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We compute the strong coupling constant of Landau gauge QCD in the full complex momentum plane,
both directly and via spectral reconstruction. In particular, we consider the Taylor coupling given by the
product of ghost and gluon dressing functions. Assuming spectral representations for the latter, we first
show that also the coupling obeys such a representation. The subsequent spectral reconstruction of the
coupling data, obtained from 2þ 1 flavor lattice QCD results for the ghost and gluon, is based on a
probabilistic inversion of this representation using Gaussian process regression with analytically enforced
asymptotics. In contradistinction, our direct calculation relies on earlier reconstruction results for the ghost
and gluon spectral functions themselves, as well as data obtained in functional QCD. Apart from its
relevance for studies of resonances or scattering processes, the calculation also serves as a nontrivial
benchmark of our reconstruction approach. The results show remarkable agreement, testifying to the
reliability of the method.
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I. INTRODUCTION

Real-time correlation functions are of great importance
in the calculation of timelike observables in quantum
chromodynamics (QCD). Physical scattering processes
or the hadronic resonance spectrum represent prominent
examples requiring first-principle input in the form of
fundamental correlation functions in Minkowski space-
time. The strong coupling constant of QCD is a central
ingredient in any of those, as it describes the interaction
strength between the fundamental fields. One of its most
salient features is asymptotic freedom, i.e., the decay
toward small distances, which is well captured by pertur-
bation theory. In contrast, the large distance or low energy
behavior, where the coupling grows large, can only be
described via nonperturbative approaches such as lattice
field theory or functional methods. While these approaches

have proven effective for the calculation of Euclidean
correlation functions, they are not well developed in
Minkowski spacetime.
Recently, progress has been made through the spectral

functional approach [1,2], enabling a direct real-time
formulation of functional methods. For applications to
QCD and gravity, see [3–6]. On the lattice field theory
side, direct real-time calculations are plagued by a severe
sign problem. However, Minkowski correlation functions
may also be obtained indirectly via spectral reconstruction
of Euclidean data. This requires inverting the Källén-
Lehmann (KL) spectral representation [7,8]. The appli-
cability of Gaussian process regression (GPR) to inverse
problems of this type was discussed in [9]. The method has
since been employed for the spectral reconstruction of
ghost and gluon propagator data in [10] and the compu-
tation of glueball masses in [11].
Utilizing numerical reconstruction techniques to com-

pute spectral functions has a long history in nonperturbative
QCD. The underlying problem is inherently ill conditioned,
prompting the development and application of a plethora
of approaches over the last couple of decades, such as the
maximum entropy method [12–14], Bayesian inference
techniques [15,16], Tikhonov regularization [17–19],
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neural networks [20–24], kernel ridge regression [25,26],
and basis expansions [27–31].
In this work, we establish a spectral representation for

the strong coupling constant and compute its spectral
function. The calculation is facilitated by the reconstruction
results for the ghost and gluon spectral functions of [10],
based on propagator data from 2þ 1 flavor lattice QCD
calculations with domain wall fermions at a physical pion
mass [32,33]. In doing so, we improve on the previous
reconstruction approach by incorporating known asymp-
totic behavior into the GP kernel. Based on these data, we
also apply GPR directly to the reconstruction of the Taylor
coupling. This nontrivial benchmark of our reconstruction
method yields remarkable agreement between the direct
and indirect results, thereby making a strong case for the
reliability of spectral reconstruction via probabilistic inver-
sion with GPR. On the other hand, our results feature a
broad range of applications in the calculation of physical
observables. Knowledge of the coupling constant in the full
complex plane is required, e.g., in the treatment of hadronic
bound states via Bethe-Salpeter equations. Furthermore, in
the calculation of physical scattering amplitudes, the strong
coupling in Minkowski space is a necessary ingredient. Our
main result, the spectral function of the strong coupling
constant from both GPR reconstruction and via its spectral
representation, is shown in Fig. 2(b).
This paper is organized as follows. In Sec. II, we derive the

spectral representation for the strong coupling constant. The
extension of our spectral reconstruction approach granting
improved control over the asymptotics is described in
Sec. III. Our results are presented in Sec. IVandwe conclude
in Sec. V.

II. SCATTERING PROCESSES AND THE
TIMELIKE QCD COUPLING

Scattering processes and decays in QCD are described in
terms of S-matrix elements. At low energies, the operators
of the physical in and out states are complicated objects in
terms of the fundamental QCD degrees of freedom. For
instance, a description of the Compton scattering of protons
requires the definition of the proton or, more generally, the
nucleon operator in terms of its partonic constituents.
Since, on the fundamental level, the partons are related
to quarks and gluons, the building blocks of the respective
S-matrix elements are quark-gluon and quark-photon
scattering processes.
In most partonic models the fundamental scattering

processes are approximated by effective models for the
exchange process, such as one-gluon exchange potentials
that carry the qualitative property of the gluon mass gap in
QCD in terms of an effective mass. Ideally, however, they
should be constructed from tree-level processes in QCD
with full propagators and vertices, both of which carry on-
shell, timelike, and spacelike momenta. The final S-matrix
is gauge-invariant, while the tree-level components making

up the individual S-matrix element contributions are not.
Moreover, the S-matrix admits a spectral representation,
which is not necessarily present for the gauge-fixed
correlation functions.

A. Cross section of quark–antiquark scattering events
and the S-matrix element

In the present work, we undertake a first step toward
such a determination of nonperturbative S-matrix building
blocks in QCD. To that end, we compute the timelike
strong coupling in 2þ 1 flavor QCD that governs the
quark–antiquark scattering process depicted in Fig. 1. This
diagram is at the core of many of the scattering processes
used to determine the strong running coupling,

αsðpÞ ¼
g2sðpÞ
4π

: ð1Þ

It is also one of the fundamental building blocks of
scattering processes in the Pomeron model [34–37]—such
as the aforementioned Compton scattering of the proton—
where it is typically estimated by one-gluon exchange
models. For a review, see [38]; for a recent application
related to the present work, see [39].
Assuming the incoming and outgoing quarks qðpÞ and

antiquarks q̄ðp̄Þ to be on-shell, qq̄-scattering is similar to
eþe− scattering. We expect this analogy to hold for suffi-
ciently large timelike exchange momenta p2 ≳ 1 GeV2,
whereas for p2 ≲ 1 GeV2 we enter the hadronic, strongly
correlated regime. There, the nontrivial embedding of the
scattering quarks and antiquarks in hadrons becomes increas-
ingly relevant, and quark–antiquark scattering should be also
considered off-shell alongside with further, more compli-
cated processes; for a formulation in functional approaches,
see [36].
Here, we concentrate on the one-gluon exchange dia-

gram as one of the building blocks of the full S-matrix
element. The associated tree-level process shown in Fig. 1

consists of two full quark-gluon vertices, Γð3Þ
qq̄Aðp1; p2; pÞ

with the on-shell momenta p1, p2 for the incoming as well

FIG. 1. qq̄-scattering process with a one-gluon exchange. At
sufficiently large timelike exchange momenta, this process
plays an important role in its respective S-matrix elements.
Consequently, all internal quantities are dressed. Blue blobs
represent full vertices, and the wiggly internal line is a full gluon
propagator.
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as Γð3Þ
qq̄Aðp3; p4;−pÞ with on-shell −p3, −p4 for the out-

going quark and antiquark, respectively. The relative minus
sign is due to the notational convention in functional
computations treating all momenta as incoming. The
momentum p is that of the exchange gluon with the full
gluon propagator GAðpÞ. In combination, this process can
be expressed as

hqðp3Þq̄ðp4ÞjSjqðp1Þq̄ðp2Þi

≃
Y4
i¼1

Z−1=2
q ðpiÞ

�
½ūqðp3ÞΓð3Þ

qq̄Aðp3;p4;pÞvqðp4Þ�aμGAðpÞδab

×

�
gμν−

pμpν

p2

�
½v̄qðp2ÞΓð3Þ

qq̄Aðp1;p2;−pÞuqðp1Þ�bν
�
; ð2Þ

where the (on-shell) quark wave functions Zq originate in
the LSZ reduction formula. Note that the quark and gluon
wave functions are defined such that the quark and gluon
propagators GqðpÞ, GAðpÞ are proportional to 1=ZqðpÞ,
1=ZAðpÞ, respectively. The scalar parts of the Euclidean
propagators read

GAðpÞ ¼
1

ZAðpÞ
1

p2
; GqðpÞ ¼

1

ZqðpÞ
1

p2 þM2
qðpÞ

;

ð3Þ
where the full propagators are proportional to the identity in
color space in the adjoint (gluon) and fundamental (quark)
representations. The gluon propagator in the Landau gauge
also carries the projection operator on the transverse
subspace (see (2), and the quark propagator is multiplied
by i=pþMqðpÞ. With (3), the standard LSZ factors carrying

the pole residues are simply Z−1=2
q , as already used in (2).

