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Following neutron capture in a material, there will be prompt nuclear recoils in addition to the gamma
cascade. The nuclear recoils that are left behind in materials are generally below 1 keVand therefore in the
range of interest for dark matter experiments and CEνNS studies—both as backgrounds and calibration
opportunities. Here we obtain the spectrum of prompt nuclear recoils following neutron capture for silicon.
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I. INTRODUCTION

The residual nuclear recoils left after neutron capture
have been used before to probe the details of the slowing
down of atoms in material [1,2]. However, the complica-
tions of the post-capture cascades and possible in-flight
decays make the expected energy of the residual nuclear
recoils (NRs) nontrival to calculate. The energy of residual
NRs depends on the details of the capture cascade like the
levels visited and the lifetimes of levels. The work of
Firestone [3] in cataloging this information from experi-
ments in prompt neutron activation analysis (PGAA) is a
key to being able to make the detailed NR energy
deposition models for silicon.
Slowing-down models for the capture nuclei in their

matrix are also a key component of correctly doing the
modeling. We use the approximation that nuclei that are
slowing down do so with a constant acceleration and we
choose the acceleration to be in line with the Lindhard
model [4].
Direct dark matter search experiments are often searching

for low-energy NRs very near their detector thresholds. The
community has recently turned to neutron capture [2,5,6]
as ameans to providevery low-energyNRs near today’s best
detector thresholds—below around 100 eV in recoil energy.
Similar efforts exist in the CEνNS community [7]. In both
communities, thermal neutron capture also exists as a
potential background to the signal events [8]. These studies
show that a detailed understanding of the recoil spectrum

resulting from neutron capture is needed, and we provide
that here for silicon detectors.

II. POSTCAPTURE CASCADES

For thermal neutron captures, each nuclear deexcitation
releases approximately the neutron separation energy, Sn,
for the capturing isotope. For intermediate and heavy
nuclei, the sequence of states that the residual nucleus
passes through can be complex and have many emitted
gamma rays. This is the subject of long-standing data
collection and modeling efforts [3].
The classification of individual deexcitations coming from

the cascade has become standard and is useful for relating the
properties of the cascade to the nuclear structure. In addition,
this classification aides in Monte Carlo codes to generate
specific cascade realizations. Generally, a critical energy Ec
is chosen below the neutron separation energy such that
nuclear levels below are treated individually with their
appropriate properties and levels between this energy and
the neutron separation energy are treated statistically. This
breaks all released gamma rays into several categories as
displayed in Fig. 1: (a) primary to continuum; (b) continuum
to continuum; (c) continuum to discrete; (d) primary to
discrete; and (e) discrete to discrete.
In our treatment of silicon here we will take Ec ≃ Sn, that

is, we will treat all cascades as dicrete. This treatment may
be difficult to implement for heavy nuclei as this approxi-
mation is most accurate for nuclei with low masses. Thus
far, however, we have successfully treated 27% of germa-
nium cascades in this fashion and are continuing to test this
treatment on the remaining 73%.
In PGAA measurements, it is easy to extract the

prevalence of a specific gamma ray in the final state per
100 captures. We prefer the slightly different organization
of giving the probability of a given cascade path. The key
publication we use to sort out the cascade probabilities is
the paper of Raman [9]. Figure 2 shows the cascade paths
of the six most probable cascades for a natural silicon
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composition. The cascades shown there account for
approximately 90% of the total cascades. Some of the
gamma rays appear in multiple cascades so it is clear that
the probability to find a specific gamma ray after capture—
as is often measured—is not quite the same information as
the cascade probabilities that we have compiled.
In our reorganization of this typical capture information,

we have extracted the specific cascades which account for
95.63% of the total captures. This information is shown in
Table I and is enough to construct an accurate model of the

NRs left behind by capturing thermal neutrons. Figure 3
visualizes the effect the missing cascades have on the full
spectrum of energy deposition. We have also gathered in
the table the half-lives of each intermediate level where data
are available and have otherwise used the Weisskopf
estimates [10].
Level lifetimes are important for our modeling because

even in a dense (crystalline) matrix the intermediate-state
half-lives are typically short enough to allow for a “decay in

FIG. 1. The typical classification for capture cascade gamma
rays. Horizontal lines are various energy demarcations with Sn
representing the neutron separation energy, Eg representing the
ground-state energy, and Ec representing the (arbitrary) cut off
between discrete and continuum states. Transitions are denoted
by arrows and belong to one of five categories: (a) primary
gammas with a final state in the continuum; (b) secondary
gammas within the continuum; (c) secondary gammas from a
continuum state to a discrete state; (d) primary gammas with a
discrete final state; and (e) secondary gammas between two
discrete states.

