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Spin polarization and correlation of quarks from the glasma
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We investigate the interaction of strong color fields in the glasma stage of high-energy nuclear collisions
with the spins of quarks and antiquarks. We employ the perturbative solution of the quantum kinetic theory
for the spin transport of (massive) quarks in a background color field governed by the linearized Yang-Mills
equation and derive expressions for the quark-spin polarization and quark-antiquark spin correlation at
small momentum in terms of field correlators. For the Golec-Biernat—Wusthoff dipole distribution the
quark-spin polarization vanishes, but the out-of-plane spin correlation of quarks and antiquarks is nonzero.
Our order-of-magnitude estimate of the correlation far exceeds that caused by vorticity effects, but does not
fully explain the data for vector meson alignment. We identify possible mechanisms that could further

increase the predicted spin correlation.
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I. INTRODUCTION

Recent observations of global and local spin polarization
of hadrons in relativistic heavy ion collisions [1-3] have
motivated a number of theoretical studies to understand the
origin of spin polarization and spin transport of partons
in quark gluon plasmas (QGP). It was originally proposed
that the large angular momentum created in peripheral
collisions could lead to the spin polarization of partons
through the spin-orbit interaction and later inherited by the
spin polarization of hadrons [4,5]. In global thermal
equilibrium, the spin polarization of hadrons is dictated
by thermal vorticity [6,7]. This theoretical description
remarkably matches the measurements of global spin
polarization of A hyperons [8—12]. Nevertheless, the
contribution from solely thermal vorticity [13,14] disagrees
with the later measured local spin polarization [2], which
implies further corrections beyond the global equilibrium
condition need to be considered. Several corrections in
[15-22] and out of local equilibrium [15,23-33] have been
recently studied, while these contributions mostly come
from gradients of hydrodynamic variables such as the
thermal-shear correction [15,17,19] or the chemical-poten-
tial gradient [15,16]. See Ref. [34] for a recent review and
more references for the spin polarization in heavy ion
collisions.

In addition to the observations of spin polarization of
hadrons, there have been further measurements for spin
alignment of vector mesons characterized by the deviation
of the longitudinal (00) component of the spin density
matrix pgy from 1/3 [35-37]. As inferred by the spin
coalescence model [5,38], the unexpectedly large deviation
observed in experiments implies strong spin polarization of
the composite quark and antiquark or more precisely their
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spin correlation compared with those extracted from the
spin polarization of A hyperons. Moreover, there exist both
quantitative and qualitative differences for the spin align-
ment between distinct flavors and different collision ener-
gies. For example, a value pgy < 1/3 is observed for both ¢
and K** mesons with small transverse momenta at LHC
energies [35], whereas poy > 1/3 for ¢ and pgy ~ 1/3 for
K** were found for global spin alignment at RHIC [36].
Various theoretical mechanisms [39—46] beyond the con-
tributions from hydrodynamic gradients have been pro-
posed as one may not expect that the collision energy and
flavor dependence could be simultaneously explained by a
single effect. At this time the puzzle remains unsolved.
In Refs. [42,43], using quantum kinetic theory (QKT) for
the coupled vector and axial vector current evolution of
spin-1/2 massless [47-50] and massive fermions [51-57]
in phase space (see also [58] for a recent review and
references), two of us proposed that the turbulent color
fields from weakly coupled anisotropic QGP could poten-
tially result in pyy < 1/3 for spin alignment. As opposed to
most studies focusing on late-time effects upon spin
polarization, we also pointed out that the dynamical source
term in this framework could capture the early-time effects
that results in the spin polarization at freeze-out. In general,
such early-time effects will be further affected by collisions in
late times, from which the spin polarization could be sup-
pressed by relaxation or enhanced by quantum corrections
from gradient terms such as vorticity [26,27,55-57,59-62].
However, the effect from strong background fields ~O(g?)
with g the QCD coupling overwhelms the collisional effect
from scattering with hard partons ~O(g*) or ~O(g* In g) at
weak coupling [55,60,62] as a systematic analysis of the
kinetic equations shows. Nevertheless, the magnitudes of
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such turbulent color fields, originating from Weibel-type
instabilities in expanding QGP [63—-65], remain unknown.

On the other hand, in the early stage of high-energy
nuclear collisions before the formation of QGP, the soft
gluons with large densities sourced by the hard partons
could be described by dynamical color fields encoded in
classical Yang-Mills equations and form the highly dense
matter known as glasma [66,67] in the color glass con-
densate (CGC) effective theory [68—70] (see also [71,72]
for reviews). It is hence of interest to explore how the strong
color fields in the glasma phase could influence the spin
polarization and correlation of quarks and antiquarks via
the dynamical source term obtained from the QKT [42,43].
Some recent studies have shown a substantial effect from
these color fields in glasma on jet quenching of hard probes
due to accumulating momentum transfer from the soft
gluons even though the glasma phase lasts for only a
relatively short period compared with QGP [73,74]. There
also exists the study of the glasma influence on angular
momentum fluctuations of heavy quarks [75]. One may
analogously anticipate the accumulated angular momentum
transfer from these soft gluons yields the spin polarization
and correlation of quarks and antiquarks traveling through
the glasma. In this paper, we investigate such effects by
studying the dynamical source term from QKT augmented
by the color fields analytically solved from linearized
(Abelianized) Yang-Mills equations in Ref. [76], from which
the spin polarization and correlation of quarks and antiquarks
at small momentum and central rapidity are derived in the
integral form of the gluon distribution in the glasma. By
adopting the Golec-Biernat—Wusthoff (GBW) dipole distri-
bution [77], we numerically estimate the nonvanishing spin
correlation out of plane and manifest its enhancement at
weak coupling and large collision energy.

The paper is organized as follows: In Sec. II, we briefly
review how dynamical spin polarization of quarks and the
related spin correlation associated with spin alignment of
vector mesons can be induced by color fields in the
framework of QKT. The simplified case at small momen-
tum is further examined. In Sec. III, we then review the
chromoelectric and chromomagnetic fields derived from
linearized Yang-Mills equations in the glasma. In Sec. IV,
the dynamical spin polarization and spin correlation
induced by such color fields in the glasma are accordingly
investigated. In Sec. V, we further analyze these results with
the GBW distribution and make a numerical estimation of
the spin correlation. Finally, in Sec. VI, we present our
conclusions and outlook. Some details of calculations and
derivations are presented in appendices.

Throughout this paper, we use the signature 7** =
diag(1,—1,—1, —1) of the Minkowski metric and the com-
pletely antisymmetric tensor e*** with €123 = ¢ =1,
where 0, 1, 2, 3 and ¢, x, y, z will be used as the spacetime
indices interchangeably unless specified. We introduce the
notations A¥B¥) = A*B* + AYB* and AlB*l = A*B* — AVBF.

We also define the dual field strength of color fields via
Faw = el Fe, /2 with a being color indices.

II. DYNAMICAL SPIN POLARIZATION
FROM QUANTUM KINETIC THEORY

In this section, we briefly summarize the spin polariza-
tion and correlation obtained from the framework of
QKT and Wigner functions of quarks under background
color fields previously derived in Refs. [42,43]. We also
review the connection between spin correlation and spin
alignment of vector mesons with an update on the coa-
lescence model. The dynamical spin polarization led by
color fields at the small-momentum limit with a more
generic form than those in Refs. [42,43] are presented,
which will later be utilized to study the effects from glasma
in subsequent sections.

A. From spin correlation to spin alignment
by color fields
As shown in Refs. [42,43], the spin-polarization spec-
trum of a quark is described by the spin Cooper-Frye
formula [6,7]

o Sz pTYp.X)
PP = 5 [ s, A (p. ) M

where 7 (p, X) and N*(p,X) with p being the quark
momentum denote the on-shell color-singlet axial-charge-
current density and number-current density in phase space,
respectively. Here dZ, is the normal vector of a freeze-out
hypersurface and m is the mass of quarks. Also, 74 (p. X)
and N (p,X) are associated with the axial-vector and
vector components of the color-singlet Wigner functions of
quarks, which can be expressed in terms of the effective
spin four-vector @*(p, X) and the vector-charge distribu-
tion function f3 (p.X), where the former delineates the
dynamical spin evolution and the latter describes the energy
and charge transport of quarks. Their dynamics are gov-
erned by an axial kinetic equation and a scalar kinetic
equation as the traditional Boltzmann equation, while the
collisional effects are neglected due to the suppression
compared to relatively strong background fields at weak
coupling as our assumption. In this setup, the leading-
order 7 (p, X) and N*¥(p, X) in the # expansion are given
by [42,43]

N (p.X) = (P £3) e @)
TV p.X) = (@ +nCodly), . 3)

where ¢, = /|p|> + m? is the on-shell energy and C, =
¢*/(2N.) with N, the number of colors. The # is an
expansion parameter characterizing the order of gradient
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expansion for Wigner functions in phase space. Here
the nondynamlcal source term, AQ, can be decomposed
into'

ol
(9 Po=¢€p

with the explicit form of Aj,, and Aj, as

anc X 7 / s /
Ay = % [ prE 0, (00X

Po=€p
(5)
and
€
__%
Ay =20, ,
p’ ~ 3
| [ P 0008 030
kX' Po=¢€p
1 2
F(plk papﬂc)
P
pX 7 / ) !
| [1 R enex0|
kX' Po=¢p
(6)
where F;‘ﬂ denotes the color gauge field in the glasma
and p,=p,/po. Furthermore, we introduced the
abbreviation
a*x’ :
/ /d“k/ e X=X)(z5(p-k)+iPV(1/p-k)).
X/

(7)

Throughout this section, V*| represents the spatial compo-
nent of any four-vector V¥. The notation PV (x) denotes the
principal value of x. Note that the integral f ,f ;f integrates
over k and X’ and leads to a function depending on p and X.
The notation (Fg,(X)F¢,(X")) is understood to implicitly
incorporate a gauge link between X' and X for gauge
invariance. We will neglect the gauge link in perturbative
calculations because it contributes at higher order in the
gauge coupling. F¢,(X) and F?,(X") here should still be
regarded as field operators, and thus P#(p) in Eq. (1) is also
a Fock space operator. This means that one has to further
take the ensemble average of the correlation function for
color fields, (Fg¢, (X)F¢,(X’)), to evaluate the spin

1 : . 1AM . .
The integration of ¢, ' A} po=c, OVErp contributes to an axial-
charge current. Here ¢, I.A’éz is a total-derivative term in

momentum, which accordingly leads to a vanishing contribution
to the axial-charge current. However, it still gives rise to a
nonvanishing contribution to the spin-polarization spectrum.

polarization spectrum (P*(p)) when comparing to the
experimental observable.