The S-matrix element (2) is renormalization group (RG)
invariant, as required. To see this explicitly, we reparame-
trize the vertices in terms of wave functions of the legs and
an RG-invariant core,

Γð3Þ
qq̄Aðpi;pj;pÞ ¼ Z

1
2
qðpiÞZ

1
2
qðpjÞZ

1
2

AðpÞΓ̄ð3Þ
qq̄Aðpi;pj;pÞ; ð4Þ

where Γ̄ð3Þ
qq̄A has the transformation properties of a running

coupling, and naturally occurs in the S-matrix element.
Inserting (4) into the S-matrix element (2) leads us to

hqðp3Þq̄ðp4ÞjSjqðp1Þq̄ðp2Þi
≃ ½ūqðp3ÞΓ̄ð3Þ

qq̄Aðp3; p4; pÞvqðp4Þ�aμ
×

1

p2
δab

�
gμν −

pμpν

p2

�

× ½v̄qðp2ÞΓ̄ð3Þ
qq̄Aðp1; p2;−pÞuqðp1Þ�bν : ð5Þ

We restrict ourselves to the limit of large transfer momentum
p2 ≡ s of the scattering event with p1p3 ¼ p2p4 ¼ sð1 −
cos θÞ=4 and scattering angle cos θ ¼ p1p3=ðjp1jjp3jÞ.

For small s, we approach the reliability limit of our
approximations. We return to the respective discussion after
deriving our results.
Additionally, in a last approximation step we concentrate

on the classical tensor structure γμTa in the full quark-gluon
vertex,

½Γ̄ð3Þ
qq̄Aðpi; pj; pÞ�aμ ≈ iγμTa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4παsðsÞ

p
: ð6Þ

Here, Ta is the SUð3Þ generator in the fundamental
representation and αsðsÞ, defined in (1), is the strong
coupling of the quark-gluon scattering process in the
s-channel. On the equation of motion, the =pi terms vanish,
and we obtain

jūqðp3ÞγμTavqðp4Þv̄qðp2ÞγμTauqðp1Þj2 →
s2

9
ð1þ cos2θÞ;

ð7Þ
in the high energy limit. In (7), we have performed an
average/sum over spins and color in the initial/final state.
With (5)(7), we arrive at

jhqðp3Þq̄ðp4ÞjSjqðp1Þq̄ðp2Þij2 →
1

9
½4παsðsÞ�2ð1þ cos2θÞ:

ð8Þ

with αsðpÞ defined in (1). Equation (8) highlights the
importance of the strong coupling constantαsðsÞ for physical
scattering processes. For the remainder of this work, we
adopt the linear momentum argument p ¼ ffiffiffi

s
p

for the
coupling.
In the present work, we shall compute the strong coupling

αsðpÞ and, hence, the above S-matrix element from its
spectral representation for general complex frequencies,
including the timelike momenta relevant for (8). We utilize
that the strong coupling can be computed from the quark-
gluonvertex, the three- and four-gluonvertices, aswell as the
ghost-gluon vertex. The computation involves the wave
functions ZqðpÞ, ZAðpÞ of quarks and gluons as defined
in (3) and the ghost wave function ZcðpÞ from

GcðpÞ ¼
1

ZcðpÞ
1

p2
: ð9Þ

The avatars of the strong couplings are then defined as the
(symmetric point) dressings of the classical tensor structures,
see (4) and (6).
A final definition of the strong coupling in the Landau

gauge is given by the propagator or Taylor coupling, that
utilizes Taylor’s nonrenormalization theorem for the ghost-
gluon vertex. This leads to the Taylor coupling, solely
defined by the ghost and gluon dressing functions,

αsðpÞ ¼
g2s
4π

1

ZAðpÞZ2
cðpÞ

: ð10Þ
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All strong coupling avatars have the same universal two-
loop running but differ for infrared momenta; see [40,41].
For an evaluation of the infrared differences between the
Taylor coupling and the quark-gluon coupling, see [42].
The latter regime is not accessible within the present
approximation. Hence, we use the Taylor coupling (10)
for the evaluation of (8). Its corresponding spectral function
ρα is depicted in Fig. 2. It allows us to compute the coupling
αsðpÞ for complex frequencies including timelike
momenta; see Fig. 4. Timelike result for the strong coupling
in the perturbative domain can be found, e.g., in [43,44].

B. Spectral representation

For the computation of (10), and hence of (8), we require
the ghost and gluon propagators for timelike momenta. We
assume that the propagators admit a KL representation,

GðpÞ ¼
Z

∞

−∞

dλ
2π

λρðλÞ
λ2 þ p2

≡
Z

∞

0

dλKðp; λÞρðλÞ; ð11Þ

where we have implicitly defined the KL kernel Kðp; λÞ.
The spectral function ρ is defined via

ρðωÞ ¼ 2ImGð−iðωþ i0þÞÞ; ð12Þ

with ρðωÞ ¼ −ρð−ωÞ. For the propagators of physical
particles, the spectral function is the probability density
for (multi)particle excitations to be created from the

vacuum in the presence of the corresponding quantum
field. Consequently, in this case, the spectral function is
positive semidefinite and normalizable. For propagators of
“unphysical” fields, such as gauge fields, positive semi-
definiteness is no longer required and the spectral repre-
sentation reduces to a statement about the analytic structure
of the corresponding correlation function; see, e.g.,
[3,4,29,45–48].
The ghost propagator is known to exhibit a massless

particle pole in the origin, entailing a delta pole at vanishing
frequency in its spectral function ρc [3]. The gluon spectral
function ρA is continuous along the whole real frequency
axis and is not expected to show distributional contribu-
tions. Taking into account the explicit forms of the spectral
functions, the ghost and gluon dressing functions can be
expressed as

1

ZAðpÞ
¼ p2

Z
∞

0

dλ
π

λρAðλÞ
λ2 þ p2

;

1

ZcðpÞ
¼ 1

Z0
c
þ p2

Z
∞

0

dλ
π

λρ̃cðλÞ
λ2 þ p2

; ð13Þ

where 1=Z0
c is the residue of the massless delta pole of ρc,

and ρ̃c denotes the continuous part.
Given the existence of a spectral representation, the

associated correlation function must obey certain sym-
metries and fulfill requirements about its infrared (IR) and
ultraviolet (UV) asymptotics. It can be shown that the

FIG. 2. Spacelike Taylor coupling αs in QCD [Figure 2(a)] and its spectral function ραðωÞ [Fig. 2(b)]. We compare the spectral
function computed directly via (16) (red) to that obtained via reconstruction with GPR (blue). The direct calculation uses the
reconstruction results for gluon and ghost spectral functions from [10]. For the reconstruction, we use the gluon and ghost propagator
data in 2þ 1 flavor lattice QCD from [32,33]. Both the input spectral functions and the corresponding lattice data are displayed in Fig. 3.
The coupling spectral functions obtained via these two complementary approaches share all qualitative features, such as peak positions
and heights as well as asymptotic behavior. The peak structure can be connected to the respective peak structure of the gluon spectral
function; see Fig. 3(b). The error band of the reconstruction result accounts for the change in the spectral function when varying the GP
kernel parameters, whereas that of the direct calculation originates from propagating the uncertainty of the input. The Euclidean lattice
data for the Taylor coupling αs are displayed as gray squares in Fig. 2(a). We compare it to the data from its spectral representation (14)
(red) as well as the reconstruction result (blue), showing that the representation holds and that the reconstruction accurately describes the
lattice data.
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existence of spectral representations for the ghost and gluon
propagators implies the existence of such a representation
also for the Taylor coupling as defined in (10); see
Appendix A for details. Specifically, it is given by