FIG. 2. A diagram of the six most prevalent cascades of natural
silicon. All of the cascades start with the capture of approximately
thermal neutrons on the nucleus 28Si at the neutron separation
energy of the final nuclear state, 29Si.

FIG. 3. A stacked histogram of energy deposits simulated by
nrCascadeSim v1.5.0 [11]. On the bottom in blue (dark) are
the cascades listed in Table I. Stacked on top of them in orange
(light) are the remaining cascades.

TABLE I. A table displaying the probability of each cascade.
This table includes only the cascades used for our model. The
isotope listed is the isotope on which the neutron captures;
the energy levels and half-lives are therefore for an isotope of
silicon with one more neutron. A half-life entry in [brackets]
preceeded by w(E1) specifies that the half-life is unknown and
the Weisskopf estimate for an electric dipole transition was
used [10].

Isotope Probability (%)
Energy

levels (keV)
Half-

lives (fs)
28Si 62.6 4934.39 0.84
28Si 10.7 6380.58, 4840.34 0.36, 3.5
28Si 6.8 1273.37 291.0
28Si 4.0 6380.58 0.36
28Si 3.9 4934.39, 1273.37 0.84, 291.0
28Si 2.1 � � � � � �
29Si 1.5 6744.10 14
30Si 1.4 3532.9, 752.20 6.9, 530
29Si 1.2 7507.8, 2235.30 24, 215
29Si 0.4 8163.20 w(E1) [0.0019]
30Si 0.4 5281.4, 752.20 w(E1) [0.0069], 530
29Si 0.3 � � � � � �
30Si 0.3 4382.4, 752.20 w(E1) [0.012], 530
30Si 0.03 � � � � � �
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flight.” In other words, it is not a good approximation to
assume that the excited nucleus in each intermediate level
stops before the subsequent decay. This has important
implications for our kinematics calculations later. We select
a specific cascade path to model so we should technically
be using a level lifetime corrected for other branchings. The
differences are small—probably well below 10%—because
most of our highly-probable cascades involve the dominant
decay branch.
The possibility of “decay in flight” also makes a calcu-

lation of the slowing-downof recoiling atoms germane to our
modeling. Here, we use a constant acceleration to model this
slowing down, consistent with the average stopping power
derived by Lindhard [4]. Lindhard used a generic Thomas-
Fermi potential for all ions, and the result was a stopping
power (acceleration) S that depended on energy for slow
nuclei between about 100 eVand 1 keV. We use the average
of that curve between those energies, S ¼ 0.1.
To estimate a rough impact of the use of an average

stopping power, we compared data generated by
nrCascadeSim v1.5.0 [11] with stopping powers of
S ¼ 0.05 and S ¼ 0.15 and found the average difference to
be 22%, with the 984 eV peak differing by 97%. The
qualitative differences between the S ¼ 0.05 and S ¼ 0.15
stopping powers are minimal; the greater stopping power
results in larger peaks associated with full stops before
decay, but covers the same region with similar distributions
for nonpeak events. While peaks are taller for the greater
stopping power, they are still noticeable in both cases. This
indicates that one very sensitive measure of the average
stopping power in our energy spectrum is the ratio of the
tallest peak to the flat region.

