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The two-flavor Gross-Neveu model with Uð2ÞL × Uð2ÞR chiral symmetry in 1þ 1 dimensions is used to
construct a novel variant of four-fermion theories with Oð2ÞL × Oð2ÞR chiral symmetry. The spontaneous
breaking of the group O(2), a continuous group with two connected components (rotations and reflections),
gives rise to new phenomena. It is ideally suited to describe a situation where two distinct kinds of
condensation compete, in particular chiral symmetry breaking (particle-hole condensation) and Cooper
pairing (particle-particle condensation). After solving the O(2) chiral Gross-Neveu model in detail, we
demonstrate that it is dual to another classically integrable model due to Zakharov and Mikhailov. The
duality enables us to solve the quantum version of this model in the large N limit with semiclassical
methods, supporting its integrability at the quantum level. The resulting model is the unique four-fermion
theory sharing the full Pauli-Gürsey symmetry with free, massless fermions (“perfect Gross-Neveu model”)
and provides us with a solvable model for competing chiral and Cooper pair condensates, including explicit
soliton dynamics and the phase diagram.

DOI: 10.1103/PhysRevD.107.076024

I. INTRODUCTION

Back in 1978, Zakharov and Mikhailov [1] proved the
integrability of three classical spinor models in 1þ 1
dimensions for any number of components N. The quan-
tum versions of two of them are by now also well under
control, at least in the large N limit, namely the Gross-
Neveu (GN) model [2]

LGN ¼ −2iψ ðiÞ�
1 ∂ψ ðiÞ

1 þ 2iψ ðiÞ�
2 ∂ψ ðiÞ

2

þ g2

2
ðψ ðiÞ�

1 ψ ðiÞ
2 þ ψ ðiÞ�

2 ψ ðiÞ
1 Þ2 ð1Þ

and the chiral GN model or two-dimensional (2D) Nambu–
Jona-Lasinio (NJL) model [3]

LNJL ¼ −2iψ ðiÞ�
1 ∂ψ ðiÞ

1 þ 2iψ ðiÞ�
2 ∂ψ ðiÞ

2

þ 2g2ðψ ðiÞ�
1 ψ ðiÞ

2 Þðψ ðjÞ�
2 ψ ðjÞ

1 Þ: ð2Þ

We use the notation

z¼ x− t; z̄¼ xþ t; ψ1 ¼ ψL; ψ2 ¼ ψR ð3Þ

and sum implicitly over “color” indices i, j from 1 to N.
Apparently, integrability at the classical level allows one to
solve the quantized theory in the large N limit with
semiclassical methods, including time dependent multi-
soliton interactions, in explicit analytical form [4–6]. At the
classical level (i.e., with c-number fermion fields), these
two models are connected to chiral fields on the symplectic
group Spð2N;RÞ (GN model) or the special unitary group
SUðNÞ (NJL model). The third model presented in [1] and
related to chiral fields on the orthogonal group OðNÞ has so
far not had any significant impact in particle physics. It is
sometimes referred to as the Zakharov-Mikhailov (ZM)
model and has the less familiar Lagrangian

LZM¼−2iψ ðiÞ�
1 ∂ψ ðiÞ

1 þ2iψ ðiÞ�
2 ∂ψ ðiÞ

2

þg2ðψ ðiÞ�
1 ψ ðjÞ

1 −ψ ðjÞ�
1 ψ ðiÞ

1 Þðψ ðiÞ�
2 ψ ðjÞ

2 −ψ ðjÞ�
2 ψ ðiÞ

2 Þ: ð4Þ

Interestingly, the quantum version of the ZM model has
appeared again in a different context in the meantime.
When studying four-fermion theories that give rise to
Cooper pairing as opposed to fermion-antifermion pairing,
Chodos, Minakata, and Cooper (CMC) [7] proposed a
model whose Lagrangian is equivalent to

LCMC ¼ −2iψ ðiÞ�
1 ∂ψ ðiÞ

1 þ 2iψ ðiÞ�
2 ∂ψ ðiÞ

2

þ 2g2ðψ ðiÞ
1 ψ ðiÞ

2 Þðψ ðjÞ�
2 ψ ðjÞ�

1 Þ: ð5Þ
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They noticed many similarities with the chiral GN model
such as asymptotic freedom, mass generation, and a
massless bound state. If written in the form of (2) and
(5), one sees that the quantized NJL and CMC models are
“dual” to each other in the sense that they are related by a
simple Bogoliubov transformation [8],

ψ ðiÞ
1 → ψ ðiÞ†

1 ; ψ ðiÞ
2 → ψ ðiÞ

2 : ð6Þ

Hence both models are mathematically equivalent,
although their physics looks quite different at first sight.
This observation incited us to study yet another four-
fermion theory obtained by “self-dualizing” the NJL
model, i.e., adding the interaction terms of models (2)
and (5) with the same coupling constant [9]. The resulting
theory is singled out from all other variants of the GN
model in that it shares the full Pauli-Gürsey sym-
metry [10,11] with free, massless Dirac fermions, in
addition to a OðNÞ color symmetry. Because of this high
degree of symmetry, it has been dubbed “perfect GN
model” (pGN) in [12]:

LpGN¼−2iψ ðiÞ�
1 ∂ψ ðiÞ

1 þ2iψ ðiÞ�
2 ∂ψ ðiÞ

2

þ2g2½ðψ ðiÞ�
1 ψ ðiÞ

2 Þðψ ðjÞ�
2 ψ ðjÞ

1 Þþðψ ðiÞ
1 ψ ðiÞ

2 Þðψ ðjÞ�
2 ψ ðjÞ�

1 Þ�:
ð7Þ

As a matter of fact, the Lagrangians of the pGN model and
the ZM model become identical once fermion fields are
treated as anticommuting variables. This observation has
stimulated our interest in the large N limit of the quantum
ZM model (hereafter referred to as the pGN model).
However, a systematic solution of the soliton problem or
other questions has so far resisted all our attempts. Judging
from the experience with the GN and NJL models, if the
classical ZM model is integrable, one would expect the
same kind of solvability for the GN, NJL, and pGNmodels.
Here we propose a solution to this problem. We have

found a duality between the one-flavor pGN model and the
two-flavor NJL model, for which the general soliton
solution has already been given at large N [13,14]. In
the case of the GN model, the most efficient way to solve
soliton dynamics has been to start from the solution of the
NJL model with Uð1ÞL × Uð1ÞR chiral symmetry and
specialize to real mean field solutions, thereby solving
the Oð1ÞL × Oð1ÞR [or Z2;L × Z2;R] GN model [6]. Here we
generalize this approach by first reducing known solutions
of the Uð2ÞL × Uð2ÞR two-flavor NJL model to a novel
Oð2ÞL × Oð2ÞR variant of the GNmodel, again by selecting
real mean fields. This model in turn will be shown to be
dual to the pGN model, thus providing the key to the
missing large N solution of the pGN model.
This paper is organized as follows. After a reminder of

some elementary facts about O(2) group theory in Sec. II,
we propose the Oð2ÞL × Oð2ÞR symmetric descendent of

the unitary two-flavor chiral GN model in Sec. III. The
vacuum structure and gap equation are determined in
Sec. IV, and the meson spectrum in Sec. V, using the
random phase approximation (RPA). Sections VI and VII
are dedicated to the most elementary solitonic multifermion
bound states, the kink, and the interactions of several kinks.
In Sec. VIII we then show that the analog of twisted kinks
exist as constituents of bound states, similar to what
happens in the GN model. The simplest breather is also
constructed. Section IX addresses a topic well-known from
the NJL model, namely massless multifermion bound states
and inhomogeneous structures at finite chemical potentials
(chiral spirals, kink-antikink crystal). Section X is perhaps
the most important one of this paper. Here we show the
equivalence between the O(2) chiral GN model and the so
far unsolved ZM (or pGN) model). In Sec. XI we
summarize our findings, reviewing the preceding results
in the light of the duality from a physical point of view.

