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We explored the interplay between magnetic field and rotation in the de Hass–van Alphen oscillation.
The effect is found to be reduced because of the reweighting of different angular momentum states within
the same Landau level by rotation energy. The implications of our results on high energy physics and
condensed matter physics are discussed.
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I. INTRODUCTION

The experimental activities for recent years regarding
the polarization [1–7] and chiral magnetic effects [8–10]
in off-central relativistic heavy ion collisions promoted
theoretical research interests in a rotating thermodynamic
system in a magnetic field [11–18]. The same physical
conditions are also present in a neutron star [19–22]. One
of the interplays between magnetism and rotation, the
Barnett effect (or Einstein–de Haas effect) [23–25] has
been considered in hydrodynamic modeling of the colli-
sions. In this work, we examine another interplay between
magnetism and rotation, i.e. the de Haas–van Alphen
effect [26,27] in a strongly degenerate rotating Fermi gas.
Though purely theoretical at the present stage, the
implications are expected to shed light on the magnetic
properties of the quark matter core, if it exists, in a neutron
star and/or the Quark Gluon Plasma (QGP) droplet
generated in the RHIC STAR fixed target experiment,
where the quark density and temperature are toward the
strong degeneracy. The conclusion may also be tested
directly in condensed matter physics.
The de Haas–van Alphen (dHvA) effect in a strongly

degenerated system of charged fermions is the conse-
quence of filling discrete but highly degenerate Landau
levels in a magnetic field. The degeneracy of each Landau

level is proportional to the transverse area of the system
with respect to the direction of the constant magnetic field,
and the degeneracy per unit area is proportional to the
magnitude of the magnetic field. The spacing between
successive Landau levels also increases with the magnetic
field. When the system is static, all degenerate states
within a Landau level are equally probable to be occupied.
Varying the strength of the magnetic field will cause a
large number of fermions (proportional to the transverse
area) to jump between different discrete Landau levels,
resulting in oscillatory dependence of the thermodynamic
functions and transport coefficients on the magnetic field.
Among them are the magnetization and magnetic suscep-
tibility that correspond to the first order and second order
derivatives of the thermodynamic pressure calculated in
this work with respect to the magnetic field. Since its
discovery in 1930 [28,29], the de Haas–van Alphen effect
has been serving a powerful tool to detect the Fermi sea of
electrons in metals. The theoretical derivation of the de
Haas–van Alphen effect in a nonrotating system in terms
of the Landau gauge can be found in many textbooks,
e.g. [30,31] for nonrelativistic fermions and in [32] for
relativistic fermions.
When the system is in rotation, the thermodynamic

equilibrium is established under a nonzero macroscopic
angular momentum. The equal distribution of different
angular momentum states within a Landau level is offset by
the nonzero angular velocity with higher angular momenta
more favored than lower ones, which amounts to lifting the
degeneracy of the Landau level. The dHvA oscillation is
thereby expected to be reduced by rotation. Consider a
cylindrical volume of radius R in a constant magnetic field
parallel to its symmetry axis, designated as the z-axis,
the states of each fermion are characterized by the
z-component of the momentum q, the z-component of
the angular momentum M, and the radial quantum number
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of the wave function nð≥ 0Þ. A Landau level corresponds to
M > 0, the cyclotron motion in classical picture, and is
characterized by n. All M > 0 within the same Landau
level are degenerate up toM ∼ eBR2 when the center of the
cyclotron orbit reaches the boundary. When the cylinder is
rotating about the z-axis at a constant angular velocity
ωð> 0Þ, the angular momentum states within the same
Landau level but with different M are no longer equally
favored because of the Boltzmann factor eMω=T in the
ensemble of a macroscopic angular momentum. On the
other hand, the requirement of subluminal linear speed on
the boundary limits the radius of the cylinder R < 1=ω,
and the ideal thermodynamic limit R → ∞ cannot be
reached. The degeneracy of the Landau levels is always
finite, proportional to the transverse area of the cylinder. We
shall take the thermodynamic approximation by retaining
the leading term in power in 1=R in the thermodynamic
pressure, keeping in mind ωR ¼ Oð1Þ,1 and a sharp cutoff
in the summation over angular momentum states within a
Landau level is introduced to take care of the finite size
effect of the spectrum. Consequently, the implication of the
rotation in the dHvA oscillation depends on the size of the
system and the angular velocity. As we shall see, the dHvA
is completely suppressed for typical parameters appropriate
in a neutron star but may lead to an observable effect for a
cold and dense QGP fireball created in a future RHIC
project. For a strongly degenerate nonrelativistic electron
gas, the reduction of the dHvA is detectable in a rotating
metallic sample.
This paper is organized as follows. In Sec. II, the dHvA

term of the thermodynamic pressure of a rotating ultra-
relativistic quark gas is calculated and its implications are
discussed. The same effect for a nonrelativistic electron is
examined in Sec. III. Section IV concludes the paper.

