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We generalize the next-to-leading order (NLO) QCD calculations for the decay rates of h → gg and
h → γγ to the case of anomalous couplings of the Higgs boson. We demonstrate how this computation can
be done in a consistent way within the framework of an electroweak chiral Lagrangian, based on a
systematic power counting. It turns out that no additional coupling parameters arise at NLO in QCD beyond
those already present at leading order. The impact of QCD is large for h → gg and the uncertainties from
QCD are significantly reduced at NLO. h → γγ is only mildly affected by QCD; here the NLO treatment
practically eliminates the uncertainties. Consequently, our results will allow for an improved determination
of anomalous Higgs couplings from these processes. The relation of our framework to a treatment in
Standard Model effective field theory is also discussed.
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I. INTRODUCTION

The discovery of the Higgs boson a decade ago has
opened the door for novel tests of the mechanism behind
electroweak symmetry breaking. A promising strategy
consists in precisely measuring Higgs-boson couplings,
which might deviate from their Standard Model (SM)
expectation and reveal the presence of new dynamics.
Such anomalous couplings are consistently described in the
framework of an effective field theory (EFT). A well-
motivated and useful tool for this purpose is provided by
the electroweak chiral Lagrangian including a light Higgs
boson (EWChL, sometimes also referred to as HEFT);
see [1,2] and references therein. This nonlinear version
of the electroweak EFT has the practical advantage of
encoding the anomalous Higgs couplings as the dominant
new-physics effects [2]. This allows us to focus on the
Higgs-boson properties as our main target, and avoids a
proliferation of parameters.
For a reliable determination of Higgs couplings, QCD

corrections have to be taken into account in the calculation
of Higgs-boson processes. Already in the SM, QCD effects

do, in general, have a large numerical impact on the
observables [3–8]. Higher-order QCD effects can be
combined, in a systematic way, with the anomalous
Higgs couplings described by the EWChL [9]. An analysis
of this type has been performed in [10] for the case of
Higgs-pair production in gluon fusion. In the present paper,
we generalize the calculation of the decay rates for h → γγ
and h → gg at next-to-leading order (NLO) in QCD to
include new-physics effects in the form of anomalous
couplings. We demonstrate how this can be achieved in
a consistent manner within the framework of the EWChL.
This paper is organized as follows. In Sec. II we

summarize the main properties of the EWChL as an
EFT for Higgs processes and define kinematic variables
for later use. Section III is devoted to the discussion of
h → γγ, where the NLO-QCD effects are relatively simple
and of moderate size. To set the stage for the EFT treatment
of h → gg, we review the results for this process at leading
order (LO) in QCD in Sec. IV. Section V describes our
main results, the computation of h → gg in the presence of
anomalous couplings and with QCD corrections at NLO.
Phenomenological implications of the NLO results for
h → gg are presented in Sec. VI. In Sec. VII we discuss
how h → γγ and h → gg could be treated in Standard
Model effective field theory (SMEFT), as an alternative to
the EWChL framework we primarily employ. We conclude
in Sec. VIII. Some further details and examples are
collected in the Appendixes. Appendix A defines the
subtraction of IR divergences in the NLO rate of
h → gg. Appendix B explains in detail the dependence
of the h → gg rate at NLO on the anomalous couplings in
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the region where the rate becomes small due to cancella-
tions. In Appendix C we give the LO and NLO correlation
matrices for the parametric uncertainties of the h → gg
decay rate. Finally, Appendix D illustrates the matching of
the local hγγ and hgg couplings in the EFT to a UV theory
in a few toy model scenarios, with a particular view on the
role of QCD corrections in this context.

II. EFT LAGRANGIAN
AND KINEMATIC VARIABLES

The EWChL at lowest order is given by [11,12]

L2 ¼ −
1

4
Ga

μνGaμν −
1

2
hWμνWμνi

−
1

4
BμνBμν þ v2

4
hDμU†DμUiFðηÞ

þ v2

2
∂μη∂

μη − VðηÞ þ ψ̄iDψ − ψ̄mðη; UÞψ ; ð2:1Þ

where η≡ h=v with h the Higgs singlet and v ¼ 246 GeV
the electroweak scale. Ga

μν,Wα
μν and Bμν are the gauge field

strengths of SUð3ÞC, SUð2ÞL andUð1ÞY , respectively. Here
h� � �i denotes the trace over SUð2ÞL indices.
The electroweak Goldstone bosons φα are collected in

U ¼ expð2iφ=vÞ, where φ ¼ φαtα and tα denote the gen-
erators of SUð2ÞL, normalized as htαtβi ¼ δαβ=2. The
covariant derivative of the Goldstone field reads

DμU ¼ ∂μU þ igWμU − ig0BμUt3 ð2:2Þ

with SUð2ÞL and Uð1ÞY gauge couplings g and g0,
respectively. All SM fermions are collectively written as
ψ ¼ ðui; di; νi; eiÞT , where ui, di, νi, and ei are Dirac
spinors and i is the generation index. The Yukawa term is
then given by the last term in (2.1) with

mðη; UÞ≡UMðηÞPR þM†ðηÞU†PL; ð2:3Þ

where M is the block-diagonal mass matrix

M ¼ diagðMu;Md;Mν;MeÞ ð2:4Þ

acting on ψ . In general, the entriesMf ≡MfðηÞ with f ¼
fu; d; ν; eg are h-dependent matrices in generation space.
The Higgs-dependent functions are expanded as

FðηÞ ¼ 1þ
X∞
n¼1

Fnη
n; VðηÞ ¼ v4

X∞
n¼2

Vnη
n;

MfðηÞ ¼
X∞
n¼0

Mf;nη
n ð2:5Þ

so that the fermion masses are given by mf ¼ Mf;0.
In comparison with the SM, the Lagrangian in (2.1)

introduces anomalous couplings in the Higgs sector, out
of which only a restricted subset is usually relevant for
a given application. For instance, we can introduce
cf ¼ Mf;1=mf, which parametrizes potential deviations
from the hf̄f vertex in the SM. Similarly, assuming
custodial symmetry, an anomalous coupling cV ≡ F1=2
for the hWþW− and hZZ vertices can be defined [2].
Going beyond lowest order in the loop expansion, new

terms have to be added to L2. The terms entering at one-
loop order in the EWChL are denoted by L4 and can be
found in [11,13,14]. This introduces further anomalous
couplings and also provides the necessary counterterms for
one-loop diagrams from (2.1). For our purpose, it is
sufficient to focus only on new local interactions between
the Higgs boson and the massless gauge bosons with
couplings cγγh and cggh, respectively; see Fig. 1.
To summarize, the CP-even terms from the effective

Lagrangian Leff ≡ L2 þ L4 with anomalous couplings
relevant for the Higgs decays to two photons or gluons read

Leff ⊃ 2cV
h
v

�
m2

WW
þ
μ W−μ þ 1

2
m2

ZZμZμ

�
−
X
f

mfcf
h
v
f̄f

þ α

8π
cγγh

h
v
FμνFμν þ αs

8π
cggh

h
v
Ga

μνGaμν; ð2:6Þ

where α ¼ e2=4π and αs ¼ g2s=4π are the electromagnetic
and strong fine structure constants, respectively. As stated
above, the anomalous couplings cf and cV arise fromL2 and
are leading-order effects in the EFT counting, whereas the
local Higgs-gluon and Higgs-photon couplings cγγh and cggh
are introduced byL4 and thus enter at NLO (one-loop) order.
In the SM we have cf ¼ cV ¼ 1 and cγγh ¼ cggh ¼ 0.
However, all couplings may have arbitrary values of Oð1Þ
in general. In the following, we will neglect the couplings of

(a)

(b)

FIG. 1. New local vertices of the Higgs to photons (a) and
gluons (b). The Higgs-photon coupling (a) is generated by the
second to last term of (2.6). It is proportional to cγγh and of order
e2. The three Higgs-gluon couplings (b) are generated by the last
term of (2.6). They are all proportional to cggh and are of order g2s,
g3s , and g4s , respectively.
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the Higgs to the first two lepton generations as well as to up-
quarks, down-quarks and strange-quarks due to their small
masses.
We conclude this section by defining some kinematical

variables, which are useful for presenting the rates of
h → γγ and h → gg, namely

τi ¼
m2

h

4m2
i
þ i0þ ð2:7Þ

and

xi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − τ−1i

p
− 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − τ−1i
p

þ 1
þ i0þ; ð2:8Þ

where, for the purpose of analytic continuation, we always
assume a small positive imaginary part. In the SM, the
leading order decay of Higgs to both photons and gluons is
loop induced; mi in (2.7) usually denotes the mass of the
particle running in the loop. We can then distinguish
between configurations above and below the particle pair
production threshold:

below threshold∶ 0 < τi < 1 xi ¼ eiθi ð0 < θi < πÞ
ð2:9Þ

above threshold∶ 1 ≤ τi < ∞ − 1 ≤ xi < 0: ð2:10Þ

III. HIGGS DECAY TO PHOTONS

The decay rate of a Higgs into a pair of photons is
given by

Γh→γγ ¼
α2

256π3
m3

h

v2
jAh→γγj2; ð3:1Þ

where up to OðαsÞ

Ah→γγ ¼ cγγhAh þ cVAWðτWÞ þ
X
l

clAlðτlÞ

þ Nc

X
q

cqQ2
q

�
Að0Þ
q ðτqÞ þ

αs
4π

Að1Þ
q ðτqÞ

�
: ð3:2Þ

The different subamplitudes Ai describe the coupling of the
Higgs to photons either directly (Ah) or through aW� loop

(AW), charged-lepton loop (Al) or a quark loop (A
ð0;1Þ
q ); see

Fig. 2. Only the latter receives QCD corrections at this
perturbative order in αs; see Fig. 3. The loop functions Aq

and their coefficients cq are separately renormalization-
scale independent. We have chosen the normalization of
Ah→γγ such that1

Ah ¼ 1: ð3:3Þ

The coefficient cγγh implicitly contains OðαsÞ corrections,
as will be further discussed in Appendix D. The one-loop
functions in Eq. (3.2) are well known from the SM. They
read [15,16]

AWðτÞ ¼ −
2τ2 þ 3τ þ 3ð2τ − 1ÞfðτÞ

τ2

¼ −
2ðx2 − 8xþ 1Þ

ðx − 1Þ2 −
6xðx2 þ 1Þ
ðx − 1Þ4 ln2 x; ð3:4Þ

AlðτÞ ¼ Að0Þ
q ðτÞ ¼ 2ðτ þ ðτ − 1ÞfðτÞÞ

τ2

¼ −
8x

ðx − 1Þ2 þ
2xðxþ 1Þ2
ðx − 1Þ4 ln2 x; ð3:5Þ

FIG. 2. Diagrams contributing to the LO, i.e. Oðg0sÞ, amplitudes AW , Al, A
ð0Þ
q , and Ah of the decay h → γγ. Here and in the following,

black dots and black squares indicate vertices from L2 and L4, respectively. The fermion can be both a quark or charged lepton, as long
as it is massive. Clockwise and counterclockwise fermion flow is implicitly understood.

FIG. 3. Diagrams contributing to the virtual corrections Að1Þ
q to the decay h → γγ atOðg2sÞ. Only the quark-loop diagrams receive QCD

corrections at this level.

1Note that the local hγγ coupling cγγh used here is related to the
coupling cγγ defined in [9] through cγγh ≡ 2cγγ .
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with x defined in (2.8) and

fðτÞ ¼ arcsin2
ffiffiffi
τ

p ¼ −
1

4
ln2 x; ð3:6Þ

which is real valued below the pair production threshold,
0 < τ < 1, and complex valued otherwise.
The NLO QCD corrections to the quark loop [4,17–25]

(Fig. 3) can be decomposed as

Að1Þ
q ðτÞ ¼ Að1Þ;a

q ðτÞ − 6CFτ
∂Að0Þ

q ðτÞ
∂τ

Xðμ2qÞ; ð3:7Þ
where the function X depends on the quark mass renorm-
alization scheme. We have

Xðμ2qÞ ¼
�
0 ðOSÞ
ln ðμ2q=m2

qÞ þ 4
3

ðMS; scheme of ½25�Þ; ð3:8Þ

where μq is the scale at which the mass is renormalized in
the case of a running mass scheme, which is not necessarily
identical to the renormalization scale μR of the strong
coupling constant αs. The relation between the quark mass
in the on-shell (OS) scheme, mOS, and the MS scheme,
m̄ðμqÞ, to one loop in QCD is

mOS ¼ m̄ðμqÞ
�
1þ αsðm̄Þ

π

�
ln

μ2q
m̄2

þ 4

3

��
: ð3:9Þ

We remark that in [24] the running mass is defined as in
Eq. (5) of [4], which is different from the MS mass. This
alternative definition corresponds to

Xðμ2qÞ ¼ ln ðμ2q=m2
qÞ ðscheme of ½4; 24�Þ: ð3:10Þ

The remainder Að1Þ;a
q of the two-loop function can be found

in the literature, see Table I.
Note that the emission of a single gluon off the quark

loop (h → γγg) is forbidden by color symmetry. Therefore,
there are no real radiation corrections of OðgsÞ relative to
the Born amplitude. As a consequence, the virtual QCD
corrections are infrared finite, as any singularities would
need to cancel against phase-space singularities in the
real corrections by virtue of the Kinoshita-Lee-Nauenberg-
Theorem (KLN) theorem [26,27]. This enables us to
consider an IR-finite expansion in gs already at the

amplitude level, given in (3.2) to OðαsÞ. The decay rate
in (3.1) is then exact to OðαsÞ (NLO QCD) and contains
parts of the Oðα2sÞ [next-to-next-to-leading order (NNLO)
QCD] corrections. However, to fully capture NNLO QCD,
one would also have to include genuine Oðα2sÞ contribu-
tions, that is three-loop diagrams for h → γγ, the emission
of two gluons from the quark loop (double real correc-
tions), as well as two-loop diagrams for h → γγ containing
local hgg vertices. Those contributions are beyond the
scope of this work.
We close this section with a brief discussion of the

numerical impact of the NLO QCD effects. We checked
all formulas by independent calculations, except for the

function Að1Þ;a
q . The numbers were obtained with two

independent codes. As an additional check we compared
with the publicly available program eHDECAY [28], which
implements the results from [29]. It contains the h → γγ
decay rate as presented in (3.1) and (3.2). Testing several
different values of the effective couplings ci in (3.2), we
found agreement within the uncertainties of the different
implementations for all cases.
Using input parameters from [30], see also Table II, we

calculate the central values for the various loop contribu-
tions to the h → γγ amplitude. They are listed in Table III.
These numbers quantify the relative importance of the
subamplitudes. W and top-quark contributions are domi-
nant, τ, b and c loops only matter when very high precision
is required. The lighter fermions are negligible. Note that
here, in contrast to the SM case, the relative weighting of

TABLE I. Loop functions contributing to the decay h → γγ and their correspondence in the literature. [4,24] set

Nc ¼ 3, in [25] the number of colors is left arbitrary. Að1Þ;a
q corresponds to Eq. (10) in [23], which, however, contains

typos. See footnote 3 of [24].