II. ELEMENTARY GROUP THEORY:
FROM U(2) TO O(2)

In the defining representation, elements of the unitary
group Uð2Þ ¼ Uð1Þ × SUð2Þ can be parametrized as

U ¼ e−iψein⃗ τ⃗ δ; n⃗ ¼

0
B@

sin θ cosϕ

sin θ sinϕ

cos θ

1
CA; ð8Þ

with τi in the standard form of the Pauli matrices. An O(2)
matrix is a real U(2) matrix. There are two distinct ways to
get a real matrix out of (8):
(1) θ ¼ ϕ ¼ π=2;ψ ¼ 0 (hence n1 ¼ n3 ¼ 0):

RðδÞ¼eiτ2δ¼
�

cosδ sinδ

−sinδ cosδ

�
; detRðδÞ¼1: ð9Þ

(2) ψ ¼ δ ¼ π=2;ϕ ¼ 0 (hence n2 ¼ 0):

IðθÞ¼ n1τ1þn3τ3¼ τ3eiτ2θ ¼
�
cosθ sinθ

sinθ −cosθ

�
;

detIðθÞ¼−1: ð10Þ

The matrix RðδÞ corresponds to a rotation around the center
of the (x, y) plane by an angle δ. The matrix IðθÞ is a
rotation by an angle θ followed by a reflection in the new x
axis. These two elements belong to the two connected
components of the group O(2) characterized by their
determinants �1, with only rotations forming a subgroup,
SO(2). The group manifolds of U(2) and O(2) are S1 × S3
and S1 þ S1, respectively. What we have done here is the
two-dimensional analog of the transition from U(1) to O(1)
(or Z2) where one restricts the function e−iψ to its real
values, �1. Finally, note that O(2) is a non-Abelian group.
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Products of its elements can easily be evaluated with the
help of

IðθÞ ¼ τ3RðθÞ ¼ Rð−θÞτ3;
Rðθ1ÞRðθ2Þ ¼ Rðθ1 þ θ2Þ: ð11Þ

III. GROSS-NEVEU MODEL
WITH Oð2ÞL ×Oð2ÞR SYMMETRY

The Lagrangian of the Uð2ÞL × Uð2ÞR symmetric two-
flavor NJL model reads [14]

LUð2Þ ¼ ψ̄i∂ψ þ g2

4
½ðψ̄ψÞ2 þ ðψ̄ τ⃗ ψÞ2

þ ðψ̄iγ5ψÞ2 þ ðψ̄iγ5τ⃗ψÞ2�: ð12Þ

We choose a “chiral” representation of Dirac matrices (γ5
diagonal),

γ0 ¼ σ1; γ1 ¼ iσ2; γ5 ¼ −σ3: ð13Þ

If we expand the isovector interaction terms, the interaction
part of Lagrangian (12) consists of eight squares of
bilinears. We can now generate simpler, Lorentz invariant
Lagrangians by deleting some of these terms. We propose
the following choice, keeping only half of the interaction
terms:

LOð2Þ ¼ ψ̄i∂ψ þ g2

4
½ðψ̄ψÞ2 þ ðψ̄τ1ψÞ2

þ ðψ̄τ3ψÞ2 þ ðψ̄ iγ5τ2ψÞ2�: ð14Þ

Although it is not obvious, the resulting model has a
Oð2ÞL × Oð2ÞR chiral symmetry. Let us evaluate the trans-
formation of the four remaining bilinears induced by
orthogonal chiral transformations of the spinor fields.
Isospin rotation of a left-handed spinor around the 2-axis,

PLeiατ2 þ PR∶
�

ψ̄ψ

ψ̄iγ5τ2ψ

�0
¼ Rð−αÞ

�
ψ̄ψ

ψ̄iγ5τ2ψ

�
;

�
ψ̄τ3ψ

ψ̄τ1ψ

�0
¼ RðαÞ

�
ψ̄τ3ψ

ψ̄τ1ψ

�
: ð15Þ

Isospin rotation of a right-handed spinor around the 2-axis,

PL þ PReiατ2∶
�

ψ̄ψ

ψ̄ iγ5τ2ψ

�0
¼ RðαÞ

�
ψ̄ψ

ψ̄iγ5τ2ψ

�
;

�
ψ̄τ3ψ

ψ̄τ1ψ

�0
¼ RðαÞ

�
ψ̄τ3ψ

ψ̄τ1ψ

�
: ð16Þ

Isospin reflection and rotation around the 2-axis of a left-
handed spinor,

PLτ3eiατ2 þPR∶
�

ψ̄ψ

ψ̄ iγ5τ2ψ

�0
¼RðαÞ

�
ψ̄τ3ψ

ψ̄τ1ψ

�
;

�
ψ̄τ3ψ

ψ̄τ1ψ

�0
¼Rð−αÞ

�
ψ̄ψ

ψ̄iγ5τ2ψ

�
: ð17Þ

Isospin reflection and rotation around the 2-axis of a right-
handed spinor,

PL þ PRτ3eiατ2∶
�

ψ̄ψ

ψ̄iγ5τ2ψ

�0
¼ IðαÞ

�
ψ̄τ3ψ

ψ̄τ1ψ

�
;

�
ψ̄τ3ψ

ψ̄τ1ψ

�0
¼ IðαÞ

�
ψ̄ψ

ψ̄iγ5τ2ψ

�
: ð18Þ

Thus rotations leave the combinations ðψ̄ψÞ2 þ ðψ̄iγ5τ2ψÞ2
and ðψ̄τ1ψÞ2 þ ðψ̄τ3ψÞ2 separately invariant. Reflections
leave only the sum of all four terms invariant, as they
induce hopping between the two pairs of bilinears in
addition to a rotation.
This confirms that model (14) indeed possesses a

Oð2ÞL × Oð2ÞR chiral symmetry. Consequently, the τ2
components of the isospin vector and axial vector currents
are conserved,

∂μψ̄γ
μτ2ψ ¼ 0; ∂μψ̄γ

μγ5τ2ψ ¼ 0: ð19Þ

In addition, the model has SUðNÞ color symmetry and U(1)
fermion number (ψ → eiαψ). It also shares with the GN
model charge conjugation with the familiar consequences,
i.e., a real mean field in the Hartree-Fock (HF) approach
and a fermion spectrum that is symmetric about 0,

C∶ ψ → γ5ψ
�; γ5H�γ5 ¼ −H: ð20Þ

Here,H is the HF Hamiltonian in coordinate space. In view
of the conserved charges, there are three chemical poten-
tials one can add to the HF Hamiltonian,

H → H − μψ†ψ − μ2ψ
†τ2ψ − μ5;2ψ

†γ5τ2ψ : ð21Þ

This is important if one considers the phase diagram of
the model.