II. ULTRARELATIVISTIC FERMI GAS

A. Solution of Dirac equation in cylindrical coordinate

For a massless fermion of electric charge e in a constant
magnetic field B⃗ ¼ Bẑ, the Hamiltonian in chiral repre-
sentation reads

H ¼ −iα⃗ · ð∇⃗ − ieAÞ

¼

0
B@−iσ⃗ · ð∇⃗ − ieAÞ 0

0 iσ⃗ · ð∇⃗ − ieAÞ

1
CA; ð1Þ

where the vector potential

A⃗ ¼ 1

2
B⃗ × r⃗: ð2Þ

We adopt the circular gauge instead of the Landau gauge
for the convenience of investigating a Fermi gas rotating
about the z-axis. As the fermions of opposite chiralities
have identical spectra, we shall focus on one of them with
the Hamiltonian in what follows:

H ¼ −iσ⃗ · ð∇⃗ − ieAÞ; ð3Þ

and the eigenvalue equation Hχ ¼ Eχ. For the ansatz
of the two-component wave function χ in cylindrical
coordinates, i.e.

χðr⃗Þ ¼
 
fðρÞeiðM−1

2
Þϕ

gðρÞeiðMþ1
2
Þϕ

!
eiqz; ð4Þ

we have the equations for the radial functions fðρÞ and gðρÞ
8>><
>>:

qfðρÞ − i
�

d
dρ þ

Mþ1
2

ρ − 1
2
eBρ

�
gðρÞ ¼ EfðρÞ

−i
�

d
dρ −

M−1
2

ρ þ 1
2
eBρ

�
fðρÞ − qgðρÞ ¼ EgðρÞ

; ð5Þ

whereq andM are the eigenvalue of themomentumand total
angular momentum in the direction of the magnetic field
with M ¼ �1=2;�3=2;…. Equation (5) can be solved
in terms of the generalized Laguerre polynomial Lμ

nðzÞ,
and we end up with the normalized wave function [33]

χnMqsðr⃗Þ ¼
1

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n!

ðnþmÞ!

s
e−

ζ
2

0
BBB@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eBðEþqÞ

2E

q
ζ
m
2Lm

n ðζÞeimϕ

iseBffiffiffiffiffiffiffiffiffiffiffiffi
EðE−qÞ

p ζmþ1Lmþ1
n−1 ðζÞeiðmþ1Þϕ

1
CCCAeiqz ð6Þ

for M > 0, and

1In this case the kinetic energy of rotation grows with the volume, such as other extensive thermodynamic quantities.
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χnMqsðr⃗Þ ¼
1

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n!

ðnþ jmjÞ!

s
e−

ζ
2

0
BB@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eBðEþqÞ

2E

q
ζ
jmj
2 Ljmj

n ðζÞeimϕ

− iseBðnþjmjÞffiffiffiffiffiffiffiffiffiffiffiffi
EðE−qÞ

p ζ
ðjmj−1Þ

2 Ljmj−1
n ðζÞeiðmþ1Þϕ

1
CCAeiqz ð7Þ

for M < 0, where ζ≡ 1
2
eBρ2, m≡M − 1=2, n ¼

0; 1; 2;…, and s ¼ �: The corresponding eigenvalue of
energy is E ¼ sEnMq with

EnMq ¼
8<
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2neBþ q2

p
for M > 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðnþ jmjÞeBþ q2
p

for M < 0
: ð8Þ

Care must be exercised for the case n ¼ 0 of the solution
(6) because of the nonexistence of Lmþ1

−1 and the singularity
at E ¼ −q. For E ¼ �q, Eq. (5) becomes

8>><
>>:

�
d
dρ þ mþ1

ρ − 1
2
eBρ

�
gðρÞ ¼ ið�q − qÞfðρÞ�

d
dρ −

m
ρ þ 1

2
eBρ

�
fðρÞ ¼ ið�qþ qÞgðρÞ:

ð9Þ

A normalizable solution exists only if E ¼ q and reads

χ0Mqsðr⃗Þ ¼
2mþ1ffiffiffi

π
p ðeBÞmþ1

2 ρme−
1
4
eBρ2þimϕþiqz

�
1

0

�
ð10Þ

with s ¼ signðqÞ, which implies the up (down) mover for a
positive (negative) energy solution. The wave function (7)
corresponds to the classical motion along the cyclotron
orbit and the upper M > 0 spectrum on the right-hand side
(RHS) of (8) constitutes the entire set of Landau levels and
is responsible for bulk magnetic properties including de
Haas–van Alphen effect to be discussed below in thermo-
dynamic approximation. The wave function (7) and the
spectrum (8) are specific to the cylindrical coordinates and
are subleading in the thermodynamic approximation as we
shall see below.

