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Oscillons are localized long-lived pulsating states in the three-dimensional ϕ4 theory. We gain insight
into the spatiotemporal structure and bifurcation of the oscillons by studying time-periodic solutions in a
ball of a finite radius. A sequence of weakly localized Bessel waves—nonlinear standing waves with the
Bessel-like r-dependence—is shown to extend from eigenfunctions of the linearized operator. The lowest-
frequency Bessel wave serves as a starting point of a branch of periodic solutions with exponentially
localized cores and small-amplitude tails decaying slowly toward the surface of the ball. A numerical
continuation of this branch gives rise to the energy-frequency diagram featuring a series of resonant spikes.
We show that the standing waves associated with the resonances are born in the period-multiplication
bifurcations of the Bessel waves with higher frequencies. The energy-frequency diagram for a sufficiently
large ball displays sizeable intervals of stability against spherically symmetric perturbations.

DOI: 10.1103/PhysRevD.107.076023

I. INTRODUCTION

Repeated expansions and contractions of spherically
symmetric vacuum domains were observed [1,2] in com-
puter simulations of the ϕ4 equation,

Φtt − ΔΦ −ΦþΦ3 ¼ 0: ð1Þ

More accurate numerical studies [3] revealed the formation
of long-lived pulsating structures of large amplitude and
nearly unchanging width.
These structures—dubbed oscillons in Ref. [4]—have

turned out to be of interest in several cosmological contexts,
including the dynamics of inflationary reheating, sym-
metry-breaking phase transitions, and false vacuum decay
[5–22]. Oscillons have been discovered in the planar
Abelian Higgs theory [23,24], Einstein-Klein-Gordon
equations [25–30], axion models [31–35], string phenom-
enology [36–38] and bosonic sector of the standard model
[39–42]. The oscillon’s quantum radiation was evaluated
in [43,44] and the impact of fermionic corrections was
considered in [45]. Oscillatory localized structures (known
as I-balls in that context) feature prominently in studies of

the adiabatic invariant in theories without electric or
topological charge [46–49].
Considerable progress in the understanding of the oscillon

properties was achieved through the state-of-the-art com-
puter simulations [4,5,50,51] and numerical Fourier analysis
[50,52]. Most importantly, the authors of Ref [52] demon-
strated the existence of periodic solutions with frequencies
filling the entire ð0;ω0Þ interval. (Hereω0 is the frequency of
spatially uniform small-amplitude oscillations about the
vacuum.) The solutions in question have exponentially
localized cores and oscillatory tails, with the tail amplitudes
decaying in proportion to r−1. The authors of Ref. [52] have
interpreted the evolution of oscillons as an adiabatic motion
in the parameter space of those “quasibreathers.”
At the same time, theoretical arguments produced

estimates for the oscillon’s energy, radius, frequency, core
amplitude, and lifetime [53,54]. These were based on a
heuristic combination of linear radiation analysis and a
single-mode variational model [5,53–55]. A refined per-
turbation expansion of the small-amplitude oscillons [56] is
also worthwhile to be mentioned.
The aim of the present study is to shed further light on

the structure and resonant properties of the oscillon by
examining periodic standing waves in a ball of a large but
finite radius.
To make it more precise, let Φðr; tÞ be a spherically

symmetric solution of equation (1) approaching Φ0 ¼ −1
(one of two vacuum solutions) as r → ∞. The difference

ϕ ¼ Φ −Φ0
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obeys

ϕtt − ϕrr −
2

r
ϕr þ 2ϕ − 3ϕ2 þ ϕ3 ¼ 0: ð2aÞ

Instead of searching for solutions of the equation (2a)
vanishing at infinity, we consider solutions satisfying the
boundary conditions

ϕrð0; tÞ ¼ ϕðR; tÞ ¼ 0 ð2bÞ

with a large R. One more boundary condition stems from
the requirement of periodicity with some T:

ϕðr; TÞ ¼ ϕðr; 0Þ: ð2cÞ

The periodic standing waves are characterized by their
energy

E ¼ 4π

Z
R

0

�
ϕ2
t

2
þ ϕ2

r

2
þ ϕ2 − ϕ3 þ ϕ4

4

�
r2dr ð3Þ

and frequency

ω ¼ 2π

T
: ð4Þ

If the solution with frequency ω does not change appreci-
ably as R is increased—in particular, if the energy (3) does
not change—this standing wave provides a fairly accurate
approximation for the periodic solution in an infinite space.
In what follows, we present results of numerical and

asymptotic analysis of the boundary-value problem (2).
Numerically, we employed a predictor-corrector algorithm
with a Newtonian iteration to continue solutions in ω [57].
To classify the stability of the resulting standing waves
against spherically symmetric perturbations we considered
the linearized equation

ytt − yrr −
2

r
yr − yþ 3ðϕ − 1Þ2y ¼ 0 ð5Þ

with the boundary conditions yrð0; tÞ ¼ yðR; tÞ ¼ 0. The
solution ϕðr; tÞ is deemed stable if all its Floquet multi-
pliers lie on the unit circle jζj ¼ 1 and unstable if there are
multipliers outside the circle [58,59]. The monotonically
growing instability is associated with a pair of real multi-
pliers, ζ and 1=ζ; the oscillatory instability is characterized
by a complex quadruplet: ζ; 1=ζ; ζ�; 1=ζ�.
The paper is organized into five sections. In the next

section we establish the existence of a sequence of standing
waves with n − 1 nodes (n ¼ 1; 2;…) and no clearly
defined core. These Bessel-like patterns are nonlinear
descendants of linear standing waves in the ball. The
subsequent asymptotic analysis (Sec. III) focuses on the
evolution of the n ¼ 1 Bessel wave as its frequency is

decreased to below the frequency of the spatially uniform
oscillations. Further frequency reduction is carried out
using numerical continuation; the resulting resonant
energy-frequency diagram is presented in Sec. IV. We
consider the spatiotemporal structure of the resonant
solutions and demonstrate that they are born in the
period-doubling bifurcations of the n > 0 Bessel waves.
Stability of the standing waves is classified in the same
section. Finally, Sec. V summarizes results of this study.