αsðpÞ ¼ p2

Z
∞

0

dλKðp; λÞραðλÞ: ð14Þ

With (14), the strong coupling spectral function is obtained
from its retarded correlator via

ραðωÞ ¼ −
2

ω2
Imαsð−iðωþ i0þÞÞ: ð15Þ

Now we use the definition of the Taylor coupling (10) and
insert the spectral representations of ghost and gluon
dressing functions (13). Then, the spectral function (15)
of the coupling can be written as

ραðωÞ ¼ −2Im
��Z

∞

0

dλ
π

λρAðλÞ
λ2 − ω2 þ i0þ

�

×

�
1

Z0
c
− ω2

Z
∞

0

dλ
π

λρ̃cðλÞ
λ2 − ω2 þ i0þ

�
2
�
: ð16Þ

Since the Taylor coupling decays logarithmically in the UV,
its spectral function obeys a superconvergence condition
[3,48], given by

Z
∞

0

dλ λραðλÞ ¼ 0: ð17Þ

In the case of the gluon propagator, this is the well-known
Oehme-Zimmermann condition [49,50].

A treatment of the analytic low-frequency behavior of
continuous parts of the spectral functions has been initiated
in [29]. In particular, it was shown that for correlation
functions obeying a KL representation, a simple relation
between the IR asymptotics of the correlator and its spectral
function can be derived by differentiating with respect to
the frequency. For the Taylor coupling we explicitly find

lim
ω→0þ

∂ωραðωÞ ¼ −2 lim
p→0þ

∂p
αsðpÞ
p2

: ð18Þ

Hence, if the coupling approaches zero in the origin faster
than p2, we expect the spectral function to approach zero
from below, and vice versa.

C. Lattice data

During the past two decades, lattice QCD results for
Landau gauge two-point functions have advanced to an
impressive quantitative level of precision; see, e.g., [51–66].
A recent review of lattice and functional results can be
found in [67]. The lattice ghost dressing function and gluon
propagator data used in this work have been obtained from
recent calculations with 2þ 1 dynamical fermion flavors at
the physical point [32,33]. In particular, the ensembles of
gauge configurations were generated by the RBC/UKQCD
collaboration in [68–72], leveraging the Iwasaki gauge
action [73] and the domain wall fermion action [74,75] with
a pion mass of 139 MeV. This choice of action (with a
particular implementation of the Möbius kernel [76])
exhibits favorable chiral properties with a much smaller
size in the fifth dimension than required by conventional
domain wall fermions. These ensembles were utilized in
[32,33] for the calculation of the ghost and gluon propagators

FIG. 3. The continuous parts of the ghost [Fig. 3(a)] and gluon [Fig. 3(b)] spectral functions obtained in [3] (see also Sec. II C), used
here as input for the calculation of the coupling spectral function shown in Fig. 2(a) via its spectral representation (14). Shaded areas
represent 1σ-bands of the statistical error of the mean prediction based on the available observations and precision. Note that for the
calculation of the gluon spectral function, the UV and IR asymptotic regimes are assumed to be maximally large. This leads to a small
reconstruction error without accounting for systematics; see Appendix C 3 for a detailed discussion.
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as well as the running of the strong coupling in the Taylor
(miniMOM) scheme [77–79], and an associated effective
charge [80].
The continuum limit of the lattice data is only obtained

within a proper treatment of discretization. For the Landau
gauge propagators this is done via an analysis of the
physical scaling violation described in [81], leading to
continuum extrapolated propagators with the correct
momentum running. The resulting gluon propagator and
ghost dressing data are displayed in the insets of Fig. 3.
These data alongside with data from functional Yang-Mills
theory and QCD [40,42,82,83] have also been recon-
structed in [10].
Since the lattice data for the propagators is available only

on different momentum grids, the coupling, as defined in
(10), is computed from a GP interpolation of the respective
dressings. These interpolations are performed by direct
GPR and therefore assume no general features of the
underlying dressings apart from continuity. From this,
we sample N ¼ 600 logarithmically spaced values for
the coupling (including errors) in the interval 0.23–2.69,
to be used in the reconstruction. For technical convenience,
the coupling is extended perturbatively in the UV in
order to control the amplitude of the UV asymptotics,
see Appendix B. A subset of these points is shown in
Fig. 2(a). Here, we replace the error with the difference
between the values computed as described above, and the
coupling obtained from the product of the ghost and gluon
spectral functions, described around (16) and in Sec. IV.

III. GPR RECONSTRUCTION WITH
CONTROLLED ASYMPTOTICS

GPR is a popular framework for the probabilistic
modeling of functions from a finite number of data points;
see [84,85] for recent reviews and [86] for a textbook
account. Example applications in high energy physics
include the computation of parton distribution functions
[87–89] and modeling backgrounds in detectors [90]. The
method can be used to predict solutions to linear inverse
problems [9], i.e., when the only available data are indirect
observations of the desired function after a linear forward
process. This makes the approach suitable for spectral
reconstruction. Importantly, it does not in general require
choosing a particular functional basis. This avoids many of
the numerical artifacts like additional peak structures that
are commonly encountered when employing reconstruction
algorithms with predetermined families of solutions, due to
the presence of unrepresentable features. We summarize the
main concepts in Appendix C 1; see also [10,11] for a
comprehensive introduction as well as further details and
references.
As an extension to this approach, in this paper we

introduce a novel technical improvement that allows us to
explicitly control the asymptotic behavior of the predictions
by specifying concrete functional forms in the appropriate

limits only, without restricting the expressivity of the GP
model in the region of interest. When considering different
design choices for GPs, one often opts for so-called
universal kernels. One prominent example also used in
the present work is the radial basis function (RBF) kernel
(C4). The basis of kernel eigenfunctions of such universal
kernels is infinite-dimensional. This allows for great
flexibility in the reconstruction—universal kernels can
describe any continuous function [91]. However, the
GPR framework allows us to also incorporate further
available prior information into the predictive distribution.
In the context of spectral functions, the asymptotics in the
IR and UVare often analytically tractable with perturbative
or functional calculations, as well as formal relations to
Euclidean data like (18). Hence, it is beneficial to introduce
a bias by reducing the space of kernel eigenfunctions to the
known behavior of the target function. This can be achieved
by applying Mercer’s theorem [92] and constructing a
kernel from the known asymptotic function ϕðωÞ as

Cðω;ω0Þ ¼ ϕðωÞ · ϕðω0Þ: ð19Þ

Since the asymptotic behavior is only specified in the
appropriate limits, the full kernel is constructed as a
combination of universal and restricted kernels using
smooth step functions. With this approach, it becomes
possible to smoothly transition between regions with an
unknown functional basis—where a generic kernel like
RBF is used—and regions with a specified basis; see
Appendix C 2 for further details.