On the other hand, we have to also include the con-
tribution from &* for dynamical spin polarization. The
dynamics of a* is governed by the color-singlet axial
kinetic equation

0=26(p* —m?)(p-0a¥(p.X) — 0, De[a"]
+ 1y, (ALf3])). (8)

where
- p.X
D0l =G [ FL ) F XG0 X))

and

Ao} =Zeme [ pip, (0w, (FL(OFL ()

+ Oxo(Fio (X)F (X)) 050 (p, X'). (10)

At weak coupling, given no initial polarization, @** has to
be induced by the dynamical source term hd%(Ak[f}]) in
Eq. (8), which yields a* ~ O(gz) and the diffusion term
05D, [a*] is accordingly of O(g*). Unless we consider the
evoluuon for a sufficiently long time, one may assume
p - 0a*(p,X) > a,D[a*]. To obtain the solution of a**
from the kinetic equation, we may utilize the solution

~ p'X
@ (p.X) = / G (p.X')
kX'

B / dsX,
2po

x G*(p,

©(1 + sgn(5X,))
X') |5XX17‘,:0.5XZ:[)Z5X0 /po? (11)

for the differential equation

p-oa'(p,X) = G"(p,X), (12)

with an arbitrary function G*#(p,X) independent of
a'(p,X), where X = X — X'. By neglecting the diffusion
term, one finds

at(p,X) = —=— [ déXy(1 + sgn(6X,))

Po
X %(Aﬁ[ vI(X") |5va,:0,5xz:pzéxu/po- (13)

For notational convenience, we may write
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a*(p.X) = —h 0" (ALVI(X)
X/
nC X
:—Tzé'ﬂwm/p /p ppp aX” (X/)
kX' ¥.x"
X Fo (X)) 4 0y (Fio (X)) F (X))
x 0 fv(p. X"). (14)

Similar to the nondynamical source term, the field strengths
above are also operators and the ensemble average needs to
be taken in the end.

Now, given an explicit expression of spin polarization for
a quark Pj(p) and for an antiquark P/ (p), one could
further compute the ensemble average of spin correlation,

JdZx-p [dZy-p(TLp.X) T (PY)>

(Pa(p)P3(p)) = am?([dzy-N*(p.X))?

(15)

Note that (Pj(p)P;(p)) needs not be equal to
(P4(p))(P;(p)). From the spin-dependent coalescence

model, one may evaluate the 00 component of the spin
density matrix for spin-one vector mesons through [5,38]

1= (P,PL)

PP "

Poo =

where the superscript i is the assigned spin quantization
axis determined by experimental setup, which may be
chosen as the y axis along the direction perpendicular to the
reaction plane in heavy ion collisions. The deviation of pg,
from 1/3 thus implies nonvanishing spin correlation in
|

(PyPy) ~ (@ (p.X)a" (p.Y))

= ([ s [ amio)

CZ p.X p.X
_ 2 ewpaew 'p'e ax p pp(aX” (
4- k, X’ K .x"

QGP even when the spin polarization of a quark or an
antiquark vanishes. However, there exists a caveat for
Eq. (16), which is, in fact, derived based on the assumption
that the spin of a quark and of an antiquark are fully
polarized along the quantization axis. In a more generic
case, as shown in Ref. [78] (see also Appendix A for a
consistent derivation), Eq. (16) should be modified as

1+, (PYPL) - 2§7>;Pg>
3 + Zj:x.y,z <P{IP{']>

Poo ~ ’ (17)

where i here again denotes the spin quantization axis, yet
the spin correlations for all other directions need to be
incorporated. The crucial difference is that pgy = 1/3 even
when <73{1ij> # 0 is isotropic (i.e., (PyP}) = (PyPy) =
(P;P5)). When evaluating py, or (P, P;) in the glasma
phase, instead of simply taking the ensemble average of
two chromo-electromagnetic fields from dynamical source
terms, we will consider the ensemble average of four field-
strength operators therein.

Notably, when comparing the spin polarization led by
the nondynamical source term in Eq. (4) and by the
dynamical one in Eq. (14), it is found that the former
depends on only the color-field correlator at the late time
when spin freezes out. In contrast, the latter is contributed
by integrating the color-field correlator over a whole period
before the spin freeze-out. Considering the spin polariza-
tion from the strong color fields in the glasma phase in early
times, which decay shortly after collisions, the dynamical
spin polarization should dominate over the nondynamical
one. Accordingly, we shall evaluate the spin correlation via

H (X Fau (X)) + 0xrg (Fio, (X)) F,(X7)))

pY'
x 0% fv(p, X") /kY/ 0"'£, P pp (Oyry (F ,l,(Y’)FZ,y,(Y”))+ay/6/(F,,(Y’)Fb,l,(Y”)))aj‘,”fﬁ,(p,Y”)> (18)

Vd

from Eq. (14). Despite the generic py, depends on (PéPé)
for j = x, y, z, we will only focus on (P}P}) in this paper
for simplicity.

B. Simplification in the small-momentum limit

For practical applications, one has to convert the field
strengths into chromoelectric and chromomagnetic fields,
which are explicitly given by

a __ aazf
Fji, = —€uapB* + Ef 7y,

+ e By, (19)

€
Faw — Ba[ﬂ’—lu]

where 7# = (1, 0) denotes the temporal direction. We will
make further approximations to simplify the dynamical
source term. Nevertheless, unlike the derivation in
Refs. [42,43], we will not impose the hierarchy between
chromoelectric and chromomagnetic fields and keep the
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operator form of color-field correlations for generality. We pX 50
first assume f3, = fy(po) as a function only depending on Opr / G(X,6X) = " / G(X,6X)
po for simplification. Considering *

p.X
+ / 0,.G(X, 6X)
kX'

C pX
Hu :__2 HUPO A ov (F% (X)E4(X'
AK[ V(po)] 3 € /k,X’ V4 pp( XG( K,{( ) u( )) +/P~X aG(X,5X)a <pli)
Pk ’
k

85X,

) H
+ Ok (F& (X)E{(X)))0p0f v (po). (20) X X1 Po
(21)
where we omit the X dependence of Ax[fy(pg)] for
notational convenience, and using the relation we derive
1 [pX . pX N pX o0AL p
Aol == [ Aglsutool) + [ a0l + [ _xy YUvpo)l
Po Jix kX' kX ox"™
1 e
x — (™ — p*i"). (22)
Po
Here we introduce
. C
ALl fv(po)] = = fe””””p*pp(ax/a(F GX)ES (X)) + 0xo(F (X)ES (X)) 0,0f v(Po) (23)

and hence

ALl fv(po)] = —%6"”"('1“17 + P85+ P Pp050,0) (06 (F (X)ES(X')) + 0xo (FL (X)ES(X')))0p0f v (po).  (24)

To proceed, we postulate a semithermal distribution fy(py) = 1/(e”?/* 4 1) as the distribution function for quarks or
antiquarks created in early times of the glasma phase with A an effective energy scale that should eventually evolve to the
temperature of the QGP after thermalization. For simplicity, we will also ignore the time dependence of A. By considering
low-energy particles with py < A such that fy(po) is less suppressed, one finds [0, fyv(po)| > |p*||0%, fv(po)l-

Considering the most relevant regime that substantial spin alignment is observed in experiments, we will further focus

on the small-momentum limit such that p*| = p| /py < 1 for py = €, = \/p* + m?* being on-shell. Consequently, we can

approximate

ALfv(po)l » %6"””"1’0” o (EX(X)EL(X"))0p0f v(Po) (25)

and

A (&)
oAl fv(po)l —7190( 7 0y (Eg(X)ES (X)) + 0xe (B (X)E“/(X'))) 90/ v(Po) (26)
by dropping the higher-order terms of O(|p’||). From Eq. (25), one also obtains 21’6[ v(Po)l/po~0 and

OAL(fv(po)]

poaX”‘ ~ ) ”WP n/)ax’aX' (E“(X)E“( )) pofv(Po) (27)

It turns out that

AL (o) = 5 polOyof v (o)) [ 0 (BSOBE (X)) + OB (X) £ (1)

+ (Xo' — Xo)e""7 i1, 0%, 0x, (E (X) EZ(X'))] (28)
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as the leading-order contribution in the small-momentum limit. One thus arrives at

a*(p,X) =

o(@,07v(p0)) / / 90,0, (ES (X' ES(X")) + Oy (B (X)) E“l (X"))
X/ k/ XI/

+ (Xo” — Xo' )€1, 0%, Oxrg (Ex (X' EZ(X"))]. (29)

When choosing x4 = x, y, z (or equivalently x = 1, 2, 3), each component of &@**(p, X) explicitly reads

- C pX
a (P,X):—<72P0( d,0fv(Po) )/ A’X”

(0o (ES (X)ES (X)) + o (B (X)) ES (X))

(X = X)0% Op (EECX)EL (X)), (30)
@ (03 == (Zromsvtoo ) [1 [ o8 (B 000 + o (B0 B 1)
(X = X) 0%y (EL(X)ES (X)), (31)
and
@5(p. X) = - ( opato(oa)) [ [ a0 B (X7) + 4 (B (X B )
+ (XG = Xb) &0y (EZ (X' ES (X)), (32)

which are the building blocks of the follow-up computations.