B. Thermodynamic pressure

The Hamiltonian of a massless fermion field in a
magnetic field is given by

H ¼
Z

d3r⃗ψ†Hψ ; ð11Þ

where H is the single particle Hamiltonian (3) and the field
operator

ψðr⃗Þ ¼
X
nMq

ηnMðqÞðanMqχnMqþðr⃗Þ þ b†nM−qχnMq−ðr⃗ÞÞ;

ð12Þ

where

ηnMðqÞ ¼
�
θðqÞ for M > 0 and n ¼ 0

1 otherwise
: ð13Þ

We have

H ¼
X
n;M;q

ηnMðqÞEnMqða†nMqanMq þ b†nMqbnMqÞ: ð14Þ

Correspondingly, the fermion number operator

Q ¼
Z

d3r⃗ψ†ψ

¼
X
n;M;q

ηnMðqÞða†nMqanMq − b†nMqbnMqÞ; ð15Þ

and the angular momentum projection operator

Jz ¼
Z

d3r⃗ψ†
�
−i

∂

∂ϕ
þ 1

2
σz

�
ψ

¼
X
n;M;q

ηnMðqÞMða†nMqanMq − b†nMqbnMqÞ: ð16Þ

Consequently, the thermodynamic pressure at temperature
T and chemical potential μ of a system rotating about the
z-axis with an angular velocity ωð> 0Þ is

P ¼ T
Ω

X
n¼0;M>0;q>0

½lnð1þ e−βðjqj−Mω−μÞÞ þ lnð1þ e−βðjqjþMωþμÞÞ� þ T
Ω

X
n≠0;M>0;q

h
ln
�
1þ e−βð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2þ2neB

p
−Mω−μÞ

�

þ ln
�
1þ e−βð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2þ2neB

p
þMωþμÞ

�i
þ T
Ω

X
n≠0;M>0;q

h
ln
�
1þ e−βð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2þ2ðnþMþ1

2
ÞeB

p
þMω−μÞ

�

þ ln
�
1þ e−βð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2þ2ðnþMþ1

2
ÞeB

p
−MωþμÞ

�i
; ð17Þ
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where we have switched the sign of M of the lower branch
of the spectrum (8) for clarity. For a cylinder of radius R
and length L, the spatial volume Ω ¼ πR2L,

X
n;M;q

ð� � �Þ ¼ 1

πR2

Z
∞

−∞

dq
2π

X
n;M

ð� � �Þ: ð18Þ

As stated in the Introduction, the ideal thermodynamic limit
is prohibited because of the requirement v≡ ωR < 1.
Instead we shall take the thermodynamic approximation
for sufficiently large R by sorting the terms according to
its power, keeping in mind that ωR ¼ Oð1Þ. For a finite R
summation over M is limited. It follows from Eqs. (6) and
(7) that the square of the wave function for large M and
finite n is peaked at the maximum of ρ2jmj exp ð− 1

2
eBρ2Þ,

which gives rise to ρ2 ¼ 2jmj=ðeBÞ. When this ρ becomes
comparable with R, the finite size effect will distort the
spectrum (8). Therefore, we introduce a cutoff for the
summation over M, i.e.

M ≤ Mc ¼
�
1

2
eBR2

	
≫ 1; ð19Þ

with ½� � �� truncating its argument inside its integer part. As
will be shown below, this cutoff reproduces the dHvA
effect derived from the Landau gauge in the absence of
rotation. Without solving the boundary value problem near
the boundary, we assume the uncertainty δMc ¼ Oð1Þ of
the cutoff.
Assuming strong degeneracy, μ ≫ T, the antiparticle

contributions may be ignored2 and we end up with

P¼ T
πR2

Z
∞

0

dq
4π

X
M>0

lnð1þe−βðjqj−Mω−μÞÞ

þ T
πR2

Z
∞

−∞

dq
2π

X
n>0;M>0

lnð1þe−βð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2þ2neB

p
−Mω−μÞÞ

þ T
πR2

Z
∞

−∞

dq
2π

X
n;M>0

lnð1þe−βð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2þ2ðnþMþ1

2
ÞeB

p
þMω−μÞÞ;

ð20Þ

where the contribution of the lowest Landau level has been
isolated from higher Landau levels because of different
integration domains of q. The summation over M in the
third term of (20) converges in the limit Mc → ∞ and

thereby does not contribute to the thermodynamic limit,
and we are left with the Landau level terms only, i.e.

P ¼ T
πR2

Z
∞

0

dq
4π

X
M>0

lnð1þ e−βðjqj−Mω−μÞÞ

þ T
πR2

Z
∞

−∞

dq
2π

X
n>0;M>0

lnð1þ e−βð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2þ2neB

p
−Mω−μÞÞ

≡ 1

πR2

X
M>0

PM; ; ð21Þ

where

PM ¼ T
Z

∞

0

dq
4π

lnð1þ e−βðjqj−μMÞÞ

þ T
Z

∞

−∞

dq
2π

X
n>0

lnð1þ e−βð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2þ2neB

p
−μMÞÞ; ð22Þ

with μM ¼ μþMω.