IV. RESULTS

Our main result, the spectral function of the Taylor
coupling (15) in QCD, is displayed in Fig. 2(b). It shows
two variants: ρGPα from the reconstruction of the lattice
QCD data via GPR, and ρspecα from the direct calculation
based on the spectral representations of ghost and gluon
propagators (16). The associated input spectral functions
are shown in Fig. 3. In this context, we have improved the
reconstruction of the gluon propagator reported in [10] by
explicitly incorporating the known IR and UV asymptotics
with the method described in Sec. III. The error band of
ρspecα is obtained by propagating the errors of these input
data. Importantly, the coupling spectral functions obtained
via these two different approaches agree well within errors
and share all qualitative features, such as peaks and
asymptotic behavior. In both results, we can identify two
prominent peaks of similar size in positive and negative
direction at roughly ∼0.6 GeV and ∼0.8 GeV, along with a
smaller positive peak at ∼1.1 GeV. The spectral function
ρspecα (16) allows for a direct interpretation of this behavior:
it is connected to the peak structure of the gluon spectral
function, which carries information about the gluon mass
gap; see Fig. 3(b). This information is extracted reliably
from the lattice data with the GPR reconstruction.
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In the reconstruction of the coupling, the correct asymp-
totic behavior is enforced by smooth step functions at
transition points μIR and μUV, while fully retaining the
flexibility in the enclosed region where the GP kernel
remains unrestricted and universal, see Appendix C 2 for
details. As mentioned above, this procedure has also been
applied to the ghost and gluon spectral functions used here.
It enhances significantly the stability and reliability of the
prediction by connecting it to analytic results at low and
high frequencies, ensuring agreement with functional and
perturbative results in the relevant limits without reducing
the expressivity of the GP model in the domain of interest.
While the prediction shows some variation with the choice
of the transition midpoints, the peak positions and heights
remain remarkably stable; see Fig. 5. Hence, we choose the
size of the regions dominated by the asymptotics to be as
large as possible without increasing the χ2 error of the
reconstruction significantly; see Appendix C 3 and Fig. 6
for details. Furthermore, changing the parameters control-
ling the transition to the asymptotic behavior accounts for
the majority of the variation in the spectral function, while
changing the parameters of the RBF kernel produces errors
at least one order of magnitude smaller; see Appendix C 3
for details. The numerical values of all kernel hyper-
parameters are listed in Table I. Accordingly, the size of
the dynamical region carrying information about the QCD
mass gap is minimized, supporting the gluonic quasiparticle
picture employed in various applications such as bound state
studies and transport computations. Specifically, this sug-
gests dismissing smaller negative peaks close to the dom-
inant quasiparticle peak—they merely reflect the asymptotic
behavior and the superconvergence condition (17). As such,
they are sensitive to changes in the gauge fixing parameter
and infrared closure. This suggests that they carry physically
relevant information only on a subleading level.

In Fig. 2(a), we compare the reconstructed Euclidean
Taylor couplings to the result computed from the lattice data
for the ghost and gluon propagators, as described in Sec. II C.
Using the dressing function data obtained in this way, the
resulting coupling is shown to decay toward small and large
momenta. In correspondence to the scale of the peaks of the
spectral function—reflecting the mass gap of the theory—
also the peak of the coupling itself appears at ∼0.6 GeV.
The blue curve in Fig. 2(a) represents the GPR

reconstruction of the Taylor coupling lattice data, corre-
sponding to ρGPα . The red curve represents the coupling
obtained via its spectral representation (14) using the
directly computed spectral function ρspecα . The calculation
involves finite precision, both in the input data and in the
integration. Hence we expect a small, but not negligible,
relative error. The decent agreement between this result
and the lattice/GPR reconstruction result provides a
highly nontrivial benchmark check. The error is well
within our expectations, since the result obtained from
the directly computed spectral function depends on the
reconstructions of the gluon and ghost propagators. If the
ghost and gluon spectral functions were describing their
respective propagator data to infinite precision, we would
also expect perfect agreement from analytic considera-
tions; see Appendix A. Hence, the small difference can be
attributed to systematic uncertainties present in the cal-
culation. Please note that they do not contribute to the
error bands, corresponding to the purely statistical error,
shown in Fig. 2.
In the inset of Fig. 2(a), we also show the Taylor

coupling divided by p2 for small Euclidean momenta p.
The derivative of this quantity is connected to the asymp-
totic behavior of the spectral function in the IR by (18). We
observe that in the region where lattice data are available,

FIG. 4. Taylor coupling αsðωÞ of 2þ 1 flavor QCD defined in (10) in the complex frequency right half plane (positive real
frequencies), real [Fig. 4(a)] and imaginary part [Fig. 4(b)]. The imaginary part explicitly shows the branch cut along the real frequency
axis. The spectral function corresponds to the imaginary part of αs at the upper half plane boundary of the branch cut, divided by ω2.
Both, the real and imaginary part, exhibit distinctive peaks which can be connected to the peak structure of the gluon spectral function;
see Fig. 3(b). The coupling decays logarithmically for increasing jωj.
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the slope of αs=p2 is negative. In accordance with the
analytic requirement (18), the slope of the spectral function
is observed to be positive in this regime.
Finally, in Fig. 4we display the real and imaginary parts of

the coupling in the full complex momentum plane. The data
are obtained by evaluating the coupling spectral representa-
tion (14)with the directly calculated spectral function ρspecα in
the complex plane. The branch cut in the imaginary part,
responsible for the spectral representation, is clearly visible.
As expected, no further nonanalyticities in the complex plane
are encountered and the coupling shows the expected decay
behavior toward large frequencies.

V. CONCLUSION

In this work, we have presented results for the spectral
function of the strong coupling constant in QCD obtained
through a direct calculation as well as a reconstruction via
GPR. Assuming spectral representations for the ghost and
gluon, we have derived the spectral representation of the
Taylor coupling, which is fully determined by the ghost
and gluon dressing functions. With this relation, we have
calculated the associated spectral function as well as the
coupling itself in the full complex plane; see Figs. 2 and 4.
The required ghost and gluon spectral functions have been
obtained using the same reconstruction method, explicitly
taking into account the known asymptotic IR and UV
behavior; see Fig. 3. This is facilitated by expanding the GP
kernel in suitable eigenfunctions based on Mercer’s theo-
rem, extending the algorithm previously applied in [10,11].
The modification substantially improves the reliability of
the approach by properly encoding the analytically trac-
table regimes into the prediction while preserving the
expressivity and universality of the GP model in the region
of interest. This extension of GPR is completely generic
and may also be useful in other contexts where some
analytic properties of a function to be modeled are known
a priori, in particular if data scarcity is an issue.
A comparison of the results from the direct calculation

and GPR reconstruction shows excellent agreement
between both approaches; see Fig. 2(b). This independent
verification provides strong support for the accuracy of
the computed spectral function and also underlines the
power of probabilistic inversion with GPR as a spectral
reconstruction approach. In particular, the findings dem-
onstrate that uncertainty estimates obtained within this
framework are reasonable, allowing to reliably quantify the
expected errors in potential downstream applications based
on reconstruction results. In future work, we plan to also
analyse the quark-gluon vertex coupling directly based on
available lattice data; see, e.g., [93].
Our results find direct application in the calculation of

nonperturbative, physical scattering processes, where the
strong coupling constant needs to be known at timelike
momenta. While neglecting angular dependencies, the
Taylor coupling considered here carries the correct RG

running and hence scale-dependence of the strong coupling
constant. Furthermore, it encodes genuine nonperturbative
information through the input ghost and gluon dressing
functions obtained from 2þ 1 flavor lattice QCD. Our
work hence paves the way for incorporating nonperturba-
tive information from lattice field theory to functional
methods in the calculation of timelike scattering processes.
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APPENDIX A: SPECTRAL REPRESENTATION

Any product of correlation functions obeying a spectral
representation allows for such a representation itself. This
follows from a set of sufficient conditions for the existence
of a spectral representation for an arbitrary correlation
function C:

(i) Holomorphicity: C is holomorphic in the upper half
plane H ¼ fzjImz > 0g;

(ii) Mirror symmetry: CðzÞ ¼ C̄ðz̄Þ and ImCðzÞ ¼ 0 for
Imz ¼ 0, Rez > 0;

(iii) Asymptotic decay: jzCðzÞj → 0 for jzj → ∞;
(iv) Spectral convergence:

ðIRÞ jzImCðzÞj < ∞ for z → 0;

ðUVÞ j log zImCðzÞj → 0 for z → −∞:
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Heuristically, (i) and (ii) guarantee that the spectral kernel
has the form 1=ðzþ λ2Þ and the spectral function is defined
via (12). The integration domain is restricted to λ2 > 0 by
(iii). Condition (iv) guarantees the convergence of the
spectral integral.
It is immediately clear that for any two correlation

functions C1, C2 satisfying (i)–(iii), their product C ¼
C1C2 does as well. Similarly, this also applies to (iv) (UV),
stating that the spectral function ρ ∼ ImC decays fast
enough for the spectral integral to converge in the UV,
due to (iii). The infrared convergence condition (iv) (IR)
does not need to be fulfilled; consider, e.g., C1 ¼ C2 ¼
ð1=zÞα with 1=2 < α < 1. Nevertheless, this can be
always remedied by multiplying with an appropriate
power of z. Note that this does not violate the other
conditions.
The spectral representation for the strong coupling

constant is then constructed as follows: by the assumption
of ghost and gluon propagator obeying the KL representa-
tion, their dressing functions obey (i) and (ii). Since by its
definition (10) the coupling is dimensionless, (iii) does not
hold. However, division by p2 makes (iii) and (iv) hold
true. Hence, a KL representation for αsðpÞ=p2 is con-
structed. Multiplying this representation by p2, we obtain
the spectral representation for αs (14).