Reference AW Al ¼ Að0Þ
q Að1Þ;a

q −6CFτ
∂Að0Þ

q

∂τ

[4,24] AH
W

4
3
FH
0 4CFFH

0 C
H
1 4CFFH

0 C
H
2 ¼ 2CFFH

0 B
H
2

[25] −F ð1lÞ
1 −F ð1lÞ

1=2 −4CFðF ð2l;aÞ
1=2 þ 4

3
F ð2l;bÞ

1=2 Þ 4CFF
ð2l;bÞ
1=2

TABLE II. Input parameters for the calculation of the coef-
ficients Ai, corresponding to the 2022 PDG [30] values. The
Higgs vacuum expectation value is derived through its relation to
the Fermi constant GF ¼ ð ffiffiffi

2
p

v2Þ−1.
Parameter Value

mh 125.25(17) GeV
mt (OS mass) 172.69(30) GeV
mb (OS mass) 4.78(6) GeV
mc (OS mass) 1.67(7) GeV
mτ 1.77686(12) GeV
mW 80.377(12) GeV
mZ 91.1876(21) GeV
αsðmZÞ 0.1179(9)
GF 1.1663788ð6Þ × 10−5 GeV−2
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the subamplitudes is affected by the anomalous couplings
in (3.2).
The loops with light fermions have imaginary parts.

Their contribution to the rate is completely negligible:
Assuming SM couplings, jAh→γγj=jReAh→γγj deviates from
unity by less than 10−4.
We illustrate the impact of QCD corrections on At, the

dominant contribution from quark loops, using the scheme
in (3.10). For μt ¼ mt this corresponds to the pole mass.
Using central parameter values and showing the uncertainty
from scale dependence (mt=2 < μt < 2mt), we find at LO
and NLO, respectively,

ALO
t ¼ 1.3766þ0.0046

−0.0045 ; ð3:11Þ

ANLO
t ¼ 1.3351þ0.0000

−0.0008 : ð3:12Þ

The central value is reduced by about three percent at NLO.
At the same time, the small LO uncertainty of three

permille is reduced by another order of magnitude at
NLO and thus essentially eliminated.
A convenient analytical expression for the top-quark

function at NLO can be obtained from an expansion in the
variable τ. To linear order in τ it reads

AtðτÞ¼
4

3
þ14

45
τþαs

π

�
−
4

3
þ488

405
τ−

28

45
τXðμ2qÞ

�
; ð3:13Þ

which is accurate at the permille level.
For SM couplings we find with our central parameter set

Γh→γγ ¼ 9.54 keV; ð3:14Þ

including the NLO QCD corrections (the LO value is
9.41 keV). The error from scale dependence in the t, b and
c amplitudes is safely below a permille.
Displaying the dependence of the rate on the anomalous

couplings we may write

Γh→γγ=keV ¼ 15.098c2W − 6.451ctcW − 3.624cγγhcW þ 0.774cγγhct þ 0.689c2t þ 0.217c2γγh − 0.012cbcγγh − 0.009cccγγh

− 0.021cbct − 0.017ccct − 0.010cγγhcτ − 0.018ctcτ þ 0.097cbcW þ 0.079cccW þ 0.085cτcW: ð3:15Þ

Here we have dropped terms with coefficients of less than
0.001. Again, the NLO QCD uncertainties are negligible.

IV. h → gg AT LO IN QCD

At LO the decay rate of a Higgs into two gluons is
given by

ΓLO
h→gg ¼

α2s
256π3

m3
h

v2
ðN2

c − 1ÞjAð0Þ
h→ggj2; ð4:1Þ

where

Að0Þ
h→gg ¼ cgghA

ð0Þ
h þ 1

2

X
q

cqA
ð0Þ
q ðτqÞ: ð4:2Þ

The first term is the local Higgs-gluon interaction [Fig. 4
(right)]. As for the h → γγ amplitude, we have chosen the

normalization of Að0Þ
h→gg such that

Að0Þ
h ¼ 1: ð4:3Þ

The second term of (4.2) accounts for the SM-like con-
tribution from heavy-quark loops [Fig. 4 (left)]. Note that
compared to (3.2), there is a different overall factor of the

triangle contribution Að0Þ
q ðτqÞ, stemming from the different

color structures of the quark-gluon and quark-photon

vertices.2 Að0Þ
q ðτqÞ is the same function which we already

encountered in h → γγ; see Table I. Compact tree-level
helicity amplitudes for the decay of a scalar particle like the
Higgs into an arbitrary number of fermions and gluons via
the interaction term hGa

μνGaμν can be found in [31,32].
In order to examine the effect of variations of the

effective couplings cggh and cq, the decay rate can be
expressed as a polynomial bilinear in the couplings,

ΓLO
h→gg ¼ ALO

gg c2ggh þ ALO
tt c2t þ ALO

bb c
2
b þ ALO

tg cgghct

þ ALO
bg cgghcb þ ALO

bt ctcb; ð4:4Þ

TABLE III. Numerical values for the h → γγ amplitude functions Ai. The quark contributions Aq include the NLO
QCD corrections, where the quark mass is defined as the pole mass.

AW Aτ Aμ
4
3
At

1
3
Ab

4
3
Ac

−8.33 −0.024þ 0.022i ð−3þ iÞ10−4 1.78 −0.027þ 0.023i −0.022þ 0.009i

2WehaveTa
ij for the quark-gluon andQqδij for the quark-photon

vertex with Ta the SUðNcÞ generators in the fundamental repre-
sentation (i; j ¼ 1;…; Nc) and normalization Tr½TaTb� ¼ 1

2
δab.
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where we considered only third generation quarks, i.e.
q ¼ b, t. The contributions from the other quarks are
negligible due to their small mass and hence their sup-
pressed coupling to the Higgs. Unlike in the h → γγ decay
there is no enhancement of the c-quark with respect to the
b-quark contribution by electromagnetic charge factors.

V. h → gg AT NLO IN QCD

At NLO in QCD we have to consider both virtual (V)
and real radiation (R) corrections. The former consist of all
Oðg4sÞ, two-loop order h → gg diagrams, the latter com-
prise all Oðg3sÞ one-loop order diagrams with one extra
massless colored particle in the final state, i.e. h → ggg and
h → gqq̄, where q (q̄) is a massless quark (antiquark).
The NLO decay rate can be written as

ΓNLO
h→gg ¼ ΓLO

h→gg þ ΓV
h→gg þ ΓR

h→gg: ð5:1Þ

Both the virtual and the real radiation contribution are in
fact infrared (IR) divergent: the former due to explicit poles
in ϵ ¼ ð4 −DÞ=2 from the dimensionally regulated loop

integrals (D is the number of space-time dimensions), the
latter due to phase-space configurations with soft or
collinear partons for which the matrix elements are sin-
gular. The singularities cancel in the sum of both contri-
butions and we obtain a finite, physically meaningful result.
In practice a suitable IR scheme has to be chosen to deal
with the cancellation of the singularities. We adopt the
antenna subtraction formalism [33–35].
Similarly to the LO rate in (4.4), we write the NLO decay

rate as a polynomial in the effective couplings,

ΓNLO
h→gg ¼ ANLO

gg c2ggh þ ANLO
tt c2t þ ANLO

bb c2b þ ANLO
tg cgghct

þ ANLO
bg cgghcb þ ANLO

bt ctcb: ð5:2Þ

A. Virtual corrections

There are three distinct classes of diagrams contributing
to the virtual corrections, see Figs. 5 and 6:
(1) genuine two-loop diagrams with vertices from

L2 only;
(2) one-loop diagrams with a single one-loop order

effective vertex of chiral dimension 4, i.e. from L4;
(3) one tree-level diagram with an effective vertex of

chiral dimension six coming from L6.
Diagrams of the first class are shown in Fig. 5(a). Up to the
rescaling by the effective couplings cq they correspond to
the diagrams needed to calculate the two-loop amplitude in
the ordinary SM with full mass dependence. The second
class of diagrams [Fig. 5(b)] associated with cggh has no
correspondence in the SM. While L4 also provides hggg

(a)

(b)

FIG. 5. Diagrams contributing to the virtual corrections to the decay h → gg at Oðg4sÞ. (a) Genuine two-loop diagrams with vertices
from L2 only. (b) One-loop diagrams with one effective vertex from L4.

FIG. 4. Diagrams contributing to the decay h → gg at LO, both
in the chiral counting (one-loop order) and in the QCD coupling
(order g2s).
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and hgggg vertices of the right order in gs, the relevant one-
loop diagrams [Fig. 6(a)] vanish when evaluated in dimen-
sional regularization. Higgs plus multiparton one-loop
amplitudes with local Higgs-gluon interactions have been
calculated in [36]. At last there is the single tree-level
diagram with an effective vertex of chiral dimension six
[Fig. 6(b)]. Such a diagram could in principle contribute at
the order under consideration, that is two-loop order in the
EWChL and atOðg4sÞ. However, from gauge invariance any
local hgg vertex can be expressed by an operator hGa

μνGaμν,
which is identical to the corresponding term already
included in L4. In fact, a dχ ¼ 6 operator such as

O6;hgg ¼ g2sDρGa
μνGaμν

∂
ρh; ð5:3Þ

or similar terms, can be eliminated using integration by
parts and equations of motion (eom) in favor of the operator
hGa

μνGaμν. For example,

O6;hgg ¼ −
1

2
g2sGa

μνGaμν
∂
2h

¼ 1

2v
g2sGa

μνGaμν

�
V 0 −

v2

4
hDμU†DμUiF0 þ ψ̄m0ψ

�

¼ m2
h

2
g2sGa

μνGaμνhþ � � � ; ð5:4Þ

where we dropped total derivatives and, in the last step,
terms with additional fields, which do not contribute at the
relevant order. In general, local terms with dχ ¼ 6 for the
hgg vertex therefore correspond to subleading contributions
in the coefficient

cggh ¼ cð0Þggh þOðg2s ; m2
h=Λ2Þ; ð5:5Þ

with the leading term cð0Þggh ¼ Oð1Þ. The g2s corrections are
part of the NLOQCD effects, as will be further discussed in
Appendix D. The terms ∼m2

h=Λ2 are formally negligible at
the considered order. They do not scale as g4s and are not
part of the NLO QCD corrections. In practice, all these
effects are implicitly contained in the coefficient cggh.
Other terms at dχ ¼ 6 contribute only beyond the order

we are considering. For instance, the operator

O6;hgq ¼ g2sDμGa
μνGaνλ

∂λh ¼ g3s q̄γνTaqGaνλ
∂λh; ð5:6Þ

where we have used the gluon eom in the last step, can
interfere with the diagrams in Fig. 7(b). However, this is
one loop order higher than the squares of Fig. 7(b) entering
at NLO, and can be consistently neglected.

(a) (b)

FIG. 6. Diagrams of two-loop order not contributing to the virtual corrections of Oðg4sÞ. While being of Oðg4sÞ, the scaleless diagrams
(a) vanish by virtue of dimensional regularization. Diagram (b) contains an effective hgg vertex coming from the NNLO chiral
Lagrangian L6. It gives no additional contribution to the considered order as further discussed in the text.