IV. VACUA AND DYNAMICAL MASS

We start solving the chiral O(2) GN model (14) in the
large N limit by determining its gap equation and vacuum
structure. The HF equation reads

ðiγμ∂μ − S0 − S1τ1 − S3τ3 − iγ5P2τ2Þψ ¼ 0 ð22Þ

with the mean fields given by the vacuum expectation
values
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0
BBB@

S0
S1
S3
P2

1
CCCA ¼ −

g2

2

0
BBB@

hψ̄ψi
hψ̄τ1ψi
hψ̄τ3ψi

hψ̄iγ5τ2ψi

1
CCCA: ð23Þ

Denoting two-component isospinors of chirality L=R by
ψ1;2, Eq. (22) may be rewritten in canonical form as

i∂t

�
ψ1

ψ2

�
¼

�
i∂x ΔT

Δ −i∂x

��
ψ1

ψ2

�
: ð24Þ

Here, Δ is the 2 × 2 flavor matrix

Δ ¼ S0 þ S1τ1 þ S3τ3 − iP2τ2

¼
�
S0 þ S3 S1 − P2

S1 þ P2 S0 − S3

�
: ð25Þ

The fact that this matrix is real reflects the orthogonal
symmetry. To determine the HF ground state, we have to
diagonalize the 4 × 4 Hamiltonian

h ¼
�
−k ΔT

Δ k

�
ð26Þ

with a constant, real matrix Δ. We find four modes with
energies �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ k2
p

;�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

2 þ k2
p

where

m2
1;2 ¼

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S20 þ P2

2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S21 þ S23

q �
2

: ð27Þ

Minimizing the HF vacuum energy density

Evac ¼ −N
Z

Λ=2

−Λ=2

dk
2π

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

1

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

2

q �

þm2
1 þm2

2

2g2
ð28Þ

with respect to m1, m2 yields two gap equations

0 ¼ 1þ Ng2

2π
ln
m2

i

Λ2
ði ¼ 1; 2Þ ð29Þ

that are compatible only if m1 ¼ m2 ¼ m. The final gap
equation is identical to that of the GN model and has the
same implications (dimensional transmutation, asymptotic
freedom). The renormalized vacuum energy density
becomes

Evac ¼ −N
m2

2π
: ð30Þ

According to Eq. (27), there are two possible choices
leading to m1 ¼ m2:

1Þ S1 ¼ S3 ¼ 0; S20 þ P2
2 ¼ m2; S0 ¼ m cos α;

P2 ¼ m sin α; Δ ¼ mRð−αÞ;
2Þ S0 ¼ P2 ¼ 0; S21 þ S23 ¼ m2; S3 ¼ m cos α;

S1 ¼ m sin α; Δ ¼ mIðαÞ: ð31Þ

As expected, the vacuum manifold is the group manifold of
O(2) comprising two disjoint circles in the (S0, P2) and
(S1; S3) planes. For simplicity we shall denote a vacuum in
the (S0, P2) plane as the “rotation vacuum” and in the (S1,
S3) plane as the “reflection vacuum” to indicate their origin
in the two components of the group O(2). When breaking
spontaneously the O(2) chiral symmetry, the system has to
pick one circle (rotation or reflection) and a particular point
on this circle (angle α). All of these vacua are, of course, on
an equal footing. If not indicated otherwise, our standard
choice will be (S0 ¼ m;P2 ¼ 0;Δ ¼ m) for the rotation
vacuum and (S1 ¼ 0; S3 ¼ m;Δ ¼ mτ3) for the reflection
vacuum, so that Δ is diagonal in the standard vacua.

V. MESON SPECTRUM IN RANDOM
PHASE APPROXIMATION

Here we follow closely previous works on other GN
model variants, using the equations of motion method for
the one-body density matrix Qðx; yÞ [15,16]. The starting
point is the equation

i∂tQðx; yÞ ¼ −i½∂yQðx; yÞγ5 þ γ5∂xQðx; yÞ�

−
Ng2

2

X4
n¼1

fTr½OnQðx; yÞ�OnQðx; yÞ

−Qðx; yÞOnTr½OnQðx; yÞ�g ð32Þ

with

O1¼ γ0; O2¼ γ0τ1; O3 ¼ γ0τ3; O4¼ iγ1τ2 ð33Þ

matching the interactions in Lagrangian (14). Let us first
assume the rotation vacuum (S0 ¼ m;P2 ¼ 0). Using free
positive and negative energy spinors for one flavor
(Ek ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
)

�−k m

m k

�
uðkÞ¼EkuðkÞ;

uðkÞ¼
�
u1
u2

�
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2EkðEkþkÞp �
m

Ekþk

�
; ð34Þ

�−k m

m k

�
vðkÞ¼EkvðkÞ;

vðkÞ¼
�
v1
v2

�
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2EkðEk−kÞp �
m

Ek−k

�
; ð35Þ
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the corresponding free massive states in the two-flavor
case are

uI ¼

0
BBB@

u1
0

u2
0

1
CCCA; uII ¼

0
BBB@

0

u1
0

u2

1
CCCA;

vI ¼

0
BBB@

v1
0

v2
0

1
CCCA; vII ¼

0
BBB@

0

v1
0

v2

1
CCCA: ð36Þ

The isospin labels I; II will be denoted by Greek letters
below. Linearizing Eq. (32) in the fluctuation around the
vacuum density matrix and sandwiching it between vacuum
and one meson states of momentum P and energy EðPÞ, we
arrive at the RPA equations

EðPÞXαβðP; kÞ ¼ Eðk − P; kÞXαβðP; kÞ

−
Ng2

2

X4
n¼1

v†αðk − PÞOnuβðkÞΦnðPÞ;

EðPÞYαβðP; kÞ ¼ −Eðk − P; kÞYαβðP; kÞ

þ Ng2

2

X4
n¼1

u†αðk − PÞOnvβðkÞΦnðPÞ;

Eðk − P; kÞ ¼ Ek−P þ Ek; ð37Þ

with

ΦnðPÞ ¼
Z

dq
2π

fBn
δγðP; qÞYγδðP; qÞ þ CnδγðP; qÞXγδðP; qÞg

ð38Þ

and

Bn
δγðP; qÞ ¼ v†δðqÞOnuγðq − PÞ;

CnδγðP; qÞ ¼ u†δðqÞOnvγðq − PÞ: ð39Þ

Equations (37) are integral equations with a separable
kernel as is characteristic for all GN-type models. They can
thus be solved analytically. By first solving Eq. (37) for Xαβ

and Yαβ, we get

XαβðP; kÞ ¼
X4
n¼1

An
αβðP; kÞΦnðPÞ;

YαβðP; kÞ ¼
X4
n¼1

Dn
αβðP; kÞΦnðPÞ; ð40Þ

with the definitions

An
αβðP; kÞ ¼ −Ng2

1

EðPÞ − Eðk − P; kÞ v
†
αðk − PÞOnuβðkÞ;

Dn
αβðP; kÞ ¼ Ng2

1

EðPÞ þ Eðk − P; kÞ u
†
αðk − PÞOnvβðkÞ:

ð41Þ

Inserting the results (40) into Eq. (38) leads to the
homogeneous linear system for ΦnðPÞ,

ΦnðPÞ ¼
X
m

MnmðPÞΦmðPÞ: ð42Þ

The 4 × 4 matrix MnmðPÞ is given by

MnmðPÞ

¼
Z

dq
2π

fBn
δγðP;qÞDm

γδðP;qÞþCnδγðP;qÞAm
γδðP;qÞg: ð43Þ

An explicit analytical calculation shows that Mnm is
diagonal, and hence Eq. (42) reduces to

Mnn ¼ 1 ðno sumÞ: ð44Þ

One finds only two different diagonal matrix elements
Mnn. In the isovector pseudoscalar channel P2,

M44 ¼
Ng2

2

Z
dk
2π

�
1

Eðk − PÞ þ
1

EðkÞ
�

×

�
P2 − E2ðk − P; kÞ

E2ðPÞ − E2ðk − P; kÞ
�
: ð45Þ

The choice E2ðPÞ ¼ P2 converts the condition M44 ¼ 1
into the vacuum gap equation. This proves the existence of
a massless mode, the “would be Goldstone boson” fluc-
tuating in the direction tangential to the vacuum circle. In
the other three channels, there is a (marginally bound)
massive state with the common mass 2m, the same as in the
GN model. The corresponding diagonal matrix elements
Mnn read