C. de Haas–van Alphen oscillation

As the standard derivation of the de Haas–van Alphen
(dHvA) effect, the summation over the Landau level index
n can be carried out with the aid of the Poisson formula

X∞
n¼0

fðnÞ ¼
Z

∞

0

fðnÞdnþ 2Re
X∞
l¼1

Z
∞

0

fðnÞe2iπlndn:

ð23Þ

We have

PM ¼ F0M þ 2Re
X∞
l¼1

FlM; ð24Þ

where

FlM ¼ T
Z

∞

−∞

dq
2π

Z
∞

0

dnei2πln lnð1þ e−βð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2þ2neB

p
−μMÞÞ:

ð25Þ

The dHvA oscillation resides in the second term of (24),
and we shall focus on it.
Transforming the integration variables from q, n to q, ϵ

with ϵ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ 2neB

p
, we find, via twice integration by

part with respect to ϵ, that

FlM ¼ IlM þ IIlM þ IIIlM ð26Þ

for l > 0, where

IlM ¼ i
eBT
4π2l

Z
∞

−∞
dq lnð1þ e−βðq−μMÞÞ; ð27Þ

2To be cautious, let us examine whether the combination E ≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ 2ðnþM þ 1

2
ÞeB

q
−Mω in the last term of (17) can

become negative and compete with μ for large M. For the maxi-
mum Mð¼ McÞ, E >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MceB

p
−Mcω ≃ eBRð1 − v=2Þ > 0.

The approximation of dropping the antiparticle contribution
appears safe.
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IIlM ¼ eB
4iπ2l

ffiffiffiffiffiffi
eB
πl

r Z
∞

−∞
dqe−i

lπ
eBq

2

ϕ

� ffiffiffiffi
lπ
eB

q
jqj
�

eβðq−μMÞ þ 1
; ð28Þ

and

IIIlM ¼ −
eB
4iπ2l

ffiffiffiffiffiffi
eB
lπ

r Z
∞

0

dϵϕ
� ffiffiffiffiffiffi

lπ
eB

r
ϵ

�

×
βeβðϵ−μMÞ

½eβðϵ−μMÞ þ 1�2
Z

ϵ

−ϵ
dqe−i

lπ
eBq

2

; ð29Þ

with

ϕðzÞ≡
Z

∞

z
dxeix

2

: ð30Þ

IlM is imaginary and thereby does not contribute to (24).
Assuming the condition

T ≪
ffiffiffiffiffiffi
eB

p
≪ μ; ð31Þ

the leading terms of IIlM and IIIlM can be worked out, and
we obtain that

IIlM ¼ eB
4π3l2

�
ln

� ffiffiffiffiffiffiffi
4lπ
eB

r
μM

�
þ 1

2
γE − i

π

4

	
; ð32Þ

with γE ¼ 0.5772… the Euler constant (see Appendix A
for the derivation), and

IIIlM ¼ −
ðeBÞ12T
4π

e
i

�
lπ2
eBμ

2
M−

π
4

�

l3=2 sinh 2lπ2TðμþMωÞ
eB

; ð33Þ

where the integration formula

Z
∞

−∞
dx

exþiα

ðex þ 1Þ2 ¼
πα

sinh πα
ð34Þ

and the asymptotic form

ϕðzÞ ¼ i
2z

eiz
2 þ � � � for z → ∞ ð35Þ

have been employed to reduce IIIM. The dHvA oscillation
stems from IIIM. Summing over M, we end up with
the dHvA term of the thermodynamic pressure under
rotation, i.e.

PdHvA ≡ 1

πR2

X
M>0

�
2Re

X∞
l¼1

IIIlM

�

¼ −
ðeBÞ12
2π2R2

X∞
l¼1

1

l3=2
X
M>0

cos
h
lπ
eB ðμþMωÞ2 − π

4

i

sinh 2lπ2TðμþMωÞ
eB

:

ð36Þ

In the absence of rotation, ω ¼ 0, Eq. (36) becomes

PdHvA ¼ −
TðeBÞ32
4π2

X∞
l¼1

1

l3=2

cos
h
lπ
eB μ

2 − π
4

i

sinh 2lπ2Tμ
eB

!T→0 ðeBÞ52
8π4μ

X∞
l¼1

1

l5=2
cos

�
lπ
eB

μ2 −
π

4

	
; ð37Þ

in agreement with the expression derived from the
Landau gauge.
Equation (36) can be further simplified at zero temper-

ature, i.e.

PdHvA ¼ −
ðeBÞ32
4π4R2

X
M>0

1

μþMω

×
X∞
l¼1

1

l5=2
cos

�
lπ
eB

ðμþMωÞ2 − π

4

	
: ð38Þ

Assuming ω ≪
ffiffiffiffiffiffi
eB

p
, the rapid convergence of the infinite

series with respect to l enables us to approximate the
summation over M by an integral. Consequently

PdHvA ≃ −
ðeBÞ32
4π4R2ω

Z
μþMcω

μ
dx

1

x

X∞
l¼1

1

l5=2
cos

�
lπ
eB

x2 −
π

4

�

¼ −
ðeBÞ32

8
ffiffiffi
2

p
π4R2ω

X∞
l¼1

1

l5=2

�
Ci

�
lπ
eB

ðμþMcωÞ2
�
− Ci

�
lπ
eB

μ2
�
þ Si

�
lπ
eB

ðμþMcωÞ2
�
− Si

�
lπ
eB

μ2
�	

≃
ðeBÞ52
8π5R2ω

X∞
l¼1

1

l7=2

2
64sin

�
lπ
eB μ

2 − π
4

�
μ2

−
sin
�
lπ
eB ðμþMcωÞ2 − π

4

�
ðμþMcωÞ2

3
75; ð39Þ
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where CiðzÞ and SiðzÞ are cosine and sine integrals and
their asymptotic forms for z ≫ 1, i.e.

