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Superconducting detectors have been proposed as outstanding targets for the direct detection of light
dark matter scattering at masses as low as a keV. We study the prospects for directional detection of dark
matter in isotropic superconducting targets from the angular distribution of excitations produced in the
material. We find that dark matter scattering produces initial excitations with an anisotropic distribution,
and further show that this directional information can be preserved as the initial excitations relax.
Our results demonstrate that directional detection is possible for a wide range of dark matter masses, and
they pave the way for light dark matter discovery with bulk superconducting targets.
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I. INTRODUCTION

The identity of dark matter (DM) remains one of the most
pressing open questions in particle physics and cosmology.
Contrary to decades of theoretical expectations, numerous
experimental probes have found no conclusive evidence
of DM at the weak scale, leading to renewed interest in
models of DM at much lower scales. Many new ideas have
recently been proposed to search for such light DM in the
laboratory [1–38], and several of these novel direct-detection
experiments have already begun to probe significant param-
eter space [39–52]. Among the new ideas, superconducting
targets stand out with the lowest possible thresholds, giving
them sensitivity to the lowest DM masses through DM-
electron interactions [5,6,24,53]. With superconducting
energy gaps of OðmeVÞ, such detectors may eventually
probe DM with mass as low as the keV scale, where
cosmological constraints become significant [54–56].

Despite the impressive potential reach of superconduct-
ing targets, current projections assume that the detectors are
insensitive to the direction of incoming DM. Directional
detection has long been recognized as a powerful tool
in DM experiments, including those in the keV–GeV
regime [27,38]: due to the halo wind, the local DM
distribution is not isotropic in the laboratory frame, leading
to a characteristic modulation of the signal that can be used
to reject backgrounds and confirm a discovery. If super-
conducting detectors can be made sensitive to the direction
of the incoming DM, then such targets will offer excep-
tional promise for future experiments. Such a detector
would be capable of making a definitive discovery of DM
as light as a keV.
In this work, we show that even isotropic superconductors

are capable of directional detection via the angular distribu-
tion of the excitations produced byDMscattering. For such a
measurement to be viable, two key features are required.
First, the direction of the initial excitations produced by the
DM interaction should be correlated with that of the incom-
ingDMparticle. Second, the secondary excitations produced
by the initial excitations as they down-convert in thematerial
should exhibit directionality correlated with that of the initial
excitations. As we will show, both features indeed occur in
superconducting targets, paving the way for directional
detection of keV-scale DM.
This work is organized as follows. We begin by con-

sidering the initial scattering of DM with electronic states
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of a superconductor into excited quasiparticles. Next, we
consider the down-conversion of these initial excitations in
the material into secondary quasiparticles and phonons,
treating the general case with a new numerical code. We
then present our results for directionality, and end with a
discussion of experimental prospects.
Throughout this work, we use the following notation: for

a three-vector q, we write q ¼ jqj. We use angles with two
subscripts to denote the relative angle between the two axes
specified by those subscripts. All other angles are defined
relative to the DM wind axis. The Fermi energy and
momentum are denoted by EF and pF, respectively. We
set ℏ ¼ c ¼ 1.

II. DARK MATTER SCATTERING

We first demonstrate the directionality of the initial
excitations produced in a DM scattering event in a super-
conducting target. This requires reformulating the descrip-
tion of the scattering process in terms of the appropriate
degrees of freedom in the Bardeen–Cooper–Schrieffer
(BCS) vacuum of the superconductor [57]. The DM
scattering rate in superconductors was originally computed
by Ref. [6] considering only large energy deposits com-
pared to the superconducting gap, and so the DM-detector
interaction was described in terms of the DM, χ, scattering
with individual electrons: jχije−i → jχ0ije−i. This is not
suitable for studying the kinematics at small deposits.
Here, the appropriate degrees of freedom are Bogoliubov
quasiparticles (QPs) [58], which are electron-hole
superpositions.
In this description, the DM excites the BCS vacuum by