III. COLOR FIELDS IN THE GLASMA

In the infinite-momentum frame for the parton content
of a nucleus described by the CGC framework [68-70],
the dynamics of the soft modes (small-x) of gluons with
large occupation numbers follows the classical Yang-Mills
equation

D, F*] = J*, (33)

where D, is the covariant derivative augmented by the non-
Abelian gauge field and F* is the gluonic field strength.
Here we omit the color indices for brevity. In addition, J#
serves as a source term coming from valence quarks as the
hard modes, for which the explicit expressions in terms
of color-source densities for collisions of two nuclei and
|

|
further analyses can be found in Ref. [79]. Generically,
Eq. (33) may only be solved numerically with prescribed initial
conditions [80-85], while analytic approximations can be
obtained in either the weak-field limit of the dilute-dense
system [79,86—89] or the early-time limit via the perturbative
expansion in an infinitesimal proper time [90-93]. However,
for our purpose to study the memory effect of dynamical spin
polarization, the inclusion of late-time dynamics for color fields
is indispensable. As a result, we will instead adopt the lineari-
zed (Abelianized) approximation in Ref. [76], from which the
late-time dynamics can be captured by sacrificing gauge
invariance and presuming the nonlinear corrections upon
quantities of our interest are small. According to Ref. [76],
based on the definitions E"=F, /7, E,=F, B'=
—€"F;;/2, and B' = —€"/F ;. /7 in Milne coordinates with 7
the proper time and # spacetime rapidity, the chromoelectric
and chromomagnetic fields in the glasma are found to be

[ d? . i )
E't,x)) = 4@”/%/d2u¢[“’1(ul)v“§(”¢)] x Jo(gr)etdris, (34)
[ d? . : .
Bi(z,x,) = —igeV / (2;];2 / duy o (uy), @) (uy)] x Jo(gr)eld- 0=, (35)
. d> i .
Ey(roxs) = —gelet! [ SO [y s )] x gy (gr)eisooos, (36)

i ij G
BT(T, xl) = —g€J5kl/W

q;j/dZ”L[alf(”L)’aé(uL)] x Ji(qr)eid=ms (37)
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which yield

.. d? : .
E“(t,x,) = gf ™8V / 261)L2 / dPuiai(up)ag” (ur) x Jo(qr)elttms, (38)
sy qu ia j 1 _

Be1(e.x1) = gf et / (27r)l2 / dPu ol (uy )ah” (uy) x Jo(gr)eitus, (39)

. . rabe ikl dZQJ_ qj 2 N iq, (x—u)
Ef(t,x,) = —igf*‘ee 2r7 q dPuy oy (uy)as” (uy) x Jy(gr)eit s, (40)

ci i o Fabe nij ski dqu qj 2 L.b iqy (x—u)
B§(7,x,) = —igf*“e’ s (2”)2; d ’Ma1 “(uy)ay”(uy) x Ji(gr)e'd+ L, (41)

where £ represents the structure constant, J,,(x) denotes the Bessel function of the first kind, and a’t“z correspond to the
transverse gauge fields sourced by the color-charge densities from nuclei 1, 2. Note that the indices i, j, k, [ above are along
the transverse direction with respect to the light-cone orientations. Also, the subscript L is used to denote the component
perpendicular to the light cones and ¢, x; = >, ¢, x|. That is, i = x, y. We will hereafter adopt this convention for an
arbitrary vector with the subscript L (not to confuse it with the convention used in the previous section).

From the transformation of coordinates, 7 = v#* — z and 5 = lln(’“ ), one finds

0zjk
€ -
E*=F§ =F,/t=E", Bi=-— 7 Fj=—€'F;,/2=B" (42)
for the longitudinal fields, where e? = —¢’* = 1. For the transverse fields, it is defined that Ef. = F,; and B}, = —€"/F, /7.
One hence derives
t , ,
E=Fy =-F, — %an = cosh nE} — sinh 5B, E* = cosh nE% + sinh 5By, (43)
T 2 "
and
—e¥* ,
B’ = eVF,, = ——(tF,, — zF,;) = cosh nB} + sinh nEj}, B* = cosh B} — sinh nE7. (44)
T
Here we have used
t Z Z t
6,72;, aZT:—;, 0,77:—?, azﬂ:—z (45)

and ¢t = rcosh 5 and z = rsinh 7.
From Ref. [76], it turns out that the following correlators vanish:

(E§(X)BT (X")) =0, (E“(X')B“I(X")) =0, (46)
(Ef(X)E“(X")) =0, (Bf(X")BI(X")) =0, (47)

based on the correlation of gluon fields from the same nucleus,

, - ab [ N u—v) (u—0v)
istun)abo0) =5 [G s + (97 -2 U ). (49)

|ML—M\2

and (o} (u l)oré‘b(v 1)) = (a5 (u l)a{‘b(v 1)) = 0. Here G, and h , correspond to the unpolarized and linearly polarized
gluon distribution functions of nuclei 1 and 2, respectively. The nonvanishing correlators can be written as

. /s X" nlm
wmwww»wwwﬂ/; o) T X (0X5), (49)
q.u v
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b njm

: iy I 2.
(B (0087 () = =Naterem [* 7 @ o) T x (a0, (50)
3q, Lo
. , _ ;. X' X" qn
(B ()8 0x0) = —ivaer [T [ a0 T axpaolixg). (1)
1iq, 1w q
ai (v pad " AT saa .in X X qn ! 1
(B (X E“1(X")) = —iN, 5% ¢ Q, (1, v1) L x Ty (gX o (IXD), (52)
L:q, 1:lv q
, _ , X/ X//
<E“”(X’)E“”(X”)>—Nc5”"/ Q. (ug,vy) x Jo(gXy)Jo(IXp), (53)
Liq.u Lo
, _ , b'd b
(BB ) = Mo Q_(uy.v.) x Jo(aXp)Io(IX]), (54)
Liq.u HA)
where
N, ==¢*N,. (55)
Qo (uy,v) =[G (uy,v)Gy(uy, v ) F hy(ug,vi)hy(u,v,)l, (56)
|
and functions of nuclei introduced in the previous section.

d 2
/X E/—d qJ‘ /Jz'uLeiqL(X/_‘OL.
Liq.u (27[>2

Note that we also have the useful relation such as
IxiEF (X) = 0x;Bf (X) =0 (57)

from Eqgs. (34)—(37). The color-field correlators above will
then be employed to evaluate the spin polarization and
correlation.

IV. DYNAMICAL SPIN POLARIZATION
AND CORRELATION FROM GLASMA

This section is dedicated to the derivation of spin polari-
zation and correlation coming from effective spin-four
vectors in the compact integral form of color-field corre-
lators from glasma or more precisely gluon distribution
|

The derivation is rather technical, and hence only critical
steps are presented, while more detailed computations can
be found in the appendices. In summary, (a**(p, X)) =
(@ (p,X)) =0 and (a**(p,X)) is shown in Eq. (60)
with nonvanishing components in Egs. (77) and (78) for
spin polarization. For the out-of-plane (perpendicular
to the reaction plane) spin correlation, the primary result
is shown in Eq. (82) with the explicit expressions in
Eqgs. (100)—(102).

A. Spin polarization

For simplicity and practical reasons, we will focus on the
mid-rapidity region for n — 0 such that E* ~ E7” and
B*Y ~ B7”, which allows us to conveniently compute the
integrals of color-field correlators in Minkowski coordi-
nates. We may now first evaluate (P3)~ (a*(p,X)).
Given Eq. (46), one obtains

@ 0. ==(Zroarvon)) [ [ ooty B0

— dy3(BY,

1,2

(X)ES (X)) + (XG = XG) o 0xrps (EF (X)) E (X)) (58)

where we have assigned (x,y,z) = (x',x% x*). Since dy; ~ 7', and dy =~ 9, when n — 0 and the color fields are

rapidity-independent, Eq. (58) reduces to

~ sy C, pX'
(@ (p,X)) ~ - > Po( pofv Po)) [0xro(E
k/ X/I

(XI) Ea X/l

+ (X = X) (9% (E

X/)Ea] (X//)>

) + Oxra0y (ES(X')ES(X")))]. (59)
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According to Eq. (47), one consequently concludes (a*(p,X)) =0 from Eq. (59). Similarly, it is found that
(@**(p,X)) = 0 by symmetry, while this is not the case for (a**(p, X)).
The dynamical spin polarization now may be contributed by

C
@30} == Z O o(po)) ) o+ 4+ 40 (60)
where
p.X
A= [ [ a0 ), (61)
K X"
X
/x/ APX” (B (X ES (X)) + 0% (B (X")ES)(X"))), (62)
and
pX X 1" / 1 a(y\ga (y! 2 a(y'\ga (y!
A= 77 [ 0 = X0) @y (BB (X)) + e (BS(X)ES (X)) (63)
By using Eq. (57), A, reduces to
-+ [ [ b BB ) + BB B (64)

From Eq. (11), one finds

N.(N2 = 1) X, (X (X
ARG [P0 [ ey
4p0 o JLiquJ Ll

where we have further used

o[(/1(gXp)J1(IX5) = J1(gX5)J1(1X5))0(X5)O(XF)],  (65)

X [+ [+
/")E/ dX)y(1 + sgn(X, — X})) :2/ dX,0(Xo — X}). (66)
0 - ®

Here we have implicitly multiplied the color-field correlators with the unit-step functions for X{, and X, ®(X()) and ©(X}),
because of setting X{, = X{j = 0 as an initial time for the presence of glasma. It turns out that A, = 0 due to the structure