�SiðzÞ ≈ π
2
− cos z

z

CiðzÞ ≈ sin z
z

; ð40Þ

are employed in the last step. If the maximum rotation
energy Mcω dominates, i.e. Mcω ≫ μ, the second term of
(39) can be dropped. we have

PdHvA ≃
ðeBÞ52

8π5μ2R2ω

X∞
l¼1

1

l7=2
sin
�
lπ
eB

μ2 −
π

4

�
; ð41Þ

and the uncertainty of Mc does not contribute.

D. Numerical estimates

As pointed out in the Introduction, the rotation will lift
the degeneracy of states within each Landau level and
thereby reduce the de Haas–an Alphen oscillation. In this
section, we shall estimate the amount of reduction using the
parameters appropriate for two realistic rotating ultrarela-
tivistic fermion systems in a magnetic field, the quark
matter core, and a QGP droplet at high baryon density.
Since the Fermi gas approximation of these two systems
tends to be poor and the condition of the latter system is
highly transient, we are not attempting to model the two
systems. The significance of our result below is only in the
sense of the order of magnitude. For the ultrarelativistic
system, we shall use mπ ¼ 140 MeV as the scale of the
chemical potential and temperature andm2

π ¼ 1018 G as the
scale of the magnetic field. The dimensionless ratio
PdHvA=P0 under different conditions will be plotted in
the rest of this subsection, where P0 ¼ μ4=ð24π2Þ is the
thermodynamic pressure in the absence of a magnetic field
and rotation.

1. The quark matter core of a neutron star

The radius of a neutron star is of the order of 10 km, and
we assume a quark matter core made of light flavors of
smaller radius R with a chemical potential of several
hundreds of MeV, i.e. a few times of pion’s rest energy,
mπ . The magnetic field inside a neutron star can reach as
high as 1015 G, i.e. 1.4 × 10−3m2

π . Even for the fastest
spinning neutron star, PSR J1748-2446ad, when the angu-
lar velocity is 716 Hz, the linear speed at the boundary of
the core is v ≃ 0.015 ≪ 1 (in the unit of the speed of light).
Consequently

μ

Mcω
¼ μ

mπ
·
m2

π

eB
·
10−16

RðkmÞv ≪ 1; ð42Þ

ωffiffiffiffiffiffi
eB

p ≃ 2.2 × 10−20
mπffiffiffiffiffiffi
eB

p ≪ 1 ð43Þ

for a typical neutron star. The approximation underlying
(41) is thereby justified, and we estimate

PdHvA

PdHvAkω¼0

∼
2

μRv
≃

3.86 × 10−16

μðMeVÞRðkmÞv ; ð44Þ

leading to a huge suppression of dHvA oscillation.
The thermodynamic pressure at μ2 ¼ 10m2

π and zero
temperature versus magnetic field 0 < eB < 0.01m2

π is
plotted in Fig. 1 for several linear speeds at the boundary
of the rotating cylinder of ultrarelativistic Fermi gas whose
radius is comparable to a typical neutron star. As a
benchmark, the thermodynamic pressure in the absence
of rotation is displayed in Fig. 2. The effect is suppressed
by 17 orders of magnitude.

2. A cold and dense QGP droplet

The suppression of dHvA in a neutron star may be
attributed to its large size. Let us switch to the parameter
values appropriate to a cold and dense QGP droplet where
the suppression of dHvA oscillation with the angular
velocity becomes modest. The dHvA term of the thermo-
dynamic pressure of Eq. (39) for R ¼ 10 fm versus the

FIG. 1. The dHvA oscillation with respect to the magnetic field
when T ¼ 0. Here, mπ ¼ 140 MeV, the chemical potential
μ2 ¼ 10m2

π , and the radius is R ¼ 1 km.

FIG. 2. The dHvA oscillation with respect to the magnetic field.
Here, ω ¼ 0 and T ¼ 0.
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magnetic field at fixed chemical potential and temperature
is plotted for several angular velocities including ω ¼ 0 in
Fig. 3. The same equation at fixed chemical potential and a
nonzero angular velocity is plotted for several temperatures
in Fig. 4. The dHvAwithout rotation, Eq. (37), at the same
chemical potential and the same set of temperatures is
plotted in Fig. 5 for reference. Notice that the suppression

of dHvAwith temperature becomes milder with ω ≠ 0. The
selection of the size and the magnetic field is motivated by
the conditions of the current heavy ion collisions in RHIC
and LHC.
While the RHIC STAR fixed target experiment is

expected to generate QGP of lower energy and higher
baryon density, i.e., closer to the density axis of the QCD
phase diagram, there may still be a gap to meet the
condition of the cold and dense QGP described above.
Even if it did, the rapid expansion would hinder the
observability of the effect because of nonequilibrium. So
our discussions here are highly speculative.