pair-producing QPs, as jχij0BCSi → jχ0ijQP1;QP2i. The
total momentum of these two QPs is the momentum
transfer q imparted by the DM scatter. The wave functions
of the electrons in the BCS vacuum automatically account
for Pauli blocking through a coherence factor, which has
significant support only when one of the QPs is below the
Fermi momentum and the other is above. In Appendix A,
we show that for energy deposits much larger than the
superconducting gap energy, the scattering rate becomes
identical to that for scattering with individual electrons. We
use the labels 1 and 2 to refer to the two initial QPs
produced in the scattering process. QPs 1 and 2 are
interchangeable, so we use the label i for statements that
apply to either label.
The QPs have a dispersion relation of the form

EQPðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
p þ Δ2

q
; ð1Þ

where Ep ¼ p2=ð2m�Þ − EF is the Bloch energy relative to
the Fermi surface and Δ is half of the superconducting gap
energy. Counterintuitively, the energy of a QP is minimized
for p ¼ pF. The free-electron dispersion relation is recov-
ered in the limit pQP ≫ pF, whereas the limit pQP ≪ pF

gives the energy of a hole far below the Fermi surface.
This nontrivial dispersion relation modifies the kinematics
of DM scattering near the gap, and thus significantly
influences directional correlations and down-conversion.
For energy deposits ω≲ keV, the momenta p1 and p2 will
be well inside the first Brillouin zone (BZ). For deposits
ω≳ keV, we expect Eq. (1) to receive band structure
corrections near the edge of a BZ of order tens of eV or
less, small compared to this keV scale, so Eq. (1) is a valid
approximation for all the energy scales considered in
this work.
The overall DM scattering rate is given by [53]

ΓðvχÞ ¼
Z

d3q
ð2πÞ3 jVðqÞj

2
2q2

e2
Im

�
−

1

ϵBCSðq;ωqÞ
�
; ð2Þ

where vχ ¼ jvχ j is themagnitude of theDMvelocity,q is the
momentum transfer, ωq ¼ q · vχ − q2=2mχ is the deposited
energy, and ϵBCS is the dielectric function of a super-
conductor in the BCS vacuum. In this work, we make
the approximation Imð−1=ϵBCSÞ≡ ImðϵBCSÞ=jϵBCSj2 ≃
ImðϵBCSÞ=jϵLj2. Here, ϵL is the Lindhard form of the
dielectric function for a normal metal [59], which accounts
for the effects of in-medium screening and collective modes
in the normal-metal phase [53]. We compute ImðϵBCSÞ in
terms of the QP dispersion relation [Eq. (1)] and the BCS
coherence factor, which accounts for near-gap effects [60]
and for Pauli blocking. Our approach interpolates between
the approximate superconducting dielectric response near
the gap and the normal-metal response far from the gap. A
more complete treatment explicitly computing the dielectric
function in the BCS vacuum will be pursued elsewhere [61].
We take jVðqÞj2 ¼ ðgegχÞ2ðq2 þm2

ϕÞ−2, where ge and gχ are
the couplings of the mediator to the electron and the DM,
respectively. This is appropriate for any spin-independent
interaction. Further details on DM interactions and the
computation of ImðϵBCSÞ are given in Appendix A.
At fixed DM velocity, the parameter distribution of the

initial QPs prior to down-conversion is proportional to the
differential rate, which we determine by differentiating
Eq. (2) with respect to kinematical variables. In our
numerical results, we draw samples from the joint distri-
bution fQPðcos θ1; cos θ2; E1; E2Þ, marginalized over the
DM distribution, where θi is the angle between the QP
momentum and the DM wind axis. In certain regimes,
the angular distribution of excitations can be understood
analytically by virtue of kinematical constraints. Conser-
vation of energy yields a closed-form expression for cos θqi,
the cosine of the angle between the QP i and the momentum
transfer q, in terms of q and pi. Now, consider small DM
masses and light mediators, where small deposits are
favored. In the limit of small deposits, to leading order
in ω − 2Δ, we have pi ≃ pF. Then, conservation of
momentum requires