(a)

(b)

FIG. 7. Example diagrams contributing to the real emission corrections to the decay h → gg at Oðg3sÞ at the amplitude level: (a) ggg
decay channel; (b) gqq̄ decay channel.
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The contribution of the virtual corrections to the decay
rate is given by

ΓV
h→gg ¼

α3s
512π4

m3
h

v2
ðN2

c − 1ÞRefAð0Þ†
h→ggA

ð1Þ
h→ggg; ð5:7Þ

where we explicitly pulled out the coupling factor αs=4π
from the NLO part of the amplitude as in (3.2) with

Að1Þ
h→gg ¼ NcIðϵÞAð0Þ

h→ggðϵÞ þ
1

2

X
q

cqA
ð1Þ
q;g;finðτqÞ

þOðϵÞ: ð5:8Þ

The renormalization of the amplitude is carried out in the
MS scheme, apart from the quark mass, for which we also
considered the OS scheme and the scheme from [4,24]. The
IR finite part of the amplitude can then be decomposed as

Að1Þ
q;g;finðτÞ ¼ Að1Þ;a

q;g ðτÞ − 6CFτ
∂Að0Þ

q ðτÞ
∂τ

Xðμ2qÞ; ð5:9Þ

where Xðμ2qÞ is defined above, see Eqs. (3.8) and (3.10),

and the expression Að1Þ;a
q;g ðτqÞ can be found in the literature,

see Table IV. The IR singular behavior is contained in3

IðϵÞ ¼ −
2

ϵ2
−
1

ϵ

�
β0
Nc

þ 2L

�
− L2 þ π2

6
; ð5:10Þ

where

β0 ¼
11

3
Nc −

2

3
NF ð5:11Þ

is the first term of the QCD β function and
L ¼ log μ2R=m

2
h þ iπ, with μR the renormalization scale.

IðϵÞ multiplies the LO amplitude, for which we now also
have to consider terms up to Oðϵ2Þ,

Að0Þ
h→ggðϵÞ ¼ cgghS−1ϵ Að0Þ

h

þ 1

2

X
q

cq

�
m2

q

μ2R

�−ϵ
Að0Þ
q ðτq; ϵÞ ð5:12Þ

with Sϵ ¼ ð4πÞϵe−γϵ and γ ¼ 0.57721… is the Euler-

Mascheroni constant. Að0Þ
q ðτq; ϵÞ corresponds to Mð0Þ

f ¼
−M̄ð0Þ

f from [38]. Its zeroth order term is just the LO

expression Að0Þ
q ðτqÞ. We work in the NF ¼ 5 scheme, i.e.

all quarks besides the top are considered as massless,
except for the bottom quark in the loop contribution
to h → gg.

B. Real radiation corrections

Moving on to the real corrections, we have to con-
sider diagrams where in comparison to the Born level
expression, an additional gluon is radiated into the final
state [Fig. 7(a)]. This includes a contribution featuring an
effective hggg vertex. Originating from the same term in L4

as the hgg vertex, it also comes with the coupling cggh.
Besides the h → ggg channel, we have to include the

possibility of a gluon splitting into a massless quark-
antiquark pair, i.e. the channel h → gðg → qq̄Þ [Fig. 7(b)].
This is because in the collinear configuration, the qq̄ pair is
indistinguishable from a gluon. As mentioned above, we
consider NF ¼ 5massless quark flavors. Note that since the
coupling of theHiggs to quarks is directly proportional to the
quark mass, there are no diagrams contributing to the
h → gqq̄ channel where the Higgs couples directly to the
light massless quarks and the final state gluon is radiated off
the quark line. The real emission contribution to the decay
rate is then simply the sum of both channels,

ΓR
h→gg ¼ ΓR;ggg

h→gg þ NFΓ
R;gqq̄
h→gg : ð5:13Þ

TABLE IV. References for the two-loop corrections to the quark-loop contribution to the h → gg rate and the
expressions therein, which correspond to the functions introduced in this paper. [4,24] set Nc ¼ 3, [25,38] keep the
number of colors arbitrary.

Reference Að1Þ;a
q;g −6CFτ

∂Að0Þ
q

∂τ

[4,24] 8
9
CAðFH

0 B
H
1 − 2FH

0 C
H
1 Þ þ 4CFFH

0 C
H
1 4CFFH

0 C
H
2 ¼ 2CFFH

0 B
H
2

[25] −4CAG
ð2l;CAÞ
1=2 − 4CFðF ð2l;aÞ

1=2 þ 4
3
F ð2l;bÞ

1=2 Þ 4CFF
ð2l;bÞ
1=2

[38]
Mð1Þ

f;fin − 6CFm2
q
∂Mð0Þ

f

∂m2
q
ð4
3
þ log

m2
h

m2
q
Þ 6CFm2

q
∂Mð0Þ

f

∂m2
q

3This object is closely related to Catani’s one-loop insertion
operator Ið1Þij ðϵÞ [37] via

IðϵÞ ¼ 2

Nc
Ið1Þgg ðϵÞ þ β0

Nc
LþOðϵÞ:
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1. h → ggg channel

The contribution of the ggg channel to the NLO decay
rate is given by

ΓR;ggg
h→gg ¼

α3s
24πmhv2

NcðN2
c − 1Þ

×
Z

dΦ3ðp1; p2; p3Þ
X
λ

Hλðs12; s23; s13Þ

×
���Að0Þλ

h→gggðs12; s23; s13Þ
���2; ð5:14Þ

where sij¼ðpiþpjÞ2 with pi and pj denoting either two of
the outgoing gluon momenta (we have s12þs23þs13¼m2

h).
Adjusted to the case at hand (decay of a scalar particle), the
three-body phase space reads

dΦ3ðp1;p2;p3Þ

¼ ð2πÞ2ϵ−3
24−2ϵΓð2−2ϵÞ
× ðm2

hÞϵ−1ðs12s23ðm2
h− s12− s23ÞÞ−ϵds12ds23: ð5:15Þ

The form of the amplitude depends on the concrete helicity
configurations λ of the three gluons, so the helicity summa-
tion has to be left explicit. We factored out the object Hλ

which captures the helicity dependence of the tree-level
contribution, so that

Að0Þλ
h→gggðs12; s23; s13Þ ¼ cgghA

ð0Þ
h;ggg

þ
X
q

cqA
ð0Þλ
q;gggðs12; s23; s13Þ ð5:16Þ

with

Að0Þ
h;ggg ¼ 1: ð5:17Þ

Out of the eight possible helicity configurations, only two are
independent, the others being related by parity and relabel-
ings. They are given by

Hþþþðs12; s23; s13Þ ¼ H−−−ðs12; s23; s13Þ

¼ m8
h

s12s23s13
; ð5:18Þ

Hþþ−ðs12; s23; s13Þ ¼ H−−þðs12; s23; s13Þ ¼ Hþ−þðs23; s13; s12Þ ¼ H−þ−ðs23; s13; s12Þ ¼ H−þþðs13; s12; s23Þ

¼ Hþ−−ðs13; s12; s23Þ ¼
s312

s23s13
: ð5:19Þ

The quark-loop functions Að0Þλ
q;ggg read

Að0Þþþþ
q;ggg ðs12; s23; s13Þ ¼ Að0Þ−−−

q;ggg ðs12; s23; s13Þ; ð5:20Þ

Að0Þþþ−
q;ggg ðs12; s23; s13Þ ¼ Að0Þ−−þ

q;ggg ðs12; s23; s13Þ ¼ Að0Þþ−þ
q;ggg ðs23; s13; s12Þ ¼ Að0Þ−þ−

q;ggg ðs23; s13; s12Þ ¼ Að0Þ−þþ
q;ggg ðs13; s12; s23Þ

¼ Að0Þþ−−
q;ggg ðs13; s12; s23Þ ð5:21Þ

and can be found in the literature; see Table V.

TABLE V. References for the two independent helicity amplitudes for the quark-loop contribution to the ggg
channel, including the relations of their expressions to our notation. In [3], Δ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s12s23s13=8
p

is defined and a sign
flip for the parity transformed amplitudeM−λ is introduced, which is not reflected by (5.20) and (5.21), and instead
absorbed into the square root ofHλ. It drops out after squaring the amplitude. In [39], the spinor-helicity formalism
[40–44] is employed using the convention hiji½ji� ¼ sij.

Reference Að0Þþþþ
q;ggg ðs12; s23; s13Þ Að0Þþþ−

q;ggg ðs12; s23; s13Þ
[45] −2A4ðs12; s23; s13Þ −2 m4

h
s2
12

A2ðs12; s23; s13Þ
[3] s12s23s13

m4
h

m2
f

16

Mþþ−
m2

fΔ
− s23s13

s12

m2
f

16

Mþþþ
m2

fΔ

[39] −ið4πÞ2v h12ih23ih31i
m4

h
Af
4ð1þ; 2þ; 3þ; HÞ ið4πÞ2v ½23�½31�

½12�3 Af
4ð1þ; 2þ; 3−; HÞ
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2. h → gqq̄ channel

Denoting the outgoing gluon, quark and antiquark
momenta by p1, pq and pq̄, respectively, and defining the
Mandelstamvariables sij as beforewith sqq̄þs1qþs1q̄¼m2

h,
the contribution of the gqq̄ channel, for a single massless
quark flavor, to the NLO decay rate is given by

ΓR;gqq̄
h→gg ¼ α3s

4πmhv2
ðN2

c − 1Þ
Z

dΦ3ðp1; pq; pq̄Þ
s21q þ s21q̄

sqq̄

×
���Að0Þ

h→gqq̄ðsqq̄; s1q; s1q̄Þ
���2: ð5:22Þ

We already carried out the helicity sum, as the function

Að0Þ
h→gqq̄ðsqq̄;s1q;s1q̄Þ¼ cgghA

ð0Þ
h;gqq̄

þ
X
q

cqA
ð0Þ
q;gqq̄ðsqq̄;s1q;s1q̄Þ ð5:23Þ

is helicity independent. The normalization is again chosen
such that for the tree-level contribution

Að0Þ
h;gqq̄ ¼ 1: ð5:24Þ

The relevant expressions for the quark-loop function can
again be found in the literature; see Table VI.

C. Implementation and validation

We implemented the calculation of the h → gg decay rate
as a C++ program. For the real radiation phase space
integration we used the Monte Carlo algorithm SUAVE,
implemented in the CUBA library [46]. Infrared phase
space singularities and the cancellation of infrared poles
of the virtual correction matrix elements are handled by
means of the antenna subtraction method [33–35]; see
Appendix A. We use the CRunDec package [47–49] to obtain
the numerical value of the running strong coupling in the
NF ¼ 5 scheme at the two-loop level. If required, the same
package can also be used to convert between the different
quark mass schemes of Eqs. (3.8) and (3.10).
We validated our implementation by checking the

individual ingredients and stages of the calculation:
Validation of the amplitudes.—We have recalculated

all amplitudes except the two-loop NLO virtual SM

contributions. Our analytic formulas agree with the ones
given in the literature. Furthermore, after recovering the
ordinary SM amplitudes by setting the effective couplings to
their appropriate values, cggh ¼ 0 and ct ¼ cb ¼ 1, we
compared the squared one-loop Born and real correction
amplitudes to their numerical counterparts obtained from
OpenLoops2 [50], evaluated at a set of random phase space
points. We found agreement within machine precision.
OpenLoops2 also provides the relevant tree-level and one-loop
amplitudes for h → gg at NLO QCD in the heavy-top limit,
so that we could validate all amplitudes with effective hgg
vertex setting ct ¼ cb ¼ 0 and cggh ¼ 2

3
ð1þ 11 αs

4πÞ [4].4 We
are not aware of any numerical implementation of the two-
loop amplitude, against whichwe could compare in the same
way. The references displayed in Table IV are in fact
numerically self-consistent. However, only [38] contains
the unrenormalized amplitudes, for which we have explicitly
carried out the renormalization procedure.
Validation of the infrared subtraction.—Because of the

simple infrared structure of the process and the fact that the
decay h → gg in the limit of infinite top mass is actually
used to derive the gluon-gluon antenna functions [51], we
can check by hand that the infrared poles of the virtual
correction amplitudes are correctly canceled. We confirmed
the cancellation numerically as a test of our implementa-
tion. In order to validate the proper functioning of the real
subtraction, we checked numerically that the ratio between
real radiation matrix elements and the subtraction term
tends to unity as we probe regions of the phase space ever
closer to IR singular configurations. For the actual phase
space integration, we implemented a cut parameter pre-
venting the integrator to probe regions close to the
singularity where cancellations between a very large matrix
element and subtraction term occur. Those cancellations
can escape the numerical precision leading to instabilities.
The value of this cut must be chosen small enough so that
only regions of the phase space are cut out in which the
matrix element and the subtraction term can be treated as
equal, leading to a vanishing contribution to the full
integral. The final result should then not depend on small
variations of the cut parameter. We checked that this is
indeed the case.
Validation of the decay rate.—The code is structured

such that we can vary the effective couplings at will. By
setting them to the appropriate values, we can therefore
calculate the h → gg decay rate up to NLOQCD either with
full mt dependence or in the limit of infinite top mass.5

TABLE VI. References for the quark-loop amplitudes contrib-
uting to the gqq̄ channel and relations to the corresponding
expressions therein.