APPENDIX B: ASYMPTOTIC BEHAVIOR OF
THE STRONG COUPLING

For the gluon and the ghost propagators, the leading
order IR and UV asymptotics are known analytically; see
[29] and references therein. In the infrared, the decoupling
solution of the ghost is characterized by a constant
propagator dressing Zc ≡ Zcðp ¼ 0Þ. On the other hand,
the gluon propagator is dominated by the ghost loop
polarization diagram in the IR, since the gluon propagator
itself has a mass gap and decouples in the infrared. This
results in a p2 logp2 contribution in the IR regime; for a
detailed discussion thereof, see [29].
Using the definition of the strong coupling (10), we see

that it has the same, but negative, IR behavior as the inverse
gluon dressing, up to a constant contribution from the ghost
dressing. From (18), we can then infer the asymptotic
behavior of the spectral function as

ρα;IRðωÞ ∼ ω2; ðB1Þ
analogously to [29]. The UV asymptotic behavior of the
strong coupling is well known from perturbative calcula-
tions and reads

αs;UVðpÞ ∼
1

logðp2Þ : ðB2Þ

The asymptotic behavior of the spectral function follows
directly from (15) and we obtain

ρα;UVðωÞ ∼ −
1

ω2ðπ2 þ logðω2Þ2Þ : ðB3Þ

APPENDIX C: RECONSTRUCTION DETAILS

1. GPR basics

Here, we briefly summarize the main aspects of the GPR
reconstruction procedure. For a more detailed overview, we
refer to earlier works [10,11].
We assume our knowledge of the spectral function ρðωÞ

before making observations of the correlator to be
described by a GP prior, written as

ρðωÞ ∼ GPðμðωÞ; Cðω;ωÞÞ; ðC1Þ

where μ, C denote the mean and covariance. The condi-
tional posterior distribution for ρðωÞ given observations of
the propagator Gi at NG discrete Euclidean frequencies
pi ≡ ½p�i can be derived in closed form,

ρðωÞjGðpÞ ∼ GPðwTðωÞðW þ σ2n1Þ−1GðpÞ;
kðω;ωÞ − wTðωÞðW þ σ2n1Þ−1wðωÞÞ; ðC2Þ

where

½w�iðωÞ ¼
Z

dω0Kðpi;ω0ÞCðω0;ωÞ;

½W�ij ¼
Z

dω0dω00 Kðpi;ω0ÞKðpj;ω00ÞCðω0;ω00Þ: ðC3Þ

This is essentially equivalent to a standard result in
probability theory for the closed-form expression of a
conditional multivariate normal distribution, but defined
with a continuum of random variables due to being a
Gaussian process, as well as additional applications of the
integral transformation one seeks to invert. The equivalence
becomes more concrete in practice when the GP is
evaluated for a finite set of predictions; however, the choice
of inference points ω is arbitrary within the given domain.
In the above expressions, μðωÞ has been set to zero, since a
GP can be fully specified by its second-order statistics and
the prior mean can be absorbed into C. The GP in (C3)
encodes our knowledge of the spectral function after
making observations of the correlator and accounting for
observational noise with variance σ2n.
The covariance Cðω;ω0Þ is commonly defined via a

so-called kernel function with a small number of
hyperparameters, which may be subject to optimization
based on the associated likelihood. A widely used
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parametrization is the radial basis function (RBF) kernel,
defined as

CRBFðω;ω0Þ ¼ σ2C exp

�
−
ðω − ω0Þ2

2l2

�
; ðC4Þ

where the parameter σC controls the overall magnitude
and l is a generic length scale.

2. Incorporating asymptotic information

With the knowledge of the IR and UV asymptotics, cf.
Appendix B, an appropriate bias can be introduced. It is
chosen such that the kernel is restricted to the specified
functional basis as described in Sec. III, while retaining the
flexibility of the RBF kernel in the central region.
In order to achieve a smooth transition between the

biased and unbiased kernels, we employ smooth step
functions of the form

θ�ðω; μ;lÞ ¼ 1

1þ expð�2ðω − μÞ=lÞ : ðC5Þ

The full kernel can then be written simply as a sum of the
individual contributions,

kðω;ω0Þ ¼ kRBFðω;ω0Þ þ kIRðω;ω0Þ þ kUVðω;ω0Þ; ðC6Þ

where

kRBFðω;ω0Þ ¼ θþIRðωÞθþIRðω0Þθ−UVðωÞθ−UVðω0ÞCRBFðω;ω0Þ
kIRðω;ω0Þ ¼ θ−IRðωÞθ−IRðω0ÞρIRðωÞρIRðω0Þ
kUVðω;ω0Þ ¼ θþUVðωÞθþUVðω0ÞρUVðωÞρUVðω0Þ:
Themidpoints of the transition functions θIR=UV are specified
by μIR=UV and their steepness is controlled by lIR=UV.

3. GP kernel hyperparameters

Since the hyperparameters of the GP kernel control the
behavior of the resulting spectral function, their choice is a
pivotal step in the reconstruction. They are commonly
determined via numerical optimization by minimizing
(conventionally) the negative log-likelihood (NLL),

− logpðGðpÞjσÞ ¼ 1

2
GðpÞTðWσ þ σ2n1Þ−1GðpÞ

þ 1

2
log detðWσ þ σ2n1Þ þ

N
2
log 2π;

ðC7Þ

where the dependence on the kernel hyperparameters σ is
emphasized by an index.
The number of hyperparameters increases significantly

when including the bias term that enforces the correct
asymptotics (C6). Hence, the two parameters of the bare
RBF kernel are chosen first by minimizing (C7). The
asymptotics are then introduced in the far IR/UV and
shifted toward the center, all while monitoring the quality
of the interpolation of the dressing by computing χ2 at each
step. We compare χ2 instead of the NLL for different bias
parameters, since the second term in (C7) constitutes a
complexity penalty term. When considering an explicit
functional basis, such a term is inherently in opposition to
the constraint for the analytically known asymptotics and is
therefore excluded. We observe that the bias kernel
parameters have an open direction toward vanishing bias,
e.g., for small μIR and large μUV. Spectral functions with
μUV > 1.5 GeV show a growing number of smaller oscil-
lations in the UV, which are a remnant of the global length
scale introduced in the RBF kernel; see Fig. 5(b).
Accordingly, models in this parameter region can be ruled

FIG. 5. Behavior of the spectral function when varying the midpoints μIR=UV of the transition kernels to the asymptotic IR [Fig. 5(a)]
and UV regimes [Fig. 5(b)]. The respective values of the parameters are color-coded. The resulting scan of the spectral functions is
compared to the final result with maximally enhanced asymptotics, displayed with a dashed blue line. The error band obtained by
varying the parameters of the asymptotics—as indicated in Fig. 6—is given by the shaded blue area.
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out as sensible descriptions of the underlying physics of
the coupling. For μIR < 0.25 GeV, the resulting spectral
functions do not change significantly; see Fig. 5(a). The
change of χ2 when varying the asymptotic kernel param-
eters is shown in Fig. 6, with the final settings used for the
reconstruction indicated by crosses. These parameters are
explicitly chosen to maximize the regions dominated by the
asymptotics, without significantly increasing the error of
the coupling reconstruction. All final parameters of the GP
model used to compute the results reported in this work are
listed in Table I.
The error estimation for the spectral function via the

covariance of the posterior distribution does not include the
systematic error that arises from the choice of the model, in
particular regarding different values of the hyperparameters.