(ES (X')Eg(X") since

X, X
[ owunitax) 1 xpe0i)0E) = [ oxui(axg)a (X000 0K
0 0

— 20, (qXp)J (1Xp)O(Xp). (67)

On the other hand, it is found that

iN.(N?2=1) [X [X, X" l
e = L o [0 e Fataxn oy
0 ! "

& 0 [ e, ,Jo<qxo>JI<ZX“>] o(X;)0X)) (68)

X=X =X,

To handle the spatial derivative terms, we introduce the trick
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X' dqu ) e
aX’J_j/ G(uy) = /W/JZMJ_(_ZQLj)e LG ()

Liq.u

2
- [ G2 [ e )6 (69)

for an arbitrary function G(u ). When assuming G(u, )|, — 0, we further obtain the useful relation

u'| >+oo

X/ X/
o [* 6= [ a6 (70)
Liq.u Liq.u
Assuming
Qﬂ:(”l? vl.)'ui—»ioo - 0’ Q:I:(”J.? vL)'vi—d:oo - 0’ (71)

which are physical boundary conditions, we accordingly derive

iN.(N2 = 1) X Jo( X’ 1(IXg
A, = - 4p? / / A / old )lb’fﬁﬁ-(h’ v1)0(X,)0(Xp) (72)
0 Du

Lilw

and similarly

N2 -1) ( X J( X’ X”
A= / / (X, — X) / / T@Xol 1 UX5) g vy (x)
4Po " Ligu J Lilw

[C]} lxaiawc —q l}yvavy (qyly - qxlx)aiavy]g—(ulﬂ UL)' (73)

Implementing the decomposition in Eq. (B16) and integrals in Eq. (B19) to cope with the angular parts of momentum
integration, one finds

N.(N2-1) Xy [ dgdlgl
4, =" / Lo [ [ eusoinaxnaxgecec;)
Po o )
o)
x Jo(gla )1 (1DL]) = 7] Q (uy,v,) (74)
and
N.(N%2-1) dqdlgl J1(gX0) T (IXD)
Ac:_ / / // X/ / /Jz dz _0_ 0®X/®X//
% T ] OO
x Jy(qlay ), (1oL ])[@) 9% 030, — uJ_vJ_ayavv"'(uJ_UJ__uJ_vj_)axa JQ_(uy,v,), (75)

where ii;, =X, —u, and v, = X| — v . Further applying the orthogonal condition for Bessel functions,

/000 drrd, (kr)J,(sr) = 5k = s) . (76)

N

A, and A. become

.Ab:

PN (N2 = 1) /l@)(Xo—Iful) (ol =loD oty (- (77)

227)*p5  Jaw iy ||| |, |

and
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2 2 - - -
-9 Nc(Nc_l)/l(a(XO_|”‘J_|)®(|MJ__|UJ_|) _ _
A, = _
TR S THE
< L7000, — 7010, + (7]~ 7171)010,)0 (.. v.). 78)

where we have implicitly taken ©(|iz,|)®(|7,|) = 1 and introduced

L
/ E/dzuldzvl. (79)

Given an explicit expression of Q_(u, v, ), Egs. (77) and (78) can be evaluated numerically.

B. Spin correlation

We may now evaluate the spin correlation (P;P;) dynamically generated by (a*(p,X)a™(p.Y)). By symmetry,
(@ (p,X)a*(p,Y)) = (a*(p,Y)a*(p, X)) because we will in the end integrate over spatial X and Y on the freeze-out
hypersurface with X, =7Y,, and the integrand in the multiple integrals involved is also invariant under
(X' < Y', X" <> Y"). The explicit form of (@ (p,X)a*(p,Y)) can be written as

(@ (p. X)a (p, V) ~ ( paowtvoo)) [T [M [ [ a0 B B (1B (1)

X" Y

— 20100y (E (X)) ES (X")B"R (Y EP (Y"))

+2(¥) — Ya)oxradk, (ES (X')VES (X")EL (V) E4(Y")

1 2(Y§ = Y)dyrgyradyn (S (X')ES (X" ES (V) EL(¥"))

+ Oy 0y (B2 (X)) E(X") B (V) EP(Y")

— 2(¥f — ¥})oy 0%, (B2 (X)) BV (X" ES(Y) ES(Y")

= 2(Y§ = Y{)0x10yrayr (BYP (X)) EN(X")ES(Y') E3(Y"))

+ (Xg = X0) (Y = Y0) (0% 05y (BT (X)ES (X") EY (Y) ES(Y"))

+ 203, 0y20yn (ES (X') E§(X") E5 (Y') ES(Y"))

+ 0x20x10yr20y (ES(X) ES (X") E3 (Y E3(Y")))]. (80)
Nonetheless, one has to derive a more concise form for the multidimensional integral with the input of color-field
correlators. Such an analytic expression for each term above could be derived in light of the procedure shown in

Appendix B, where we take (E¢(X")E$(X")E?(Y')E5(Y")) as an example. It turns out that all the terms associated with
Oxor Efy 0.¢ )E“] (X") in Eq. (80) vanish since such terms involve the integral

X! X!
[( " Oy (aX5)T0(1X,)@(Xp)O(X) - /X " 0501 (aX) TolIX3)O(X5)O(Xg) = 0, (81)

0 0

which is similar to the reason causing .4, = 0. One may refer to Appendix C for an explicit calculation showing that, e.g.,
the contribution from the second line of Eq. (80) vanishes. Eventually, Eq. (80) reduces to

s i, C 2
@ (. X0 (1) 5 (G poOpof o)) (T + T2 4 T3), (®2)
where
pX' p.Y'
h= / / / / Ox1 0y (BB (X )E“N(X")BPR(Y") EP(Y")), (83)
k/X// ]'( k/ V
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pX' p.Y'
/ / / / (Yo = ¥o') (102, (BUR(X)EN(X") EL (V') EL(Y"))
K, ry Jr,

X// Y/!
+ Oy Oynydyry (B2 (X" ECN (X" EL(Y)EL(Y"))), (84)

and

pX p.Y'
zom L L = XG) (g = ¥i) @R (X ES R ES )

X// Y/I
+26X,,,ayuzay// (E$(X"VES(X")ES(Y')E5(Y")) + Oxra0xn1 OynyOyni (ES(X)ES(X")ES(Y')EL(Y"))). (85)

It is found that the nonvanishing spin correlation stems from the transverse spatial derivatives upon color-field correlators.
We will compute 7 as an example, while the other terms in Eq. (82) can be derived in a similar manner. By symmetry,
the integrand of 7| can be written as

aX’laY’l <Ba[2 (X/)Eal](X//)Bb[Z(Y/)EbI] (Y”))
= 019y ((B(X") B (Y"))(E* (X")EP (Y")) + (B*! (X')B"' (Y'))(E“*(X")E"*(Y"))
—2<BaZ(X/)Bb1(Y/)><Ea1(X”)Eb2(Y”)>), (86)

where we have applied the Wick-theorem-like decomposition to decompose a four-field correlator in terms of the products
of two-field correlators, e.g.,

<Ba2(X/)Eul (X//)th(Y/)Ehl (Y”)> _ <Ba2(X/)Eal (X//)><Bh2(Y/)Eb1 (Y”)> 4 <Bu2(X/)Bb2(Y/)> <Eal (X//)Ehl (Y”))
+ <B“2(X/)Eb1(Y”)><E"1(X”)Bb2(yl)>. (87)

We then make the further decomposition, Z; = Z,, + Z;, — 2Z,,, where

X' Y
/ / 4 / / P G0y (B (XN B (Y')) (E¥ (X")EP\(Y")), (88)
k/X// ]‘( k’Y”
p.X' p.Y'
1= / / / / Ox1dy1 (B (X)BP (V1)) (E(X")E(¥"), (89)
k/X// k k/ Y//
and
p.X' pY
/ / / / Oy 0yt (B2 (X')BP (V1)) (E*! (X")EP(¥"), (90)
k/X// /_c k/Yu

To evaluate 7, we shall apply the same tricks in Eqgs. (11) and (70), which yield

4N2 N2 xlx q/yl/y
Talp- X 1) % / / / / ( )( ’l’)
Po Ligu JLilv J Ly L q

X auxava+(MJ_7 /UJ_)Q—(ML’ Z}L)lea()(ov YO’ q, l’ ql’ l/)v (91)
4N2 N2 g Y[y q/xllx
Ty,(p.X.Y) = / / / / ( )(T)
641’() Ligu J Lilw J Lig L q'l
S auxavxg+(uL’ UL)Q—(MJ_’ UJ_)yla(XO’ YO’ q, l’ q/’ l/)’ (92)

and
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4N2 N2 xly q/yllx
Ilc(p’X7Y) / / / / ( )( //)
64]70 Ligu J Lilw J Lig' ' J LW Cll

X auxauxQJr(”L’ UL)Q—(MJ_? vj_)yla(XOv YO’ q, l’ q/’ l/)’ (93)

where we introduced several shorthand notations,

4> -
/ / qu / d*u | eldr(X'—u). (94)
Liqu (27)

X Y X! Y
VultoYoakg )= [ [ [ [P oaxsarnecevn@xnpexpelry. (o5
0 0 0

and
SJ_:XJ_—MJ_, S,J_:XJ_—M/J_ IJ_:YJ_—UJ_ tﬁ_:YJ_—U/J_. (96)
One hence obtains
4N2(N2 Y / / ! g/
I~ A 0ux 024 (1, v 1 )Q_ (U, V' )V14(Xo. Yo, 9. 1.4, 1)
po Ligu J Lilw J Lig L'
X g ATl PG = 2q PGP, ©7)