III. NONRELATIVISTIC FERMI GAS

The Hamiltonian of a nonrelativistic electron in a
constant magnetic field reads

H ¼ −
1

2me
ð∇⃗ − ieA⃗Þ2 þ 1

2
σzωB; ð45Þ

with the vector potential

A⃗ ¼ 1

2
Bẑ × r⃗; ð46Þ

where ωB ¼ eB=me is the cyclotron frequency and
σz ¼ diag:ð1;−1Þ. The spectrum in cylindrical coordinates
can be found in many textbooks of quantum mechanics and
is given by

Enmqσ ¼
q2

2me
þ
�
nþm − jmj

2
þ 1

2

�
ωB þ 1

2
σωB; ð47Þ

where q is the momentum along the z-direction,
n ¼ 0; 1; 2;…, are radial quantum numbers and
m ¼ 0;�1, �2,…,�Mc are the z-component of the orbital
angular momentum and σ ¼ � labels spin projections. The
corresponding wave function reads

ψnmqσðr⃗Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n!eB
2πðnþ jmjÞ!L

s
ζ
jmj
2 e−

ζ
2Ljmj

n ðζÞeiðmϕþqzÞ: ð48Þ

In a cylinder of finite radius, the thermodynamic approxi-
mation limits the azimuthal quantum number as (19), i.e.

jmj < mc ¼
�
1

2
eBR2

	
≫ 1; ð49Þ

with an uncertainty δmc ¼ Oð1Þ as in the ultrarelativistic
case. The Landau levels correspond to m ≥ 0 and are
labeled by n.

FIG. 3. The dHvA oscillation with respect to the magnetic field.
Here, T ¼ 0, we fix the chemical potential μ2 ¼ 10m2

π , and the
radius is R ¼ 10 fm.

FIG. 4. The dHvA oscillation with respect to the magnetic field.
Here, we fix the chemical potential μ2 ¼ 20m2

π , ωR ¼ 0.01, and
the radius is R ¼ 10 fm.

FIG. 5. The dHvA oscillation with respect to the magnetic field.
Here, we fix the chemical potential μ2 ¼ 20m2

π , and ω ¼ 0.
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A. Thermodynamic pressure and dHvA

For a free nonrelativistic electron gas, the dHvA can be
extracted using the same Poisson formula (23) as in most of
the textbooks of solid-state physics. Here we adopt a more
elegant approach via Mellin transformation [31].
The thermodynamic pressure of the electron gas in a

rotating cylindrical volume of radius R and length L reads

P ¼ 1

πR2

X
m

PmðζmÞ; ð50Þ

where

PmðζmÞ ¼
T
L

X
n;q;σ

ln
�
1þ 1

ζm
e−βEqnmσ

�
; ð51Þ

with ω > 0 the angular velocity and

ζm ¼ e−βðμþmωÞ: ð52Þ

The case of strong degeneracy corresponds to ζm ≪ 1. The
Mellin transformation of the function PmðζÞ with respect to
ζ is given by

QðsÞ ¼
Z

∞

0

dζζs−1PmðζÞ

¼ πT
Ls sin πs

X
n;q;σ

e−sβðEnmqσ−1
2
σωÞ ð53Þ

for 0 < Res < 1. The last equality follows from integration
by part and the formula

Z
∞

0

dx
xs−1

xþ 1
¼ π

sin πs
: ð54Þ

For the same reason as in the relativistic case, the
contribution from m < 0 is subleading in the thermody-
namic approximation, and we focus only on the branch
m ≥ 0 of the spectrum. We have for m ≥ 0

QðsÞ ¼ πT
Ls sin πs

X
q

e−
sβq2

2me

X
n;σ

e−ðnþ1
2
ÞsβωB−1

2
σsβðωB−ωÞ

¼ πT

λs3=2 sin πs

cosh 1
2
sβðωB − ωÞ

sinh 1
2
sβωB

; ð55Þ

where λ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π=ðmTÞp

is the thermal wavelength. It
follows from the Mellin inversion formula that

PmðζÞ ¼
Z

cþi∞

c−i∞

ds
2πi

ζ−sQðsÞ ð56Þ

with 0 < c < 1. The integrand on the complex s-plane
consists of a branch cut running along the negative real
axis, poles along both real and imaginary axes, i.e.

s ¼ l; s ¼ 2lπT
ωB

i; ð57Þ

with l ¼ 0;�1;�2;…. Closing the contour from the left as
shown in Fig. 6 for ζ < 1, we find