However, we observe that enforcing the maximally large
asymptotic regimes leads to the predicted posterior covari-
ance being comparatively small as the model is now highly
restricted; see Fig. 3(b). Hence, the error is estimated by
varying the bias parameters in a region where χ2 is small, but
the effect of different parameter choices is non-negligible,
while unphysical oscillations remain largely suppressed.
This region is marked in Fig. 6 by horizontal bars. When
considering μUV larger than indicated in this region, a
substantial amount of oscillations is introduced in the
spectral function as mentioned above. For μIR smaller than
indicated in Fig. 6(a), the spectral function vanishes in the
IR. However, it can then differ from the expected ω2

behavior. The largest variations in the resulting spectral
functions under these changes of the hyperparameters are
then used as error estimates for the reconstruction results,
shown in Fig. 2. Since the deviations of the predictions at
the edges of the parameter space tend to be maximized in
particular regions for certain parameter combinations, e.g.,
when μUV and lUV are both small, the error band shows a
few distinct kinks.

[1] J. Horak, J. M. Pawlowski, and N. Wink, Phys. Rev. D 102,
125016 (2020).

[2] J. Braun et al., arXiv:2206.10232.
[3] J. Horak, J. Papavassiliou, J. M. Pawlowski, and N. Wink,

Phys. Rev. D 104, 074017 (2021).

[4] J. Horak, J. M. Pawlowski, and N. Wink, arXiv:2202.09333.
[5] J. Horak, J. M. Pawlowski, and N. Wink, arXiv:2210.07597.
[6] J. Fehre, D. F. Litim, J. M. Pawlowski, and M. Reichert,

Phys. Rev. Lett. 130, 081501 (2023).
[7] G. Källén, Helv. Phys. Acta 25, 417 (1952).

FIG. 6. Scans of the bias parameters defined in (C6). We compare the quality of the dressing reconstruction—quantified by χ2—when
varying the midpoint positions of the bias transition μIR=UV [Fig. 6(a)] as well as its steepness lIR=UV [Fig. 6(b)]. The values of the bias
parameters chosen for the reconstruction are marked by crosses. This choice maximizes the size of the regions dominated by the
coupling infrared and ultraviolet asymptotics, while producing small χ2 reconstructions of the data. Additionally, the parameters are then
scanned in the flat directions, indicated by the horizontal bars, in order to obtain the error estimation for the reconstruction results shown
in Fig. 2.

TABLE I. Hyperparameters for the combined RBF and fixed-
asymptotics kernel, as defined in (C4) and (C6).

Parameter σRBF lRBF μUV lUV μIR lIR

Value 67.399 0.074 0.890 0.137 0.637 0.090

NONPERTURBATIVE STRONG COUPLING AT TIMELIKE … PHYS. REV. D 107, 076019 (2023)

076019-11

https://doi.org/10.1103/PhysRevD.102.125016
https://doi.org/10.1103/PhysRevD.102.125016
https://arXiv.org/abs/2206.10232
https://doi.org/10.1103/PhysRevD.104.074017
https://arXiv.org/abs/2202.09333
https://arXiv.org/abs/2210.07597
https://doi.org/10.1103/PhysRevLett.130.081501
https://doi.org/10.1007/978-3-319-00627-7_90


[8] H. Lehmann, Il Nuovo Cimento 11, 342 (1954).
[9] A. P. Valentine and M. Sambridge, Geophys. J. Int. 220,

1632 (2019).
[10] J. Horak, J. M. Pawlowski, J. Rodríguez-Quintero, J.

Turnwald, J. M. Urban, N. Wink, and S. Zafeiropoulos,
Phys. Rev. D 105, 036014 (2022).

[11] J. M. Pawlowski, C. S. Schneider, J. Turnwald, J. M. Urban,
and N. Wink, arXiv:2212.01113.

[12] M. Jarrell and J. E. Gubernatis, Phys. Rep. 269, 133 (1996).
[13] M. Asakawa, T. Hatsuda, and Y. Nakahara, Prog. Part. Nucl.

Phys. 46, 459 (2001).
[14] M. Haas, L. Fister, and J. M. Pawlowski, Phys. Rev. D 90,

091501(R) (2014).
[15] Y. Burnier and A. Rothkopf, Phys. Rev. Lett. 111, 182003

(2013).
[16] A. Rothkopf, Phys. Rev. D 95, 056016 (2017).
[17] M. Ulybyshev, C. Winterowd, and S. Zafeiropoulos, Phys.

Rev. B 96, 205115 (2017).
[18] D. Dudal, O. Oliveira, M. Roelfs, and P. Silva, Nucl. Phys.

B952, 114912 (2020).
[19] D. Dudal, O. Oliveira, and M. Roelfs, Eur. Phys. J. C 82,

251 (2022).
[20] R. Fournier, L. Wang, O. V. Yazyev, and Q. S. Wu, Phys.

Rev. Lett. 124, 056401 (2020).
[21] H. Yoon, J.-H. Sim, and M. J. Han, Phys. Rev. B 98, 245101

(2018).
[22] L. Kades, J. M. Pawlowski, A. Rothkopf, M. Scherzer, J. M.

Urban, S. J. Wetzel, N. Wink, and F. P. G. Ziegler, Phys.
Rev. D 102, 096001 (2020).

[23] M. Zhou, F. Gao, J. Chao, Y.-X. Liu, and H. Song, Phys.
Rev. D 104, 076011 (2021).

[24] T. Lechien and D. Dudal, SciPost Phys. 13, 097 (2022).
[25] L.-F. Arsenault, R. Neuberg, L. A. Hannah, and A. J. Millis,

arXiv:1612.04895.
[26] S. Offler, G. Aarts, C. Allton, J. Glesaaen, B. Jäger, S. Kim,

M. P. Lombardo, S. M. Ryan, and J.-I. Skullerud, Proc. Sci.,
LATTICE2019 (2019) 076 [arXiv:1912.12900].

[27] G. Cuniberti, E. De Micheli, and G. A. Viano, Commun.
Math. Phys. 216, 59 (2001).

[28] Y. Burnier, M. Laine, and L. Mether, Eur. Phys. J. C 71,
1619 (2011).

[29] A. K. Cyrol, J. M. Pawlowski, A. Rothkopf, and N. Wink,
SciPost Phys. 5, 065 (2018).

[30] J. Fei, C.-N. Yeh, and E. Gull, Phys. Rev. Lett. 126, 056402
(2021).

[31] J. Fei, C.-N. Yeh, D. Zgid, and E. Gull, Phys. Rev. B 104,
165111 (2021).

[32] S. Zafeiropoulos, P. Boucaud, F. De Soto, J. Rodríguez-
Quintero, and J. Segovia, Phys. Rev. Lett. 122, 162002
(2019).

[33] Z.-F. Cui, J.-L. Zhang, D. Binosi, F. de Soto, C. Mezrag, J.
Papavassiliou, C. D. Roberts, J. Rodríguez-Quintero, J.
Segovia, and S. Zafeiropoulos, Chin. Phys. C 44, 083102
(2020).

[34] P. V. Landshoff and O. Nachtmann, Z. Phys. C 35, 405
(1987).

[35] A. Donnachie and P. V. Landshoff, Nucl. Phys. B311, 509
(1989).

[36] C. Ewerz and O. Nachtmann, Ann. Phys. (Amsterdam) 322,
1635 (2007).

