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The theory of false vacuum decay in a thermal system may have a crossover from predominantly thermal
transitions to quantum transitions as the temperature is decreased. New numerical methods and results
are presented here that can be used to model thermal and vacuum bubble nucleation in this regime for
cosmology and for laboratory analog of early universe phase transitions.
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I. INTRODUCTION

The early evolution of our Universe is mostly a story of
large scale homogeneity with small scale perturbative
fluctuations. Occasionally, though, nonperturbative effects
may have played a role during first-order phase transitions.
Characteristic features include the nucleation of bubbles,
possibly involving periods of extreme supercooling into
a metastable, false vacuum state. Bubble formation can
be predominantly a quantum or predominantly a thermal
process. In this paper we investigate the crossover from
thermal to vacuum nucleation in systems with first-order
transitions.
Bubble nucleation in a thermal system can be described

in terms of instantons, solutions to an effective field theory
with imaginary time coordinate [1–3]. The thermal aspect
of the decay is represented by imposing periodicity in
the imaginary time coordinate, with period β ¼ ℏ=ðkBTÞ.
At low temperatures, the size of the instanton is small
compared to β and thermal effects appear mostly through
the form of the effective potential [3]. At higher temper-
atures, provided the effective potential still has a potential
barrier, the instanton solution becomes constant in the
imaginary time direction. In between, there is a crossover
region were instanton solutions become distorted.
Interest in vacuum decay has been rekindled in the past

few years by the possibility that the process could be
simulated in a laboratory Bose Einstein condensate [4–7].
These systems will allow the first experimental tests of the
theoretical framework used to describe early Universe

phase transitions. It will be necessary to perform precise
numerical modeling to compare theory with experimental
results. Bubble nucleation rates in cosmology are usually
obtained using shooting methods (e.g. [8,9]). We will
present a new numerical method for calculating nucleation
exponents for thermal vacuum decay applicable to the
regime where both thermal and vacuum effects are impor-
tant, and the shooting methods cannot be used. This method
can also be used when there is a background, or nucleation
seed, and it has already been used to obtain the results in
Ref. [10], but the method was not explained previously.

II. THE MODEL

We use a model based on the spinor BEC system of
Fialko et al. [4], where the relative phase between the wave
functions of two atomic states φ is described by an action

S ¼ χ

Z
dnxdt

�
1

2
_φ2 −

1

2
ð∇φÞ2 − VðφÞ

�
: ð1Þ

Natural length and time units have been chosen based on
the underlying physics (explained later), and the parameter
χ contains the remaining dependence on physical param-
eters. The potential has been scaled to the form

VðφÞ ¼ −ð1þ cosφÞ þ 1

2
λ2sin2φ: ð2Þ

This potential has two minima, a true vacuum at φ ¼ 0 and
a false vacuum at φ ¼ π, separated by a potential barrier
whose height depends on the parameter λ. The number
of spatial dimensions, n, depends on the details of the
experiment, and we will consider n ¼ 1…3. The motiva-
tion for this potential is based on a particular BEC system,
but it also serves as a toy model for early Universe false
vacuum decay, the essential features being that the system
has a relativistic dispersion relation, and the potential has
the two minima separated by a potential barrier.
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In a thermal system, the field responds to a modified
potential that has λ≡ λðTÞ [11]. In an early Universe
setting, this effect plays an important role in placing the
field in the false vacuum as the Universe supercools. In a
laboratory setting, the phase is prepared in the false vacuum
as part of the experimental protocol. The potential barrier in
the analog model is still present at zero temperature, and the
temperature dependence of the potential plays far less of a
role than it would in some particle models. We will take λ to
be constant in the modeling, and comment on temperature-
dependent parameters later.
The first-order false vacuum decay is a nonperturbative

process, in which quantum and thermal effects can con-
tribute. In either case, the decay can be described by an
instanton solution φb to the field equations with imaginary
time τ,

∂
2φ

∂τ2
þ∇2φ −

∂V
∂φ

¼ 0: ð3Þ

In the vacuum case, the field approaches the false vacuum
value as τ → �∞. In the thermal case, an initial thermal
ensemble is represented by solutions that are periodic in τ
with period β ¼ 1=T. We will refer to the special case of an
instanton solution which is independent of τ as a quasistatic
instanton.
The full expression for the nucleation rate of vacuum

bubbles in a volume V depends on the Euclidean action
SE ¼ iS of the instanton solution. According to
Coleman [1,2],