PmðζÞ ¼ ImðζÞ þ IImðζÞ; ð58Þ

where Im is the integral around the branch cut and IIm stems
from the poles along the imaginary axis. The former
contributes to the Landau diamagnetism and Pauli para-
magnetism along with the Barnett effect, and the latter
gives rise to dHvA oscillation. Summing up the residues of
the poles within the contour, we end up with

IImðζmÞ ¼
2T
λ

ffiffiffiffiffiffiffiffiffi
ωB

2πT

r X∞
l¼1

1

l3=2
csch

2lπ2T
ωB

cos
lπω
ωB

× cos

�
2lπðμþmωÞ

ωB
−
π

4

	
: ð59Þ

Summing up the orbital angular momentum, we obtain that

PdHvA ¼ 1

πR2

Xmc

m¼0

IIm ¼ −
TðmeωBÞ1=2

π2R2

X∞
l¼1

cos
lπω
ωB

sin
�
2lπμ
ωB

− lπω
ωB

− π
4

�
− sin

�
2lπμ
ωB

þ lπω
ωB

− π
4
þ 2lπmcω

ωB

�
l3=2 sinh 2lπ2T

ωB
sin lπω

ωB

: ð60Þ

Without rotation, ω ¼ 0, the well-known dHvA formula

FIG. 6. Contour integration [31].
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PdHvAjω¼0 ¼ −
TðmeωBÞ3=2

2π2
X∞
l¼1

1

l3=2
csch

2lπ2T
ωB

cos

�
2lπμ
ωB

−
π

4

�
ð61Þ

recovers. At zero temperature, Eq. (60) becomes

PdHvAjT¼0 ¼ −
ðmeωBÞ3=2
4π4meR2

X∞
l¼1

cos
lπω
ωB

sin
�
2lπμ
ωB

þ lπω
ωB

− π
4
þ lπmeωR2

�
− sin

�
2lπμ
ωB

− lπω
ωB

− π
4

�
l5=2 sin lπω

ωB

≃ −
ðmeωBÞ5=2
4π5m2

eωR2

X∞
l¼1

1

l7=2

�
sin

�
2lπμ
ωB

−
π

4
þ 2lπmcω

ωB

�
− sin

�
2lπμ
ωB

−
π

4

�	
; ð62Þ

where the approximation ω ≪ ωB is made for the typical
parameters in condensed matter physics. This expression is
to be compared with the zero temperature limit of (63), i.e.

PdHvAjω¼0 ¼ −
ðmeωBÞ5=2
4π4me

X∞
l¼1

1

l5=2
cos

�
2lπμ
ωB

−
π

4

�
: ð63Þ

At this point, it is interesting to compare the non-
relativistic dHvA and the ultrarelativistic dHvA. As shown
in Eq. (47), given q and σ, the nonrelativistic Landau levels
(m > 0) are equally spaced while the spacing between
successive ultrarelativistic Landau levels in the upper
spectrum on the RHS of Eq. (8) decreases with increasing
n. Since the dHvA is sensitive to the energy levels around
the chemical potential μ, the amplitude of the oscillation is
expected to be independent of μ in the nonrelativistic case
but decreases with μ in the ultrarelativistic case as reflected

in the large μ suppression by sinh 2lπ2Tμ
eB of (37) in the latter

case. When rotation is turned on, the effective chemical
potential increases with the angular momentum quantum
number. Consequently, the nonrelativistic dHvA appears
less vulnerable than the ultrarelativistic one.

B. Numerical estimates

The electron gas in a good metal at room temperature,
T ∼ ð1=40Þ eV, can be well approximated by a free Fermi
in the strong degeneracy limit. The chemical potential is
1–10 eV, which makes μ=T ∼ 40 ∼ 400 ≫ 1 and the zero
temperature approximation works well. For a magnetic
field up to a few Teslas and an angular velocity in Hertz, we
have

ω=ωB ≃ 5.57 × 10−12
ωðHzÞ
BðTÞ ; ð64Þ

justifying the approximation made in (62) for mechanical
rotation achievable in the laboratory. The same condition
also makes the contribution of the uncertainty in the
angular momentum cutoffmc to the phase of the oscillation
in (60) and (62) negligible.

The dHvA oscillation is expected to be significantly
reduced when the largest rotation energy mcω within a
Landau level exceeds the spacing between successive
levels, ωB. With R in centimeters, the linear velocity of
the circumference v ¼ ωR in terms of cm=s, it follows from
(49) that

mcω

ωB
≃ 0.43Rv; ð65Þ

independent of the magnetic field.
Parallel to the ultrarelativistic case, the dimensionless

ratio PdHvA=P0 of a strongly degenerate electron gas
versus magnetic field for a long cylinder of radius
R ¼ 1 cm at T ¼ 0 is plotted in Figs. 7–9, where P0 ¼
ð2meμÞ5=2=ð15π2meÞ is the nonrelativistic pressure at B ¼
0 and ω ¼ 0. The magnetic field varies in a small
neighborhood of 1T and the angular velocity is taken such
that the RHS of (65) is of order one. The dHvA effect
without rotation, Eq. (63), for different chemical potentials
is shown in Fig. 7 as a benchmark. The parallel setup for
ωR ¼ 2 cm=s, Eq. (62), is shown in Fig. 8 with similar
profiles. More important is Fig. 9 where dHvA at different
ωR is displayed. The suppression of the oscillation by
rotation is evident and should be observable by measuring
the magnetization and/or magnetic suspectibility