Reference Að0Þ
q;gqq̄ðsqq̄; s1q; s1q̄Þ

[45] m2
h

m2
h−sqq̄

A5ðsqq̄; s1q; s1q̄Þ
[3] 2

m2
h−sqq̄

Aðsqq̄; s1q; s1q̄Þ

4Note that expanding cggh in terms of the strong coupling
interferes with the perturbative expansion of the h → gg ampli-
tude. The only place where the additional term 11 αs

4π is relevant at
Oðα3sÞ is as a finite renormalization of the virtual corrections,
proportional to the Born amplitude (see also Appendix B).

5The latter is achieved without actually sending mt → ∞, but
rather by setting cggh to the value of the effective coupling in the
heavy-top limit, see footnote 4.
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We checked that for both cases we can reproduce the
numerical results known from the literature [4] within
uncertainties. As a consistency check we confirmed that
when setting cggh to the heavy-top limit value, ct to 1 and
sending mt → ∞, the rate tends to 4 times the rate in the
heavy-top limit, as expected. This tests the relative phase
between the cggh term and the quark-loop amplitudes. The
h → gg rate including a local hgg vertex has been imple-
mented previously in the program eHDECAY [28] consid-
ering QCD effects up to N3LO in the limit of heavy fermion
masses. The exact dependence on the top and bottom mass
is included up to NLO in the pure fermion loop contribu-
tions, corresponding to our coefficients Att, Abb and Abt.
eHDECAYalso takes the charm quark into account, which we
neglected in our numerical studies due to its small overall
impact. In order to compare with eHDECAY we included it as
well. Checking different settings for the effective couplings
ci we observe between 5% and 12% smaller rates obtained
with our code, which can be attributed to the missing higher
order QCD effects in our implementation. This discrep-
ancy, however, is fully covered by the NLO scale uncer-
tainty (see Sec. VI). Using additional information on the
higher order effects in the heavy fermion mass limit
from [52–57], we can supplement the results from our
code with those effects, obtaining the rate at the same
order in QCD as eHDECAY. Doing so we find agreement
with eHDECAY for all tested configurations of effective
couplings.

VI. PHENOMENOLOGICAL RESULTS
FOR h → gg

The coefficients Ai introduced in Eqs. (4.4) and (5.2) can
be obtained by calculating the rate for six different
combinations of coupling values and solving a simple
system of linear equations, yielding

Agg ¼ Γh→ggjcggh¼1;ct¼0;cb¼0; ð6:1Þ

Att ¼ Γh→ggjcggh¼0;ct¼1;cb¼0; ð6:2Þ

Abb ¼ Γh→ggjcggh¼0;ct¼0;cb¼1; ð6:3Þ

Atg ¼ Γh→ggjcggh¼1;ct¼1;cb¼0 − Agg − Att; ð6:4Þ

Abg ¼ Γh→ggjcggh¼1;ct¼0;cb¼1 − Agg − Abb; ð6:5Þ

Abt ¼ Γh→ggjcggh¼0;ct¼1;cb¼1 − Att − Abb: ð6:6Þ

We compute the coefficients using the input parameters
shown in Table II, treating the charm quark as massless, i.e.
neglecting the decay of the Higgs through charm quark
loops. In the SM this contribution accounts for less than 3%
of the rate.
Table VII shows the results for LO and NLO QCD

together with the value of the coefficient ANLO
tt shifted by

δANLO
tt ¼

�
αs
4π

�
4 242

9π

m3
h

v2
ðfor Nc ¼ 3Þ: ð6:7Þ

Formally this contribution is part of the NNLO corrections.
It should, however, not be neglected, because it is effec-
tively the dominant contribution to the rate close to
specific values of the couplings cggh, ct and cb for which
the LO and NLO amplitudes are parametrically suppressed,
but the higher order corrections are not. In these regions
of the parameter space the rate truncated at Oðα3sÞ can
even become negative and thus unphysical. It is important
to distinguish these configurations from a parametric
suppression where simply all couplings are chosen to be
small, which would affect the rate at all orders in a
similar way.

TABLE VII. Values of the LO and NLO coefficients. The parametric uncertainty is derived by varying the input
parameters, the scale uncertainty by varying the renormalization scale μR by factors of 0.5 and 2.

LO NLO

Coefficient
Value
[MeV]

Parametric
uncertainty

(%)

Scale
uncertainty

(%)
Value
[MeV]

Parametric
uncertainty

(%)

Scale
uncertainty

(%)

Agg 0.41360 �1.5 þ23
−17 0.59755 �1.7 þ9.5

−9.6

Att 0.19595 �1.5 þ23
−17 0.32290 �1.8 þ13

−11
Att þ δAtt 0.32468 �1.8 þ13

−12
Abb 0.00218 �4.0 þ23

−17 0.00328 �4.0 þ11
−10

Atg 0.56937 �1.5 þ23
−17 0.88041 �1.8 þ11

−11
Abg −0.03442 �2.0 þ23

−17 −0.04837 �2.2 þ8.8
−9.2

Abt −0.02369 �2.0 þ23
−17 −0.03569 �2.2 þ11

−10

h → gg AND h → γγ WITH ANOMALOUS COUPLINGS AT … PHYS. REV. D 107, 076021 (2023)

076021-11



We will include the shift in all our NLO plots in
order to get more reliable predictions in these regions of
the parameter space. One should keep in mind that
these predictions are effectively of lower order in
perturbation theory and are subject to larger uncertainties

compared to the rate away from any parametric sup-
pression, where the usual perturbative expansion holds
and the phenomenological impact of the shift is small. In
Appendix B, we motivate and derive Eq. (6.7) in more
detail.

FIG. 8. Contour plots of the h → gg LO (left) and NLO (right) decay rates for different values of the effective couplings. The SM
configuration is marked with a black cross at the center of the plots. A red cross shows the global minimum. In the upper left panel, LO
for fixed cb ¼ 1, the global minimum is not a single point but rather a line.
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Besides the numerical values of the coefficients, we also
give their respective scale and parametric uncertainties.6

The former is obtained from varying the renormalization
scale μR by factors of 0.5 and 2 around its central
value, which we choose to be μR ¼ mh. The scale uncer-
tainty serves as an estimate of the impact of missing higher
order corrections, as the all-order result must be scale
independent.
The parametric uncertainty is derived by varying the

input parameters within their respective errors. Treating
them as uncorrelated, we change one at a time while
keeping all others fixed and eventually sum the individual
variations, which are approximately symmetric, in quad-
rature. It is important to notice that the resulting parametric
uncertainties on the coefficients Ai are correlated. The
corresponding correlation matrix is given in Appendix C.
For all coefficients but Abb the uncertainty on the value of
the strong coupling αsðmZÞ has the largest impact. The
uncertainty on Abb is driven mainly by that on mb, which
also has small impact on Abg and Abt. The uncertainties of
the other input parameters are negligible in comparison.
Using the results for the coefficients in Table VII and

Eqs. (4.4) and (5.2) for the LO and NLO decay rates,
respectively, we can now determine the rate for arbitrary
values of the effective couplings. For the SM case
(cggh ¼ 0, ct ¼ cb ¼ 1) we find

ΓLO;SM
h→gg

¼ ð0.1744� 1.5%ðparamÞþ23%
−17%ðscaleÞÞ MeV; ð6:8Þ

ΓNLO;SM
h→gg

¼ ð0.2923� 1.8%ðparamÞþ13%
−12%ðscaleÞÞ MeV: ð6:9Þ

The contribution of the shift (6.7) to the NLO rate is less
than 1%. It is included in (6.9).
The contribution of the bottom-quark loops, entering

through Abb, Abt and Abg is small, but non-negligible
compared to the largest SM contribution Att, the top-quark
loop. Indeed, the bottom loop interferes destructively with
the top loop and decreases the decay rate by about 10%
compared to the top-only case, both at LO and NLO.
The coefficients related to the local Higgs-gluon inter-

action,Agg,Atg andAbg, are comparatively large. In particular
we observe a strong interference between the local and top
loop contribution. This renders the rate very sensitive to not
only the effective coupling cggh, but also the ratio cggh=ct.
We can confirm these findings graphically by plotting

heat maps of the decay rate, varying two of the effective
couplings around their SM values, while keeping the third
fixed at its SM value. Figure 8 shows the LO (left panels)

and NLO (right panels) rates. The SM configuration
cggh ¼ 0, ct ¼ cb ¼ 1 always lies at the center and is
marked with a black cross. In addition we highlighted the
global minimum with a red cross. At LO it is given by

ΓLO
h→ggjmin ¼ c2b

�
αs
4π

�
2 N2

c − 1

64π

m3
h

v2
ðImfAð0Þ

q ðτbÞgÞ2; ð6:10Þ

and is located where the real part of the LO amplitude (4.2)
vanishes, i.e.

cgghA
ð0Þ
h þ 1

2
ctA

ð0Þ
q ðτtÞ þ

1

2
cbRefAð0Þ

q ðτbÞg ¼ 0: ð6:11Þ

Here we made use of the fact that Að0Þ
h and Að0Þ

q ðτtÞ
[Eqs. (4.3) and (3.5)] are real and only Að0Þ

q ðτbÞ has an
imaginary part. Consequently, the global minimum in the
upper left panel, LO with cb ¼ 1 fixed, is not a single point,
but rather a line. Close to the minimum, both the LO and
NLO rates are much smaller than the rates for the SM like
configuration, (6.8) and (6.9), due to the parametric
suppression discussed above. This can also be seen in
Fig. 9, where the LO and NLO decay rates, normalized to
c−2t , as a function of the ratio cggh=ct of the effective
couplings are shown. The scale uncertainty reduces when
going from LO to NLO, but the scale bands do not overlap,
hinting towards a slow convergence of the perturbative
series. This suggests that the calculation of NNLO correc-
tions might be needed to get a more reliable theory estimate
of the decay rate. We remark that in the region of parametric

FIG. 9. Inclusive decay rate Γh→gg, rescaled by c−2t , as a
function of the ratio cggh=ct of the effective couplings. The error
bands are obtained through scale variation.

6The Monte Carlo error from the numerical phase space
integration is several orders of magnitude smaller than those
uncertainties.
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suppression of the rates, the scale variation is not a good
measure for the theory uncertainty: the underlying
assumption that consecutive terms in the perturbative
expansion decrease in magnitude is not fulfilled.
The effect of the NLO corrections can also be studied by

plotting the QCD K-factor, i.e. the ratio ΓNLO
h→gg=ΓLO

h→gg, as a
function of the effective couplings cggh, ct and cb. In Fig. 10
we show the K-factor, varying one coupling at a time and
fixing the others at their respective SM values. The
denominator is evaluated at the central scale μR ¼ mh,
while in the numerator μR is varied as previously by factors
of 0.5 and 2. We also show the LO in blue, so that we can
easily compare the scale uncertainty to the magnitude of the
shift induced by the QCD corrections. The SM like
configuration is indicated with a dashed line. We again
see that the bands mostly do not overlap, pointing towards
the necessity of higher order corrections to be included.

Figure 10(a) shows the K-factor for ct ¼ cb ¼ 1 as a
function of cggh. For cggh > 0, the QCD corrections increase
the rate by about 60%, with only a modest dependence on
cggh, whereas for cggh < 0, in particular close to cggh ≈ −0.7,
the K-factor shows a highly nontrivial behavior. Here the
effect of the parametric suppression of the LO rate can be
seen. As explained above, the scale band of the NLO result
underestimates the true uncertainty at this point.
Figure 10(b) captures the dependence on ct for cb ¼ 1

and cggh ¼ 0. The K-factor is almost flat, showing an
increment of the rate of about 70%. Close to ct ¼ 0 the
K-factor slightly drops. Here the destructive interference
between the top and bottom loop is enhanced, with an effect
similar to what we saw in the previous plot, just less
pronounced.
The last plot, Fig. 10(c), shows the K-factor as a function

of cb, for ct ¼ 1 and cggh ¼ 0. In accordance with the small

(a) (b)

(c)

FIG. 10. Dependence of the QCD K-factor on the values of the effective couplings. In each panel, one coupling is varied while the
other two are kept at their respective SM values. Again, the error bands are obtained through scale variation. The denominator ΓLO

h→gg is
fixed to the central scale μR ¼ mh.
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overall contribution from the bottom-quark amplitude, we
see a negligible dependence of the K-factor on cb in this
parameter range.7 Going from LO to NLO increases the rate
by approximately 70%.
In the figures we discussed we allow Oð1Þ deviations of

the effective couplings cggh, ct and cb from their respective
SMvalues. A global fit [58] of the parameters of the EWChL
to Higgs-boson signal strength measurements at the LHC
shows that only deviations of Oð0.1Þ are allowed by data,
neglecting a few configurations of the couplings which are
deemed unnatural in the context of the EFTapproach. The fit
in [58] has been performed at LO inQCD,with the exception
of approximate NLO effects in the top quark contribution to
the h → γγ and h → gg decay rates, in the mt → ∞ limit.
With our calculation we provide one ingredient to extend
such a fit to include full NLO QCD effects.