M11 ¼ M22 ¼ M33

¼ Ng2

2

Z
dk
2π

�
1

Eðk − PÞ þ
1

EðkÞ
�

×

�
4m2 þ P2 − E2ðk − P; kÞ
E2ðPÞ − E2ðk − P; kÞ

�
: ð46Þ

Here the ansatz E2ðPÞ ¼ 4m2 þ P2 yields again back to the
gap equation. The massive bound states are scalar mesons
in the S0, S1, S3 channels.
One can repeat the same calculation by starting from the

reflection vacuum (S3 ¼ m; S1 ¼ 0). The only change in
the formalism is the fact that the spinors for isospin down

GROSS-NEVEU MODEL WITH Oð2ÞL × Oð2ÞR … PHYS. REV. D 107, 076024 (2023)

076024-5



have to be evaluated with m → −m, since the vacuum has
Δ ¼ mτ3 rather than Δ ¼ m. The results are the same,
except that the massless mode now appears in the S1
channel, again tangential to the reflection vacuum circle in
the chosen vacuum point. The mesons in the S0, S3, P2

channels all have the same mass 2m. At first sight, it looks
as if now a scalar meson would be massless and the
pseudoscalar one massive. This is not the case. When using
the rotation vacuum, the parity operation on spinors has the
usual form

P∶ ψðxÞ → γ0ψð−xÞ; ð47Þ

since the vacuum is also standard. To reach the reflection
vacuum mτ3, one has to perform the chiral transformation
PLτ3 þ PR. Under this transformation, the matrix γ0 in (47)
goes over into τ3γ

0, so that now S0, S3, P2 are scalars,
whereas S1 is pseudoscalar.
It is noteworthy that all massive mesons found in GN-

type models so far share the common mass M ¼ 2m. This
does not mean that they are noninteracting; otherwise, the
dispersion relation would not be EðPÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2 þ P2

p
. This

“universality” is most likely a side effect of the large N
limit. The RPA goes beyond the leading order (HF) by
taking into account fluctuations of Oð1= ffiffiffiffi

N
p Þ. It is plausible

that meson binding energies are suppressed by at least a
factor of 1=N and therefore are not yet visible at this order
of the large N expansion.
We conclude this chapter with a table comparing the

meson content of various chirally symmetric GN-type
models to emphasize the common aspects as well as the
differences due to different symmetries. Only two rules
govern the whole picture in Table I: The total number of
mesons is equal to the number of squares of bilinears in the
interaction Lagrangian, and the number of massless modes
equals the number of flat directions on the vacuum
manifold.

VI. BASIC KINK

Kink denotes a multifermion bound state connecting two
different vacua at x → �∞. We use units where m ¼ 1
from now on to make contact with the literature. To set the
stage, let us briefly recall the twisted kink of the one-flavor

NJL model originally due to Shei [17]. The kink at rest
connecting the U(1) vacua eiα at x → −∞ and eiβ at x → ∞
has the mean field

ΔðxÞ ¼ eiαð1 − fðxÞÞ þ eiβfðxÞ;

fðxÞ ¼ VðxÞ
1þ VðxÞ ; VðxÞ ¼ e2x sin θ: ð48Þ

We have written it in a form where the interpolating
structure is clear, since f and (1 − f) are kinklike scalar
functions. The angle θ in VðxÞ is called the twist angle and
is related to the difference of the two asymptotic vacuum
phases via

θ ¼ 1

2
ðα − βÞ: ð49Þ

Since U(1) is Abelian and Δ transforms under chiral
transformations as follows:

ψ1 → eiα1ψ1; ψ2→ eiα2ψ2; Δ→ eiα1Δe−iα2 ; ð50Þ

the twist angle is chirally invariant. As such it has a physical
meaning, determining the slope of the kink profile and its
fermion number. There is a bound state with energy
ϵ0 ¼ cos θ, occupied by N sin θ fermions. If we restrict
ourselves to real Δ as appropriate for the GN model with
discrete chiral symmetry, we have to choose θ ¼ �π=2 and
either α ¼ π, β ¼ 0 (kink) or α ¼ 0, β ¼ π (antikink). Here,
the kink profile can only assume the steepest shape. The
bound state moves to 0 energy, the center of the mass gap.
We get

ΔðxÞ → SðxÞ ¼ � tanh x; ð51Þ

an early result attributed to Callan, Coleman, Gross, and
Zee in Refs. [18,19].
Let us repeat the reduction from unitary to orthogonal

chiral symmetry, now for two flavors. We can start directly
from the known result for the twisted kink in the Uð2ÞL ×
Uð2ÞR GN model [13,14]. If the vacuum at x → −∞ is
taken as 1, the formalism yields the expression

ΔðxÞ ¼ 1þUVðxÞ
1þ VðxÞ ð52Þ

with

VðxÞ ¼ e2 sin θx; U ¼
�
1 − p⃗p⃗†

�
þ e−2iθp⃗p⃗†: ð53Þ

U is the vacuum at x → ∞, the vector p⃗ a complex,
two-dimensional vector normalized to p⃗†p⃗ ¼ 1. We can
interpret the expression for U as a spectral representation
of a unitary 2 × 2 matrix with eigenvalues 1 and e−2iθ.

TABLE I. Overview of meson content of different chiral GN
models.

Chiral symmetry
Vacuum
manifold Mesons Massless Massive

GN Oð1ÞL × Oð1ÞR Z2 1 0 1
NJL Uð1ÞL × Uð1ÞR S1 2 1 1
isoNJL SUð2ÞL×SUð2ÞR S3 4 3 1
O(2) GN Oð2ÞL × Oð2ÞR S1 þ S1 4 1 3
U(2) GN Uð2ÞL × Uð2ÞR S1 × S3 8 4 4
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Choosing a frame where p⃗ ¼ ð1; 0Þ, we recover the NJL
twisted kink for isospin up and the vacuum for isospin
down. This reduces the U(2) twisted kink to the U(1)
twisted kink, with θ the (chirally invariant) twisting angle.
The unique way to get a real solution as needed for the O(2)
model is again to choose the maximal twist angle, θ ¼ π=2.
We then recover the real GN kink in the isospin up state.
From the O(2) point of view, the kink connects the
rotational vacuum 1 with the reflection vacuum τ3. It is
impossible to find a kink connecting two points on the same
vacuum circle. Going back to the form (53) of U, we can
construct a more general kink by choosing a real p⃗,

p⃗ ¼
�
cos α

sin α

�
: ð54Þ

The mean field then becomes the matrix

Δ¼ð1−fÞ− Ið2αÞf; f¼ V
1þV

¼ 1

2
ð1þ tanh xÞ: ð55Þ

By a further chiral transformation we arrive at the most
general O(2) kink interpolating between arbitrary points on
the rotation and reflection circles,

Δ ¼ Rðα1Þð1 − fÞ − Iðα2Þf: ð56Þ

Here one has to choose α ¼ α1 þ α2 in p⃗. This kink evolves
from the rotation vacuum Rðα1Þ at x → −∞ to the
reflection vacuum −Iðα2Þ at x → ∞. Unlike the twist angle
in the unitary models, here the angles α1, α2 have no direct
physical significance, being dependent on the chiral frame
chosen. This is consistent with the fact that the x depend-
ence is independent of the angles αi. The true twist angle
θ ¼ π=2 is always maximal, as in the GN model. The
opposite kink connecting a point on the reflection circle to
one on the rotation circle can easily be found by changing
the sign of x,

Δ ¼ −Ið2α2Þð1 − fÞ þ Rð2α1Þf: ð57Þ

The reason why we have written down the most general
form of the kinks is the fact that in scattering or bound state
configurations with several kinks, the vectors p⃗i cannot all
be rotated simultaneously into a specific direction. Then the
differences αi − αj do acquire physical significance.
Finally we mention that the mass of the kink is the same

as in the GN model, M ¼ N=ð2πÞ, independently of its
fermion number.