[37] C. Ewerz and O. Nachtmann, Ann. Phys. (Amsterdam) 322,
1670 (2007).

[38] S. Donnachie, H. G. Dosch, O. Nachtmann, and P.
Landshoff, Pomeron Physics and QCD (Cambridge
University Press, Cambridge, England, 2004), Vol. 19.

[39] G. B. Bopsin, E. G. S. Luna, A. A. Natale, and M. Peláez,
arXiv:2212.04007.

[40] A. K. Cyrol, M. Mitter, J. M. Pawlowski, and N. Strodthoff,
Phys. Rev. D 97, 054006 (2018).

[41] M. Peláez, U. Reinosa, J. Serreau, M. Tissier, and N.
Wschebor, Phys. Rev. D 103, 094035 (2021).

[42] F. Gao, J. Papavassiliou, and J. M. Pawlowski, Phys. Rev. D
103, 094013 (2021).

[43] K. A. Milton and O. P. Solovtsova, Phys. Rev. D 57, 5402
(1998).

[44] A. I. Alekseev, Few Body Syst. 32, 193 (2003).
[45] A. Cucchieri, T. Mendes, and A. R. Taurines, Phys. Rev. D

71, 051902 (2005).
[46] P. Lowdon, Nucl. Phys. B935, 242 (2018).
[47] P. Lowdon, Proc. Sci., Confinement2018 (2018) 050

[arXiv:1811.03037].
[48] A. Bonanno, T. Denz, J. M. Pawlowski, and M. Reichert,

SciPost Phys. 12, 001 (2022).
[49] R. Oehme and W. Zimmermann, Phys. Rev. D 21, 1661

(1980).
[50] R. Oehme, Phys. Lett. B 252, 641 (1990).
[51] F. D. R. Bonnet, P. O. Bowman, D. B. Leinweber, and A. G.

Williams, Phys. Rev. D 62, 051501(R) (2000).
[52] A. Sternbeck, E. M. Ilgenfritz, M. Muller-Preussker, and A.

Schiller, Phys. Rev. D 72, 014507 (2005).
[53] P. Boucaud, J. P. Leroy, A. Le Yaouanc, A. Y. Lokhov, J.

Micheli, O. Pene, J. Rodriguez-Quintero, and C. Roiesnel,
Phys. Rev. D 72, 114503 (2005).

[54] P. J. Silva and O. Oliveira, Phys. Rev. D 74, 034513
(2006).

[55] A. Cucchieri, A. Maas, and T. Mendes, Phys. Rev. D 74,
014503 (2006).

[56] A. Cucchieri, A. Maas, and T. Mendes, Phys. Rev. D 77,
094510 (2008).

[57] O. Oliveira and P. J. Silva, Phys. Rev. D 79, 031501(R)
(2009).

[58] I. L. Bogolubsky, E. M. Ilgenfritz, M. Muller-Preussker, and
A. Sternbeck, Phys. Lett. B 676, 69 (2009).

[59] T. Iritani, H. Suganuma, and H. Iida, Phys. Rev. D 80,
114505 (2009).

[60] A. Ayala, A. Bashir, D. Binosi, M. Cristoforetti, and J.
Rodriguez-Quintero, Phys. Rev. D 86, 074512 (2012).

[61] A. Athenodorou, D. Binosi, P. Boucaud, F. De Soto, J.
Papavassiliou, J. Rodriguez-Quintero, and S. Zafeiropoulos,
Phys. Lett. B 761, 444 (2016).

[62] P. Boucaud, F. De Soto, J. Rodríguez-Quintero, and S.
Zafeiropoulos, Phys. Rev. D 95, 114503 (2017).

[63] A. G. Duarte, O. Oliveira, and P. J. Silva, Phys. Rev. D 94,
074502 (2016).

[64] A. C. Aguilar, F. De Soto, M. N. Ferreira, J. Papavassiliou, J.
Rodríguez-Quintero, and S. Zafeiropoulos, Eur. Phys. J. C
80, 154 (2020).

[65] A. C. Aguilar, F. De Soto, M. N. Ferreira, J. Papavassiliou,
and J. Rodríguez-Quintero, Phys. Lett. B 818, 136352
(2021).

JAN HORAK et al. PHYS. REV. D 107, 076019 (2023)

076019-12

https://doi.org/10.1007/bf02783624
https://doi.org/10.1093/gji/ggz520
https://doi.org/10.1093/gji/ggz520
https://doi.org/10.1103/PhysRevD.105.036014
https://arXiv.org/abs/2212.01113
https://doi.org/10.1016/0370-1573(95)00074-7
https://doi.org/10.1016/S0146-6410(01)00150-8
https://doi.org/10.1016/S0146-6410(01)00150-8
https://doi.org/10.1103/PhysRevD.90.091501
https://doi.org/10.1103/PhysRevD.90.091501
https://doi.org/10.1103/PhysRevLett.111.182003
https://doi.org/10.1103/PhysRevLett.111.182003
https://doi.org/10.1103/PhysRevD.95.056016
https://doi.org/10.1103/PhysRevB.96.205115
https://doi.org/10.1103/PhysRevB.96.205115
https://doi.org/10.1016/j.nuclphysb.2019.114912
https://doi.org/10.1016/j.nuclphysb.2019.114912
https://doi.org/10.1140/epjc/s10052-022-10213-3
https://doi.org/10.1140/epjc/s10052-022-10213-3
https://doi.org/10.1103/PhysRevLett.124.056401
https://doi.org/10.1103/PhysRevLett.124.056401
https://doi.org/10.1103/PhysRevB.98.245101
https://doi.org/10.1103/PhysRevB.98.245101
https://doi.org/10.1103/PhysRevD.102.096001
https://doi.org/10.1103/PhysRevD.102.096001
https://doi.org/10.1103/PhysRevD.104.076011
https://doi.org/10.1103/PhysRevD.104.076011
https://doi.org/10.21468/SciPostPhys.13.4.097
https://arXiv.org/abs/1612.04895
https://doi.org/10.22323/1.363.0076
https://doi.org/10.22323/1.363.0076
https://arXiv.org/abs/1912.12900
https://doi.org/10.1007/s002200000324
https://doi.org/10.1007/s002200000324
https://doi.org/10.1140/epjc/s10052-011-1619-0
https://doi.org/10.1140/epjc/s10052-011-1619-0
https://doi.org/10.21468/SciPostPhys.5.6.065
https://doi.org/10.1103/PhysRevLett.126.056402
https://doi.org/10.1103/PhysRevLett.126.056402
https://doi.org/10.1103/PhysRevB.104.165111
https://doi.org/10.1103/PhysRevB.104.165111
https://doi.org/10.1103/PhysRevLett.122.162002
https://doi.org/10.1103/PhysRevLett.122.162002
https://doi.org/10.1088/1674-1137/44/8/083102
https://doi.org/10.1088/1674-1137/44/8/083102
https://doi.org/10.1007/BF01570779
https://doi.org/10.1007/BF01570779
https://doi.org/10.1016/0550-3213(89)90165-X
https://doi.org/10.1016/0550-3213(89)90165-X
https://doi.org/10.1016/j.aop.2007.04.015
https://doi.org/10.1016/j.aop.2007.04.015
https://doi.org/10.1016/j.aop.2007.04.016
https://doi.org/10.1016/j.aop.2007.04.016
https://arXiv.org/abs/2212.04007
https://doi.org/10.1103/PhysRevD.97.054006
https://doi.org/10.1103/PhysRevD.103.094035
https://doi.org/10.1103/PhysRevD.103.094013
https://doi.org/10.1103/PhysRevD.103.094013
https://doi.org/10.1103/PhysRevD.57.5402
https://doi.org/10.1103/PhysRevD.57.5402
https://doi.org/10.1007/s00601-003-0005-3
https://doi.org/10.1103/PhysRevD.71.051902
https://doi.org/10.1103/PhysRevD.71.051902
https://doi.org/10.1016/j.nuclphysb.2018.08.012
https://doi.org/10.22323/1.336.0050
https://arXiv.org/abs/1811.03037
https://doi.org/10.21468/SciPostPhys.12.1.001
https://doi.org/10.1103/PhysRevD.21.1661
https://doi.org/10.1103/PhysRevD.21.1661
https://doi.org/10.1016/0370-2693(90)90499-V
https://doi.org/10.1103/PhysRevD.62.051501
https://doi.org/10.1103/PhysRevD.72.014507
https://doi.org/10.1103/PhysRevD.72.114503
https://doi.org/10.1103/PhysRevD.74.034513
https://doi.org/10.1103/PhysRevD.74.034513
https://doi.org/10.1103/PhysRevD.74.014503
https://doi.org/10.1103/PhysRevD.74.014503
https://doi.org/10.1103/PhysRevD.77.094510
https://doi.org/10.1103/PhysRevD.77.094510
https://doi.org/10.1103/PhysRevD.79.031501
https://doi.org/10.1103/PhysRevD.79.031501
https://doi.org/10.1016/j.physletb.2009.04.076
https://doi.org/10.1103/PhysRevD.80.114505
https://doi.org/10.1103/PhysRevD.80.114505
https://doi.org/10.1103/PhysRevD.86.074512
https://doi.org/10.1016/j.physletb.2016.08.065
https://doi.org/10.1103/PhysRevD.95.114503
https://doi.org/10.1103/PhysRevD.94.074502
https://doi.org/10.1103/PhysRevD.94.074502
https://doi.org/10.1140/epjc/s10052-020-7741-0
https://doi.org/10.1140/epjc/s10052-020-7741-0
https://doi.org/10.1016/j.physletb.2021.136352
https://doi.org/10.1016/j.physletb.2021.136352