VII. RESULTS FOR h → gg
AND h → γγ IN SMEFT

The previous discussion was based on the anomalous
couplings in the context of the EWChL, which parametrizes
the Higgs sector in a nonlinear manner and is particularly
suited forHiggs-relatedBeyond-the-Standard-Model (BSM)
scenarios with strong coupling dynamics. However, the
results presented in this work are actually applicable to a
broad variety of situations.
A common extrapolation of the SM into the UV regime

consists in adding higher dimensional operators to the
dimension-four SM, resulting in the SMEFT. We restrict
ourselves to the leading corrections from operators of
canonical dimension six. Here, the electroweak symmetry
breaking pattern is realized in a linear manner and the new
physics (NP) can decouple from the SM allowing for a
large mass gap. It is important to notice, however, that even
in such general situations, the power counting is not as
arbitrary as it seems at first glance. For instance, it is easy to
construct explicit weakly coupled UV models that, when
matched to dimension-six terms in the Warsaw basis [59],
result in a hierarchy among operators of the same mass
dimension. The clue lies in keeping track of explicit loop

factors 1=16π2 arising in the full theory that can be hidden
in the Wilson coefficients of certain local operators. A
systematic power-counting prescription for SMEFT is
therefore defined by canonical dimensions supplemented
by a loop-counting rule, allowing us to keep track of the
loop expansion, on which perturbative calculations in
quantum field theory are based [60].
For our purpose, the most significant implication is that

operators featuring field strength tensors (e.g. the operator8

QφG) are suppressed with an extra loop factor when
compared to the remaining ones. The formalism of the
EWChL in (2.6) already accounts for loop factors in
modified vertices involving the Higgs boson and can hence
be taken over to SMEFT straightforwardly,9 see Table VIII.
The coefficients ci can naturally be taken asOð1Þ numbers.
As a consequence, settingΛ ¼ 1 TeV, we have for instance
CφG ≈ 0.08cggh, which makes the implicit loop factor in the
definition of CφG manifest. For further comments about the
applicability of this Table, see [62].
In contrast, operators that induce anomalous couplings

without the Higgs boson (e.g. the chromomagnetic operator
QuG) are present within this framework only at subleading
order. They can be neglected consistently without spoiling
the underlying systematics. Similar arguments hold true for
four-fermion operators. Despite appearing with unsup-
pressed Wilson coefficients, the relevant diagrams are of
an explicit two-loop topology and can thus be dropped, see
Fig. 11 for h → gg.
Let us emphasize that in the context of NP in the Higgs

sector and in particular when considering the Higgs decay
channels highlighted in this paper, it is advantageous towork
with the EWChL, independently of the actual high energy
dynamics being strongly orweakly coupled to the SM.While
the difference between the EWChL and SMEFT is less
apparent when restricting the latter to canonical dimension
six, it becomes more relevant when higher dimensional
operators are considered. For instance, the impact of a
generic (2nþ 4)-dimensional operator ðφ†φÞnGa

μνGaμν to

TABLE VIII. Definition of the anomalous couplings ci in (2.6) in terms of the fundamental parameters of the
EWChL defined in Sec. I and Ref. [11] and the Warsaw basis Wilson coefficients Ci.

Coupling EWChL Warsaw basis

cf Mf;1

mf
1þ v2

Λ2 Cφ□ − v2

4Λ2 CφD − v3ffiffi
2

p
mfΛ2 Cfφ

cV F1

2 1þ v2

Λ2 Cφ□ − v2

4Λ2 CφD

cggh 16π2fXh3;1 32π2v2

g2sΛ2 CφG

cγγh 16π2ð2fXh1;1 þ fXh2;1 þ fXU1;1Þ 32π2v2

Λ2

�
CφW

g2 þ CφB

g02 − CφWB

gg0

�

7We see a slightly increased dependence if we enlarge the
parameter range of cb to �Oð10Þ.

8Here and in the following, we employ the notation of [61].
9The EWChL can account for strong coupling scenarios in the

gauge boson sector pushing the first deviations from the SM,
parametrized byF1, formally to theLO.This is not the case forweak
coupling scenarios which are conveniently handled by SMEFT.
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the local Higgs-gluon-gluon interaction in SMEFT is already
accounted for by cggh within the EWChL.While SMEFT has
contributions at all orders in the 1=Λ expansion, only a single
coefficient is responsible in the EWChL. An explicit dis-
tinction between thevarious 1=Λ2n terms that eventually sum
up to cggh is not necessary at this stage as itwould increase the
number of independent parameters, complicating the explo-
ration ofNP effects, which are yet to be discovered. Based on
the idea of organizing the Higgs-field factors ðφ†φÞn in
higher dimensional operators, the framework of geoSMEFT
has been developed [63], forwhich an analysis ofh → gg can
be found in [64,65].
In the language of the EWChL and working at NLO in

QCD we have

ΓEWChL
h→gg

ΓSM
h→gg

¼ 1þ 2 δct þ 2.7116 cggh þ δ2ct þ 1.8404 c2ggh

þ 2.7116 δctcggh; ð7:1Þ

where we defined δct ≡ ct − 1. Employing the relations of
Table VIII, it is straightforward to obtain a numerical
expression for SMEFT up to operator dimension six and
NLO in QCD. Defining C̃i ≡ Civ2=Λ2, we find

ΓSMEFT
h→gg

ΓSM
h→gg

¼ 1þ 2

�
C̃φ□−

1

4
C̃φD

�
− 2.0164C̃tφþ 578.04C̃φG

þ
�
C̃φ□−

1

4
C̃φD

�
2

− 2.0164

�
C̃φ□−

1

4
C̃φD

�
C̃tφ

þ 1.0164C̃2
tφþ 8.3632× 104C̃2

φG

þ 578.04

�
C̃φ□−

1

4
C̃φD

�
C̃φG− 582.77C̃tφC̃φG:

ð7:2Þ

Note that this expression is not fully systematic. First, it
retains only a part of the Oð1=Λ4Þ correction to the SM,
since dimension-eight operators are not included, in con-
trast to the general form (7.1). This can be improved by
extending the relations of Table VIII to higher canonical
dimensions. For example, dimension-eight contributions to
(7.2) can be found in [64,65] (minor numerical differences
arise due to a somewhat different treatment of higher order
corrections). Second, it hides the possible implicit loop
factor hidden in the coefficient CφG. A superficial inspec-
tion of (7.2) would therefore lead to expect the highest
deviations to be associated with this operator. As stated
before, adding a consistent power-counting prescription for
loops to the usual canonical counting in SMEFT can
resolve this issue [60]. For instance, the coefficient in
front of C̃φG would change from 578.04 to 3.6605, which is
a number of order unity.
While in SMEFT the exact anomalous coupling between

one Higgs boson and two gluons is given by an infinite
tower of coefficients with increasing number of canonical
dimension (and hence decreasing phenomenological
importance), the formalism of the EWChL highlights the
existence of a single anomalous coupling parameter cggh. It
is therefore inconvenient to treat CφG and its higher

dimensional relatives Cð8Þ
φG, C

ð10Þ
φG , etc. on unequal footing

for single-Higgs processes. This also becomes clear in the
context of QCD corrections. The latter can be summed up
for all individual SMEFT contributions at once, which is
equivalent to considering only one parameter from the start.
Distinguishing contributions associated with different
canonical dimensions is therefore not possible in the

present case. For instance, CφG and Cð8Þ
φG cannot be

extracted individually in single-Higgs processes, no matter
how precise the experimental measurement is. However,
processes involving two or more external Higgs states need

(a)

(b)

FIG. 11. Diagrams contributing to h → gg in SMEFT with single dimension-six insertions (black dots). (a) Contributions of order
∼g2s=16π2 with anomalous couplings defined in Table VIII. (b) Contributions of order ∼g2s=ð16π2Þ2 that can consistently be neglected.
This qualitative picture can be taken over to the process h → γγ.
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additional coefficients, e.g. cgghh. In SMEFT at canonical
dimension eight, cggh and cgghh are represented by different

linear combinations of CφG and Cð8Þ
φG. Disentangling the

latter coefficients thus requires the comparison of processes
with a varying number of Higgs particles [10,62].

VIII. CONCLUSIONS

We have performed a detailed analysis of QCD correc-
tions at NLO for the Higgs-boson decays h → gg and
h → γγ, allowing for the presence of anomalous Higgs
couplings from new-physics effects. The natural framework
for this task is provided by the EWChL, which accounts for
anomalous Higgs couplings at leading order in the EFT. In
addition, the EFT is governed by a power counting in loop
orders, which can be systematically combined with QCD
perturbation theory.
For h → gg the relevant EFT coefficients are the local

Higgs-gluon coupling cggh, the Higgs-top coupling ct and,
to a lesser extent, the Higgs-bottom coupling cb. They are
scale invariant under QCD. No additional EFT parameters
arise when the QCD calculation is extended from LO to
NLO. For the h → gg rate the impact of QCD is known to
be large, with a K-factor of about 1.7. The uncertainties
from scale dependence are reduced at NLO. This also holds
for the case of anomalous couplings, in particular for the
QCD coefficients of coupling factors, such as c2t , ctcggh or
c2ggh, in the expression of the decay rate. Those coefficients
show NLO scale uncertainties at the 10% level, reduced by
about a factor of 2 compared to LO. QCD has less impact
on h → γγ. In this case a NLO treatment of QCD effects
practically eliminates uncertainties from perturbative QCD.
A new feature arising at NLO in QCD is that the analysis

becomes sensitive to OðαsÞ corrections in the EFT coef-
ficients cggh and cγγh. Such terms are related to QCD
corrections in the calculation of these coefficients from
matching to the underlying UV completion of the EFT. In
Appendix D we have illustrated this with several toy
models for the UV physics.
We have also compared our treatment of the decays

using the EWChL with a description based on SMEFT.
The results presented here provide the basis for a

consistent determination of anomalous Higgs couplings
from h → gg and h → γγ at NLO in QCD.
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APPENDIX A: IR SUBTRACTION

Consider the NLO decay rate (5.1):

ΓNLO
h→gg ¼ ΓLO

h→gg þ ΓV
h→gg þ ΓR

h→gg: ðA1Þ

The Vand R corrections are separately IR divergent, with V
containing explicit poles in ϵ coming from loop integrals
carried out in dimensional regularization, and R implicit
phase space singularities related to soft or collinear final
state particles. Summing both contributions, however, yields
a finite result. In practice, the phase space integrals cannot be
evaluated analytically for most processes and numerical
integration methods have to be applied. In this case, the pole
cancellation cannot be checked directly. In order to still
obtain sensible results, one has to systematically regulate the
integrand in regions of the phase spacewhere it diverges. As
stated before, we adopt the antenna subtraction formal-
ism [33–35] for our setup, which proves to be particularly
simple for the process at hand, i.e. h → gg.
By construction the antenna subtraction term (S) repro-

duces the exact behavior of the real correction matrix
element in the IR singular limits for each color level in the
1=Nc expansion individually. The difference of both can
then be integrated numerically in a straightforward manner,
as the integrand identically vanishes in all IR singular phase
space regions. The subtraction term is constructed in such a
way that, after appropriate factorization of the phase space,
it can be integrated analytically over the phase space of the
particle becoming unresolved. The integrated subtraction
term (T) then exhibits explicit poles in ϵ which exactly
cancel those of the virtual corrections. We have

ΓV
h→gg þ ΓR

h→gg ¼
Z
2

dΓV
h→gg −

Z
2

dΓT
h→gg|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

finite

þ
Z
3

ðdΓR
h→gg − dΓS

h→ggÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
finite

; ðA2Þ

where

dΓT
h→gg ¼ −

Z
unres

dΓS
h→gg: ðA3Þ

The IR-subtracted expression for the h → ggg channel
(5.14) is given by
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Z
3

ðdΓR;ggg
h→gg−dΓ

S;ggg
h→ggÞ ¼

α3s
24πmhv2

NcðN2
c − 1Þ

Z
dΦ3

�X
λ

HλjAð0Þλ
h→gggj2 − 2m4

hF
0
3jAð0Þ

h→ggj2
�

¼ α3s
24πmhv2

NcðN2
c − 1Þ

Z
dΦ3

X
λ

Hλ

�
jAð0Þλ

h→gggj2 − jAð0Þ
h→ggj2

�
; ðA4Þ

where our special kinematics (1 → 3 decay) allows for the F0
3 antenna function [Eq. (7.8) in [33]] to be written as

m4
hF

0
3 ¼

1

2

X
λ

Hλ ¼ m8
h þ s412 þ s423 þ s413

s12s23s13
: ðA5Þ

The IR-subtracted contribution of the h → gqq̄ channel (5.22) to the rate evaluates to

Z
3

ðdΓR;gqq̄
h→gg−dΓ

S;gqq̄
h→ggÞ ¼

α3s
4πmhv2

ðN2
c − 1Þ

Z
dΦ3

�
s21q þ s21q̄

sqq̄
jAð0Þ

h→gqq̄j2 −m4
hG

0
3jAð0Þ

h→ggj2
�

¼ α3s
4πmhv2

ðN2
c − 1Þ

Z
dΦ3

s21q þ s21q̄
sqq̄

�
jAð0Þ

h→gqq̄j2 − jAð0Þ
h→ggj2

�
; ðA6Þ

where as before the G0
3 antenna function [Eq. (7.14) in [33]] can be simplified yielding

m4
hG

0
3 ¼

s21q þ s21q̄
sqq̄

: ðA7Þ

Adding back the (now integrated) subtraction term to the virtual contribution (5.7), we find

ΓV
h→gg − ΓT

h→gg ¼
α3s

512π4
m3

h

v2
ðN2

c − 1ÞðRefAð0Þ†
h→ggA

ð1Þ
h→ggg þ 2NcJ

ð1Þ
2 jAð0Þ

h→ggj2Þ; ðA8Þ

where the integrated antenna string is given by

Jð1Þ2 ¼ Jð1Þ;ggg2 þ NF

Nc
Jð1Þ;gqq̄2 ¼ μ2ϵ

�
1

3
F 0

3ðm2
hÞ þ

NF

Nc
G0
3ðm2

hÞ
�
: ðA9Þ

The integrated antenna functions F 0
3 and G0

3 can be found in [33]. Explicitly,

Jð1Þ2 ¼ −
1

2Nc
Re

�
NcIðϵÞ − β0Lþ 7

3
NF −

73

6
Nc

�
þOðϵÞ; ðA10Þ

where L ¼ log μ2=m2
h þ iπ and IðϵÞ has been defined in (5.10). We thus find

ΓV
h→gg − ΓT

h→gg ¼
α3s

512π4
m3

h

v2
ðN2

c − 1Þ
��

β0 log
μ2

m2
h

−
7

3
NF þ 73

6
Nc

�
jAð0Þ

h→ggj2þ
1

2

X
q

cqRefAð0Þ†
h→ggA

ð1Þ
q;g;finðτqÞg

�
; ðA11Þ

which is finite as ϵ → 0.