VII. SCATTERING OF KINKS

We first use the existing tools to derive scattering of two
twisted kinks in the Uð2ÞL × Uð2ÞR GNmodel [14]. To turn
the result into a solution of the Oð2ÞL × Oð2ÞR symmetric
model, we choose as input two real vectors

p⃗i ¼
�
cos αi
sin αi

�
; ð58Þ

twist angles θi ¼ π=2, and positions of poles in the
complex spectral parameter plane

ζi ¼
i
ηi
; ηi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ vi
1 − vi

s
: ð59Þ

We also introduce the ratio η ¼ η1=η2. The matrix ω is
taken to be diagonal. The result for kink-antikink scattering
in the O(2) model are the real mean fields

DS0 ¼ 1 −
�
1 −

2ð1þ η2Þ cos2 α12
ð1þ ηÞ2

�
V1V2;

DS1 ¼ −V1 sin 2α1 − V2 sin 2α2;

DS3 ¼ −V1 cos 2α1 − V2 cos 2α2;

DP2 ¼ −
�
1 − η

1þ η

�
sin 2α12V1V2; ð60Þ

with α12 ¼ α1 − α2. Here, D is the common denominator

D¼ 1þV1þV2þ κV1V2; κ¼
�
1−

4ηcos2α12
ð1þηÞ2

�
: ð61Þ

The Vi factors carry the (x, t) dependence,

Vi ¼ e2x
0
i ; x0i ¼

x − x0i − vitffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2i

p : ð62Þ

The vacuum at x → −∞ has been taken to be 1. Orthogonal
matrices U1, U2 appear in intermediate states of the scatter-
ing process, whereasU12 is the vacuum at x → ∞. One finds

Ui ¼ 1 − 2p⃗ip⃗
†
i ¼ −Ið2αiÞ ð63Þ

and

U12 ¼
1

1þ η2 − 2η cos2α12

×

� ð1þ η2Þ cos2α12 − 2η ð1− η2Þ sin2α12
−ð1− η2Þ sin2α12 ð1þ η2Þ cos2α12 − 2η

�
:

ð64Þ
U12 is a rotation matrix, in contrast to the reflection
matrices Ui,

U12 ¼ RðΦÞ; tanΦ ¼ ð1 − η2Þ sin 2α12
ð1þ η2Þ cos 2α12 − 2η

: ð65Þ

The mean field for the kink-antikink collision can be
concisely represented as
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Δ ¼ 1þ V1U1 þ V2U2 þ κV1V2U12

1þ V1 þ V2 þ κV1V2

; ð66Þ

where the four matrices (1; U1; U2; U12) are now orthogo-
nal as opposed to unitary in the U(2) model. The physical
meaning of these matrices is that they represent all possible
vacua if the kinks are well separated in space [14].
Let us pause for a moment and ask ourselves what is the

intrinsic (chiral frame independent) content of expression
(66). Chiral symmetry has already been employed to set the
initial vacuum equal to 1. The only residual O(2) trans-
formations allowed without changing the initial vacuum are

Δ → RðβÞΔRð−βÞ; Δ → IðγÞΔIðγÞ: ð67Þ

If applied to the final vacuum U12, the rotation acts as the
identity, whereas the reflection changes the sign of Φ or,
equivalently, interchanges p⃗1 and p⃗2. In the intermediate
vacua U1, U2, both angles are shifted by the same amount.
This reflects the fact that the only chirally invariant quantity
one can form out of the p⃗i is the scalar product p⃗1p⃗2.
Because of the four components S0, S1, S3, P2, the kink-

kink collision process looks rather complicated. What
happens can be described qualitatively as follows. Let us
assume that kink 1 is incident from the left and kink 2 from
the right. The asymptotic vacua are the rotational vacua 1
(at x → −∞) and RðΦÞ (at x → ∞) throughout the collision
process. In between the kinks, the system is in the reflection
vacuum U1 before the collision and U2 after the collision.
The region where the system is in the reflection vacuum is
always bounded by the position of the two kinks. This is
exactly what one would expect from a collision between
two domain walls, here separating the rotational from the
reflection phases. The difference between the U(2) and the
O(2) chirally symmetric cases is the fact that the intrinsic
twist of the kinks is always maximal in the O(2) model,
similar to the difference between the U(1) (NJL) and O(1)
(GN) models.
Finally, let us remark that one also finds a bound state at

rest by specializing to η1 ¼ η2 ¼ 1. This is similar to the
unitary models, but no such bound state exists in the one-
flavor GN model.

VIII. BARYON AND BREATHER WITH TWISTED
KINK CONSTITUENTS

Here we start from the general two-soliton solution of the
U(2) model [14] and specialize it as follows. We choose
η1 ¼ η2 ¼ 1 (bound state at rest) and a diagonal matrix ω
(no breathers). To get a real mean field Δ, we have to pair
the twist angles to ðθ1 ¼ π − θ2 ¼ θÞ and to choose
ω11 ¼ ω22, as in the GN model. Moreover, it turns out
that we need α1 ¼ α2 ¼ α. Consider the simplest case first,
α ¼ 0. We find

Δ ¼
�

1þ2V cos 2θþV2cos2θ
1þ2VþV2cos2θ 0

0 1

�
; V ¼ e2x sin θ: ð68Þ

This is nothing but the Dashen, Hasslacher, Neveu (DHN)
baryon [18] in the upper component and the vacuum in the
lower component. If θ is close to its maximum value of π=2,
the DHN scalar potential has the form of a well separated
kink-antikink pair. Asymptotically, the vacuum is 1, but
inside the baryon the vacuum −1 is approached. In the
present two-flavor case, the corresponding vacua are 1
(rotation) and τ3 (reflection). A more transparent repre-
sentation of the baryon mean field (68) is

Δðα ¼ 0Þ ¼ ð1 − gÞ − τ3g;

g ¼ 2V sin2 θ
1þ 2V þ V2 cos2 θ

;

SDHN ¼ 1 − 2g: ð69Þ

The function g vanishes asymptotically on both sides, in
contrast to the kinklike function f introduced above for a
single kink. We can now perform a rotation, leaving the
asymptotic vacua unchanged but transforming the central
vacuum into an arbitrary reflection matrix. This yields the
baryon solution for any α,

ΔðαÞ ¼ 1 − g − Ið2αÞg: ð70Þ

The same result would have been obtained by setting α1 ¼
α2 ¼ α rather than 0 from the beginning. The maximum of
g is at

xmax ¼ −
lnðcos θÞ
2 sin θ

; gmax ¼ 1 − cos θ: ð71Þ

Hence, at the center of the baryon,

Δ ¼ cos θ − ð1 − cos θÞIð2αÞ: ð72Þ

If θ ≈ π=2 as appropriate for well separated kink and
antikink, cos θ ≈ 0 and we see that we are in the reflection
phase inside the baryon. Since the unitary transformation
may be viewed as a change of frame, the angle α is
irrelevant for the single baryon. However, it will become
relevant in problems involving more than two kinks. The
single particle spectrum of the O(2) baryon is the same as
that of the DHN baryon in the GN model. There are two
bound states at energy� cos θ and the spectrum is sym-
metric about 0. Also the occupation fractions match those
of the DHN baryon.
To get a breather, we have to repeat the above calculation

with an off-diagonal ω matrix. We choose

ω ¼
�
cosh χ sinh χ

sinh χ cosh χ

�
; detω ¼ 1: ð73Þ
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The results for the breather have the same general form as
for the baryon, except that g acquires a time dependence in
the rest frame,

g¼ 2V sinθ½coshχ sinθ− sinhχ sinð2tcosθþθÞ�
1þ2V½coshχ− sinθsinhχ sinð2tcosθþθÞ�þV2 cos2θ

:

ð74Þ

At χ ¼ 0 one recovers the static baryon, Eq. (69).
So far, we have essentially reproduced the results of

DHN [18] in a new setting. Now we can also look at more
complicated multibaryon and breather problems where new
phenomena are expected. All we have to do is perform the
calculation in the U(2) GNmodel and choose the parameters
such that allmean fields are real. Judging from the experience
with the one flavor GN and NJLmodels, this should bemore
efficient than trying to determine solutions of theO(2) model
directly. Up to now, we have only studied three-kink
scattering and baryon-kink scattering in the O(2) GN model
along these lines. The resulting expressions are too lengthy to
be written down here. We have found no indication that the
method does not work for more complicated many-particle
collisions. To definitely confirm the quantum integrability of
the O(2) model, it would be nice if one could find closed
analytical expressions for the scattering of any number of
bound states, as in the one-flavor GN and NJL models, but
this has to be left for future work.

