc, sigmoid
Hyperparameters
Learning rate 0.01
Batch size 32
Number of epochs 10
Optimizer Adam

Loss function Binary cross-entropy
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FIG. 3. Accuracy, loss, and validation accuracy during the
training epochs for the H1-L1-V1 CNN.

are input simultaneously to the corresponding CNNs.
This means that the input matrix will have dimensions
(400, 100, x) where x = 1,2, 3 depending on the number of
interferometers used. By feeding simultaneously the data
from various interferometers to the CNN, we allow it to learn
about the possible correlations present, and the final dis-
criminant output by the CNN will already be aware of
whether the signal is visible in multiple detectors or not.
As expected, the performances of the CNNs improve by
including the information of multiple interferometers during
the training process, since the CNN learns about correlations
across images in different channels when the signal is
present. Therefore, CNNs using single interferometer infor-
mation are discarded for the final scan over the O3 data.
Figure 3 shows, for the HI-L1-V1 case, the evolution of
the accuracy and loss as a function of epochs, demonstrating
stability after about 8—10 epochs, with an accuracy above 0.8
and a loss below 0.4. In addition, the validation accuracy is
presented, demonstrating a healthy evolution of the training
process. The final CNN output for the H1-L1-V1 case is
shown in Fig. 4, where a clear discrimination is obtained
between signal and background samples. Similar features in
the training process and the distribution of the final CNN
discriminant are observed in the rest of the CNNs.
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FIG. 4. CNN discriminating output corresponding to the
H1-L1-V1 case for background and signal images.
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FIG. 5. ROC curves for the different CNNs.

The receiver operating characteristic (ROC) curves for
the separate CNNs, representing the true positive (TP)
versus the false positive (FP) rates, are presented in Fig. 5
for the H1-L1, H1-V1, L1-V1, and H1-L1-V1 CNNs. For
very low FP rates, the TP rates only reach values around
70%, indicating a limited efficiency for event detection.
The efficiency steadily increases at the cost of much larger
FP rates. The ROC curve, along with a tolerable maximum
false alarm rate (FAR) for detection, determines the final
operating point of a given CNN. The computation of the
FAR for each CNN follows the prescription in Ref. [1]. The
FAR is defined as FAR(y7) = N(n)/T, where n € [0, 1] is
the CNN discriminant output, N(#) is the number of events
with a CNN discriminant above or equal to 7, and T is the
period of time analyzed. In order to effectively increase the
time considered in the calculation, reaching very low FAR
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FIG. 6. CNN global discriminating output corresponding to the
average of the H1-L1-V1, H1-L1, L1-V1, and H1-V1 CNN
outputs for background and signal images.

TABLE III.  Anticipated TP and FP rates and FAR for the
different CNNs and a discriminant 77, = 1. The FP rates represent
a 95% confidence level upper limit according to a null obser-
vation of FP in the testing set assuming Poisson statistics.

FAR(7p = 1)
CNN Threshold TP rate  FP rate [yr~!]
H1—L1 1.0 0.46 <2x10™* ~10?
L1—V1 1.0 0.47 <2x10* ~103
H1—VI 1.0 044 <2x10™* ~10?
HI—L1—V1 1.0 058 <2x10™* ~10°
Combined 0.998 0.50 <2x10™* ~1072

values, the time slide technique [1,59] is used. This allows
accumulating O(10°) images of 5-s duration each and
accessing FAR values down to 1/152.6 yr~!.