APPENDIX B: PARAMETRIC SUPPRESSION
OF THE DECAY RATE

In a theory in which the coupling of the Higgs to gluons

is given by an effective local interaction, such as the cggh
term in (2.6), the decay rate including OðαsÞ corrections

can be given in exact form, as the integral over the phase
space of the real radiation corrections can be calculated
analytically. This is the case for the SM [4], considering
only the top quark and the limit mt → ∞, in which the
top-quark loop is no longer resolved, generating an
effective Higgs-gluon interaction of the form hGa

μνGaμν.
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The corresponding Wilson coefficient is known to N4LO in
QCD [8,54,55,57]. In this limit the relevant part of the
effective Lagrangian (2.6) reduces to10

L∞
eff ⊃

αs
8π

�
cggh þ

2

3
ct

�
1þ 11

αs
4π

��
h
v
Ga

μνGaμν; ðB1Þ

where the superscript “∞” indicates that we sent mt to
infinity. Since the heavy top limit is actually a very good
approximation already at LO [4], this form of the
Lagrangian enables us to explore the interplay of the
effective couplings cggh and ct in a simple, yet not
unrealistic scenario. The decay rate reads

Γ∞
h→gg¼ΓLO;∞

h→gg

	
1þαs

π

�
Rþ 11ct

3cgghþ2ct

�
þOðα2sÞ



; ðB2Þ

with

ΓLO;∞
h→gg ¼

�
αs
4π

�
2 ð3cggh þ 2ctÞ2

18π

m3
h

v2
; ðB3Þ

and

R ¼ 73

4
−
7NF

6
þ 33 − 2NF

6
log

μ2R
m2

h

ðB4Þ

is the finite contribution from the V and R corrections. The
second term of the OðαsÞ correction is related to the OðαsÞ
correction to the effective coupling, see (B1). For later
convenience, we define

Δ ≔
11ct

3cggh þ 2ct
: ðB5Þ

cggh ≈ −ð2=3Þct is obviously a critical region in the
parameter space as the LO result (B3) becomes very small.
While R > 0 for realistic NF and μR (i.e. NF ¼ 5 and
μR ≈mh), the term Δ can become large and negative,
eventually rendering the whole NLO decay rate unphysical
when 1þ ðαs=πÞðRþ ΔÞ < 0. This is an artifact of
neglecting a certain part of the Oðα2sÞ corrections—(B2)
is not a perfect square—as we will explain in the following.
For cggh ¼ −ð2=3Þct, both the LO and NLO rates vanish

identically. The Higgs gluon coupling becomes effectively
Oðα2sÞ,

L∞
eff

����
cggh→−2

3
ct

⊃
α2s

32π2
22ct
3

h
v
Ga

μνGaμν; ðB6Þ

and the rate starts at Oðα4sÞ,

Γ∞
h→gg

����
cggh¼−2

3
ct

¼
�
αs
4π

�
4 242c2t

9π

m3
h

v2
þOðα5sÞ: ðB7Þ

This term is in fact a genuine part of the NNLO decay rate
for arbitrary cggh and ct. While the LO and NLO parts as
well as the other NNLO pieces of the rate are parametrically
suppressed for cggh ≈ −ð2=3Þct, this one is not. It will be
the dominant contribution to the decay rate in this regime,
and should therefore not be neglected, irrespective of being
formally of higher order in perturbation theory. We will
thus define the NLO rate to include (B7),

ΓNLO;∞
h→gg ¼ ΓLO;∞

h→gg

	
1þ αs

π
ðRþ ΔÞ




þ
�
αs
4π

�
4 242c2t

9π

m3
h

v2
ðB8Þ

¼ ΓLO;∞
h→gg

	�
1þ αs

π

Δ
2

�
2

þ αs
π
R


: ðB9Þ

Δ now only appears in a square and the rate will always be
positive for positive R. For cggh ≈ −ð2=3Þct, we will thus
obtain a more reliable prediction, while for all other cases,
the contribution of the Δ2 term will be subdominant.
It turns out that the same parametric suppression of the

LO and NLO rate occurs when we retain a finite top mass,
namely in the region cggh ≈ −ðct=2ÞAð0Þ

q ðτtÞ, see (4.2). This
issue can again be resolved by adding (B7), which in fact is
nothing but the mt → ∞ limit of the suitably IR-regulated
part of the virtual corrections squared contribution to the
NNLO corrections,11

ΓV×V;∞
h→gg jIR-regulated ¼

�
αs
4π

�
4 c2t
2π

���lim
τt→0

Að1Þ
q;g;finðτtÞ

���2m3
h

v2
ðB10Þ

¼
�
αs
4π

�
4 242c2t

9π

m3
h

v2
; ðB11Þ

with Að1Þ
q;g;fin from Eq. (5.9). We will settle for the heavy top

limit here, since the mass effects in this perturbatively
suppressed term will be negligible for most of the param-
eter space, but remark that if one wishes to explore the
parametrically suppressed region, i.e. close to the vanishing
LO rate, one should keep in mind that the calculation is
effectively a LO calculation in this specific approximation.

10See also Appendix D. Note that here we explicitly set
Nc ¼ 3.

11The double virtual corrections at the NNLO level consist of
the interference of the Born amplitude with the amplitude with
two additional loops, but also of the square of the amplitude with
one additional loop. The IR divergences are compensated by
double real and real virtual contributions.
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In practice, this treatment amounts to a shift of the
coefficient ANLO

tt in the rate as defined in (5.2),

ANLO
tt → ANLO

tt þ δANLO
tt ; ðB12Þ

with

δANLO
tt ¼

�
αs
4π

�
4 242

9π

m3
h

v2
: ðB13Þ

This shift is contained in all plots in Sec. VI, where also the
bottom-quark contribution is included. Figure 8 serves as
an empirical check that the latter does not introduce any
new critical points; the global minimum of the rate is
positive for arbitrary values of cggh, ct, and cb.
We remark that this is in general not true if we include

further light quarks, such as the charm. Albeit we expect its
contribution [for cc ∼Oð1Þ] to be comparatively small due
to its small mass, it will be possible to find particular
combinations in the now four-dimensional parameter space
spanned by cggh, ct, cb, cc for which the NLO rate will
become negative, with very small magnitude. We checked
for this particular scenario that it can only happen if cb and
cc exceed ct and cggh by at least 1 order of magnitude.
Those configurations are well away from any region of
phenomenological interest [58]. In addition, the argument

that the predictions in these cases are effectively of lower
order in perturbation theory still holds, and thus they are
subject to larger uncertainties.

APPENDIX C: CORRELATIONS OF THE
PARAMETRIC UNCERTAINTIES OF Γh→gg

When calculating the parametric uncertainties of the
decay rates Eq. (4.4) or Eq. (5.2), one has to take into
account the correlations between the respective uncertain-
ties σi of the coefficients Ai, as presented in Table VII.
Those correlations are described by the symmetric matrix ρ,
so that

σΓ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i;k

σ̃iρikσ̃k

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

σ̃2i þ
X
i≠k

σ̃iρikσ̃k

s
; ðC1Þ

where in case of the decay h → gg with anomalous
couplings cggh, ct, and cb the vector σ̃ is defined as

σ̃ ¼ ðc2gghσggh; c2t σtt; c2bσbb; ctcgghσtg; cbcgghσbg; cbctσbtÞ:
ðC2Þ

At LO and NLO in QCD the correlation matrices read

ρLO ¼

0
BBBBBBBB@

1 1.000 0.351 1.000 −0.735 −0.736
1.000 1 0.350 1.000 −0.734 −0.735
0.351 0.350 1 0.350 −0.893 −0.892
1.000 1.000 0.350 1 −0.735 −0.735
−0.735 −0.734 −0.893 −0.735 1 1.000

−0.736 −0.735 −0.892 −0.735 1.000 1

1
CCCCCCCCA
; ðC3Þ

and

ρNLO ¼

0
BBBBBBBB@

1 1.000 0.410 1.000 −0.773 −0.780
1.000 1 0.410 1.000 −0.773 −0.780
0.410 0.410 1 0.410 −0.896 −0.891
1.000 1.000 0.410 1 −0.773 −0.780
−0.773 −0.773 −0.896 −0.773 1 1.000

−0.780 −0.780 −0.891 −0.780 1.000 1

1
CCCCCCCCA
; ðC4Þ

respectively. At the accuracy we are working at, the impact
of the shift (6.7) on ρNLO is negligible.

APPENDIX D: TOY MODELS FOR cγγh AND cggh

The Lagrangian (2.6) provides an effective description of
the physics around the scale of electroweak symmetry

breaking v. Short distance effects related to the scale f ≫ v
are encoded into the Wilson coefficients such as cggh and
cγγh. By experimentally constraining their values, one can
make statements about the characteristics of the unknown
high scale physics, as different models of the UV theory
lead to different predictions for the size of the effective
couplings. In the following we will consider two toy
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models to sketch how the couplings cggh and cγγh are related
to the parameters of the full theory, including OðαsÞ
corrections.
In both scenarios, we consider a new heavy particle,

colored and charged, mediating the coupling of the Higgs
to photons and gluons through a loop, similar to the quark
loops in the SM. Assuming that the interaction of the Higgs
with the new particle i can be implemented by the
substitution

mi → mi

�
1þ gi;h

h
v

�
ðD1Þ

in its mass term, with gi;h an arbitrary Oð1Þ constant, the
effective coupling can be derived by means of low-energy
theorems [4,15,16,66], which have been used in the
calculation of various Higgs production and decay
modes [4,67–70]. Similar approaches [52–57] are related
to decoupling relations [71,72], which connect gauge
couplings in the full theory to those in the effective theory
with one or several degrees of freedom removed. The
effective couplings can then be expressed [53] in terms of
gauge independent objects like the MS β functions for the
strong and electromagnetic coupling, and the QCD anoma-
lous mass dimension γm of the heavy particle,12

cggh ¼ −
2πgi;h

α2sð1 − γmðα0sÞÞ
�
βðαsÞ − β0ðα0sÞ

∂αs
∂α0s

�
; ðD2Þ

cγγh ¼ −
2πgi;h

α2ð1 − γmðα0sÞÞ
�
βγðα; αsÞ − β0γðα0; α0sÞ

∂α

∂α0

− β0ðα0sÞ
∂α

∂α0s

�
: ðD3Þ

Quantities marked with a prime are to be evaluated in the
full theory, i.e. including the heavy particle, while other-
wise the effective theory without the heavy particle has to
be employed. The pure QCD and mixed QED-QCD β
functions are defined through

βðαsÞ≡ μ
dαs
dμ

¼ −2αs
	
ϵþ

�
αs
4π

�
β0 þ

�
αs
4π

�
2

β1 þOðα3sÞ



ðD4Þ

and

βγðα; αsÞ≡ μ
dα
dμ

¼ −2α
	
ϵþ

�
α

4π

�
β0γ þ

�
α

4π

��
αs
4π

�
β1γ

þOðα2; αα2sÞ


; ðD5Þ

respectively. The anomalous mass dimension is given by

γm ≡ μ

m
dm
dμ

¼ −
�
αs
4π

�
γ0m þOðα2sÞ: ðD6Þ

Expanding the expressions (D2) and (D3) up to NLO in αs
we find

cggh ¼−gi;h
	
Δβ0þ

�
αs
4π

�
ðΔβ1−Δβ0γ0mÞ



þOðα2sÞ; ðD7Þ

cγγh ¼−gi;h
	
Δβ0γ þ

�
αs
4π

�
ðΔβ1γ −Δβ0γ γ0mÞ



þOðα2sÞ; ðD8Þ

where we defined

Δβi ¼ β0i − βi; Δβiγ ¼ β0iγ − βiγ; ðD9Þ
i.e. the difference of the β-function coefficients in the full
and effective theory.