III. TWO-STEP CASCADES

For cascades which emit either one or two gamma rays
(one- or two-step cascades), we were able to analytically
construct the distribution of total NR energies. This
distribution will be what is observed in a detector that
experiences a neutron capture when all the gamma rays
leave without energy deposit.
For one-step cascades, a single gamma is emitted back-

to-back with the NR. The gamma energy in this case is
approximately the neutron separation energy, Eγ ≃ Sn. The
NR energy, T, is given approximately by

T ≃
S2n
2MA

; ð1Þ

where MA is the mass of the recoiling nucleus.
The two-step cascades are considerably more complex

because of the possibility of decay in flight. Wework with a
separation of the nuclear energy deposits into the first and
second steps like: Dt ¼ D1 þD2. Dt is the total deposited
energy by the NRs. D1 and D2 are the energies deposited
before the intermediate decay and after the intermediate

decay respectively. The two other key variables we will use
are the decay time, t, and the center-of-mass angle for the
decay, βcm. The energy deposits are deterministic functions
of the decay times and angles, both of which are in turn
probabilistic random variables.
The decay time represents how long it takes for the

(instantaneously generated) intermediate state to decay to
the ground state and is exponentially distributed with the
probability density function (PDF) in Eq. (2). The cosine of
βcm is assumed to be uniformly distributed over ð−1; 1Þ in
the center-of-mass frame for the decay. The possible
correlation between gamma directions is mostly erased
by the interaction of the excited state with the lattice. We
estimate that around 8 × 10−4% of the time there could be a
cascade that emits two gammas nearly simultaneously—in
that case any correlation will remain but has not been
accounted for here,

fðtÞ ¼ ln 2
t1=2

exp

�
−t

ln 2
t1=2

�
. ð2Þ

The quantityD1 can be expressed as a simple function of
t, given that the recoiling nucleus slows down with a
constant (negative) acceleration, a,

D1ðtÞ ¼ T1 −
M�

Aðv0 − atÞ2
2

; ð3Þ

where T1 is the total kinetic energy the intermediate state
receives from the first gamma recoil, M�

A is the mass of the
intermediate state, and v0 ¼ ð2T1=M�

AÞ1=2 is the initial
velocity.
Modeling the process with a fixed acceleration gives a

unique stopping time, ts. The distribution of D1 has a
singular value of T1 if t > ts, but the PDF for t < ts
depends on Eq. (2) with a change of variables to the D1 of
Eq. (3). The result is

gðD1Þ ¼
(
g0ðD1Þþ exp

h
− ln2 ts

t1=2

i
δðD1−T1Þ; D1 ≤ T1

0; D1 >T1

g0ðD1Þ ¼
ln2

jajt1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M�

AðT1−D1Þ
p

×exp

�
− ln2

v0−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðT1−D1Þ=M�

A

p
jajt1=2

�
; ð4Þ

where δð·Þ is the Dirac delta function.
The PDF of D2 is clearly dependent on D1 because the

value of D2 depends on t which is deterministically related
to D1. We deal with this by using the joint PDF of D1 and
D2, gðD1; D2Þ. The PDF for D2 can then be obtained by
integrating the joint PDF over all D1.
To obtain the joint distribution gðD1; D2Þ we use a basic

relationship from conditional probability,
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gðD1; D2Þ ¼ hðD2jD1ÞgðD1Þ: ð5Þ

The PDF hðD2jD1Þ is the PDF of D2 given a specific value
of D1. The function h is not challenging to obtain because
the only relevant random variable is βcm − t is fixed
because D1 is fixed. We can then think of D2 as a
deterministic function of D1 and βcm like D2ðtðD1Þ; βcmÞ.
To obtain the function h we note that whatever kinetic

energy the final nucleus has after the intermediate decay
will be the deposited energy [12]. We calculated bounds on
this kinetic energy, T2, given the value of βcm,

T2 ¼
Δ2

2MA

�
2MAðT1 −D1Þ

Δ2

þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MAðT1 −D1Þ

Δ2

r
cos βcm þ 1

�
; ð6Þ

where Δ is the difference between the intermediate state
energy and the ground state. The value of cos βcm is
between −1 and 1, so this gives a clear minimum and
maximum for this kinetic energy. An alternate form for the
kinetic energy T2 is given in the Appendix. The total energy
deposited can be zero if and only if the decay is immediate
and Δ is exactly halfway between the ground state and the
neutron separation energy Sn. The function h is then