IX. MASSLESS HADRONS, CHIRAL SPIRAL,
AND PHASE DIAGRAM

In this section, we briefly consider topics that have come
up previously in the NJL model, the SUð2ÞL × SUð2ÞR
isoNJL model, and the Uð2ÞL × Uð2ÞR GN model.
Whenever such a model possesses a “chiral circle” and
massless mesons, the possibility arises to generate both
massless multifermion bound states and “chiral spiral” type
matter phases [15,20]. Whereas the massless mesons are
related to small fluctuations around the vacuum into some
flat direction (Goldstone modes), massless baryons corre-
spond to one full turn around the chiral circle. The axial
anomaly links the winding number to fermion density.
Because of the common charge conjugation symmetry, the
situation of the O(2) chiral GN model is perhaps closest to
the one of the isoNJL model. We refer to Sec. Vof Ref. [21]
for the pertinent discussion in the isoNJL model. Here, only
the condensates ψ̄ψ and ψ̄iγ5τ3ψ had to be used. The
crucial ingredient was the unitary transformation

ψ 0 ¼ Uψ ¼ e−ibxγ5τ3ψ : ð75Þ

If applied to the vacuum HF equation with potential γ0m, it
generates an isospin chemical potential bτ3 from the kinetic
term and changes the mass term into the characteristic
chiral spiral condensate

U†ð−iγ5∂xÞU ¼ −iγ5∂x − bτ3;

U†γ0U ¼ γ0 cos 2bxþ iγ1τ3 sin 2bx: ð76Þ

This construction cannot be used for generating fermion
density and the corresponding chemical potential in the
two-flavor model. Here, the GN model with discrete chiral
symmetry has taught us how to minimize the energy,
namely by generating a real kink-antikink crystal described
by cnoidal functions. Referring to the literature for the
details [22], let us denote the self-consistent scalar potential
by SGNðxÞ, with a temperature and density dependent
shape. If one takes into account both fermionic and isospin
chemical potentials, the HF potential in the isoNJL model
assumes the product form

ΔðxÞ ¼ SGNðxÞe−ibxγ5τ3 : ð77Þ
The axial isospin chemical potential conjugate to the
density ψ†γ5τ3ψ can also be invoked if one is interested
in chirally imbalanced states, but does not affect the mean
field. The phase diagram of the isoNJL model in (μ; μ3; T)
space following from this scenario consists of the GN phase
diagram in the (μ, T) plane translated rigidly into the μ3
direction; see [21].
What does this teach us about the O(2) chiral GN model?

In the above sketched results for the isoNJL model, only the
condensates ψ̄ψ and ψ̄iγ5τ3ψ have played a role. The
choice of the three-direction in isospin is arbitrary and only
used for convenience, since τ3 is diagonal. One could
equally well have used the two-direction. But then we
would be in the same situation as in the O(2) case with a
rotation vacuum and a chiral circle in the (S0, P2) plane.
There is a one-to-one correspondence between SU(2) and
O(2) chiral GN models, as far as these particular aspects are
concerned. Thus we can borrow the results [21] from the
isoNJL model directly and get massless bound states and
the whole phase diagram of the O(2) model almost for free.
What would happen, had we started from the reflection

vacuum in the (S1, S3) plane instead of the rotation
vacuum? Here the transition to the isoNJL model is less
straightforward, but we certainly expect an equivalent
picture. To induce rotation around the vacuum circle in
the (S1, S3) plane now requires the vector transformation

ψ 0 ¼ Uψ ¼ e−ibxτ2ψ ; ð78Þ

without γ5 in the exponent. This yields an axial isovector
chemical potential and a chiral spiral mean field in the (S1,
S3) reflection plane,

U†ð−iγ5∂xÞU ¼ −iγ5∂x − bγ5τ2;

U†γ0τ3U ¼ γ0ðτ3 cos 2bxþ τ1 sin 2bxÞ: ð79Þ
In this case, it is the axial isospin density that induces the
inhomogeneous chiral spiral structure. This change of
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vector into axial chemical potentials is also known from
other dualities [8], so that everything fits nicely together.

X. DUALITY BETWEEN Oð2ÞL ×Oð2ÞR GN MODEL
AND pGN MODEL

We label the fermion fields of the O(2) chiral GN model
(14) as ψ ðiÞ

kl with k the chirality (1 ¼ L; 2 ¼ R), l the flavor
index (1,2), and i the color index (i ¼ 1;…; N). Each Dirac
field can be decomposed into two Majorana fields,

0
BBBBBB@

ψ ðiÞ
11

ψ ðiÞ
12

ψ ðiÞ
21

ψ ðiÞ
22

1
CCCCCCA

¼ 1ffiffiffi
2

p

0
BBBBBB@

χðiÞ1 − iχðNþiÞ
1

χðiÞ3 − iχðNþiÞ
3

χðNþiÞ
2 þ iχðiÞ2

χðNþiÞ
4 þ iχðiÞ4

1
CCCCCCA
: ð80Þ

The labeling of the Majorana spinors has been chosen for
later convenience. Here we only note that the even sub-
scripts belong to right-handed and the odd subscripts to
left-handed Majorana spinors satisfying the anticommuta-
tion relations

fχðiÞn ðxÞ; χðjÞm ðyÞg ¼ δijδnmδðx − yÞ: ð81Þ

The terms in the interaction Lagrangian can be regrouped
as follows,

Lint ¼
g2

4
½ðψ̄ψÞ2 þ ðψ̄τ1ψÞ2 þ ðψ̄τ3ψÞ2 þ ðψ̄iγ5τ2ψÞ2�

¼ g2

8
½ðψ̄ð1þ τ3ÞψÞ2 þ ðψ̄ð1 − τ3ÞψÞ2

þ ðψ̄ðτ1 þ iγ5τ2ÞψÞ2 þ ðψ̄ðτ1 − iγ5τ2ÞψÞ2�: ð82Þ

The motivation for the last line can be seen once we express
everything in terms of Majorana spinors,

XN
i¼1

ψ̄ ðiÞð1þ τ3Þψ ðiÞ ¼ 2i
XN
i¼1

ðχðiÞ1 χðiÞ2 þ χðNþiÞ
1 χðNþiÞ

2 Þ

¼ 2i
X2N
i¼1

ðχðiÞ1 χðiÞ2 Þ; ð83Þ

and similarly

XN
i¼1

ψ̄ ðiÞð1 − τ3Þψ ðiÞ ¼ 2i
X2N
i¼1

ðχðiÞ3 χðiÞ4 Þ;

XN
i¼1

ψ̄ ðiÞðτ1 þ iγ5τ2Þψ ðiÞ ¼ 2i
X2N
i¼1

ðχðiÞ1 χðiÞ4 Þ;