[66] A. C. Aguilar, C. O. Ambrósio, F. De Soto, M. N. Ferreira,
B. M. Oliveira, J. Papavassiliou, and J. Rodríguez-Quintero,
Phys. Rev. D 104, 054028 (2021).

[67] M. N. Ferreira and J. Papavassiliou, arXiv:2301.02314.
[68] C. Allton et al. (RBC/UKQCD Collaboration), Phys. Rev. D

76, 014504 (2007).
[69] C. Allton et al. (RBC/UKQCD Collaboration), Phys. Rev. D

78, 114509 (2008).
[70] R. Arthur et al. (RBC/UKQCD Collaboration), Phys. Rev.

D 87, 094514 (2013).
[71] T. Blum et al. (RBC/UKQCD Collaboration), Phys. Rev. D

93, 074505 (2016).
[72] P. A. Boyle, L. Del Debbio, A. Jüttner, A. Khamseh, F.

Sanfilippo, and J. T. Tsang, J. High Energy Phys. 12 (2017)
008.

[73] Y. Iwasaki, Nucl. Phys. B258, 141 (1985).
[74] D. B. Kaplan, Phys. Lett. B 288, 342 (1992).
[75] Y. Shamir, Nucl. Phys. B406, 90 (1993).
[76] R. C. Brower, H. Neff, and K. Orginos, Nucl. Phys. B, Proc.

Suppl. 140, 686 (2005).
[77] A. Sternbeck, K. Maltman, L. von Smekal, A. G. Williams,

E. M. Ilgenfritz, and M. Muller-Preussker, Proc. Sci.,
LATTICE2007 (2007) 256.

[78] P. Boucaud, F. Desoto, J. P. Leroy, A. Le Yaouanc, J.
Micheli, O. Pène, and J. Rodríguez-Quintero, Phys. Rev.
D 79, 014508 (2009).

[79] A. Sternbeck et al., Proc. Sci., LAT2009 (2009) 210 [arXiv:
1003.1585].

[80] D. Binosi, C. Mezrag, J. Papavassiliou, C. D. Roberts, and J.
Rodriguez-Quintero, Phys. Rev. D 96, 054026 (2017).

[81] P. Boucaud, F. De Soto, K. Raya, J. Rodríguez-Quintero,
and S. Zafeiropoulos, Phys. Rev. D 98, 114515 (2018).

[82] A. K. Cyrol, L. Fister, M. Mitter, J. M. Pawlowski, and N.
Strodthoff, Phys. Rev. D 94, 054005 (2016).

[83] W.-j. Fu, J. M. Pawlowski, and F. Rennecke, Phys. Rev. D
101, 054032 (2020).

[84] M. Kanagawa, P. Hennig, D. Sejdinovic, and B. K.
Sriperumbudur, arXiv:1807.02582.

[85] H. Liu, Y.-S. Ong, X. Shen, and J. Cai, arXiv:1807.01065.
[86] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes

for Machine Learning (Adaptive Computation and Machine
Learning) (The MIT Press, Cambridge, MA, 2005).

[87] C. Alexandrou, G. Iannelli, K. Jansen, and F. Manigrasso
(Extended twisted mass), Phys. Rev. D 102, 094508
(2020).

[88] L. Del Debbio, T. Giani, and M. Wilson, Eur. Phys. J. C 82,
330 (2022).

[89] A. Candido, L. Del Debbio, T. Giani, and G. Petrillo, Proc.
Sci., LATTICE2022 (2023) 098 [arXiv:2302.14731].

[90] M. Frate, K. Cranmer, S. Kalia, A. Vandenberg-Rodes, and
D. Whiteson, arXiv:1709.05681.

[91] I. Steinwart, J. Complexity 18, 768 (2002).
[92] J. Mercer, Phil. Trans. R. Soc. A 209, 415 (1909).
[93] A. Kızılersü, O. Oliveira, P. J. Silva, J.-I. Skullerud, and A.

Sternbeck, Phys. Rev. D 103, 114515 (2021).
[94] http://iaifi.org/.

NONPERTURBATIVE STRONG COUPLING AT TIMELIKE … PHYS. REV. D 107, 076019 (2023)

076019-13

https://doi.org/10.1103/PhysRevD.104.054028
https://arXiv.org/abs/2301.02314
https://doi.org/10.1103/PhysRevD.76.014504
https://doi.org/10.1103/PhysRevD.76.014504
https://doi.org/10.1103/PhysRevD.78.114509
https://doi.org/10.1103/PhysRevD.78.114509
https://doi.org/10.1103/PhysRevD.87.094514
https://doi.org/10.1103/PhysRevD.87.094514
https://doi.org/10.1103/PhysRevD.93.074505
https://doi.org/10.1103/PhysRevD.93.074505
https://doi.org/10.1007/JHEP12(2017)008
https://doi.org/10.1007/JHEP12(2017)008
https://doi.org/10.1016/0550-3213(85)90606-6
https://doi.org/10.1016/0370-2693(92)91112-M
https://doi.org/10.1016/0550-3213(93)90162-I
https://doi.org/10.1016/j.nuclphysbps.2004.11.180
https://doi.org/10.1016/j.nuclphysbps.2004.11.180
https://doi.org/10.22323/1.042.0256
https://doi.org/10.22323/1.042.0256
https://doi.org/10.1103/PhysRevD.79.014508
https://doi.org/10.1103/PhysRevD.79.014508
https://arXiv.org/abs/1003.1585
https://arXiv.org/abs/1003.1585
https://doi.org/10.1103/PhysRevD.96.054026
https://doi.org/10.1103/PhysRevD.98.114515
https://doi.org/10.1103/PhysRevD.94.054005
https://doi.org/10.1103/PhysRevD.101.054032
https://doi.org/10.1103/PhysRevD.101.054032
https://arXiv.org/abs/1807.02582
https://arXiv.org/abs/1807.01065
https://doi.org/10.1103/PhysRevD.102.094508
https://doi.org/10.1103/PhysRevD.102.094508
https://doi.org/10.1140/epjc/s10052-022-10297-x
https://doi.org/10.1140/epjc/s10052-022-10297-x
https://arXiv.org/abs/2302.14731
https://arXiv.org/abs/1709.05681
https://doi.org/10.1006/jcom.2002.0642
https://doi.org/10.1103/PhysRevD.103.114515
http://iaifi.org/
http://iaifi.org/