Utilizing Eqgs. (B16) and (B19) again to integrate over the angular parts of momentum integrals, 7, becomes

4N2N2—1 d dl’ 1
P a8 [ L

[SJ_tJ_SJy_fIJ}_ + SRS =280 S“if"jf]h(QISLI)Jl(llal)Jl(q’IS’Ll)Jl(l’ltll)

X 0,0, 2 (uy, v )Q_(u V)T 1(gX() 1 (1Y() 1 (¢ X5) I (1Y), (98)

where § =i /|s,| and

/L E/dQML/dQUL/dZMl/dQUl. (99)

Further using Eq. (76), we arrive at

1, JINENE - 1) /l O(Xo — [s.1)0(Yo = [t NO([s.] = Is' DOz | = [7,])

4207 ps S PAMATALA
X [§1 L SYE) + 8B ST — 28 P8 7110,0,, R (s, v )@ (i, 1)), (100)

which could be evaluated numerically with given Q.. Following the same procedure, one can also derive similar
expressions for the remaining terms in Eq. (82). As shown in Appendix. D, it is found that

IZNg“N%(N%—l)/L O(Xo = |s.NOYo = [t O(s .| = Is' DO, | = 1))
227)* Py Jsusw [slleclls’ 112y |

(|tJ_| - |ti|)s g (?Iy abx - avy>auxavx9—(vl’ MIL)Q+(MJ_9 UJ_) (101)

and
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O(Xo—[s.1[)O(Yy — [t )O(]s | —
4(2z)* pj s [leclls’ (17, |

< (I8 = Is D7 = [ DISL 7L 05,00 — 28 71 07,0y O

+ $1 11 0,101,010y | Q_ (11, 01 )Q (U, V).

|8 DOz = |7,])

A N2 2
Ni(Nz —1 1
I3N—g L( c )/
s,ts' 1

(102)

The major difference is that the terms (Y — Y},) and (X —
integrands after integrating over Y, Y, X{, and X{.

X) giverise to (|#, | — |z,]) and (|s" | — |s|) in the remaining

V. ANALYSIS WITH THE GBW DISTRIBUTION
Following Ref. [76], we adopt the GBW distribution such that /; , = 0 and

Q4 <1 - e—tau—Mz/4>2 Q? ( 1 — e Qlsi—ti—r /4 >2
NI\ Qlur —viP/4)  G*NE\QilsL —t —riP/4)
where r| =X, — Y, and Q; denotes the saturation momentum. One finds A, = 0 and A, = 0 after conducting the
numerical calculations with the GBW distribution, and hence (@**(p, X)) = 0. It turns out that the spin polarization from

glasma vanishes in all directions. We may analytically show .4, = 0 as an example in the following. From the GBW
distribution, it is found that

Qui.vy) = (103)

Qi(”LaUL) =

;,[y@;]
T Quy,vy) =

= (05 — 0z)) sin(0; — 0;),
|9, |

(104)

where 6; and 6; are the polar angles o f i
coordinates, 0; ; = 0; + 0; and @ ; =

and v, and the explicit form of F is unimportant here. By making the change of
— 0;, for arbitrary integrand G(0; ;) only depending on @ ;, it can be shown as

2 2r
/ deu/ do; G D —Zﬂ/ d®u.bG(®u,@) —/ d®u,@®ﬁ,@(G(®m)+G(_®u,@)>- (105)
2r 0

It is then clear to see

27 2
0 0
since F(|i|, |0, ], cos®; ;) sin Oy ; is an odd function under ©; ; — —0; ;.
For spin correlation, it turns out that Z = 7| 4+ Z, + Z5 depends only on pgy, Xo =
computed in the polar coordinate. Accordingly, Z can be factorized as

g*Ne(NE — ) 0f
402m)*ps FN?

Yy, and r |, which is easier to be

f(QsXO’ ver)

03 ’

dZy - p = Xo\/ m* + |p1|d*X dn.

which yields

0,) =

(107)

(P(), QSXO’ Qs

where Hr = COS_I(TXL/|I‘J_|) and j(QsXOa Qs|rl_|’ €r> is the

eight-dimensional integral as a dimensionless quantity to be

evaluated. Here the first prefactor associated with 1/p{

comes from the simplified integral form in Eqs. (100)-

(102), while Q%/(¢®N%) stems from the square of GBW

distribution and the extra 1/Q? is introduced to make

1(0,Xy. Qs|r.|.6,) dimensionless. (P, (p)Py(p)) ~
In addition, we will consider isochronous freeze-out in

proper time 7 = const, where & = (7 cosh 77, x', x?, 7 sinh 1)

[94]. In our case, we focus on the small-rapidity region such

that —n,,, < n <y, with 77, < 1. We will also approximate

(108)

fdeLfszl a'(p.X)a'(p.Y))
(deXJ_fV(pO))

Po=¢€p

(109)

that the spacetime rapidity is equal to the momentum rapidity.
Then the normal vector dX# gives

For computational convenience, one may further make the
change of coordinates,
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/dZXl/dZYl /dzrl/dle,

R . =(X,+Y,)/2 (110)

Note that (P}, (p) P (p)) depends on Xy, which can be chosen
as the freeze-out time after which the correlation no longer
varies, while the evolutions of the numerator and the
denominator in Eq. (109) are different. The subtlety of
choosing the freeze-out time will be elaborated below.

It is important to note that (a’(p, X)a'(p, Y)) will stop
evolving much earlier than the freeze-out time close to
chemical equilibrium in the QGP phase. Furthermore, we

|

CIp3(0,0fv)* [¢d*r,

fgl dleI(PO, Q.YX()v QSlrL|’ 9")

have neglected the time dependence of fy(pg) as the
quark distribution function in early times, which should
eventually reach thermal equilibrium in the QGP phase.
For practical purposes, we should consider different freeze-
out hypersurfaces in the numerator and denominator of
Eq. (109), where the freeze-out time in the numerator is
chosen to be at thermalization time X, = X that roughly
characterizes the end of the glasma phase, at which the
spin no longer evolves, while the one in the numerator
is at chemical equilibrium X, = X;'. Consequently, from
Eq. (109), the out-of-plane spin correlation may be
approximated as

(Py(p)Py(p)) »

where [¢'d?r; [¥'d’R, corresponds to the integrals over
the transverse plane of glasma (around the transverse
size of collided nuclei) and At denotes the transverse area
of the QGP (around chemical freeze-out). Here feq(po) =
1/(e”/T +1) corresponds to the thermal distribution
function with T being the freeze-out temperature and m
may be approximated as the constituent quark mass. We
may further make an order-of-magnitude estimation of the
spin correlation based on Eq. (107). Although the exact
form of 7 (0Xo, O 0,) can only be obtained from a
sophisticated multidimensional integral, it is physically
expected that the dominant contribution should be around
|ri | ~0 with a short-range correlation as will also be
verified numerically. We accordingly estimate

gl
/ P T(po. 0 Xo. Os]r.].0,) ~ 20T (py. 0,X,.0,0)

(112)

8,=71/2, Qs|r,|=0.05

2000
15001
10001

500¢

11,2,3(QsX0,Qs|r.|,6,)

A

FIG. 1. Numerical results for ZALM(QSXO) at Q|r | =0.05
and @, = /2. The same behavior is found for other parameter
values.

16m2A%feq(P0)2 p(,:ep,

(111)

by postulating I(P()a QSXO7 Qs|rl|v 9,) ~ I(p07 QsX01
0, O)e“’ﬂzQ% as a Gaussian form with the correlation length
of O(Q;') and without angular dependence. Taking
A~Q;>» m>|p| such that d,,fy ~—1/(4Q;) and

J¥d?R | ~ Ay with Ay being the transverse area of nuclei,
from Eq. (107), Eq. (111) can be further approximated as

(N2 —1)(e™T +1)* 703 AN
N(16x)* mA2
x Z(0,X™.0,0)

(Py(p)Py(p)) ~
(113)

at small momentum. Despite the actual value of
7 (Q,X1,0,0), the correlation could be enhanced by the
factor Q2/m? at a higher collision energy. Conversely, this
effect will be suppressed in low-energy collisions, where
the glasma stage does not exist.

To evaluate Z(Q,X. Q,|r,|.6,) numerically,” we uti-
lized the local adaptive method built into Mathematica. As
shown in Fig. 1, it is found that 7 3 dominates over 7 1 and
1, partlcularly at late times Q,X, > 2, and we may
approximate I~T 3, where 7 12,3 correspond to the dimen-
sionless quantities coming from 7 , ; with the factorization
in Eq. (107). The rapid increase of Z5(Q,X,) is predomi-
nantly led by the factor (|s' | —[s,|)(|¢ | —|z.|) originat-
ing from (Xj — X,)(Yy — Y{,) in the integrand, which can
be observed in Fig. 2 when comparing with the result
by removing this factor. In addition, we have confirmed
15(0,Xy, Q|1 |, 7/2) is maximized at Q,|r | =0 as
shown in Fig. 3 with also very mild @, dependence
illustrated in Fig. 4 at small Qg|r,|. One could further

*In principle, we may directly evaluate [¢' d*r,Z(po, Q,Xo,
Q,|r,|) numerically. However, to get a rough estimate, we
instead adopt the approximation in Eq. (112) for computational
efficiency.
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o,=f, Q;|ry |=0.05

35000f "
20000l 1o: UL -Is.D (it It =1]

or)
|
&

—= 25000
~2 20000f
15000f
10000}

5000

Qs|ro

13(QsXo,

A

QsXO

FIG. 2. The origin of the rapid growth for f3. The solid line
shows the full result; the dashed line shows the result without the
secular growth factors.

verify the same scenario for Z,(Q,X,.Q,|r.|.0,) and
1,(0,Xy, Q,|r1].6,). Some qualitative features of f1.2,3
are further analyzed in Appendix E.