Γ ≈ V

���� det
0S00E½φb�

det S00E½φfv�
����
−1=2

�
SE½φb�
2π

�
N=2

e−SE½φb�; ð4Þ

where S00E denotes the second functional derivative of the
Euclidean action, and det0 denotes omission of N ¼ nþ 1
zero modes from the functional determinant of the operator
in the vacuum case and N ¼ n zero modes for the
quasistatic instanton. The translational symmetry of the
underlying theory is broken by the instanton, and the zero
modes are the modes representing translations.
The action for a quasistatic instanton in one spatial

dimension can be obtained analytically and provides a test
for the numerical results we obtain later. In this case, the
solution φ≡ φðxÞ satisfies

d2φ
dx2

−
∂V
∂φ

¼ 0; ð5Þ

with φ → π as x → −∞. This first integral of motion
implies dφ=dx ¼ ð2VÞ1=2, and the solution bounces off the
potential at φr ¼ arccosð1 − 2=λ2Þ. The action SE is

SE ¼ 2χβ

Z
π

φr

dφð2VÞ1=2: ð6Þ

The integral can be obtained in closed form,

SE ¼ 4χβfðλ2 − 1Þ1=2 − λ−1 ln ½ðλ2 − 1Þ1=2 þ λ�g: ð7Þ

This exact solution is no longer valid in dimensions two
and three, but it can be adapted, for large λ, using the thin-
wall approximation discussed below.
The vacuum instanton in one spatial dimension hasOð2Þ

symmetry, and the solution is a function of r ¼ jxj. In the
thin-wall approximation, the solution remains close to the
true vacuum value for small r, until a value r ≈ R, when
the solution changes rapidly over a short distance (the
“wall”) with dφ=dr ≈ ð2VÞ1=2. The Euclidean action in two
dimensions can be approximated by splitting it up into the
interior and the wall,

SE ≈ −2πR2χ þ 4πχRλ: ð8Þ

There is an extremum at R ¼ λ, where SE ≈ 2πχλ2. For
small temperatures, this is lower than the quasistatic action
form Eq. (7), SE ≈ 4χβλ. In the thin-wall approximation,
vacuum tunnelling dominates at temperatures below
T ≈ 2=ðλπÞ, and thermal tunnelling dominates at higher
temperatures.
The thin-wall approximation is only valid when the

potential barrier is relatively large. Large barriers would
be associated with bubble nucleation rates too small to be
relevant to cosmology or to be seen in the experiment. In
the next section we look at new methods for evaluating the
action that can go beyond the thin-wall approximation and
give relevant nucleation rates.
The behavior of the prefactor in the nucleation rate (4)

can be analyzed by different numerical methods which we
will not attempt to investigate here [12–14]. We note that,
since we are not in the thin-wall limit, there are no small
parameters in the problem, and so we expect the prefactor
to be of order one in the length and time units that have
been used in the action. Furthermore, the quasistatic and the
vacuum instantons approach one another at the crossover
from thermal to vacuum tunnelling, so the prefactors will
be the same at that point.

III. NUMERICAL METHOD

The instanton solution for false vacuum decay in n
spatial dimensions has Oðnþ 1Þ symmetry, allowing the
instanton equation to be reduced to an ordinary differ-
ential equation that is easily solved using shooting
methods [12]. The reduced symmetry for the instantons
in the crossover regime of the thermal problem bars the
use of this method. Although the instanton equations are a
well-posed elliptic system, the negative and zero modes
in S00E½φb� can be problematic for standard numerical
techniques. We present a new relaxation method that
overcomes these problems.
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The basic relaxation method for solving a set of
equations S0E½φ� ¼ 0 introduces a field Φ that depends
on x, τ and a relaxation time s. The field Φ solves

dΦ
ds

¼ −OS0E½Φ�; ð9Þ

where the operator O is introduced to optimize conver-
gence to the solution, Φ → φb as s → ∞. Close to the
instanton solution, the behavior of Φ is governed by the
second-order operator S00E½φb�. If the solution to the relax-
ation equation is Φ ¼ φb þ δφ, then the relaxation scheme
for δφ small reduces to

dδφ
ds

¼ −OS00E½φb�δφ: ð10Þ

Choosing O so that OS00E½φb� has a positive spectrum leads
to convergence in a neighborhood of the solution. Since
S00E½φb� has a negative eigenvalue, we cannot chooseO to be
a multiple of the identity. The choice O ¼ ðS00E½Φ�Þ−1 gives
convergence, but it requires a matrix inversion step that
may itself be problematic due to small eigenvalues of the
operator.
A simple stability analysis by the von Neumann method

shows that another obvious choiceO ¼ ðS00E½φ�Þ† requires a
very small numerical relaxation time step. For a spatial step
size Δx, Δs ¼ OðΔx4Þ for stability. However, this can be
improved by taking a second-order equation in the relax-
ation time,

d2Φ
ds2

þ 2k
dΦ
ds

þ ðS00E½ϕ�Þ†S0E½ϕ� ¼ 0; ð11Þ

with a new parameter, the damping coefficient k. Using
central differencing for the relaxation time derivatives,
stability now requires Δs ¼ OðΔx2Þ.
The method works provided the initial guess for the

bubble profile is sufficiently close to the final solution. In
practice, a shape based on the thin-wall approximation
serves well. If the initial bubble radius is too small, then Φ

relaxes to the false vacuum state and a larger initial radius
has to be selected.
The convergence of the method is related to the

eigenvalue spectrum of S00E½ϕ�. If we consider a single
mode with eigenvalue ν, then the amplitude δφν of the
mode decays exponentially,