We initially establish a CNN discriminant 7, correspond-
ing to a FAR(1) value of 1 yr~!. However, the number of
FP detected remains sizable when 7, — 1 and the CNNs
never reach a discriminant capable of producing only one
false positive event per year. A further improvement of the
global sensitivity is achieved by combining the outputs of
the separate CNNs into a global discriminant. Such
combination provides an additional tool for suppressing
glitches in the data affecting independently the interfer-
ometers and in different time stamps. A simple average of
the HI-L1-V1, H1-L1, L1-V1, and H1-V1 CNN outputs
has been considered. Alternatively, a number of algorithms,
potentially giving different weights to different CNNs,
were explored leading to very similar or even worse results.
The resulting discriminant is presented in Fig. 6 demon-
strating an improved separation between background and
signal, leading to a higher significance for the events finally
selected as signal. Table III collects the corresponding
detection rates and the computed FAR upper limit in the
case of 7y = 1 for the separate CNNs and their combina-
tion, where only the latter shows FAR values less than one
event per year.

Signal injection studies are performed to establish the
sensitivity of the different CNNs to the presence of a GW
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FIG. 7. Signal detection efficiency as a function of p, for the

different CNNs and their combination.
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TABLE IV. Values of p, at given detection efficiencies for the
different CNNs and the combination of outputs.

CNN Pret (80%) Pret (90%) Pret (95%)
H1—LI1 24.4 30.5 42.0
L1—V1 23.7 29.0 41.2
H1—V1 26.8 21.1 25.8
H1—L1—V1 17.3 21.1 25.8
Combined 224 28.0 40.1

signal. For each GW signal, the signal-to-noise ratio (SNR)
p is computed following the prescription in Ref. [8],
solving the integral

|A(f)P

2 4 /fmax df
P = :
o Sa(f)

in the frequency domain (f), where /(f) denotes the signal
in the frequency domain and S, (f) is the power spectral
density of the background. A Tukey window with @ = 1/9
is considered for the Fourier transform. The SNR defined
above refers to each of the interferometers separately.
Following the work in Refs. [60,61], when appropriate,
we define a network SNR p,; as

Prec = D P (2)

(1)

where i denotes the different interferometers. Figure 7
shows the fraction of GW signals identified by the CNNs as
a function of p, in the different cases. As expected, the
efficiency for signal detection increases rapidly with
increasing SNR, becoming more efficient for large p,
values and improving with the inclusion of information
from multiple interferometers. The best results are obtained
by the HI-L1-V1 CNN. The result from the combination of
CNNs is a compromise between the H1-L1-V1 CNN and
the rest. Events with p,. > 25 would be detected with an
efficiency above 95% in the case of the HI-L1-V1 CNN.
Table IV collects the values of p,. at given detection
efficiencies for the different CNNs.

IV. RESULTS

We performed a scan of the full O3 dataset, using the
H1-L1-V1 combined sample, for which a slicing window
of 5-s duration was used in steps of 2.5 s (leading to a
50% overlap between consecutive images) in each of the
interferometers. This translates into more than 80 x 10°
images to be tested for the presence of potential signals.
The CNN global discriminating output, defined as the
average of the H1-L1-V1, H1-L1,L1-V1,and H1-V1 CNN
outputs, is used to search for signal of SSM events. A scan
over the data using different global discriminating values in
the range between 0 and 1 is performed. In each case, the
corresponding FAR is computed. The computation time for
the entire O3 scan has been on the order of 2000 CPU hours
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FIG. 8. Observed cumulative event count as a function of the

inverse false alarm rate for the O3 scan (dots). The data are
compared to foreground predictions (dashed line) and include 1o,
20, and 30 bands (shadowed areas).

(on an Intel Xeon CPU E5-2680 v4 @ 2.40 GHz).
This represents a major improvement compared with the
typically required CPU time for known matched-filtering
pipelines.