hðD2jD1Þ ¼
(

1
2Δ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MA
2

1
T1−D1

q
; T2;min ≤ D2 ≤ T2;max

0; otherwise:
ð7Þ

Using Eq. (7) we constructed the joint distribution from
Eq. (5). The joint distribution is plotted in Fig. 4 for two
cascades—one (orange) with a very fast intermediate decay
and another (blue) with a slower intermediate decay. The
spike shown in the slow distribution is a two-dimensional
Dirac delta function that corresponds to the situation when
the intermediate recoil stops before the subsequent decay.
In that case the values of D1 and D2 are fixed and are the
values you would expect from at-rest one-gamma decay of
each excited nuclear state. The fast intermediate decay
produces a behavior where D1 tends to be lower and
increases toward zero. With the joint distribution specified,
the distribution of the total energy deposit, Dt is obtained
by the following integral:

pðDtÞ ¼
Z
D1

gðD1; Dt −D1ÞdD1: ð8Þ

The total distribution for Dt is plotted in Fig. 5 for both
example cascades. Once again the “spike” in the slow
cascade corresponds to the case where the intermediate
recoil stops before the subsequent decay—that results in a
fixed total energy deposited. This spike is proportional to
the Dirac delta function, and so cannot be shown on the
correct scale. However, it is easy to see the Dt value for the
spike and it must account for the remaining probability
after removing the integral of the plotted distribution. In the
fast cascade most remnants of the monoenergetic “spike”
are gone and the total energy is nearly uniform between two
fixed bounds.

IV. MONTE CARLO APPROACH

For cascadeswithmore than two steps we have notworked
out the analytical distributions as we have in Sec. III.

FIG. 4. The two-dimensional joint PDF from Eq. (5). D1 and
D2 are the energies deposited from the first and second cascade
step respectively. The darker (blue) surface is for a two-step
cascade stopping at the first excited state of 29Si; the lighter
(orange) surface is for a two-step cascade stopping at the (tenth)
excited state of 29Si—the most likely cascade.

�

�

FIG. 5. The PDF of the total deposited energy from nuclear
recoils, Dt, for this two-step cascade. E1 indicates the inter-
mediate level being the first excited state of 29Si; E10 indicates the
intermediate level being tenth excited state of 29Si—the most
likely cascade for Si.
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For thesemany step cascadeswe use aMonteCarlo approach
that allows us to include arbitrarily many steps in the
sequence. The main limitation is that we compute one
thermal neutron capture realization at a time so that it might
be prohibitive to produce a PDF with sufficient smoothness
(high statistics) for cascades with small overall likelihood.
On the other hand, those cascades represent only a small
change to an experimental spectrum [6].
Using the information from Table I, these steps are

followed to generate one Monte Carlo capture event:
(1) Select a cascade with a probability based on the

prevalence of that specific deexication path.
(2) Randomly select a decay time for the first inter-

mediate state based on an exponential distribution
with the appropriate lifetime. This variable is t from
the two-step calculation.

(3) Calculate the first energy deposit D1 based on the
decay time and the stopping acceleration. This is the
slowing-down energy deposited in time t.

(4) Adjust the kinetic energy of the recoil based on the
kinematics of in-flight decay. This adjustment is
based on the center-of-mass angle of the emitted
gamma, βcm from the two-step calculation.

(5) Repeat steps 2–4 for each intermediate level.
The result of this procedure is a set of energy deposits fDig
with the same number of elements as gamma rays emitted.
The Dis are saved and may be summed to obtain the total
deposited energy. The emitted gamma ray energies for each
step are saved alongside the Dis. These steps are imple-
mented in our public code [11].
Figure 6 shows how the analytical calculation for the

deposited energy of a two-step cascade compares to our
Monte Carlo procedure. The two are an excellent match and
the reduced χ2 statistic is 1.02.

The full spectrum from all the cascades in Table I is
shown in Fig. 7 with a 10 eV nominal resolution applied.
The sharpest peaks come from the direct-to-ground tran-
sitions of 29Si and 30Si and the 6.8% two-step transition.
In the two-step transition there is a sizeable probability of
having the first NR stop before the subsequent decay—it is
a quasimonoenergetic transition for this reason. When we
use these spectra we account for the events that will be
distorted by energy deposits from the exiting gammas [6].
This is sometimes done by estimating what fraction of
cascades have gammas that escape (around 90% for a
cylindrical silicon detector of diameter 100 mm and
thickness 30 mm). Other times we use a particle transport
code like GEANT4 to find exactly which cascade realizations
have exiting gamma interactions. When using materials that
are more electron dense than silicon the fraction of
interactions from exiting gammas increases. It is typically
true that those events that have interactions from exiting
(high-energy) gammas will be removed from the low
energy range completely—they produce little contamina-
tion of the capture-induced NR “signal.”
The GEANT4 particle transport code gets different results

for the resulting NR spectra from the capture process with
silicon, germanium, and neon [11]. The results for silicon
are the closest but still have significant differences that
may be experimentally relevant to dark matter and CEνNS
studies. The most recent version of GEANT4 that was
compared to our spectral results is v10.7.3 and compar-
isons are stored with our open-source code [11].