XN
i¼1

ψ̄ ðiÞðτ1 − iγ5τ2Þψ ðiÞ ¼ 2i
X2N
i¼1

ðχðiÞ3 χðiÞ2 Þ: ð84Þ

The Lagrangian of the O(2) chiral GN model is thus
turned into

LOð2Þ ¼−iχ1∂χ1− iχ3∂χ3þ iχ2∂χ2þ iχ4∂χ4

−
g2

2
½ðχ1χ2Þ2þðχ3χ4Þ2þðχ1χ4Þ2þðχ3χ2Þ2�; ð85Þ

with an implicit summation over 2N colors (N Dirac fields
are equivalent to 2N Majorana fields). In contrast to the
original form in Eq. (82), expression (85) is manifestly
invariant under Oð2ÞL × Oð2ÞR since the vector with
components (χ1, χ3) transforms under Oð2ÞL, and the
vector with components (χ2, χ4) under Oð2ÞR.
Consider now the pGN model, Eq. (7), obtained by

“self-dualizing” the NJL model. As pointed out in the
Introduction, the Lagrangian coincides with that of the
classical ZM model originally written in the form (4).
Introducing Majorana spinors

�
ψ ðiÞ
1

ψ ðiÞ
2

�
¼ 1ffiffiffi

2
p

�
χðiÞ1 − iχðiÞ3

χðiÞ4 þ iχðiÞ2

�
ði ¼ 1;…; NÞ; ð86Þ

it has already been shown in Ref. [9] that the Lagrangian
becomes

LpGN¼−iχ1∂χ1− iχ3∂χ3þ iχ2∂χ2þ iχ4∂χ4

−g2½ðχ1χ2Þ2þðχ3χ4Þ2þðχ1χ4Þ2þðχ3χ2Þ2�: ð87Þ

Remarkably, this expression agrees with (85). The coupling
constants differ by a factor of 2, but this is compensated by
the number of colors,N in (87) instead of 2N in (85). Hence
the Oð2ÞL × Oð2ÞR symmetric two-flavor GNmodel withN
colors is dual to the one-flavor pGN model with 2N colors.
Since we have derived the O(2) symmetric model from the
U(2)NJLmodelwhich has alreadybeen solved in the largeN
limit, we can now easily infer the solution of the dual model,
not yet available in [9]. The solution of many aspects of the
O(2) GN model has already been discussed in the preceding
sections. All we have to do is to reinterpret everything in the
dual language. This is the topic of the following section.
By eliminating the Majorana spinors from (80) and (86),

we can express the Dirac fields of the O(2) GN model
through Dirac fields of the pGN model or vice versa,

0
BBBBBB@

ψ ðiÞ
11

ψ ðiÞ
12

ψ ðiÞ
21

ψ ðiÞ
22

1
CCCCCCA

¼ 1

2

0
BBBBBB@

ψ ðiÞ
1 þψ ðiÞ�

1 − iψ ðNþiÞ
1 − iψ ðNþiÞ�

1

ψ ðNþiÞ
1 − ψ ðNþiÞ�

1 þ iψ ðiÞ
1 − iψ ðiÞ�

1

ψ ðiÞ
2 − ψ ðiÞ�

2 − iψ ðNþiÞ
2 þ iψ ðNþiÞ�

2

ψ ðNþiÞ
2 þψ ðNþiÞ�

2 þ iψ ðiÞ
2 þ iψ ðiÞ�

2

1
CCCCCCA
: ð88Þ

As one can easily check, this is a Bogoliubov trans-
formation at the level of Dirac spinors. It would have been
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difficult to find this transformation without introducing
Majorana spinors at an intermediate step, but we can now
discuss both sides of the duality in the more familiar Dirac
language. In particular, using (88), we can express the
relevant bilinears of the two-flavor model through bilinears
of the one-flavor model as follows:

ψ̄ ðiÞψ ðiÞ ¼ ψ ðiÞ�
1 ψ ðiÞ

2 þ ψ ðiÞ�
2 ψ ðiÞ

1 þ ψ ðNþiÞ�
1 ψ ðNþiÞ

2

þ ψ ðNþiÞ�
2 ψ ðNþiÞ

1 ;

ψ̄ ðiÞτ1ψ ðiÞ ¼ i
�
ψ ðiÞ�
1 ψ ðiÞ�

2 − ψ ðiÞ
2 ψ ðiÞ

1 þ ψ ðNþiÞ�
1 ψ ðNþiÞ�

2

− ψ ðNþiÞ
2 ψ ðNþiÞ

1

�
;

ψ̄ ðiÞτ3ψ ðiÞ ¼ ψ ðiÞ
1 ψ ðiÞ

2 þ ψ ðiÞ�
2 ψ ðiÞ�

1 þ ψ ðNþiÞ
1 ψ ðNþiÞ

2

þ ψ ðNþiÞ�
2 ψ ðNþiÞ�

1 ;

ψ̄ ðiÞiγ5τ2ψ ðiÞ ¼ i
�
ψ ðiÞ�
1 ψ ðiÞ

2 − ψ ðiÞ�
2 ψ ðiÞ

1 þ ψ ðNþiÞ�
1 ψ ðNþiÞ

2

− ψ ðNþiÞ�
2 ψ ðNþiÞ

1

�
: ð89Þ

The left-hand side refers to the O(2) GN model, the right-
hand side to the pGN model, and the equations hold for
each color index i ¼ 1;…; N. The first line shows that the
scalar condensate has the same meaning on both sides of
the duality. The iγ5τ2 condensate of the O(2) model
corresponds to the pseudoscalar condensate of the pGN
model. The τ3 and τ1 condensates of the O(2) model go
over into the two kinds of Cooper pair condensates.
Important bilinear observables not present in the O(2)

Lagrangian are the isospin vector and axial vector densities
(only the τ2 components belong to a conserved current),

ψ ðiÞ†τ2ψ ðiÞ ¼ ψ ðiÞ�
1 ψ ðiÞ

1 þ ψ ðiÞ�
2 ψ ðiÞ

2 þ ψ ðNþiÞ�
1 ψ ðNþiÞ

1

þ ψ ðNþiÞ�
2 ψ ðNþiÞ

2 ;

ψ ðiÞ†γ5τ2ψ ðiÞ ¼ −ψ ðiÞ�
1 ψ ðiÞ

1 þ ψ ðiÞ�
2 ψ ðiÞ

2 − ψ ðNþiÞ�
1 ψ ðNþiÞ

1

þ ψ ðNþiÞ�
2 ψ ðNþiÞ

2 : ð90Þ

Thus the τ2 isospin density corresponds to the fermion
density ψ†ψ of the pGN model, ands the γ5τ2 axial isospin
density to the fermion axial density ψ†γ5ψ.
Note that all observables discussed so far are color

singlets on both sides of the duality. It is interesting to
understand what happens to the U(1) vector symmetry and
fermion density of the O(2) model upon dualization. If we

translate the U(1) transformation ψ ðiÞ
kl → eiαψ ðiÞ

kl into the
dual language, we find that it reduces to the following
orthogonal, color dependent transformation

�
ψ ðiÞ
1

ψ ðNþiÞ
1

�
→

�
cos α sin α

− sin α cos α

��
ψ ðiÞ
1

ψ ðNþiÞ
1

�
;

�
ψ ðiÞ
2

ψ ðNþiÞ
2

�
→

�
cos α sin α

− sin α cos α

��
ψ ðiÞ
2

ψ ðNþiÞ
2

�
: ð91Þ

This is a subgroup of the original Oð2NÞ symmetry of the
pGN model with 2N colors. Consequently, the conserved
current in the dual pGN model is not a color singlet, but has
the form

ρR → i
XN
i¼1

ðψ ðNþiÞ�
2 ψ ðiÞ

2 − ψ ðiÞ�
2 ψ ðNþiÞ

2 Þ;

ρL → i
XN
i¼1

ðψ ðNþiÞ�
1 ψ ðiÞ

1 − ψ ðiÞ�
1 ψ ðNþiÞ

1 Þ;