1. Fermion

As a first example, we can consider a model with an
additional heavy fermion F with electric charge QF in an
arbitrary representation R of SUðNcÞ:

L ¼ LSM þ F̄ðiDÞF −mF

�
1þ gF;h

h
v

�
F̄F: ðD10Þ

We then find [73]

Δβ0¼−
4

3
TR; Δβ1¼−

�
20

3
CAþ4C2ðRÞ

�
TR; ðD11Þ

Δβ0γ ¼−
4

3
dðRÞQ2

F; Δβ1γ ¼−4C2ðRÞdðRÞQ2
F; ðD12Þ

for the differences of β-function coefficients and

γ0m ¼ 6C2ðRÞ; ðD13Þ
for the leading coefficient of the QCD anomalous mass
dimension of the fermion, which is a known textbook
result [74,75]. We checked (D13) by explicitly carrying out
the mass renormalization of the fermion. Here dðRÞ, C2ðRÞ
and TR are the dimension, the quadratic Casimir and the
Dynkin index of representation R, respectively. The latter

12In the original references, decoupling relations were inves-
tigated with a heavy quark in mind, but the results can be used for
scalar-induced Higgs-gluon and Higgs-photon interactions, too,
assuming (D1) holds.
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defines the normalization of the generators in the given
group representation, Tr½Ta

RT
b
R� ¼ TRδ

ab. CA is the quad-
ratic Casimir of the adjoint representation. Plugging these
quantities into (D7) and (D8) and omitting terms of Oðα2sÞ,
we obtain

cggh ¼
4

3
gF;hTR

	
1þ

�
αs
4π

�
ð5CA − 3C2ðRÞÞ



; ðD14Þ

cγγh ¼
4

3
gF;hdðRÞQ2

F

	
1þ

�
αs
4π

�
ð−3C2ðRÞÞ



: ðD15Þ

For a fermion in the fundamental representation of SUðNcÞ
with Nc ¼ 3 we have

cggh ¼
2

3
gF;h

	
1þ 11

4

αs
π



; ðD16Þ

cγγh ¼ 4gF;hQ2
F

	
1 −

αs
π



: ðD17Þ

Of course, this result coincides with the heavy-top limit in
the SM.

2. Scalar

We can also consider13 a scalar with electric chargeQS in
representation R of SUðNcÞ,

L ¼ LSM þ jDμSj2 −m2
SS

�S
	
1þ

X
n

fn

�
h
v

�
n



− g2sλ
ijkl
S S�i S

�
kSjSl; ðD18Þ

where i; j; k; l ¼ 1;…; dðRÞ are color indices. The cou-
pling constant for a single Higgs to the scalar according
to (D1) is then given by14

gS;h ¼
f1
2
: ðD19Þ

In (D18) we assumed that the quartic coupling is propor-
tional to g2s , as is the case in some supersymmetric
scenarios. The coupling λS depends on the concrete model
under consideration, but in any case obeys

ðλijklS Þ� ¼ λjilkS : ðD20Þ

Furthermore it is symmetric with respect to i ↔ k and
j ↔ l. If we are interested in a model where the four-scalar
interaction does not contribute to the QCD corrections, and
consequently does not affect the Higgs-gluon and Higgs-
photon effective couplings to OðαsÞ, we can simply set
λS ¼ 0 in the following results.
The β-function differences read [73]

Δβ0¼−
1

3
TR; Δβ1¼−

�
2

3
CAþ4C2ðRÞ

�
TR; ðD21Þ

Δβ0γ ¼ −
1

3
dðRÞQ2

S; Δβ1γ ¼ −4C2ðRÞdðRÞQ2
S: ðD22Þ

The scalar self-interaction does not enter the β functions
before the three-loop level [77], but appears in the LO QCD
anomalous mass dimension of the scalar,

γ0m ¼ 3C2ðRÞ −
4

dðRÞ
X
i;k

λiikkS : ðD23Þ

We derived γ0m by explicit calculation of the mass renorm-
alization of the scalar; our result agrees with [76]. Plugging
everything into (D7) and (D8) we obtain [up to terms
Oðα2sÞ]

cggh¼
gS;h
3

TR

	
1þ

�
αs
4π

��
2CAþ9C2ðRÞþ

4

dðRÞ
X
i;k

λiikkS

�

;

ðD24Þ

cγγh ¼
gS;h
3

dðRÞQ2
S

	
1þ

�
αs
4π

��
9C2ðRÞþ

4

dðRÞ
X
i;k

λiikkS

�

:

ðD25Þ

For a scalar in the fundamental representation of SUðNcÞ
with Nc ¼ 3 we have

cggh ¼
gS;h
6

	
1þ 9

2

αs
π



; ðD26Þ

cγγh ¼ gS;hQ2
S

	
1þ 3

αs
π



; ðD27Þ

if the quartic interaction does not contribute. In case the
scalar is a squark in the Minimal Supersymmetric Standard
Model (MSSM), again in the fundamental representation,
the coupling λS is given by [78,79]

λijklS ¼ 1

4
ðTa

ijT
a
kl þ Ta

ilT
a
kjÞ ⇒

X
i;k

λiikkS ¼ 1

4
NcCF; ðD28Þ

13Only after we finished the following calculation we became
aware of [76], in which a very similar model has been considered,
focusing on the Higgs-gluon coupling.

14Note that upon integrating out the scalar, the Lagrangian (D18)
also generates effective couplings involving an arbitrary number of
Higgs particles. The derivation of the corresponding coupling
constants requires a generalization of the expressions (D2)
and (D3), which is beyond the scope of this Appendix. We will
therefore restrict ourselves to the single Higgs case.
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where Ta are the SUðNcÞ generators in the fundamental
representation. For the effective couplings we then find
(Nc ¼ 3)

cggh ¼
gS;h
6

h
1þ 29

6

αs
π

i
; ðD29Þ

cγγh ¼ gS;hQ2
S

h
1þ 10

3

αs
π

i
: ðD30Þ

Note that these results do not take any gluino exchange into
account [80]. Our expressions agree with those presented

in [8,70,76]. We again find consistent results by matching
the scalar-loop induced amplitudes for h → γγ [25] and
h → gg [38] in the limit of infinite scalar mass to the
amplitudes in the effective theory with local Higgs-photon
and Higgs-gluon interactions.15
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power counting in effective field theories, Phys. Lett. B 731,
80 (2014).

[13] Hao Sun, Ming-Lei Xiao, and Jiang-Hao Yu, Complete
NLO operators in the Higgs effective field theory, arXiv:
2206.07722.

[14] Lukáš Gráf, Brian Henning, Xiaochuan Lu, Tom Melia, and
Hitoshi Murayama, Hilbert series, the Higgs mechanism,
and HEFT, J. High Energy Phys. 02 (2023) 064.

[15] John R. Ellis, Mary K. Gaillard, and Dimitri V. Nanopoulos,
A phenomenological profile of the Higgs boson, Nucl. Phys.
B106, 292 (1976).

[16] Mikhail A. Shifman et al., Low-energy theorems for Higgs
boson couplings to photons, Sov. J. Nucl. Phys. 30, 711
(1979).

[17] Han- Qing Zheng and Dan- Di Wu, First order QCD
corrections to the decay of the Higgs boson into two
photons, Phys. Rev. D 42, 3760 (1990).

[18] A. Djouadi, M. Spira, J.J. van der Bij, and P.M. Zerwas,
QCD corrections to gamma gamma decays of Higgs
particles in the intermediate mass range, Phys. Lett. B
257, 187 (1991).

[19] S. Dawson and R. P. Kauffman, QCD corrections to
H → γγ, Phys. Rev. D 47, 1264 (1993).

[20] A. Djouadi, M. Spira, and P. M. Zerwas, Two photon decay
widths of Higgs particles, Phys. Lett. B 311, 255 (1993).

[21] K. Melnikov and Oleg I. Yakovlev, Higgs-two-photon
interaction in the standard model. The QCD radiative
correction, Phys. Lett. B 312, 179 (1993).

[22] M. Inoue, R. Najima, T. Oka, and J. Saito, QCD corrections
to two photon decay of the Higgs boson and its reverse
process, Mod. Phys. Lett. A 09, 1189 (1994).

[23] J. Fleischer, O. V. Tarasov, and V. O. Tarasov, Analytical
result for the two loop QCD correction to the decayH → 2γ,
Phys. Lett. B 584, 294 (2004).

[24] Robert Harlander and Philipp Kant, Higgs production and
decay: Analytic results at next-to-leading order QCD,
J. High Energy Phys. 12 (2005) 015.

[25] U. Aglietti, Roberto Bonciani, Giuseppe Degrassi, and
Alessandro Vicini, Analytic results for virtual QCD correc-
tions to Higgs production and decay, J. High Energy Phys.
01 (2007) 021.

[26] T. Kinoshita, Mass singularities of Feynman amplitudes,
J. Math. Phys. (N.Y.) 3, 650 (1962).

[27] T. D. Lee and M. Nauenberg, Degenerate systems and mass
singularities, Phys. Rev. 133, B1549 (1964).

[28] Roberto Contino, Margherita Ghezzi, Christophe Grojean,
Margarete Mühlleitner, and Michael Spira, eHDECAY: An
implementation of the Higgs effective Lagrangian into
HDECAY, Comput. Phys. Commun. 185, 3412 (2014).

15Reference [25] does not include the quartic self-interactions
into the calculation of h → γγ, while [38] presents the results for
h → gg in the mS → ∞ limit both with and without it. For further
details concerning the previous literature, see footnote 10 in [76].

h → gg AND h → γγ WITH ANOMALOUS COUPLINGS AT … PHYS. REV. D 107, 076021 (2023)

076021-23

https://doi.org/10.1142/S0217751X93001946
https://doi.org/10.1016/j.physletb.2015.09.027
https://doi.org/10.1016/0550-3213(90)90532-I
https://doi.org/10.1016/0550-3213(90)90532-I
https://doi.org/10.1016/0550-3213(95)00379-7
https://doi.org/10.1016/0550-3213(95)00379-7
https://doi.org/10.1016/S0550-3213(03)00044-0
https://doi.org/10.1016/S0550-3213(03)00044-0
https://doi.org/10.1088/1126-6708/2004/05/064
https://doi.org/10.1088/1126-6708/2004/05/064
https://doi.org/10.1007/JHEP10(2016)107
https://doi.org/10.1007/JHEP10(2016)107
https://doi.org/10.1016/j.ppnp.2017.04.001
https://doi.org/10.1140/epjc/s10052-016-4086-9
https://doi.org/10.1140/epjc/s10052-016-4086-9
https://doi.org/10.1007/JHEP09(2018)057
https://doi.org/10.1007/JHEP09(2018)057
https://doi.org/10.1016/j.nuclphysb.2014.01.018
https://doi.org/10.1016/j.physletb.2014.02.015
https://doi.org/10.1016/j.physletb.2014.02.015
https://arXiv.org/abs/2206.07722
https://arXiv.org/abs/2206.07722
https://doi.org/10.1007/JHEP02(2023)064
https://doi.org/10.1016/0550-3213(76)90382-5
https://doi.org/10.1016/0550-3213(76)90382-5
https://doi.org/10.1103/PhysRevD.42.3760
https://doi.org/10.1016/0370-2693(91)90879-U
https://doi.org/10.1016/0370-2693(91)90879-U
https://doi.org/10.1103/PhysRevD.47.1264
https://doi.org/10.1016/0370-2693(93)90564-X
https://doi.org/10.1016/0370-2693(93)90507-E
https://doi.org/10.1142/S0217732394001003
https://doi.org/10.1016/j.physletb.2004.01.063
https://doi.org/10.1088/1126-6708/2005/12/015
https://doi.org/10.1088/1126-6708/2007/01/021
https://doi.org/10.1088/1126-6708/2007/01/021
https://doi.org/10.1063/1.1724268
https://doi.org/10.1103/PhysRev.133.B1549
https://doi.org/10.1016/j.cpc.2014.06.028


[29] Roberto Contino, Margherita Ghezzi, Christophe Grojean,
Margarete Mühlleitner, and Michael Spira, Effective
Lagrangian for a light Higgs-like scalar, J. High Energy
Phys. 07 (2013) 035.

[30] R. L. Workman et al., Review of particle physics, Prog.
Theor. Exp. Phys. 2022, 083C01 (2022).

[31] Lance J. Dixon, E. W. Nigel Glover, and Valentin V. Khoze,
MHV rules for Higgs plus multi-gluon amplitudes, J. High
Energy Phys. 12 (2004) 015.

[32] S. D. Badger, E. W. Nigel Glover, and Valentin V. Khoze,
MHV rules for Higgs plus multi-parton amplitudes, J. High
Energy Phys. 03 (2005) 023.

[33] A. Gehrmann-De Ridder, T. Gehrmann, and E.W. Nigel
Glover, Antenna subtraction at NNLO, J. High Energy
Phys. 09 (2005) 056.

[34] A. Daleo, T. Gehrmann, and D. Maitre, Antenna subtraction
with hadronic initial states, J. High Energy Phys. 04 (2007)
016.

[35] James Currie, E. W. N. Glover, and Steven Wells, Infrared
structure at NNLO using antenna subtraction, J. High
Energy Phys. 04 (2013) 066.