For convenience, we adopt the approximation in
Eq. (113) for conducting numerical estimations. We take
the values Q, =2 GeV, N, =3, Ay~Ap~ 100 fm?,
m = 500 MeV as the constituent quark mass for strange
quarks, and 7 =~ 150 MeV as the freeze-out temperature.
By setting X ~ 0.5 fm and correspondingly QX% ~ 5,
which yields 7 ~ 6100 (see Fig. 2), we obtain the result
(P4(p)P;(p)) = 0.006. When choosing a larger saturation
scale such as Qg =3 GeV without changing the other
parameters, for which now QX ~ 7.5 at X' ~ 0.5 fm, we
obtain 7 20000 and (P} (p)P}(p)) ~0.05. Notably,
except for the magnification from the prefactor Q2, the
numerical value of 7 (Q, XM also increases with larger Q
at a fixed thermalization time.

We stress that this estimate is based on rather crude
approximations and thus has large uncertainties coming
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from multiple corrections. Most importantly, we have
neglected the spin relaxation in QGP after thermalization
and also the distinction between the dressed quark mass in
glasma, which should be encoded in (@*(p, X)a*' (p,Y)),
and the constituent quark mass for on-shell f.,(py). In this
scenario, it might also be debatable whether the explicit
1/m? factor in Eq. (109) for normalization should be set as
the constituent quark mass. Both the spin relaxation time in
the strongly coupled QGP and the dressed quark mass in
the glasma are unknown. Fortuitously, the mass-dependent
factor (e™/” + 1)?/m* changes by less than a factor of 3
over the range 1 < m/T < 4. Despite these uncertainties,
we emphasize that these estimated values for spin corre-
lation are substantially larger than the expected vorticity
contribution.’

VI. CONCLUSIONS AND OUTLOOK

In this paper, we derived the dynamical spin polarization
and out-of-plane correlation of massive quarks at small
momentum and central rapidity from color fields in the
glasma phase in terms of the gluon density. Our formalism
is based on QKT in the Wigner function formalism. For the
GBW distribution, the spin polarization is found to vanish,
whereas the out-of-plane spin correlation is nonvanishing
and enhanced by Q?/m? at weak coupling. We have also
numerically estimated the magnitude of out-of-plane spin
correlation, which is found to be around 0.006-0.05 at
Q, =2-3 GeV and by orders of magnitude larger than
the correlation from vorticity for high-energy nuclear
collisions.

As already mentioned in Sec. II, the updated spin
coalescence model incorporates both the in-plane (parallel

From the naive extraction of vorticity contribution to global
spin polarization of A hyperons such that Py ~ P\ ~ /T <
1073 at high-energy nuclear collisions above 200 GeV [1,95]
(P} ~10~* at 2.76 TeV [3]), where @ is the global vorticity, the
spin correlation will be approximately <1076,
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to the reaction plane) and out-of-plane correlations. By
symmetry of the color fields from glasma, we may expect
(Py(p)Py(p)) ~ (Py(p)P;(p)) at small momenta, while
(Pi(p)P;(p)) has to be evaluated separately, which
remains to be explored for making an estimation of the
impact on spin alignment of vector mesons. In addition, it is
also important to obtain the momentum dependence for
spin correlation and the corresponding spin alignment.
Furthermore, the present study only considers the spin
correlation between a quark and an antiquark with the same
flavor, which is applicable to the case of ¢ mesons. For the
K*0 vector meson, comprising a strange quark and an
antidown quark, further generalization of our formalism for
spin correlation is needed.

Here we used the GBW distribution to evaluate the spin
polarization and correlation. Alternatively, we may also
apply the gluon distribution [76] based on the dipole ampli-
tude from the McLerran-Venugopalan model [68—70], which
contains a nonvanishing linearly polarized gluon distribution
function. It is intriguing to calculate the dynamical spin
polarization and correlation with both the unpolarized and
linearly polarized gluon distribution functions in such a
model using our framework. It is also worth noting that the
QKT derived from the 7 expansion applied to the weak-field
limit due to the gradient expansion in phase space. This
approximation is similar to the linearization of the Yang-
Mills equations by neglecting higher-order effects. Future
studies will be required to construct a self-consistent theory
incorporating nonperturbative effects of strong color fields
on spin transport. Fortuitously, the nonlinear corrections are
more prominent at early times of order X, < Q;', while the
spin correlation is predominantly sensitive to late times.
Thus, these higher-order effects may be suppressed.

ACKNOWLEDGMENTS

This work was supported by the National Science and
Technology Council (Taiwan) under Grant No. MOST 110-
2112-M-001-070-MY3 and by the U.S. Department of
Energy under Grant No. DE-FG02-05ER41367.

APPENDIX A: SPIN DENSITY MATRIX

We generalize the derivation in Ref. [38] (as the
generalization to incorporate spin degrees of freedom for
the coalescence model [96,97]) to obtain the spin density
matrix when the spin quantization axis does not match the
direction for spin polarization of the comprised quark and
antiquark in spin-one vector mesons. To construct the spin
density matrix of a vector meson from the pair of a quark
and an antiquark through the coalescence model, we may
first introduce the density operator of a quark q,

d3
= [ G

Qsisp)(asispl, (AD)

where V is the spatial volume and p and s; denote the
spatial momentum and spin, respectively. Here we have to
sum over i = x, y, z and s; = +1/2. The spin-dependent
weight functions w, . explicitly read

1
Wq,s,- (p> = 8 + sipq.i(p)’ (AZ)
where P, ;(p) corresponds to the spin polarization of the

quark along the i direction. Note that the normalization
condition

(A3)

Z Z Wa.s, = 1
i K

is satisfied. Accordingly, we can write down the density
operator for the pair of a quark and an antiquark via
P = pq ® pg, which takes the form

p= Vz/%/%lzj:;wq,siwq,sj q.G; i, 3;:P.P)

x (q, ;5. 5;5p.D, | (Ad)
where

q.9:5.5;:p.P) = |q:5:3p) ® |§:5;3p).  (AS)

For convenience, one could decompose the state of the
quark-antiquark pair into the momentum- and spin-depen-
dent parts,

|9.G:5:.5;3p.P) = p.P)s:.5)), (A6)
where we omit the quark and antiquark notations for
brevity. Also, we take

(x,%|p,p) = V- leP~tipx, (A7)
Next, we introduce the meson state
IM; S, S.; P) = |P)|S, S.), (A8)

where we have fixed the spin quantization axis along the z
direction, which is determined by the experimental setup.
Now, S, =0for § =0and S, = £1, 0 for § = 1. We also
take

(x.X[P) = V712K py (y). (A9)
where R = (x + X¥)/2,y = x — X, and ¢, (y) is the normal-
ized meson wave function satisfying [ d’y|¢y(y)> = 1.

After choosing the spin quantization axis, one could write
down the quark/antiquark spin states explicitly; e.g.,
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1 1
s, ==£1/2) =—(|+) £ 1|-)), s, =*£1/2) =—(|+) £i|-)), Al0
| />ﬁ(|>|>) |5y />ﬁ(|> =) (A10)
where |+) = |s, = 1/2) and |-) = |s, = —1/2) and similarly for |5;). The density operator of a quark is accordingly given by
vV [ & 1+7P, Pyx—iP,
=y [ el e e, (A1)
) Pyx +iPqy 1 ="Pg,

For pg, one simply has to replace p by p and P ; by Py ; in p. We shall now express the spin states of vector mesons in terms of
the bases of the quark-antiquark pair,

1
|S=0’Sz=0>=ﬁ(|+—>—|—+>), S=1.85,=0)= 7(|+ =) +1=+),
IS=1.5,=1)=|++), [S=1,5,=-1)=|--). (A12)

Given Egs. (Al1) and (A12), we can now directly evaluate
PS5 = (M:S.S.:Plp[M: 5. S.: P) (A13)

and the normalized spin density matrix for § = 1,

PSS,
Pss. == 5=T" (Al4)
o Zszzil,oﬂgzslz
Following the calculations in Ref. [38] for handling the states in momentum space, we arrive at
pog(p) = L LA S PAP/2 + @)Po(P/2 =) =20 Po(P/2 + ) Po(P2 = g)lu(@)l o
oo\f") = ; ; ~ )
J &3+ 3 Pa(P/2+ q)Py(P/2 — q)llbm(q)]®
where the unit vector n* represents the spin quantization axis and
Inla)= [ dye i), (A16)
When assuming |q| < |P|, pgo(P) reduces to
1L+ 2 Pi(P/2)PL(P/2) = 2n - Py(P/2)n - Py(P/2)
Poo = : (A17)

3+ 3, PL(P/2)PL(P/2)

APPENDIX B: TECHNICAL DETAILS FOR THE COMPUTATION OF SPIN CORRELATION
Considering the mid-rapidity region and small-momentum limit, we shall find
Y Y C pX 24 1\ a " 1\ b "
(Py(p. X)Py(p.Y)) ~ > — po(,0fv(Po)) v [0xr00yno (Ef) (X) ES)(X") E| (Y)E (Y") + -

(B1)

with the complete expression in Eq. (80). Here we simply take one of the terms above as an example. One may apply the
Wick-theorem-like decomposition to obtain

(Ef(X")ES(X")EY(Y)ES(Y")) ~ (E§ (X" E§(X"))(E}(Y) ES(Y")) + (E{(X")E7 (Y')(E§(X")E5 (Y"))
+ (E{ (X E5(Y")(E} (Y ES(X"))
= (E{(X")E7(Y'))(E§(X")E5(Y")). (B2)
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To evaluate the multiple integral such as