II. BIRTH OF THE BESSEL WAVE

We start our analysis by considering the emergence of a
standing wave from the zero solution of Eq. (2a). The
small-amplitude standing wave can be constructed as a
power series

ϕ ¼ ϵϕ1 þ ϵ2ϕ2 þ ϵ3ϕ3 þ � � � ; ð6Þ

where the coefficients ϕn are functions of x and a hierarchy
of timescales T 0 ¼ t; T 1 ¼ ϵt; T 2 ¼ ϵ2t;… In the limit
ϵ → 0 the timescales become independent; hence

∂
2

∂t2
¼ ∂

2

∂T 2
0

þ 2ϵ
∂

∂T 0

∂

∂T 1

þ ϵ2
�

∂
2

∂T 2
1

þ 2
∂

∂T 0

∂

∂T 2

�
þ � � �

Substituting the above expansions in (2a) we set to zero
coefficients of like powers of ϵ.
The solution to the order-ϵ equation, satisfying the

boundary conditions ∂rϕ1ð0; tÞ ¼ ϕ1ðR; tÞ ¼ 0, is

ϕ1 ¼ ðAeiΩðnÞT 0 þ c:c:ÞfðnÞ1 ðrÞ; ð7Þ

where

ΩðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0 þ ðkðnÞÞ2

q
; ω0 ¼

ffiffiffi
2

p
; ð8Þ

fðnÞ1 ¼ sinðkðnÞrÞ
r

; kðnÞ ¼ π

R
n; ð9Þ

n ¼ 1; 2;…, and c.c. stands for the complex conjugate of
the immediately preceding term. The amplitude A is slowly
changing in time: A ¼ AðT 1; T 2;…Þ. Since the localized
mode (9) has the form of the spherical Bessel function, we
will be referring to solutions branching off the zero solution
at ω ¼ ΩðnÞ as “Bessel waves.”
In Eq. (8), ω0 demarcates the endpoint of the continuous

spectrum of frequencies in the ball of an infinite radius.
This endpoint defines a natural frequency scale that will
regularly occur in the following analysis.
The order-ϵ2 solution, satisfying ∂rϕ2ð0;tÞ¼ϕ2ðR;tÞ¼0,

is given by

ϕ2 ¼ ð3A2e2iΩ
ðnÞT 0 þ c:c:ÞfðnÞ2 ðrÞ þ 6jAj2gðnÞ2 ðrÞ; ð10Þ
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where

fðnÞ2 ¼ 1

κðnÞr

�
pðnÞðrÞ − sinðκðnÞrÞ

sinðκðnÞRÞp
ðnÞðRÞ

�
;

gðnÞ2 ¼ 1ffiffiffi
2

p
r

�
qðnÞðrÞ − sinhð ffiffiffi

2
p

rÞ
sinhð ffiffiffi

2
p

RÞ q
ðnÞðRÞ

�
;

pðnÞðrÞ ¼
Z

r

0

sin½κðnÞðr0 − rÞ� sin
2ðkðnÞr0Þ
r0

dr0;

qðnÞðrÞ ¼
Z

r

0

sinh½
ffiffiffi
2

p
ðr0 − rÞ� sin

2ðkðnÞr0Þ
r0

dr0 ð11Þ

and

κðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6þ 4ðkðnÞÞ2

q
:

The solution (10) exists provided the amplitude satisfies the
nonsecularity constraint ∂A=∂T 1 ¼ 0. We are also assum-
ing that κðnÞ ≠ kðmÞ, m ¼ 1; 2;….
Finally, the order ϵ3 gives an equation for ϕ3:

�
∂
2

∂T 2
0

−∇2 þ 2

�
ϕ3 ¼ −2

∂
2ϕ1

∂T 0∂T 2

þ 6ϕ1ϕ2 − ϕ3
1: ð12Þ

The solvability condition is

iΩðnÞR
∂A
∂T 2

þ 3σðnÞjAj2A ¼ 0; ð13Þ

where

σðnÞ ¼
Z

R

0

½ðfðnÞ1 Þ2 − 12gðnÞ2 − 6fðnÞ2 �ðfðnÞ1 rÞ2dr; ð14Þ

and we have used ∂A=∂T 1 ¼ 0.
The values of the integral (14) with varied n are

presented graphically in Fig. 1. The quantity σðnÞ is
determined to be negative for all n ≤ ns and positive for
n > ns, where ns is an integer dependent on R. When R is
large enough, a fairly accurate approximation for nsðRÞ is
given by the integer part of ð ffiffiffiffiffi

30
p

=πÞR.
The general solution of the amplitude equation (13) is

A ¼ exp

�
i
3σðnÞ

ΩðnÞR
T 2

�
; ð15Þ

where the initial value was set equal to 1. (There is no loss
of generality in setting Að0Þ to 1 as it enters ϕn only in
combination ϵAð0Þ, where ϵ is free to vary.) Thus, the
fundamental frequency of the Bessel wave with amplitude
ϵ, branching off the trivial solution ϕ ¼ 0 at the point
ω ¼ ΩðnÞ, is

ω ¼ ΩðnÞ þ 3σðnÞ

ΩðnÞR
ϵ2 þ � � � : ð16Þ

Note that the nonlinear frequency shift is negative
(ω < ΩðnÞ) for all n ≤ ns and positive for n > ns.
The relation (16) implies that our ϵ-expansion is, in fact,

an expansion in powers of the detuning from the resonant
frequency, jω −ΩðnÞj.
The energy (3) of the series solution (6) is

EðnÞðϵÞ ¼ 4πRðΩðnÞÞ2ϵ2 þOðϵ4Þ: ð17Þ

Eliminating ϵ2 between (16) and (17) we can express the
energy of the Bessel wave as a function of its frequency:

EðnÞðωÞ¼ 4πR2ðΩðnÞÞ3
3σðnÞ

ðω−ΩðnÞÞþOððω−ΩðnÞÞ2Þ: ð18Þ
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FIG. 1. (a) The integral (14) for R ¼ 40 and R ¼ 100. The
function σðnÞ is negative for all n ≤ nsðRÞ and positive for
n > nsðRÞ. (b) The integer ns (marked by circles) for a sequence
of R values. For R ≥ 2, the function nsðRÞ is well approximated
by ns ¼ ð ffiffiffiffiffi

30
p

=πÞR (shown by the straight line). The inset blows
up the interval 2 ≤ R < 10.
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This is an equation of a ray emanating from the point
ðΩðnÞ; 0Þ on the ðω; EÞ, E > 0, half-plane. The slope of
the ray is negative for all n ≤ nsðRÞ and positive for
n > nsðRÞ.
All solutions of equation (13) are stable. (Trajectories

form concentric circles on the ðReA; ImAÞ phase plane.)
The asymptotic construction of the Bessel wave is

corroborated by the numerical analysis of the boundary-
value problem (2). A numerically continued branch starting
with the trivial solution ϕ ¼ 0 at ω ¼ ΩðnÞ consists of
standing waves with n − 1 nodes inside the interval ð0; RÞ.
An important feature of these solutions is their weak
localization. Even when the energy of the Bessel wave
is high—that is, even when the solution is far from its linear
limit (9)—the wave does not have an exponentially
localized core and the amplitude of the damped sinusoid
ϕðr; tÞ remains of order R−1 as r approachesR. (See Fig. 2.)
Consistently with the asymptotic considerations, the

numerically continued Bessel waves are stable near their
inception points and only lose stability as their energies
become high enough. (For details of the corresponding
period-doubling bifurcation see Sec. IVA.)
The continuation starting at the lowest of the resonance

values, ω ¼ Ωð1Þ, produces a stable branch with a steep
negative slope (Fig. 3). The steep growth of the energy is
due to the small absolute value of σð1Þ in (18) while the
negativity of dEð1Þ=dω is due to nsð100Þ being greater than
1. As the solution is continued to lower values of ω, the
function EðωÞ reaches a maximum and starts decreasing.
Not unexpectedly, the asymptotic expansion in powers of
the small detuning jω −Ωð1Þj does not capture the for-
mation of the energy peak.

Before turning to an asymptotic expansion about a
different frequency value, we make a remark on the
nomenclature of numerical solutions. Assume that the
computation interval ð0; TÞ includes an integer number
of fundamental periods of a solution of the boundary-value
problem (2): T ¼ mTf , m > 1. Equation (4) gives then a
formal frequency ω ¼ ωf=m, where ωf ¼ 2π=Tf is the
fundamental frequency of the wave. In this case the
periodic solution ϕðr; tÞ will be referred to as the 1=m
undertone of the standing wave.
It is important to emphasize that the only difference

between a standing wave and its undertone is the length of
the interval ð0; TÞ that we use to determine the respective
solution—and hence its formal frequency (4). For example,
the nth Bessel wave is born with the frequency ω ¼ ΩðnÞ

while its 1=2 undertone is born with ω ¼ ΩðnÞ=2. Basically,
the 1=2 undertone of the periodic oscillation ϕðr; tÞ is the
oscillation itself, where we skip every other beat.

III. SMALL-AMPLITUDE WAVE IN
A LARGE BALL

A. Inverse radius as a small parameter

In order to account for the energy peak in Fig. 3 and track
the EðωÞ curve over the point of maximum analytically, we
need an asymptotic expansion of a different kind. Instead of
assuming the proximity to the resonant frequency ω ¼ Ωð1Þ,
we will zoom in on the neighborhood of the frequency ω0

corresponding to the uniform oscillations in an infinitely
large ball. Our approach is a relative of the Lindstedt-
Poincare method utilized in the context of the infinite space

FIG. 2. A snapshot of the Bessel wave with high energy. This
solution was obtained by the numerical continuation of the trivial
solution from ω ¼ Ωð114Þ, in a ball with R ¼ 150. (For the entire
Bessel branch see Fig. 7.) The wave is depicted by a solid line
while its dashed envelope highlights the absence of a well-
defined core. Note that only a portion of the (0, 150) interval is
shown.

0.997 0.998 0.999 1 1.001

/
0

0

100

200

300

E

(1)
/

0

numerical solution

asymptotic approximation

FIG. 3. The EðωÞ dependence near the point of inception of the
standing wave in a ball with R ¼ 100. Blue (thick) curve: result
of numerical continuation. Brown (thin) curve: asymptotic
approximation exploiting R−1 as a small parameter. Stable
solutions are marked by the solid and unstable ones by the
dashed lines.
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in Ref. [60,61] and elucidated in [56]. (The method was
pioneered in the one-dimensional setting [62,63].)
We construct the small-amplitude solution in a ball of

a large—yet finite—radius. Instead of the techniques used
in [56,60–63], we employ a multiple scale expansion. This
approach affords information on the spectrum of small
perturbations of the standing wave, in addition to the
standing wave itself.
The inverse radius ϵ ¼ R−1 provides a natural small

parameter. We expand ϕ as in (6), introduce the sequence of
slow times T n and, in addition, define a hierarchy of spatial
scales Xn ¼ ϵnx. Hence

∇ ¼ ∇0 þ ϵ∇1 þ ϵ2∇2 þ � � � ; ∇n ¼
∂

∂Xn
:

These expansions are substituted in the Eq. (2a) where, for
ease of computation, we drop the requirement of spherical
symmetry:

ϕtt −∇2ϕþ 2ϕ − 3ϕ2 þ ϕ3 ¼ 0: ð19Þ

At the order ϵ1, we choose a spatially homogeneous
solution

ϕ1 ¼ Aeiω0T 0 þ c:c: ð20Þ

In (20), the amplitude A does not depend on X0 or T 0

but may depend on the “slower” variables X1;X2;…
and T 1; T 2;….
The order ϵ2 gives

ϕ2 ¼ 3jAj2 − 1

2
A2e2iω0T 0 þ c:c:; ð21Þ

and we had to impose the constraint ∂A=∂T 1 ¼ 0.
Proceeding to the cubic order in ϵ we obtain

�
∂
2

∂T 2
0

−∇2
0 þ 2

�
ϕ3

¼ −4A3e3iω0T 0 þ c:c:

þ
�
∇2

1A − 2iω0

∂A
∂T 2

þ 12jAj2A
�
eiω0T 0 þ c:c: ð22Þ

Setting to zero the secular term in the third line of (22), we
arrive at the amplitude equation

−2iω0

∂A
∂T 2

þ∇2
1Aþ 12jAj2A ¼ 0: ð23aÞ

The boundary condition ϕðR; tÞ ¼ 0 translates into

AðX1; T 2ÞjjX1j¼1 ¼ 0: ð23bÞ

B. Schrödinger equation in a finite ball

A family of spherically symmetric solutions of (23) is
given by

A ¼ eiω2T 2Rμðr1Þ; ð24Þ

where r1 ¼
ffiffiffiffiffiffi
X2

1

p
and RμðρÞ solves the boundary-value

problem

R00 þ 2

ρ
R0 þ μRþ 12R3 ¼ 0; ð25aÞ

R0ð0Þ ¼ Rð1Þ ¼ 0; ð25bÞ

with μ ¼ 2ω0ω2. (In (25), the prime stands for the
derivative with respect to ρ.) In what follows we confine
our attention to the nodeless (everywhere positive) solution
RμðρÞ (Fig. 4). Of particular importance will be its norm
squared,

NðμÞ ¼
Z

1

0

R2
μðρÞρ2dρ: ð26Þ

The nodeless solution RμðρÞ exists for all μ with
−∞ < μ < π2. As μ → π2, a perturbation argument gives

RμðρÞ ¼ α
ffiffiffiffiffiffiffiffiffiffiffiffiffi
π2 − μ

q
sinðπρÞ

ρ
þOððπ2 − μÞ32Þ; ð27aÞ

α2 ¼ 1

12π

1

2Sið2πÞ − Sið4πÞ ¼ 1.973 × 10−2; ð27bÞ

FIG. 4. RμðρÞ: the nodeless solution of the boundary-value
problem (25). As μ changes from negative to positive values, the
exponentially localized solution gives way to a function without a
clearly defined core.
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so that the norm decays to zero:

NðμÞ ¼ α2

2
ðπ2 − μÞ þOððπ2 − μÞ2Þ:

As μ → −∞, we have

RμðρÞ →
ffiffiffiffiffiffi
−μ

p
Sð ffiffiffiffiffiffi

−μ
p

ρÞ; ð28Þ

where SðρÞ is the nodeless solution of the boundary value
problem

S00 þ 2

ρ
S0 − Sþ 12S3 ¼ 0; ð29aÞ

S0ð0Þ ¼ Sð∞Þ ¼ 0: ð29bÞ

Accordingly, the norm (26) decays to zero in the latter limit
as well:

NðμÞ → 1ffiffiffiffiffiffi−μp
Z

∞

0

S2ðρÞρ2dρ as μ → −∞:

The numerical analysis of the problem (25) verifies that
NðμÞ has a single maximum, at μc ¼ −0.225.
Thus we have constructed an asymptotic standing-wave

solution of equation (2), parametrized by its frequency ω:

ϕ ¼ 2

R
cosðωtÞRμ

�
r
R

�
þOðR−2Þ; ð30aÞ

where

μ ¼ 2ω0R2ðω − ω0Þ: ð30bÞ

Substituting (30a) in (3) we obtain the corresponding
energy:

EðωÞ ¼ 16πRNðμÞ þOðR−1Þ: ð31Þ

The dependence (31) is shown by the thin line in Fig. 3.
Unlike the expansion in powers of the frequency detuning
(Sec. II), the expansion in powers of R−1 is seen to
reproduce the energy peak. The peak of the curve EðωÞ
is a scaled version of the peak of NðμÞ.
Finally, we note that the function RμðρÞ with negative μ

has an exponentially localized core, with the width of the
order 1ffiffiffiffiffi−μp . By contrast, solutions with μ > 0 approach zero

at a nearly uniform rate (Fig. 4).

C. Stability of small-amplitude standing wave

By deriving the amplitude equation (23) the analysis of
stability of the time-periodic standing wave has been
reduced to the stability problem for the stationary solution
of the 3D nonlinear Schrödinger equation. The leading

order of a linear perturbation to the solution (30) is
given by

δϕ ¼
�
eiω0ð1þ μ

4R2
Þt
�
F
�
r
R

�
þ iG

�
r
R

��
þ c:c:

�

× exp

�
λ

2ω0R2
t

�
; ð32Þ

where F ¼ F ðρÞ and G ¼ GðρÞ are two components of an
eigenvector of the symplectic eigenvalue problem

L0G ¼ −λF ; L1F ¼ λG: ð33Þ

In (33), L0 and L1 are a pair of radial operators

L0 ¼ −
d2

dρ2
−
2

ρ

d
dρ

− μ − 12R2
μðρÞ;

L1 ¼ −
d2

dρ2
−
2

ρ

d
dρ

− μ − 36R2
μðρÞ; ð34Þ

with the boundary conditions

F 0ð0Þ ¼ G0ð0Þ ¼ F ð1Þ ¼ Gð1Þ ¼ 0: ð35Þ

The lowest eigenvalue of the Schrödinger operator L0 is
zero, with the associated eigenfunction given by RμðρÞ.
Numerical analysis reveals that the operator L1 has a single
negative eigenvalue. This is the case of applicability of the
Vakhitov-Kolokolov criterion [64–66]. The criterion guar-
antees the stability of the solution (24) if dN=dμ < 0 and
instability otherwise.
Numerical methods confirm that in the region μc <