[36] Carola F. Berger, Vittorio Del Duca, and Lance J. Dixon,
Recursive construction of Higgs-plus-multiparton loop am-
plitudes: The last of the Phi-nite loop amplitudes, Phys. Rev.
D 74, 094021 (2006); 76, 099901(E) (2007).

[37] Stefano Catani, The singular behavior of QCD amplitudes at
two loop order, Phys. Lett. B 427, 161 (1998).

[38] Charalampos Anastasiou, Stefan Beerli, Stefan Bucherer,
Alejandro Daleo, and Zoltan Kunszt, Two-loop amplitudes
and master integrals for the production of a Higgs boson via
a massive quark and a scalar-quark loop, J. High Energy
Phys. 01 (2007) 082.

[39] J. S. Rozowsky, Feynman diagrams and cutting rules, arXiv:
hep-ph/9709423.

[40] P. De Causmaecker et al., Multiple bremsstrahlung in gauge
theories at high-energies. 1. General formalism for quantum
electrodynamics, Nucl. Phys. B206, 53 (1982).

[41] R. Kleiss and W. James Stirling, Spinor techniques for
calculating pp → W�=Z0 þ Jets, Nucl. Phys. B262, 235
(1985).

[42] Zhan Xu, Da-Hua Zhang, and Lee Chang, Helicity ampli-
tudes for multiple bremsstrahlung in massless non-Abelian
gauge theories, Nucl. Phys. B291, 392 (1987).

[43] Lance J. Dixon, A brief introduction to modern amplitude
methods, Theoretical Advanced Study Institute in Elemen-
tary Particle Physics: Particle Physics: The Higgs Boson
and Beyond (2014), pp. 31–67, 10.5170/CERN-2014-
008.31.

[44] Henriette Elvang and Yu-tin Huang, Scattering amplitudes,
arXiv:1308.1697.

[45] R. Keith Ellis et al., Higgs decay to τþτ−: A possible
signature of intermediate mass Higgs bosons at the SSC,
Nucl. Phys. B297, 221 (1988).

[46] T. Hahn, CUBA: A library for multidimensional numerical
integration, Comput. Phys. Commun. 168, 78 (2005).

[47] K. G. Chetyrkin, Johann H. Kühn, and M. Steinhauser,
RunDec: A Mathematica package for running and decou-
pling of the strong coupling and quark masses, Comput.
Phys. Commun. 133, 43 (2000).

[48] Barbara Schmidt and Matthias Steinhauser, CRunDec: A C++
package for running and decoupling of the strong coupling
and quark masses, Comput. Phys. Commun. 183, 1845
(2012).

[49] Florian Herren and Matthias Steinhauser, Version 3 of RunDec
and CRunDec, Comput. Phys. Commun. 224, 333 (2018).

[50] Federico Buccioni, Jean-Nicolas Lang, Jonas M. Lindert,
Philipp Maierhöfer, Stefano Pozzorini, Hantian Zhang,
and Max F. Zoller, OpenLoops 2, Eur. Phys. J. C 79,
866 (2019).

[51] A. Gehrmann-De Ridder, T. Gehrmann, and E.W. Nigel
Glover, Gluon-gluon antenna functions from Higgs boson
decay, Phys. Lett. B 612, 49 (2005).

[52] Michael Kramer, Eric Laenen, and Michael Spira, Soft
gluon radiation in Higgs boson production at the LHC,
Nucl. Phys. B511, 523 (1998).

[53] K. G. Chetyrkin, Bernd A. Kniehl, and M. Steinhauser,
Decoupling relations to Oðα3sÞ and their connection to low-
energy theorems, Nucl. Phys. B510, 61 (1998).

[54] Y. Schröder and M. Steinhauser, Four-loop decoupling
relations for the strong coupling, J. High Energy Phys.
01 (2006) 051.

[55] K. G. Chetyrkin, Johann H. Kühn, and Christian Sturm, QCD
decoupling at four loops, Nucl. Phys. B744, 121 (2006).

[56] P. A. Baikov and K. G. Chetyrkin, Top Quark Mediated
Higgs Boson Decay into Hadrons to Order α5s, Phys. Rev.
Lett. 97, 061803 (2006).

[57] Michael Spira, Effective multi-Higgs couplings to gluons,
J. High Energy Phys. 10 (2016) 026.

[58] Jorge de Blas, Otto Eberhardt, and Claudius Krause,
Current and future constraints on Higgs couplings in the
nonlinear effective theory, J. High Energy Phys. 07 (2018)
048.

[59] B. Grzadkowski, M. Iskrzyński, M. Misiak, and J. Rosiek,
Dimension-six terms in the standard model Lagrangian,
J. High Energy Phys. 10 (2010) 085.

[60] G. Buchalla et al., Loop counting matters in SMEFT,
arXiv:2204.11808.

[61] A. Dedes, W. Materkowska, M. Paraskevas, J. Rosiek, and
K. Suxho, Feynman rules for the standard model effective
field theory in Rξ-gauges, J. High Energy Phys. 06 (2017)
143.

[62] Gudrun Heinrich, Jannis Lang, and Ludovic Scyboz,
SMEFT predictions for gg → hh at full NLO QCD and
truncation uncertainties, J. High Energy Phys. 08 (2022)
079.

[63] Andreas Helset, Adam Martin, and Michael Trott, The
geometric standard model effective field theory, J. High
Energy Phys. 03 (2020) 163.

[64] Tyler Corbett, Adam Martin, and Michael Trott, Consistent
higher order σðGG → hÞ, Γðh → GGÞ and Γðh → γγÞ in
geoSMEFT, J. High Energy Phys. 12 (2021) 147.

[65] Adam Martin and Michael Trott, ggh variations, Phys. Rev.
D 105, 076004 (2022).

[66] Bernd A. Kniehl and Michael Spira, Low-energy theorems
in Higgs physics, Z. Phys. C 69, 77 (1995).

[67] Bernd A. Kniehl and Michael Spira, Two loop OðαsGFm2
t Þ

correction to the H → bb̄ decay rate, Nucl. Phys. B432, 39
(1994).

BUCHALLA, HÖFER, and MÜLLER-SALDITT PHYS. REV. D 107, 076021 (2023)

076021-24

https://doi.org/10.1007/JHEP07(2013)035
https://doi.org/10.1007/JHEP07(2013)035
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1088/1126-6708/2004/12/015
https://doi.org/10.1088/1126-6708/2004/12/015
https://doi.org/10.1088/1126-6708/2005/03/023
https://doi.org/10.1088/1126-6708/2005/03/023
https://doi.org/10.1088/1126-6708/2005/09/056
https://doi.org/10.1088/1126-6708/2005/09/056
https://doi.org/10.1088/1126-6708/2007/04/016
https://doi.org/10.1088/1126-6708/2007/04/016
https://doi.org/10.1007/JHEP04(2013)066
https://doi.org/10.1007/JHEP04(2013)066
https://doi.org/10.1103/PhysRevD.74.094021
https://doi.org/10.1103/PhysRevD.74.094021
https://doi.org/10.1103/PhysRevD.76.099901
https://doi.org/10.1016/S0370-2693(98)00332-3
https://doi.org/10.1088/1126-6708/2007/01/082
https://doi.org/10.1088/1126-6708/2007/01/082
https://arXiv.org/abs/hep-ph/9709423
https://arXiv.org/abs/hep-ph/9709423
https://doi.org/10.1016/0550-3213(82)90488-6
https://doi.org/10.1016/0550-3213(85)90285-8
https://doi.org/10.1016/0550-3213(85)90285-8
https://doi.org/10.1016/0550-3213(87)90479-2
https://doi.org/10.5170/CERN-2014-008.31
https://doi.org/10.5170/CERN-2014-008.31
https://arXiv.org/abs/1308.1697
https://doi.org/10.1016/0550-3213(88)90019-3
https://doi.org/10.1016/j.cpc.2005.01.010
https://doi.org/10.1016/S0010-4655(00)00155-7
https://doi.org/10.1016/S0010-4655(00)00155-7
https://doi.org/10.1016/j.cpc.2012.03.023
https://doi.org/10.1016/j.cpc.2012.03.023
https://doi.org/10.1016/j.cpc.2017.11.014
https://doi.org/10.1140/epjc/s10052-019-7306-2
https://doi.org/10.1140/epjc/s10052-019-7306-2
https://doi.org/10.1016/j.physletb.2005.03.003
https://doi.org/10.1016/S0550-3213(97)00679-2
https://doi.org/10.1016/S0550-3213(97)00649-4
https://doi.org/10.1088/1126-6708/2006/01/051
https://doi.org/10.1088/1126-6708/2006/01/051
https://doi.org/10.1016/j.nuclphysb.2006.03.020
https://doi.org/10.1103/PhysRevLett.97.061803
https://doi.org/10.1103/PhysRevLett.97.061803
https://doi.org/10.1007/JHEP10(2016)026
https://doi.org/10.1007/JHEP07(2018)048
https://doi.org/10.1007/JHEP07(2018)048
https://doi.org/10.1007/JHEP10(2010)085
https://arXiv.org/abs/2204.11808
https://doi.org/10.1007/JHEP06(2017)143
https://doi.org/10.1007/JHEP06(2017)143
https://doi.org/10.1007/JHEP08(2022)079
https://doi.org/10.1007/JHEP08(2022)079
https://doi.org/10.1007/JHEP03(2020)163
https://doi.org/10.1007/JHEP03(2020)163
https://doi.org/10.1007/JHEP12(2021)147
https://doi.org/10.1103/PhysRevD.105.076004
https://doi.org/10.1103/PhysRevD.105.076004
https://doi.org/10.1007/s002880050007
https://doi.org/10.1016/0550-3213(94)90592-4
https://doi.org/10.1016/0550-3213(94)90592-4


[68] Bernd A. Kniehl and Michael Spira, Two loop OðαsGFm2
t Þ

corrections to Higgs production at LEP, Nucl. Phys. B443,
37 (1995).

[69] S. Dawson, A. Djouadi, and M. Spira, QCD Corrections to
SUSY Higgs Production: The Role of Squark Loops, Phys.
Rev. Lett. 77, 16 (1996).

[70] Margarete Mühlleitner and Michael Spira, Higgs boson
production via gluon fusion: Squark loops at NLO QCD,
Nucl. Phys. B790, 1 (2008).

[71] Werner Bernreuther and Werner Wetzel, Decoupling of
heavy quarks in the minimal subtraction scheme, Nucl.
Phys. B197, 228 (1982); B513, 758(E) (1998).

[72] S. A. Larin, T. van Ritbergen, and J. A. M. Vermaseren, The
large quarkmass expansion ofΓðZ0 → hadronsÞ andΓðτ− →
ντ þ hadronsÞ in the orderαs3, Nucl. Phys.B438, 278 (1995).

[73] D. R. T. Jones, The two loop beta function for a Gð1Þ ×
Gð2Þ gauge theory, Phys. Rev. D 25, 581 (1982).

[74] Michael E. Peskin and Daniel V. Schroeder, An Introduction
to Quantum Field Theory (Addison-Wesley, Reading, MA,
1995), ISBN: 978-0-201-50397-5.

[75] Matthew D. Schwartz, Quantum Field Theory and the
Standard Model (Cambridge University Press, Cambridge,
England, 2014), ISBN: 978-1-107-03473-0.

[76] Stefania Gori and Ian Low, Precision Higgs measurements:
Constraints from new oblique corrections, J. High Energy
Phys. 09 (2013) 151.

[77] Thomas Curtright, Three-loop charge renormalization ef-
fects due to quartic scalar self-interactions, Phys. Rev. D 21,
1543 (1980).

[78] Adel Bilal, Introduction to supersymmetry, arXiv:hep-th/
0101055.

[79] M. Shifman, Advanced Topics in Quantum Field Theory: A
Lecture Course (Cambridge University Press, Cambridge,
England, 2012), ISBN: 978-1-139-21036-2, 978-0-521-
19084-8.

[80] Margarete Mühlleitner, Heidi Rzehak, and Michael Spira,
MSSM Higgs boson production via gluon fusion: The
large gluino mass limit, J. High Energy Phys. 04 (2009)
023.

h → gg AND h → γγ WITH ANOMALOUS COUPLINGS AT … PHYS. REV. D 107, 076021 (2023)

076021-25

https://doi.org/10.1016/0550-3213(95)00107-4
https://doi.org/10.1016/0550-3213(95)00107-4
https://doi.org/10.1103/PhysRevLett.77.16
https://doi.org/10.1103/PhysRevLett.77.16
https://doi.org/10.1016/j.nuclphysb.2007.08.011
https://doi.org/10.1016/0550-3213(82)90288-7
https://doi.org/10.1016/0550-3213(82)90288-7
https://doi.org/10.1016/0550-3213(94)00574-X
https://doi.org/10.1103/PhysRevD.25.581
https://doi.org/10.1007/JHEP09(2013)151
https://doi.org/10.1007/JHEP09(2013)151
https://doi.org/10.1103/PhysRevD.21.1543
https://doi.org/10.1103/PhysRevD.21.1543
https://arXiv.org/abs/hep-th/0101055
https://arXiv.org/abs/hep-th/0101055
https://doi.org/10.1088/1126-6708/2009/04/023
https://doi.org/10.1088/1126-6708/2009/04/023