X' Y
o(px.vy= [ 1 P [ ol RGO B () (ES(X) B, (B3)
k/ X// I_{ k/ Y”
we will use the relation
pX / 1 0 / / /
v G(X.X')~ 20 ) dXy(1 + sgn(Xo — X0))G(X. X, —x,,. (B4)

in the small-momentum limit according to Eq. (11). We now have

. . 1 &q, [ &l . o
<Eaz(x/)Eb](yl)>z2g2NC5ah/(2”)Ji/(Zﬂ)iz/d2ul/d2vln%(xé’Y{),ul’UL,q’l)equ_(X—u)J_ellﬂY—f/)J. (BS)

at small rapidity (¢ ~ 7), where

ij in,jm qn m
I (X4, Yo, uy, 01, 1) = =€"e™[Gy(uy, v, )Go(uy, vy) = hy(uy, ULVLZ(uL’Ui)]7-’1(qXB)Jl(lY6)®(X6)®(Y6)
qjli - 5ijq -l / / / /
=7\, v )Go(Uu, vy ) =N (U, V) )R U,V )|J1\gay)J 0 0 0/
4l (G ( )Ga( ) = hi( Yha( )1J1(gX0)J1(1Y5)0(X5)O(Y)

(B6)

Similarly, we have

2 2
(E$(X"ES(Y")) = *N .6 /é;’;/ dly /Jzul/dzleL(X/,YO,uL,vL,q l)eldrX'—uLeill(Y=v)L - (B7)

where
I, (X0, Yo, ur,v1,9.0) = [Gy(uy, v )Gy(uy, vy ) + hy(up, vy )ho(uy, v )] o(gX)Jo(1Y5)O(Xs)O(Y).  (BS)

It turns out that

oG 83 o e [ 5

« / i, / P, i1 (X0, il (Y1) i (X', git, (V=1
x T (X0, Yo, uy, v, q. 1) 0xno0ynoIly (X3, Y0, u/ v . 4 1) (B9)

by using Eq. (B4), where
Xo )
// E/ dxb (1 + sgn(Xo — X})). (B10)
0 —00

One can rewrite Eq. (B9) into a more compact form as

ANZ(N2 -1 d’ d’l d’ dzl/
To(p. X, ¥) ~? 66(4;4 )/ QL/ S /dzui/d%/ ql /d2 /d2
0

X eIQL(X ”)Le’ll.(y U)Le“lL(X “)J_e L

—l
()R s 0)2 VYKo Yo ), B11)
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where
Xo [Yo

Yo Yool )= [ [ / / T1(aXp) 0\ (1Y5)O(X,)0(¥y)ayadradold g Io(IV})OXPO(YS).  (B12)
[/) d

We may first evaluate V(X,, Yo, ¢, 1, ¢’,1'). Using the integration by part and d,sgn(x) = 25(x), we obtain

Y! / — o ©
[ avorntrrpperr = (1-+ senry vy e, +2 [ 7ot - vy urvp e

0

= 2J,(I'Y})0(Y)). (B13)

It is hence found that
X, [
| ] oxodradoaXg) 001 ¥DOUDOYE) = 410(a X0, ol YO(Y;) (B14)
and accordingly

Y(Xo.Yo.q.1.4".1') = 16/0o X' /00 dYy'J1(aX0o)J1 (1Y) Jo(q'X0)Jo(I'Y()O(Xo — X()O(Yo — Y()O(X5)0(Yy),

(B15)
where we have utilized ©(x)sgn(x) = O(x) and (1 + sgn(xy — x))O(x) = 20(xy — x)O(x).
Next, we will consider the integration over ¢’ and I’. It will be more convenient to make the decomposition
. X - . Y
q = %qcose +0Y_,q,sind,, I = glcos 0, + ©y_,1;sin0, (B16)
X, —uy| Y, vy

where ©Y = 5"/ + Vi V/ /|V | 2. Here 6, and 6, should appear in [d?q, = [dqqdf, and [d*l, = [dlldf;,. We can
accordingly evaluate the related integral

/da‘f / dfyei X1 00 = (27) 2o (q|X L = uy )o(UY L = vL]), (B17)

i1 _ Sijg . ij(x — (Y — —(X =) (Y =)
/deq/dgl q]l 5]q leiqL(X’—u)leill(Y’—v)L — (27[)25}()( u)J_ (Y V)J_ <X M)L(Y U)L
! X1 —ug[|YL— vy

xJi(q| X —u ) (1Y —v.]), (B18)

by using

2r . 2r .
/ d0e's? = 27J,(|al), / d0e's% cos(0 + b) = 2inJ,(a) cos b,
0 0

2r X
/ d0e's?sin(@ + b) = 2inJ,(a) sin b. (B19)
0

Note that (X —u), - (X —v), can be written as (X —u), - (X —v), =|X, —u ||X| — v |cos(Ox_, — Ox_,).
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One then obtains

AN2(N? d dq'q
To(p. X, ¥) ~ 2 ‘6(4[;4 )/ 14 /dll/aabu/aau/ 149 /dl’l’/d2 /dzvl
0

x Jy(q|X, - “J_D‘Il(llYJ_ — v )Mo(q'|X 1 - ”L|)J0(ZI|Y¢ -0\

X-w)i (Y -0
Q Q. (u,, V)V(Xy, Yo, q,1,4", ).
) ('XJ__MJ_HYJ_—WJ_l (L, v1)Q (), V)V (X0, Yo, 0,14 1)

Using Eq. (76), we acquire
dq'q’
(27)?
B %/: axy’ [ dvya(axpivec, - Xperr, - ¥e(xe(r;)
XY = X, =) 8¢y =¥, = o]

X — )| Y, =]

16/ (g|X, — ) D1 (1Y, = 2 [)
= OXy—1|X, —u,]|)®(Yy—1|Y  —7]).
(27[>2|XJ__”/J_||YJ__U/J_| ( 0 | L uLD ( 0 | L ’ULD

/ ATV (Xo, Yo, q. 1 ¢ I)Io(q'|X | =, )o(I]Y | —',])

Subsequently, taking, for example,

(X —uy| =X, —u\])
|X| —u,|

)

/dqq11(61|x¢ —u i (qlX —u|) =

one finds

4 n72 2 X by
g*N2(N2 — 1)/1- (X —u)t (Y —v)}
Io(p, X, Y) v¥————+= Q_ ) Q. (u) v
0<p ) 4(277")4 ¢ w,v,u'v' |XJ__MJ_||YJ__UJ_| <ul Ul) +(ML UJ_)

5(|X¢ —uy | =X, —u )o(|Y v | =Y, =]
X, —uf? Yy —vy|?
XOXg— X —u [)OYy— Y —vy).

Given explicit expressions of Q. from Ref. [76], one can evaluate Z(p, X, Y) numerically.

APPENDIX C: DETAILED PROOF FOR THE VANISHING TERM

Considering the first term in (80), by symmetry, one finds

p.X p.Y'
Lo L0 T avoaten g )t (v )
k/ X// k k/ YH
pX p.Y'
/ / / / Oxrodyro((ES(X')ES(X")EL (Y) ER (V"))
K, k.Y’ K,

X" Y’
Ea(X/ Ea X// Eb Y/)Eb(Y//)> 2<Ea(X/>Ea(X//)Eb(yl)Eb(Y//)>)

Since
(ES(X)E{(X")ES(Y)EY(Y")) = (E{(X")ES(X")ER (Y EZ(Y")) [y oxr yr oy
(E{(X)E§(X")E5(Y)ET(Y")) = (E{ (X")E§(X")EY (Y)ES(Y") |y ooy

when X1 ,; =X{,3=X,,3and Y}, =Y, =7Y,,3, based on Eq. (B20), one immediately finds
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p.X' p.Y
/ / / / Oxo (B4 (X)) ES (X" EL (Y') EL (Y"))
k/ X// k k/ Y//

4N2 N2 -1) d dq’
~ / a4 /dll/d%u/cﬂm/ T4 /dl’l//dzuL/dz
64p0
x Jy(q|X - ”LDJl(l‘YL — v )o(q'|X 1 - ”J_|)]0(l/‘YL - UJ_|

X—u)(Y—-0v)
(o N0 (s 0), 0 P (i o1 (c4)
|XL - MLHYL - UL|

where

X Y,
Vi(Xo, Yo 0 1 g 1) = / ’ / ’ / / Oxodyrod 1 (X0) T (1Y) o' X To(I'V5)@(X)O(Y})O(X4)O( YY)

Xo
=16 [ axy [ v @ v e Xy

= y(X07Y07 q, l7 q/’l/)‘ (CS)

Similarly, it is found that

p.X' p- Y’
/ / / / o (B9 (X' ES(X")EL (V) EX (Y'))
k/ X// k k/ Y//

4N2 N2 d d !0
~ / 4 /du/d%u/d?m/ 449 /dl’l//dzuL/dz
64p0
x Jy(q|X - ”LDJl(l‘YL v ) o(q'| X = MJ_|)]0(Z/|YL i)

X - Y —
) <|)((L—L;)LL||(YL —U1)JL|>Q (uy,v)Q (), v'))I(Xo, Yo, 9,1, 4, 1), (C6)

where

X Y,
Vil Yowaulg )= [ / / Dvadio ] (4X5)7, (V)0 XE) o (150X OV O(X))O( V)
0 0

Xo
=16 [ axy [ avyaaxp)n vy e xpany)

= y(XO7 YO? q, l’ q/’ l/) (C7)

It turns out that

T by (X B (X)L () EL (7)) = ()
Ll

In light of the same approach, all the terms associated with Oxo Efy X’ )Eg] (X") in Eq. (80) vanish simply due to

X/ X!
A Oxord 1 (gX8) o (1X})O(X4)O(XY) = [( Oxord 1 (gX)To(IX5)O(XH)O(XE). (C9)
0

0
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APPENDIX D: REMAINING TERMS