μ < π2, the eigenvalue problem (33)–(35) does not have
any real eigenvalues apart from a pair of zeros resulting
from the U(1) invariance of (23a). (We remind the reader
that μc is the point of maximum of the curve NðμÞ;
μc ¼ −0.225.) As μ is decreased through μc, a pair of
opposite pure-imaginary eigenvalues �λ0ðμÞ converges at
the origin and diverges along the positive and negative real
axis. As μ → −∞, the scaling (28) gives λ0ðμÞ → −5.50μ,
where 5.50 is the symplectic eigenvalue associated with the
solution of the infinite domain problem (29).
The upshot of our asymptotic analysis is that there is a

continuous family of standing-wave solutions in the ball of
a large radius R, with frequencies ω extending down from
Ωð1Þ. The function EðωÞ features a sharp peak at ωc ¼
ω0 þ μcð2ω0R2Þ−1, with the standing waves to the right
of the peak (where dE=dω < 0) being stable and those
to the left (where dE=dω > 0) unstable. (See the thin curve
in Fig. 3.)

D. Continuation over the energy peak

The large-R perturbation expansion with ω close to ω0

was validated by the numerical study of the boundary-value
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problem (2). We continued the periodic solution ϕðr; tÞ to
lower ω and used the linearized equation (5) to evaluate the
associated monodromy matrix. In agreement with the
asymptotic considerations, a pair of real Floquet multipliers
(ζ and ζ−1) was seen to leave the unit circle as ω passed
through the point of maximum energy. Consequently,
the left slope of the energy peak in Fig. 3 does indeed
correspond to unstable standing waves.
Fig. 5 documents the solution as it is continued fromΩð1Þ

over the energy peak. Consistently with the asymptotic
expression (30), the peripheral field values ϕðrp; tÞ, where
rp ∼ R, oscillate at the same frequency ω as the amplitude
at the origin, ϕð0; tÞ. This agreement is recorded on either
side of the energy peak; see panel pairs (b) and (c), (e) and
(f), (h) and (i).
As ω is reduced below the point of maximum energy,

the Bessel-function profile (30), (27) gives way to an
exponentially localized shape. This metamorphosis agrees
with the evolution of the asymptotic profile RμðρÞ as μ is
taken from positive to negative values. The difference in
the type of decay is clearly visible in panels (a), (d), and
(g) of Fig. 5. Lowering ω even further sees the formation
of a small-amplitude undulating tail [Fig. 5(j)]. At the
same time, the oscillation frequency in the peripheral
region switches from the frequency of the core of the

standing wave to its second harmonic [compare panel (l)
to (k)].
It may seem that the presence of the second-harmonic

tail is at variance with the uniformly first harmonic pattern
(30). There is no contradiction, in fact. As we take ω
far enough from ω0, the assumption ϕ ¼ OðR−1Þ becomes
invalid and the expression (30) stops providing any
accurate approximation to the solution ϕðr; tÞ.
Why does the formation of the second-harmonic tail

require taking ω far from ω0? The reason is that when ω is
close to ω0, the core of the exponentially localized standing
wave is much wider than the wavelength of the second-
harmonic radiation:

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ω0ðω0 − ωÞp ≫

2πffiffiffiffiffiffiffiffi
3ω2

0

p :

(Here we took advantage of the fact the characteristic width
of the bell-shaped functionRμðρÞ is 1= ffiffiffiffiffiffi−μp

and used (30b)
to express μ.) As a result, the radiation coupling to the core
is weak and its amplitude is exponentially small. Thus
when ω is close to ω0, we can simply not discern the
amplitude of the second harmonic against the first-harmonic
oscillation.

E. Small-amplitude wave in the infinite space

It is instructive to comment on the R → ∞ limit for
which the small-amplitude solution is available in the
earlier literature [56,60,61].
In the case of the infinitely large ball our asymptotic

expansion remains in place but ϵ becomes a formal
expansion parameter, not tied to R. Without loss of
generality, we can let μ ¼ −1 in Eq. (25a) while the
boundary condition Rð1Þ ¼ 0 should be replaced with
Rð∞Þ ¼ 0. In agreement with [56,60,61], the asymptotic
solution (6) acquires the form

ϕ ¼ 2ϵ cos

�
ω0

�
1 −

ϵ2

4

�
t

�
SðϵrÞ þOðϵ2Þ; ð36Þ

where SðρÞ is a nodeless solution of the boundary value
problem (29). (For solutions of (29) see [56,67].) As
ω → ω0 (i.e. as ϵ → 0), the energy of the asymptotic
solution (36) tends to infinity:

E ¼ 16π

ϵ

Z
∞

0

S2ðρÞρ2dρ ¼ 16π

ϵ
× 0.1253: ð37Þ

Stability or instability of the infinite-space solution is
decided by eigenvalues of the symplectic eigenvalue
problem (33)–(34) with μ set to −1, RμðρÞ replaced with
SðρÞ, and the boundary conditions (35) substituted with
F ð∞Þ ¼ Gð∞Þ ¼ 0. The numerical analysis verifies that
the resulting symplectic problem has a (single) pair of
opposite real eigenvalues λ ¼ �5.50. Hence the solution
(36) is unstable for any sufficiently small ϵ.
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FIG. 5. Top to bottom row: standing wave as it is continued
from Ωð1Þ to lower ω in Fig. 3. (The ball radius R ¼ 100.) Left
column: spatial profile at a particular time, ϕðr; 0Þ. Middle and
right column: temporal behavior at the central and a peripheral
point, ϕð0; tÞ and ϕð90; tÞ. In the panel legends, ν is the
normalized frequency: ν ¼ ω=ω0. The same notation is used
in Figs. 8, 10, and 11.
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IV. RESONANCES IN THE BALL