HOCHBERG, KRAMER, KURINSKY, and LEHMANN PHYS. REV. D 107, 076015 (2023)

076015-2



cos θqi ≃
mχvχ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mχð12mχv2χ − 2ΔÞ

q
2m�vF

; ð3Þ

where vχ ¼ jvχ j, which implies 0≲ cos θqi ≲ 2Δ=ðvχpFÞ.
For aluminum (Al), with Δ ¼ 0.3 meV and EF ¼ 11.7 eV,
this leads to the condition 0≲ cos θqi ≲ 10−4, so excita-
tions produced near the gap are nearly orthogonal to the
momentum transfer q. In turn, the direction of q is
correlated with that of vχ , so the distribution of cos θχi is
peaked at zero.
On the other hand, consider DM interacting via a heavy

mediator, for which large deposits are favored. In particular,
for pχ ∼ pF, momentum transfers of order pF are possible,
corresponding to cos θqi ∼ 1. For example, for pχ ¼ 2pF, if
the DM is fully stopped and its energy shared equally
between the two QPs, then cos θqi is given uniquely by
cos θqi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vF=ðvF þ vχÞ

p
. For typical materials, vχ ≪ vF,

so indeed cos θqi ≈ 1. In Al, this solution corresponds to
cos θqi ≈ 0.93. Further, fully stopping the DM implies that
cos θχq ¼ 1, so cos θχi ¼ cos θqi. Thus, when pχ ∼ pF and
large q is favored, the angular distribution can peak in the
direction of the DM wind.
The marginal distribution of cos θi is shown by the solid

curves in the top panels of Fig. 1 for several DM masses in
Al. We assume the standard halo model with the parameters
of Ref. [62]. For light DM or a light mediator, small energy
transfers are favored, leading to a peak in the distribution
orthogonal to the DM wind axis. For heavier DM and

mediators, larger energy transfers lead to a forward-peaked
distribution.

III. QUASIPARTICLE RELAXATION

We have shown how the directions of the initial
quasiparticles are related to the direction of the incoming
DM. The second requirement for directional detection is
that this directionality must be preserved after the initial
excitations relax. Thus, we now study the down-conversion
of the initial QP excitations.
Following Refs. [63–65], we model down-conversion as

a repeating sequence of two distinct processes: first,
energetic QPs relax by the emission of phonons, and
second, energetic phonons decay into QP pairs.
Quasiparticle pair production eventually stops once all
remaining phonons have energy below 2Δ. We treat such
phonons as ballistic, including them as part of the final state
that is eventually read out by the detector. As shown in
Appendix B, phonon emission is kinematically forbidden
for very low-energy QPs, so the QPs eventually become
ballistic as well. The down-conversion process is finished
when all particles are ballistic. For other approaches to the
relaxation of highly energetic QPs, see Refs. [66,67].
We study the impact of down-conversion on direction-

ality by explicit simulation, implemented in a public code
released together with this work.1 We begin with an
ensemble of initial excitations sampled from the

FIG. 1. Angular distributions of QPs produced by DM scattering in Al. The angles shown are defined with respect to the axis of the
DM wind. The distribution of DM orientations in the standard halo model is included. The left and right columns show the distributions
in the light- and heavy-mediator limits, respectively. In each panel, the colors correspond to different DM masses, and a dashed
horizontal line at cos θi ¼ 1

2
indicates the isotropic distribution. Thick lines interpolate between histogram values (thin lines) for ease of

visualization. The top and bottom rows show distributions of QPs before and after down-conversion, respectively. In the bottom-right
panel, several solid curves overlap near the isotropic distribution. The dashed curves show angular distributions obtained by restricting
to events with total deposit ω < 20Δ, for which the effects of down-conversion are less significant.