We may now consider

Y
I, = —2/ / / /,, (Yo" = Yo')[0x1 0%, (B2 (X" )EN (X" EL (Y E5(Y"))
k/ X" k.Y ]’Cr y” ~

+ 0x1 Oy Oy (BB (X EN (X" ES (Y B3 (Y"))]

8 / /0/ / (Yo" =Yy 0x/16y,/ <B“[2(X')E“1](X”)E’l’(Y’)Eé’(Y”»
P " "

+ Oy Oyny 0y (BYR (X EN(X")E5 (Y EL(Y"))]
with X, =X =X and Y, =Y’ =Y'. By using

<Ba[2(X/>Eu1] (X”)Eb(Y’)Eb(Y”» _ (Ehl (Y/)Ea[l (X//)><Bu2] (X’)E”3(Y”)>

2 2 v X v ! q[x M P ! 1y ! ! A
—iNZ(NZ = 1) _(vy,u)) +(MLJ’¢)7 (1Y) 1 (q'X5)J1(gX0) o (1Y)
Ligu JL; 1; qq'l

Lo J Liq W l’v’

and

(BR(XEN (X" EZ(Y)ES(Y")) = (EP (Y E“U (X)) (B (X)EP* (Y"))

2 2 X v ! v ! / q[xq/y] r / 1y 1! ! A
= iNz(N2 = 1) L Q‘—(”Lvul)g-&-(ul’UL)W‘h(ZYO)Jl(qXO)JI(‘]X0>JO(ZYO)’

Liq.u gl J L

one obtains

N2(N2 - 1) X Y, [Y [X Y X Y
I,»" / / 0 / 0 / 0 / / / / Ji(1Y0)J1(q'X5)J1(gX0)Jo(I'YE)
8p0 7 g " Ligu J Lilw J Lig' ' J Ll

g (1’0, — 1¥0,,)

Y// Y/

Then, implementing Eq. (B16), (B19), and (76) yields

auxav’xg—(UJ_’ MIJ_)Q+(MJ_’ U/J_)

Izzg“Ng(N?—l)/L O(Xo — [s.1)0(Yo = [t NO([s.] = Is' NO(l£L| = [71])
§,1,8°,t

2(27)*pj s lleclls’I12) |

<|tj_| - |tl|)sf§li(l) av’x fiav’y)auxav’xg—(vJ_’l’tlj_>Q+<”‘J_71/J_)'

For convenience, one may adopt the change of variables, v, <> /|, which yields

Iz,vg“Ng(Ni—l)/L O(Xo — [s.1)0(Yo = [t NO([s.] = Is' DO, | = [1.])

2027)*pg Jowss s lfeclls’y[12)]

<|tJ_| - |tJ_|) x,\/} (?/y a@x - avy)auxavxg—(vﬁ_’ u/J_)Q+(uJ_7 UJ.)‘

Finally, we evaluate

I3= / A ,pX/ A A " (XG = X0)(YG = Y) (0%, 0% (EL(X)ES(X")ES (Y ES(Y"))

X// Y//
+ 20%,, 0y 0y (ES(X")ES(X")E5(Y')ES(Y")) + Oxra0xr1 Oyra0yr (ES

(X")E§(X")E3(Y')E5(Y")))

zFP‘é/ / / / (XY = X0)(Yg = Y0) (0B 0, (ES (X)) E5 (X")ES (Y ) ES(Y")

+ 20%, 9yr20yi (EF (X')ES(X")ES(Y')E3(Y")) + Oxr20x71 Oyr20yn (E
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with X, =X =X and Y, =Y =Y. Using
(Ef(X)ES(X")ET(Y)ES(Y")) = (E(X")EY (Y)(ES(X")ES(Y"))

2 2 X v X' . C]‘ lv ! ! 1! A
=-Ni(N: - 1) Q_(up,v,)Q (' v ) =T 1(gXp)J1 (1Y) Jo(q'X5)Jo(I'Yg),  (D8)
Liqu J Lilw J Lig ' J Ll q

(Ef(X)ES(X")E5(Y)ES(Y")) = (E{(X")E3(Y))(ES(X")ES(Y"))

_ X Y X" Y ylx
- -1 [ [0 0 6 LX) 1 0 I Xy, (D9)
Ligu J Ll J Lig ' J LW q

and
(ES(X)E§(X")ES(Y)ES(Y")) = (ES(X")E5(Y"))(E§(X")E5(Y"))

_ X' X" Y” X [x
=-i-n [0 0T o @ ) TR g X (). (10

1!/

and following the same procedure, it is found that

Iw_g“Nﬁ(N%—l)/L O(Xo = [s.)OYo — |t )O(s| = [s' NO(lz| = |7, ])

A2m)'pG s [l lls’ 117 ]
X (|MIJ_| - |MJ_|)(|ZJJ_| - |tJ_|)[ ) aixa%x - 2§}ifiaﬁ’xab’ya vx T sltlauxau Va’b 20y )]Q—<ML’ UJ_)Q+(M/J_’ UlJ_) (Dll)

APPENDIX E: SEMIANALYTICAL ANALYSIS OF THE INTEGRALS 7., Z,, Z;

We now analyze the behavior of different integrals. We first introduce p = Q?|u, — v |* and accordingly write GBW
distribution

Qit 1= e—/}/4 2
. (s, 01) = ) = 2o (1250 (81)

and similarly Q. («/,v'|) = Q(p') with p' = Q3|u’, — v/, |*. Using Eq. (E1) we can obtain

0,iQ+(p) = (0,ip)Q(p') = 20,W' QY (p) = =0, Q- (p), (E2)
0,;0,iQ4+(p) = =202 (5", (p) + 2w'w/Q." (p)), (E3)
aukavjauigi(p) - _avkavjauigi(p) = _4Q3[(5ﬂ g + akjw + ékle)g ( ) + 2w ijkg ///(p)] (E4)

and

0vlaukavjaui9:|:( ) = aulauka ‘auigi<p)
= 407[(678M + 815" + M5 (p) + 2(w! (WM + wheit + w!sik)
+ wE(WIs + wish) + kwiwh) QY (p) + dwwiwkw!' Q" (p)], (ES)

where w' = Q,(u', —v')).
The above equations can be utilized to obtain

az;xauxgj:(p> = _2Q%(Q/i(p) + 2(Wx)29ﬂ:”(p))’ (E6)

00 p) = —4Q3 @R (p) + 20w Pw Q" (o)) (E7)
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and

Finally, one can find

Il ~ —2Q§

I,~403
2 oy

and

Iy~ 407

where w" = Q, (u'| ="' ). Recall that (u', —v,) = (| —s',)
and (u'', — ") = (¢, —s"",) when r; = 0. Here Q' (p) =
d,€(p) and similar notations are applied to higher derivatives.
Noticeably, a derivative acting on €2 flips the overall sign even
though the magnitudes of Q(p) and its higher derivatives

aﬂxaﬁin (p) = _auxa%xgi(p) = _4Q% [3Win”(p) + 2(Wx)3giw(p)]’ (Es)
avyavxauxgﬂ: (/7) = 4Q? [Wygj:”(p) + ZW}V(WX)ZQ:I:W(/))]? (E9)
aﬂy (aux)sgi (,0) = _avyavx(aux)2gi (,0) = 4Q? [6waygim(p) + 4(Wx)3wygi////(p)]7 (EIO)
0,:0ux00y 0y R (p) = 40(QL" (p) + 2((W*)? + (w*)*) Q" (p) + 4(w*)* (W) ? Q" (p)]. (E11)
(00)?(00x)* Qs (p) = 40332, (p) + 12(W*)°QL" (p) + 4(W)* Q" (p)]. (E12)
g*Ne(N? - 1)/L OXo — |s.[)O(Yo — [t [)O(s 1| — |s' NO(|r1[ — |7, ])
42x)'pg  Jsas sl lls/ 117 |

x [SLPLSTEY + SLALSTPT = 281 PSP ( (p) + 2(w)°Q" (p))Q(0), (E13)

gINe(NZ=1) [+ O(Xo = [s.[)O(Yo = [t NO(ls | = [s". )7 | = |t.])

. [sulleclls |7 |
x (|e.] = £ DSTPL L (Bw @ (p) + 20w )P Q" (p) = 5 (W (p) + 20> (w2 Q" (p))]Q(p).  (E14)
g*Ne(N? - 1)/L OXo— s NOYo — |t )O(si| = Is NO(r.| =17, ])
427)*pg  Jsasw s o lleols’ [7) |
X ([ | = lu (7] = 2 DISTEL BRI (P) + 12(w™)?Q" (p) + 4(w™)* Q" (0'))
+ 2A,3’_ibj_(6wlxwlygl/l(p/) + 4(Wlx)3w/yQ//ll(p/))
+ STFLQ" () +2((w™)7 + (W)2)Q"(p') +4(w™)* (W )2Q" (p'))1Q(p), (E15)
X(p)
0.10+
0.05
- - = p
6 8 10

monotonically decrease with p. However, the prefactors with
different orders of w' could qualitatively convert the mono-
tonically decreasing (or increasing) function into an approxi-
mate pulse form with a shift of the maximum to larger p. One
can see this behavior in Fig. 5. Consequently, despite the
angular dependence, when having larger X, and hence larger
phase space for the integrals, 7 ; 3 may not monotonically
increase due to the combination of terms with different
derivatives and accompanied prefactors with distinct orders
of @' (or @"). As illustrated in Fig. 1, we have observed the
turnover of fz, while the nonmonotonic behaviors of 7 13
occur at much larger Q X,

-0.05
-0.10
-0.15
-0.20
-0.25

FIG. 5. The solid red, dashed blue, and dashed-dotted green
curves correspond to Q'(p), p'/2Q"(p), and pQ" (p) normalized

by % respectively.
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