ρ ¼ ρR þ ρL; j ¼ ρ5 ¼ ρR − ρL: ð92Þ

Since we are not dealing with a gauge theory and color
confinement, we see nothing wrong with this color
dependence.
Finally, let us look at yet another self-dual model that has

been discussed in Ref. [9]. By self-dualizing the GN model
with discrete chiral symmetry rather than the NJL model,
one gets the Lagrangian of the self-dual GN (sdGN) model

LsdGN ¼ −2iψ ðiÞ�
1 ∂ψ ðiÞ

1 þ 2iψ ðiÞ�
2 ∂ψ ðiÞ

2

þ g2

2
½ðψ ðiÞ�

1 ψ ðiÞ
2 þ ψ ðiÞ�

2 ψ ðiÞ
1 Þ2

þ ðψ ðiÞ�
1 ψ ðiÞ�

2 þ ψ ðiÞ
2 ψ ðiÞ

1 Þ2�: ð93Þ

In [9] it came as a surprise that this is again equivalent to
two independent GN models. If we apply the strategy
developed in the present section to the sdGN model and
first translate it into Majorana spinors using (86), we find

LsdGN ¼ −iχ1∂χ1 − iχ3∂χ3 þ iχ2∂χ2 þ iχ4∂χ4

− g2½ðχ1χ2Þ2 þ ðχ3χ4Þ2�: ð94Þ

Upon using the “dictionary” (83) and (84), this is equiv-
alent to a U(2) model where only two out of the eight
original interaction terms are kept,

L ¼ ψ̄i∂ψ þ g2

4
½ðψ̄ψÞ2 þ ðψ̄τ3ψÞ2�: ð95Þ

Since the two isospin channels decouple, the fact that one
gets two independent GN models is now trivial. This shows
once more the advantage of using Majorana spinors as an
intermediate step for discovering or elucidating dualities.
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XI. SUMMARY: AN INTEGRABLE MODEL
WITH CHIRAL SYMMETRY BREAKING

AND COOPER PAIRING

There has been quite some interest in four-fermion
theories featuring a competition between particle-hole
pairing and Cooper pairing [23–28], triggered partly by
predictions of color superconductivity in quantum chromo-
dynamics [29]. These works are dealing mostly with the
phase diagrams of the models considered. As we have
shown in the present paper, the pGN model is an example
where the coexistence of chiral symmetry breaking (CSB)
and Cooper pairing arises in a highly symmetric fashion.
As a consequence, the resulting model is integrable and can
be solved as completely as the GN or NJL models. This
confirms our earlier speculation [9] and extends the range
of integrable field theory models in 1þ 1 dimensions into
an interesting direction. Crucial for the new insights was a
mapping between a Oð2ÞL × Oð2ÞR symmetric GN model,
which had to be constructed for this purpose, and the pGN
model, as summarized in Table II. The pGN model has
been obtained by “self-dualizing” the one-flavor NJL
model with respect to the transformation (6),

ψ ¼
�
ψ1

ψ2

�
→ ψd ¼

�
ψ†
1

ψ2

�
: ð96Þ

Table II shows the correspondence between the conden-
sates of the two equivalent models. Since the solution of the
O(2) chiral GN model could be derived with the machinery
developed for the U(2) chiral GN model, one can take over
all the results collected above and reinterpret them in terms
of the physics of relativistic superconductors. Recall that
the Dirac fields and Majorana spinors have N color
components in the O(2) model but 2N color components
in the pGN model. The labeling of the Majorana spinor
indices in Eqs. (80) and (86) has been chosen with
hindsight, so that the expressions in the last column of
Table II are identical in both models. Likewise, the
Lagrangians are indistinguishable if expressed in terms
of Majorana spinors; see Eqs. (85) and (87).
Let us briefly review the results of the large N O(2)

model in the light of the pGN model.

(i) Lagrangian: The Lagrangians can be cast into a form
that emphasizes the correspondence, using Table II
and the definition (96),

LOð2Þ ¼ ψ̄i∂ψ þ g2

4
½ðψ̄ψÞ2 þ ðψ̄iγ5τ2ψÞ2

þ ðψ̄τ3ψÞ2 þ ðψ̄τ1ψÞ2�;

LpGN ¼ ψ̄i∂ψ þ g2

4
½ðψ̄ψÞ2 þ ðψ̄iγ5ψÞ2

þ ðψ̄dψdÞ2 þ ðψ̄diγ5ψdÞ2�: ð97Þ
The Oð2ÞL × Oð2ÞR chiral symmetry of the first
model matches the Pauli-Gürsey symmetry of the
second one.

(ii) Vacuum: The O(2) model has two possible vacuum
circles referred to as rotation and reflection vacua
above. In the pGNmodel, this corresponds to the CSB
vacuum (condensates ψ̄ψ ; ψ̄iγ5ψ) or the Cooper
paired vacuum (condensates ψ̄dψd; ψ̄diγ5ψd). The
two connected components of the O(2) group are
exactly what it takes to describe these two distinct
possibilities. The pGN model gives a more physical
picture of what it means to break chiral symmetry
spontaneously if the symmetry group is continuous,
but not connected.

(iii) Kink: The kink becomes a domain wall between
superconducting and normal phase. There is no kink
inside a single phase. One can study dynamical
problems such as scattering of any number of such
domain walls in closed analytical form, describing
time dependent configurations of CSB and Cooper
pairing domains.

(iv) DHN-type baryon: This bound state of two twisted
kinks in the O(2) model is nothing but a configuration
where one phase is separated from the other phase by
two walls. If the exterior phase is chosen as a Cooper
paired phase, then the interior phase is normal and we
get a relativistic toy model for a Josephson junction.
Dynamical problems including several such objects as
well as single domain walls can be solved, as well as
the interaction of fermions or Cooper pairs with
domain walls. Breathers can be interpreted as excited,
periodically oscillating Josephson junctions.

(v) Massless many-fermion states and phase diagram:
In the pGNmodel, fermion density can be generated
by a local chiral transformation, such as in the NJL
model. This makes the chiral spiral configuration
optimal for fermionic matter, in the normal phase. In
the Cooper pairing phase, the same mathematics
would give rise to an inhomogeneous Larkin-
Ovchinnikov-Fulde-Ferrell (LOFF) phase of the
superconductor [30,31]. The two are just two ways
of interpreting the same physics in the pGN model.
The phase diagram with vector and axial vector
fermion chemical potentials of the pGN model can

TABLE II. Correspondence between bilinears in the two dual
models. The Majorana notation is common to both, but the
summation is over N colors [O(2) model] and 2N colors (pGN
model), respectively.

Condensate Oð2ÞL × Oð2ÞR pGN Majorana spinors

S0 ψ̄ψ ψ̄ψ iðχ1χ2 þ χ3χ4Þ
P2 ψ̄iγ5τ2ψ ψ̄ iγ5ψ iðχ1χ4 þ χ2χ3Þ
S3 ψ̄τ3ψ ψ̄dψd iðχ1χ2 − χ3χ4Þ
S1 ψ̄τ1ψ ψ̄diγ5ψd iðχ1χ4 − χ2χ3Þ
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be taken over from the NJL model. Fermion density
of the O(2) model becomes a color dependent
density (92). If one introduces the conjugated
chemical potential, the kink crystal of the GN
model must come into the picture and color
Oð2NÞ breaks down to OðNÞ.

While it is easy to write down four-fermion models with
both pp- and ph-pairing, it is not easy to find integrable

ones. The only one that had been found so far is the sdGN
model [9]. Since this has turned out to be a trivial double
copy of the standard GN model, it gives few new insights.
All other integrable models known so far had either CSB or
Cooper pairing, but not both. In this sense, the quantum ZM
or pGN model is a novel and potentially useful member of
the family of exactly solvable field theoretic models which
deserves further studies.
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