A. Energy-frequency diagram

The numerical continuation beyond the peak in Fig. 3,
from right to left, produces an EðωÞ curve with what looks
like a sequence of spikes. Figure 6(a) depicts this curve
for R ¼ 100. It also shows an envelope of the family of
spikes—a U-shaped arc that coincides with the EðωÞ curve
everywhere except the neighborhoods of the spikes. In the
neighborhood of each spike, the envelope bounds it from
below.
Figures 6(b) and 6(c) compare the density of spikes in

the diagrams with different values of R. (Either panel
focusses on the right end of the respective diagram where
spikes are thin and nonoverlapping.) The number and
positions of the spikes are seen to be R-sensitive. In
contrast, the U-shaped envelope does not change appreci-
ably as the radius of the ball is varied. Regardless of R, the
U-shaped curve has a single minimum, at

ωmin ¼ 0.967ω0: ð38Þ

The U-shaped envelope agrees with the energy curve of
periodic infinite-space solutions with exponentially local-
ized cores and small-amplitude tails decaying slowly as
r → ∞ [52]. The energy of those nanopterons is defined as
the integral (3) where R is a radius of the core. The
nanopteron’s energy has a minimum at ω ¼ 0.9652ω0 [52]
which is close to our ωmin in (38).
A sequence of vertical dashed lines drawn at ω ¼ 1

2
ΩðnÞ

in Fig. 6(a) is seen to match the sequence of spikes. The
correspondence between the two sequences suggests some
relation between the spikes and the Bessel waves born
at ω ¼ ΩðnÞ.

B. Bifurcation unpacked

Zooming in on one of the distinctly separate spikes near
the right end of the diagram reveals that it is not a mere
peak on the EðωÞ curve. As in a proper peak, there are
two energy branches that rise steeply from the
U-shaped arc but instead of joining together, the left and
right “slopes” connect to another curve. This curve turns
out to be a Bessel branch—more precisely, the 1=2
undertone of the Bessel branch emerging from ϕ ¼ 0 at
the frequency ω ¼ ΩðnÞ=2 with some large n (Fig. 7).
To appreciate details of the bifurcation, we follow the

curve corresponding to the left slope of the spike (the blue
curve in Fig. 7). A standing wave with ðω; EÞ located at the
base of the spike has an exponentially localized core and an
oscillatory tail with the amplitude decaying in proportion to
r−1 [Fig. 8(a)]. The ϕ-value at r ¼ 0 performs nearly
harmonic oscillations with the fundamental frequency ω ¼
2π=T [panel (b)] while the tail oscillates at the frequency
2ω [panel (c)].

Moving up the blue curve in Fig. 7, the contribution of the
second harmonic to the oscillation of the core increases
[Fig. 8(e)]. Eventually, when the curve is about to join the
branch of the 1=2 Bessel undertones (shown by the dashed
magenta in Fig. 7), ϕð0; tÞ completes two nearly identical
cycles over the interval T ¼ 2π=ω [Fig. 8(h)]. The solution
does not have any well-defined core [panel (g)], with the
central and peripheral values oscillating at the same funda-
mental frequency 2ω [panels (h) and (i)]. This is exactly the
spatiotemporal behavior of the 1=2 Bessel undertone.
Note that the merger of the blue and magenta curves in

Fig. 7 can be seen as the period-doubling bifurcation of the
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FIG. 6. (a) Energy of the standing wave with frequency ω in the
ball of radius R ¼ 100 (a), R ¼ 40 (b) and R ¼ 150 (c). The
EðωÞ curve features a sequence of sharp spikes that have complex
fine structure indiscernible in the figure. Although some branches
were only continued to moderate energies, we expect all spikes to
extend to the top of the panels. The vertical dashed lines in
(a) mark the points ω ¼ ΩðnÞ=2 where ΩðnÞ are the frequencies of
the newborn Bessel waves [defined by Eq. (8)]. The fraction next
to a spike indicates the order of the Bessel-wave undertone that
this spike’s slopes approach (but not necessarily join) at a larger
E. (The Bessel undertones are not shown in the figure.) In all
three panels, the red dashed arc underlying the EðωÞ curve is the
envelope of the family of spikes. For visual clarity, it has been
shifted down by a tiny amount from its actual position.
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Bessel wave. As we observed in Sec. II, the nth Bessel
wave (n ¼ 1; 2;…) is stable when its frequency is close
enough to ΩðnÞ, its inception point. Our numerical analysis
indicates that the Bessel wave loses its stability once its
energy E has grown above the period-doubling bifurcation

value. A quadruplet of complex Floquet multipliers leaves
the unit circle at this point signifying the onset of instability
against an oscillatory mode with an additional frequency.
While most of the clearly distinguishable, nonoverlap-

ping, spikes result from the 1∶2 resonances with the Bessel
waves, some correspond to the 1∶3, 1∶4 or 1∶6 resonances.
Similar to the 1∶2 spikes, an exponentially localized
solution at the base of a 1∶3, 1∶4 or 1∶6 projection has
a core oscillating at the frequency ω ¼ 2π=T and its
second-harmonic tail. As this solution is continued up
the slope of its spike, the contribution of higher harmonics
to the oscillation of the core and tail increases. Eventually
the standing wave switches to the uniform regime where its
core and tail oscillate at the same frequency—3ω, 4ω, or
6ω. The change of the temporal pattern is accompanied by
the transformation of the spatial profile of the wave, from
the “core-and-tail” composition to a slowly decaying
structure with no clearly defined core.
It would be natural to expect this weakly localized

solution to merge with the 1=3, 1=4, or 1=6 undertone
of a Bessel wave, implying the period multiplication of the
latter. Numerically, we do observe the bifurcations with
m ¼ 4 and 6 while the period-tripling of a Bessel wave is
yet to be discovered.