V. USES FOR DARK MATTER AND CEνNS

Our major goals in understanding the neutron capture
induced nuclear recoil spectra are (a) to use these nuclear
recoil events to enhance our understanding of low-energy

�

�

FIG. 6. A comparison of the analytical PDF for the two-step
cascade (see Sec. III) with that of the Monte Carlo procedure. The
histogram is the PDF derived from many events generated by the
Monte Carlo procedure.

�

FIG. 7. The complete silicon capture spectrum using the data
from Table I. 95.63% of all cascades are taken into account here.
A nominal 10 eV resolution has been applied.
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nuclear recoils in solids—to provide excellent low-energy
calibrations and (b) to compute the experimental back-
grounds for dark matter and CEνNS searches.
In silicon and other materials there has not been con-

sensus on how much ionization nuclear recoils produce at
low-recoil-energies. Typically, our theoretical guidance in
the field comes from the early Lindhard paper [4] and
associated work. On the other hand, measurements down to
the 100 eV range seem like they may deviate from those
predictions and be marginally consistent or inconsistent
with each other [6,13,14].
Exploring the detector response to NRs at low energies is

therefore prudent and thermal neutron induced captures
provide an excellent venue for this—as pointed out by the
CRAB Collaboration [7] and others working with xenon
for dark matter [5]. The key features for thermal neutron
induced captures are shown in Fig. 8. In that figure a
nominal Lindhard ionization yield [4] is applied to the
result shown in Fig. 7.
Calibrations using thermal neutron induced captures

are superior to other styles of calibrations that have been
used: direct elastic neutron scattering [15], photoneutron
sources [16,17], and 252Cf sources [18]. Figure 8 shows that
the spectrum has sharp mono-energetic features that are
lacking in wide-band photoneutron or 252Cf sources. The
spectrumextends downwell below100 eVwhich is probably
near the limit of elastic scattering sources. Using this
technique is also feasible in situ because any neutron source
will elevate the thermal neutron flux during its deployment.

Finally, if there is a case where exiting gammas can be
measured in coincidence, the direct-to-ground transitions
provide directionally tagged nuclear recoils. Thiswould lead
to a heretofore unavailable NR directionality calibration, as
pointed out in [7].
A large enough thermal neutron flux could lead to

meaningful backgrounds for low-mass dark matter searches
or CEνNS measurements. The thermal neutron flux is
typically not measured directly in many experiments
because of the difficulty in doing so. One measure-
ment that does exist for CEνNS is from the MINER
collaboration [19] and is several orders of magnitude
higher than the accepted sea level environmental value,
4 cm−2 hr−1 [20]. We have previously shown the effect of
thermal neutrons on CEνNS measurements in detail [8].
The SuperCDMS Soudan thermal neutron flux can be

estimated from the germanium activation lines [21] and is
≲7.2 × 10−2 cm−2 hr−1 [22].
Figure 9 shows the comparison of the thermal neutron

induced NR spectra at the estimated flux levels without
shielding with the dark matter and CEνNS spectra. The
capture cross section is assumed to be 0.171 barns, from
2003 measurements at Brookhaven National Lab [23] (this
value is also used in the EGAF (Evaluated Gamma
Activation File) database [24]). This value is about 4%
higher than the value given by evaluations a few years
earlier at Los Alamos National Lab that are used in ENDF
and the JENDL 5 database [25] and the cross section
measurements made by Raman [9].
For aCEνNSexperimentwith a 1MWreactor at a distance

of 8 m we arbitrarily compared a thermal neutron flux of
0.1% of the sea level value. We have used the Mueller
spectrum for the reactor anti-neutrinos [26]. The detector
resolution function is assumed to have a 10 eV baseline that
rises to 30 eVat a recoil energy of 25 eV.We use this form for
the energy-varying resolution:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ20 þ AEr

p
; Er is the recoil

energy and σ0 and A are constants.