FIG. 7. The nonrelativistic dHvA oscillation with respect to the
magnetic field when T ¼ 0 and ω ¼ 0.
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(derivatives of the thermodynamics pressure with respect to
magnetic field) of a rotating metallic cylinder.

IV. CONCLUDING REMARKS

Let us recapitulate what we presented in the preceding
sections. We examined the robustness of the de Haas–van
Alphen effect in a strongly degenerate Fermi gas under
rotation. We derived the analytical formulas for dHvA
oscillation for a long cylinder rotating about its axis under a
constant magnetic field parallel to the axis in the ultra-
relativistic limit and nonrelativistic limit. As the macro-
scopic degeneracy (proportional to the transverse area) of
Landau levels is offset by the rotation energy of states of
different angular momentum within each Landau level. The
amplitude of the oscillation is reduced. The amount of
reduction depends on the angular velocity ω and the radius
of the cylinder R, and the oscillation is expected to become
insignificant for sufficiently large ω and R. The ultra-
relativistic dHvA appears more vulnerable than the non-
relativistic one because of decreasing Landau level spacing
with energy.

Applying the ultrarelativistic formula to estimate dHvA
with typical parameters of a neutron star, and with typical
parameters of a cold and dense QGP droplet, we noted that
the dHvA oscillation is completely suppressed in the
former case and remains in the latter. The nonrelativistic
formula, on the other hand, showed that for a typical
electron gas in a good metal, the variation of dHvA
oscillation with angular velocity appears detectable, via
magnetization and/or magnetic susceptibility.
As self-criticism, our approximation of the finite size

effect by introducing the maximum angular momentum
within a Landau level in (19) and (49) may be crude.
Possible contribution from edge states [17] has not been
considered. Limited by the analytical tractability, the
cylindrical shape of the system is not suitable to model
a neutron star or a QGP droplet. Though the effect is
expected to remain for a Fermi liquid, the interaction in
quark matter may modify significantly the quantitative
prediction. In this sense, our result is very preliminary.
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APPENDIX

For μ ≫ T, Eq. (56) can be approximated as

IIlM ≃
1

2iπ2l

ffiffiffiffiffiffi
eB
lπ

r Z
μM

0

dqe−i
lπ
eBq

2

ϕ

� ffiffiffiffiffiffi
lπ
eB

r
q
�

¼ eB
2iπ3l2

J;

ðA1Þ

where

J ¼
Z

K

0

dxe−ix
2

ϕðxÞ ¼
Z

K

0

dxe−ix
2

Z
∞

x
dξeiξ

2 ðA2Þ

with K ¼
ffiffiffiffi
lπ
eB

q
μM. Introducing ξ ¼ xt, we find

J ¼
Z

K

0

dxe−ix
2

x
Z

∞

1

dteit
2x2 ¼ 1

2i

Z
∞

1

dt
eiK

2ðt2−1Þ − 1

t2 − 1

¼ −
1

2
K2

Z
∞

1

dteiK
2ðt2−1Þt ln

t − 1

tþ 1
; ðA3Þ

where the last equality follows from integration by part.
Introducing z ¼ t2 − 1, we have

FIG. 8. The nonrelativistic dHvA oscillation with respect
to the magnetic field when T ¼ 0. Here, we fix ωR ¼ 2 cm=s and
R ¼ 1 cm.

FIG. 9. The nonrelativistic dHvA oscillation with respect to the
magnetic field when T ¼ 0. Here, we fix the chemical potential
μ ¼ 5 eV and the radius is R ¼ 1 cm.

YANG, DONG, HOU, and REN PHYS. REV. D 107, 076020 (2023)

076020-10



J ¼ −
1

4
K2

Z
∞

0

dzeiK
2z ln

ffiffiffiffiffiffiffiffiffiffiffi
zþ 1

p
− 1ffiffiffiffiffiffiffiffiffiffiffi

zþ 1
p þ 1

: ðA4Þ

If follows from the Jordan lemma that the integration path
can be rotated to the imaginary axis on the z-plane, and we
end up with

J ¼ −
i
4
K2

Z
∞

0

dye−K
2y ln

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ iy

p
− 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ iy
p þ 1

: ðA5Þ

For K ≫ 1, we have

J ≃ −
i
4
K2

Z
∞

0

dye−K
2y ln

iy
4
¼ i

2

�
lnð2KÞ þ 1

2
γE

�
þ π

8
:

ðA6Þ

This gives rise to the RHS of (32).
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