C. Higher resonances

Figure 9 zooms in on the neighborhood ofω ¼ Ωð64Þ=2 in
the ball of radiusR ¼ 100. Besides the primary spike pattern
recognizable from our earlier Fig. 7, the diagram features
several thinner vertical projections. These secondary, or
“baby,” spikes result from resonanceswith higher harmonics.
The magenta curve in Fig. 9 comprises the 1=2 undertones

of theBesselwave. This branch and twoneedlelike secondary
projections sprouting up from it represent standing waves
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FIG. 9. The bifurcation diagram in the neighborhood of ω ¼
Ωð64Þ=2 in the ball of radius R ¼ 100. The inset zooms in on a
tiny segment of the left slope of the primary peak (blue curve) that
hosts two baby spikes and merges with the Bessel branch (shown
in magenta).
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FIG. 7. A fragment of the EðωÞ diagram in the vicinity of a 1∶2
resonance in the ball withR ¼ 150. The blue and brown curves are
two slopes of the “spike.” The dashed magenta arc emerging from
E ¼ 0 at ω ¼ Ωð114Þ=2 is the 1=2 undertone of the n ¼ 114th
Bessel wave. (That is, a point ðω; EÞ on this branch represents the
Bessel wave with frequency 2ω.) The insets zooming in on
the lower sections of the spike and Bessel branch aim to emphasize
the difference in the origins of the two branches.
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FIG. 8. Top to bottom row: spatial and temporal behaviour of the
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curve. Left column: snapshot of ϕðr; tÞ at a particular moment of
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right column: evolution of an asymptotic value ϕðrp; tÞ with rp ¼
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without clearly defined cores; see Fig. 10. The top row in
Fig. 10 corresponds to a solution occurring between the two
baby spikes; it consists of a pair of identical cycles on the
interval ð0; 2π=ωÞ. The middle row of Fig. 10 exemplifies
standing waves found on either slope of the “lower” baby
spike (spike centred onω=ω0 ¼ 0.86834). These include six
repeated cycles. AsE grows, both slopes of the “lower” spike
merge with the branch of the 1=6 undertones of another
Bessel branch extending from E ¼ 0 (not shown in Fig. 9).
Finally, in the bottom row of Fig. 10 we display a solution
that belongs to the secondary projection appearing higher on
the Bessel curve (spike centred on ω ¼ 0.86741). This
coreless standing wave oscillates at the frequency 10ω.
We note that solutions on both slopes of each of the two

baby spikes emerging from the Bessel branch are stable.
Figure 11 documents standing waves found on the left

slope of the primary spike (the blue curve in Fig. 9) and
secondary spikes emerging from it. The top row illustrates
the solution at a point of the primary curve near its merger
with the Bessel branch. The structure of this solution is
similar to that in the bottom row of Fig. 8. The wave does
not have a clearly defined core while its central value ϕjr¼0

and a slowly decaying tail oscillate at the same frequency
2ω. The middle and bottom rows in Fig. 11 describe
solutions on the left and right baby spikes jutting out from
the primary curve. These have a large-amplitude 12ω- and
9ω-component, respectively.

D. Stability of standing waves

With the stability of the Bessel waves classified earlier in
this paper, we turn to the exponentially localized solutions
comprising the EðωÞ curve in Fig. 6.

As we demonstrated in Secs. III C and III D, the
monodromy matrix acquires a pair of real eigenvalues
(ζ1 > 1 and ζ2 ¼ 1=ζ1) as the solution is continued over
the peak at ωc ¼ ω0 þ μcð2ω0R2Þ−1 (the rightmost spike in
Fig. 6) in the direction of lower frequencies. The numerical
analysis indicates that another real pair (ζ3 > 1 and
ζ4 ¼ 1=ζ3) leaves the unit circle as ω is reduced past the
local energy minimum between the peak at ωc and the next
spike on its left.
Regardless of the choice of R, real or complex unstable

Floquet multipliers persist over the entire interval ωmin <
ω < ωc, where ωmin is the point of minimum of the
U-shaped envelope of the family of spikes. For low
energies, the instability is due to the real multipliers, ζ1
and ζ3. As the solution “climbs” up the energy slope, the
real multipliers ζ1, ζ3, 1=ζ1, 1=ζ3 merge, pairwise,
and form a complex quadruplet. The quadruplet dissociates
as the solution descends along the other slope of the same
spike.
Stability properties in the region ω < ωmin prove to be

sensitive to the choice of R. The case of a small radius is
exemplified by the ball of R ¼ 40. Figure 6(b) depicts
the corresponding EðωÞ diagram in an interval of frequen-
cies adjacent to ω0. (Note that the frequency ωmin is
close to the position of the second spike from the right in
Fig. 6(b).)
All frequencies between each pair of spikes in Fig. 6(b)

correspond to unstable solutions, with one or two pairs of
real Floquet multipliers off the unit circle. The second
spike from the right (spike centred on ω ≈ 0.97) is also
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FIG. 11. Top row: solution of frequency 2ω on the blue side of
the primary spike shown in Fig. 9. Middle respectively bottom
row: solutions of frequency 12ω respectively 9ω found on the left
respectively right baby spike stemming out from the primary
curve. (The two spikes are clearly visible in the inset to Fig. 9).
All three standing waves are coreless due to the proximity to the
Bessel branch.
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entirely unstable. The only intervals of stability in
Fig. 6(b) are found at the base of the third and fourth
spike (centred on ω ≈ 0.94 and ω ≈ 0.92, respectively).
Figure 12(a) illustrates stability of several branches
associated with the third spike.
Turning to a larger ball radius (R ¼ 100), the stability

domain expands considerably. As ω is reduced below ωmin
in that case, two pairs of real multipliers form a complex
quadruplet which, on further reduction, converges to
two points on the unit circle. The value of ω at which
the multipliers join the circle marks the beginning of
a sizeable interval of stable frequencies [Fig. 12(b)]. A
continued reduction of ω sees an intermittent appearance
and disappearance of one or several complex quadruplets
separating stability from instability intervals.