The resulting inverse FAR distribution (IFAR), in units
of years, is presented in Fig. 8 compared to the expected
yield of noise events following a Poisson probability
distribution. No significant deviation from the expected
noise is observed and no claim of SSM event detection can
be made. For illustration purposes, Fig. 9 shows the H1, L1,
and V1 spectrograms for the most significant event having
aFAR of 1.9 yr~!, a combined CNN value equal to 0.9635,

H1
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7 78 79 80 81
+1.2659149000 x 10°
L1
'
= 10?
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7 78 79 80 81
+1.2659149000 x 10°
V1
K.
= 10
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FIG. 9. Spectrogram of the most significant image. Corre-
sponds to a FAR = 1.9 yr~!.
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FIG. 10. Detection efficiency for the combined CNN discrimi-
nant as a function of z for different values of the chirp mass.

and CNN values equal to 0.9848, 0.9172, 0.9774, and
0.9747 for the HI1-L1-V1, H1-L1, L1-V1, and H1-V1
neural networks, respectively.

The results are translated into 90% confidence level
(C.L.) upper limits of the merger rate of binary systems in
the range of masses and ¢ values considered. Since the
sensitivity for detection mostly depends on the chirp mass

(mymy)3/3

of the binary system, defined as M, = ()T the

computed merger rates are binned in M, instead of in
the single masses of the binary system. The 90% C.L. upper
limits are calculated using the loudest event statistics
approach [34-36,62,63] in terms of the surveyed time
volume (VT), following the expression

23 1 dv,
Roo = (vr) _T/dzl——m i e(z),  (3)

where T is the total observation time, z denotes the redshift,
V. is the comoving volume, and e is the efficiency for
detection. In this study, 7 is limited to 155 days when H1,
L1, and VI interferometers were all taking data simulta-
neously. Figure 10 presents the detection efficiency of the
combined CNN discriminant as a function of z in several
M. bins. The efficiency is computed using injected signals
and it vanishes for z > 0.06. The integral above is mar-
ginalized over the rest of parameters of the binary system
(see Table 1), which are considered homogeneously dis-
tributed in comoving volume.

Figures 11 and 12 present the 90% C.L. upper limits on the
merging rate as a function of the chirp mass and as a function
of m, in different m; regions, respectively. The results are
compared to similar ones obtained with matched-filtering
techniques. Our result provides 90% C.L. upper limits in the
range between 3 x 10° and 560 Gpc™ yr~! with increasing
chirp mass, extending previous results to chirp masses up to
3M . At lower chirp mass, our constraints are weaker than
previous results. This is partially attributed to the effective
reduction of the observation time, by a factor of about 2, from
limiting the data to simultaneous H1-L1-V1 configurations,
as a way to obtain manageable false alarm rates. As shown in

—e— This search O3
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10?
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FIG. 11. The 90% confidence level upper limit on Rq as a

function of the chirp mass. Our result (solid line) is compared
with matched-filtering-based results from [35] (dashed line) and
from [36] (dotted line). The curve in [36] presents a sudden
increase in the last chirp mass bin, as the component masses
contained in this bin are beyond the ones covered by their
template bank.
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FIG. 12. The 90% confidence level upper limit on Rg, as
function of m, in different m; regions. Our result (solid lines) is
compared with results of Nitz and Wang [35] (dashed line).

Fig. 12, the constraints from our analysis are more stringent
with increasing mass difference m; — m,, as expected for a
CNN trained on very asymmetric configurations.

V. CONCLUSIONS

We present the results of a search for compact binary
coalescence events with asymmetric mass configurations
with masses in the range 0.01 — 1M, for the lighter object
and 1 — 20M, for the heavier, using LIGO-Virgo O3 data
and dedicated convoluted neural networks based on the
analysis of frequency-time spectrograms. Different neural
networks and a combination of them are explored, involv-
ing the simultaneous use of data from several interferom-
eters. The scan over the O3 data results in no significant
signal events found. The CNN approach for scanning the
data is found to be much faster than traditional matched-
filtering-based pipelines. The CNN results are translated
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into 90% confidence level upper limits on the merger rates
as a function of the mass parameters of the binary system
for events of z < 0.06 and for the trained range. Although
the results do not improve other bounds using matched-
filtering techniques, partially due to the limited observation
time considered, the CNN approach allows for effectively
extending the search toward larger chirp masses.
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