δφν ∝ e−ksþðk2−jνj2Þ1=2s: ð12Þ

The zero modes are an exception, but the boundary
conditions can be chosen to “pin” the center of the
instanton at the corner of the integration region to remove
the (translational) zero modes. For large values of jνj, the
convergence is determined by k, and for small jνj, by
jνj2=ð2kÞ. The optimal value of k would therefore be
k ≈ jνminj, where νmin is the eigenvalue with smallest
modulus.

IV. RESULTS

Numerical results for the field of a nonstatic and
quasistatic instanton solutions in one dimension are shown
in Figs. 1 and 2. At low temperatures, the nonstatic
instanton approximates the Oð2Þ symmetric vacuum
instanton. At higher temperatures, in this case around
T ¼ 0.125, the nonstatic instanton becomes distorted in
the imaginary time direction. The quasistatic instanton
solution is also shown. The radius of the instantons in
the spatial direction, defined as the distance to the average
field value, is between 2 and 3 length units.
Values of the Euclidean action at different temperatures

are plotted in Fig. 3. At low temperatures, the nonstatic
instanton has the lowest action. There is a crossover
point where the nonstatic solution merges into the quasi-
static solution. We did not find any evidence for a
nonstatic solution with higher action than the quasistatic
solution.
In Fig. 4, we have taken the general form of the action for

a quasistatic instanton and parametrized this by

SE ¼ χαnðλÞβ; ð13Þ

FIG. 1. These plots show the value of φb for shallow instantons in one dimension. Left: Oð2Þ symmetric vacuum instanton. Middle:
Nonstatic instanton at T ¼ 0.125. Right: Quasistatic instanton at T ¼ 0.125. In all cases λ ¼ 1.2.
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in n spatial dimensions. The vacuum instanton has action

SE ¼ χαnþ1ðλÞ: ð14Þ

In one dimension, the agreement between the numerical
values of αn and the analytic expression Eq (7) is excellent.
In two and three dimensions, the results differ substantially
from the thin-wall approximation. A numerical fit is shown
instead. It is notable that instanton solutions exist in three
spatial dimensions even when the barrier disappears.

V. CONCLUSION

We have investigated the crossover regime of bubble
nucleation where the tunnelling instantons that dominate
the nucleation rate lose one degree of symmetry. The
numerical results were obtained using a new numerical
method. We found that the distorted instantons merge
smoothly into quasistatic instantons.
The results have been expressed in terms of a natural set

of units which are adaptable to the system under consid-
eration. In the case of the spinor gas, for example, the

system has a characteristic healing length ξ and natural
frequency ω0 [4]. The strength of the coupling between the
spin states is tunable, and fixed by a small parameter ϵ. The
units used for the numerical modeling are the length unit
ξ=ð2ϵÞ and the temperature unit 2ℏω0ϵ=kB. The factor in
front of the action (1) in n dimensions is

χ ¼ 2−nϵ1−nρξn; ð15Þ

where ρ is the number density of atoms. In the example
from Ref. [4], taking 5 × 105 atoms of 7Li in a one
dimensional atomic trap of length 120 μm, the length unit
would be 0.1ϵ−1 μm and the temperature unit 12ϵ mK.
The analog system has an asymmetric double well

potential in the zero temperature limit. There are models
in particle physics with this behavior, for example the high-
energy Higgs models used to discuss stability of the Higgs
vacuum [11,15–18]. On the other hand, there are situations,
such as variants of the standard model of particle physics
where the electroweak transition is first order, in which the
potential barrier disappears at zero temperature [19–21].

FIG. 2. Dependence of the Euclidean action on temperature for nonstatic and quasistatic instantons with different potential barrier
heights. Left: λ ¼ 1.2; right: λ ¼ 1.4.

FIG. 3. Dependence of the Euclidean action on temperature for nonstatic and quasistatic instantons. Left: two spatial dimensions;
right: three spatial dimensions. In both cases λ ¼ 1.2.
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Our numerical methods can only be extended to these
situations by taking into account the temperature depend-
ence in the parameters χðTÞ and λðTÞ. It would then be
possible to check, in each particular model, whether the
crossover between the different instanton types occurs
before the transition is completed.
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