V. CONCLUDING REMARKS

A linear standing wave in a ball results from the
interference of an expanding spherical wavetrain of infini-
tesimal amplitude and the wavetrain reflected from the
ball’s surface. When continued to finite amplitudes, the
resulting nonlinear solution does not have a well-defined
core and retains the r-dependence similar to the spherical
Bessel function j0ðrÞ ¼ sin r

r . The total energy associated
with this configuration in a ball of radius R is a multiple
of R2.
A different type of nonlinear standing wave in a ball is

characterized by an exponentially localized pulsating core.
The core is a fundamentally nonlinear feature; the non-
linearity shifts its frequency below the linear spectrum and
this frequency shift ensures the core’s exponential locali-
zation. The core pulsating at the frequency ω radiates
spherical waves with higher-harmonic frequencies mω,
m ¼ 2; 3;…. The standing pattern arises as a result of
the interference of the expanding and reflected radiation
wavetrains.
As the radiation frequency mω comes near one of the

linear eigenfrequencies, the solution approaches the cor-
responding Bessel-like pattern. The amplitude of the
radiation increases and the total energy in the ball of radius
R shoots up to values OðR2Þ. By contrast, when ω is not
near a resonant value, the radiation from the core is weak.
The standing wave in that case may serve as an approxi-
mation to an oscillon—a long-lived localized pulsating
structure in the infinite space—at the nearly periodic stage
of its evolution. Nonlinear standing waves provide infor-
mation on the oscillon’s energy-frequency relation and
stability as well as topology of the nearby regions of the
phase space.
We examined the energy-frequency diagram of the

standing wave and scrutinized the associated spatiotempo-
ral transformation of the periodic solution. Results of this
study can be summarized as follows.
(1) We have demonstrated the existence of a countable

set of standing waves (“Bessel waves”) in a ball of
a finite radius. The nth (n ¼ 1; 2;…) Bessel wave is
a solution of the boundary-value problem (2) with
n − 1 internal nodes in the interval ð0; RÞ and the
envelope decaying in proportion to r−1 as r → R.
The Bessel wave branches off the zero solution at
ω ¼ ΩðnÞ; we have constructed it as an expansion in
powers of the frequency detuning ω −ΩðnÞ. The
Bessel wave remains stable in an interval of frequen-
cies adjacent to ΩðnÞ.

(2) The nodeless (n ¼ 1) Bessel wave is amenable to
asymptotic analysis in a wider frequency range. The
pertinent asymptotic expansion is in powers of R−1

and the resulting solution is valid in a neighborhood
of ω0, the frequency of spatially uniform oscilla-
tions. This neighborhood is found to be wide enough
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FIG. 12. (a) The fine structure of the third spike from the right
in Fig. 6(b). (Here R ¼ 40.) The spike is, in fact, a doublet; it
consists of two separate projections. The inset zooms in on a
figure-eight shaped isola occurring at the bottom of the left
“subspike.” (b) Stability of standing waves in the ball of R ¼ 100,
near the right end of its energy-frequency diagram [Fig. 6(a)]. In
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to include Ωð1Þ, the Bessel branch’s inception point,
and ωc (ωc < Ωð1Þ)—the frequency at which the
energy curveEðωÞ has amaximum. The n ¼ 1Bessel
wave remains stable in the entire interval ωc ≤ ω <
Ωð1Þ but loses its stability as ω is reduced below ωc.

(3) The numerical continuation of the n ¼ 1 Bessel
wave to values of ω below ωc produces an EðωÞ
curve with a sequence of spikes near the undertone
points ω ¼ ΩðnÞ=2 with some large n. The left and
right slope of the spike adjacent to 1

2
ΩðnÞ result from

a period-doubling bifurcation of the nth Bessel
wave. In addition to the primary sequence 1

2
ΩðnÞ,

there are also thinner spikes near the 1
3
ΩðnÞ, 1

4
ΩðnÞ

and other undertones. Slopes of the spikes in the
primary sequence host secondary projections corre-
sponding to higher resonances.
Away from the neighborhoods of the spikes, the

EðωÞ curve follows a U-shaped arc with a single
minimum at ωmin ¼ 0.967ω0; the arc bounds all
spikes from below. The arc is unaffected by the ball
radius variations, as long as R remains large enough.
This envelope curve describes the energy-frequency
dependence of the nearly periodic oscillons in the
infinite space.

(4) Standing waves with energies lying on the envelope
curve and at the base of the spikes have an
exponentially localized core and a small-amplitude
slowly decaying second-harmonic tail. We have
classified stability of these solutions against spheri-
cally symmetric perturbations. Specifically, we
focused on the interval 0.91ω0 < ω < Ωð1Þ and

considered two values of R: R ¼ 40 and R ¼ 100.
The ball of radius R ¼ 40 has only short stability
intervals, located at the base of two spikes in its
EðωÞ diagram. By contrast, the standing waves in
the ball of R ¼ 100 have long stretches of stable
frequencies.

Finally, it is appropriate to draw parallels with resonance
patterns observed in other systems.
The authors of Ref. [68] carried out numerical contin-

uations of breather solutions in a one-dimensional necklace
of Morse oscillators. Their EðωÞ diagram features reso-
nances similar to those reported in Sec. IV of the present
paper. Standing waves residing on the slopes of the spikes
in our Figs. 6, 7, 9, and 12(a) are akin to the phonobreathers
of Ref. [68] while solutions represented by the U-arc in our
Figs. 6 correspond to their “phantom breathers.”
A more recent Ref. [69] is a numerical study of the

circular-symmetric breathers in the sine-Gordon equation
posed in a disc of a finite radius. The EðωÞ diagram
produced in that publication displays projections due to the
odd-harmonic resonances.
We note that neither Ref. [68] nor [69] observe a period-

doubling transmutation of phonon waves into breathers.
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