�

FIG. 8. The NR capture spectrum corresponding to events that
are resulting from neutron-capture. The three Gaussian peaks
shown outline the particular cascades that have sharp signatures.
The horizontal scale is in electron-equivalent energy (eVee) which
quantifies the amount of charge produced rather than the true
recoil energy of the NR (which is higher). 95.63% of all cascades
are modeled using the data from Table I. A nominal 10 eVee
resolution has been applied.

FIG. 9. Comparison of the thermal neutron capture induced NR
spectrum in silicon with expected dark matter and CEνNS signals
in line with currently available data.
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For the dark matter comparisons in Fig. 9 we used a
1 GeV mass dark matter particle with a cross section just
below the limit produced in recent SuperCDMS work
[21,27].
Figure 9 shows that both for dark matter searches and

CEνNS the spectral overlap of thermal neutron capture
induced NRs can interfere with measurements especially in
cases where the detector baseline resolutions are larger than
10 eV—true for all but the best modern detectors.

VI. CONCLUSION

We have carefully derived and simulated the spectrum of
NRs following thermal neutron captures in silicon. The
spectra do not match the contemporary GEANT4 particle
transport code, indicating the details of decay-in-flight and
atomic slowing-down are poorly modeled.
The level of thermal neutron fluxes that may be present in

underground laboratories (mostly from radiogenic sources in
deep labs) is comparable to the contemporary rate limits on
dark matter scattering. Furthermore, in the CEνNS venue
the thermal neutron capture background could also play
an important role due to the proximity of some experiments
to neutron-generating reactors [28,29]. In both of these
situations the authors recommend studies of the thermal
neutron flux levels and taking the thermal neutron capture
background into account during data analysis.
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APPENDIX: ANOTHER PERSPECTIVE
ON EQUATIONS

In Sec. III, we give several equations that are constructed
from the perspective of simulation. Below are the deriva-
tions, from the equations in Sec. III, of equivalent forms
that give a more conceptual perspective.
We use the following substitutions. Let v1 ¼ ð2ðT1 −

D1Þ=M�
AÞ1=2 be the velocity just before the second gamma’s

emission, vCM ¼ Δ=MA be the velocity just after emission

in the center-of-mass frame, and E1 ¼ 1
2
M�

Av
2
1 and ECM ¼

1
2
MAv2CM be the associated kinetic energies.
First, we will reorganize g0ðD1Þ from Eq. (4),

g0ðD1Þ ¼
v1 ln 2

v1jajt1=2M�
A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðT1 −D1Þ=M�

A

p
× exp

�
− ln 2

v0 − v1
jajt1=2

�

¼ v1 ln 2
jajt1=2M�

Av
2
1

exp

�
− ln 2

v0 − v1
jajt1=2

�

¼ ln 2
2E1

v1
jajt1=2

exp

�
− ln 2

v0 − v1
jajt1=2

�
: ðA1Þ

Next, we reorganize T2, given by Eq. (6),

T2 ¼
1

2
MA

Δ2

M2
A

"
M2

AM
�
A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðT1 −D1Þ=M�

A

p
2

MAΔ2

þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MAM�

A

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðT1 −D1Þ=MA

Δ2

r
cos βCM þ 1

#

¼ 1

2
MAv2CM

"
M�

Av
2
1

MAv2CM
þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M�

Av
2
1

MAv2CM

s
cos βCM þ 1

#

¼ ECM

"
E1

ECM
þ 2

ffiffiffiffiffiffiffiffiffi
E1

ECM

s
cos βCM þ 1

#
: ðA2Þ

This new form for T2 makes it clear that T2 can reach
zero when E1 ¼ ECM and β ¼ π.
Finally, we reorganize hðD2jD1Þ for the nonzero case,

given by Eq. (7),

hðD2jD1Þ ¼
MA

2MAΔ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=MAM�

A
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A

s
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M�
A

s
1

v1

¼ 2

4MAv2CM
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MAv2CM
M�

Av
2
1

s

¼ 1

4ECM

ffiffiffiffiffiffiffiffiffi
ECM

E1

s
: ðA3Þ
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