1http://github.com/benvlehmann/scdc.
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distribution fQP, and then iterate the relaxation processes
described above until all QPs and phonons are ballistic.
Computing the momentum of the outgoing excitations after
each relaxation process requires knowledge of the differ-
ential rate of these processes with respect to the kinematical
parameters of the final state. We take the differential rates
for phonon emission and QP pair production from Eqs. (16)
and (27) of Ref. [68]. In each case, imposing the con-
servation of energy and momentum using the dispersion
relation of Eq. (1) gives the distribution of final-state
angles. The differential rate of QP pair production by a
phonon of energy ωph is given by

dΓ
dEi

∝
Eiðωph − EiÞ þ Δ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½E2
i − Δ2�½ðωph − EiÞ2 − Δ2�

q ; ð4Þ

where Ei is the energy of one QP and ωph − Ei is the energy
of the other. This distribution is sharply peaked at Ei ∼ Δ
and Ei ∼ ωph − Δ, corresponding to the case in which one
of the two QPs receives most of the phonon’s energy. Here,
the dispersion relation of Eq. (1) implies that the QPs are
produced nearly orthogonally to the axis of the initial
phonon. Thus, for small deposits, the angular distributions
of QPs and phonons in the final state will peak in
orthogonal directions.
We sample initial excitations and simulate the down-

conversion process for several DM masses in Al. The
angular distributions of the resulting QPs are shown as the
solid curves in the bottom panels of Fig. 1. The direction-
ality of the phonons is weaker (see Appendix B). For light
mediators, the initial QPs have excellent directionality,

which is well preserved after down-conversion. For a heavy
mediator, despite the directionality of the initial QPs, the
down-converted distribution is much closer to isotropic,
particularly for heavier DM. This is simply because heavy
mediators and heavy DM favor larger deposits, which lead
to a larger number of relaxation events. For this reason, the
dashed curves in the bottom-right panel of Fig. 1 show the
angular distribution including only events with total depos-
its ω < 20Δ. These dashed curves retain directionality
associated with the low-energy part of the initial angular
distribution.

IV. RESULTS

Fig. 2 shows the estimated sensitivity for the detection
of the directional DM wind, with impressive reach.
Existing direct-detection constraints are shown in gray.
(Complementary model-dependent probes may also
apply [69–71].) Critically, since the target is isotropic,
there is no modulation in the overall rate, unlike many
directional detection schemes. Instead, the reach must be
defined in terms of the anisotropy in the distribution of the
final-state excitations. The dashed lines in Fig. 2 show
the projected reach for a detector which counts final-
state quasiparticles in each of two angular bins: the “on-
axis” bin, with j cos θj > 1

2
, and the “off-axis” bin, with

j cos θj < 1
2
. Establishing that the signal is not isotropic

requires a certain number of events, which translates to a
minimal cross section for a fixed experimental exposure.
Note that for a heavy mediator, we impose a cut to include
only small deposits, which reduces the overall rate, but
lessens the impact of down-conversion.

FIG. 2. Directional detection discovery reach for DM scattering in an Al superconductor via a light (left panel) or heavy (right panel)
mediator. Solid lines: three-event reach for a kilogram-year exposure, not including directionality. Dashed lines: estimated discovery
reach for directionality at 95% CL using only two angular bins. Dotted line: estimated discovery reach for directionality in an experiment
with high-precision measurement of cos θ. Blue dot-dashed lines show cross sections for example DMmodels [13]. Shaded gray regions
indicate existing constraints from SENSEI [50], SuperCDMS HVeV [52], DAMIC [48], Xenon10 [14], DarkSide-50 [44], and
Xenon1T [49].
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The two-bin configuration is the minimal experimental
configuration for directional detection, and it represents the
most conservative projection. For heavy mediators, a more
ambitious projection is obtained by assuming precise
resolution of cos θ. In this case, the detailed shape of the
angular distribution can be compared with the distribution
under the null hypothesis of an isotropic background. This
again translates to a minimal number of events to detect
directionality, and a corresponding minimal cross section,
shown by the dotted line in Fig. 2. Further details are given
in Appendix C. For light mediators, since directionality is
manifest, this procedure gives almost exactly the same
result as the two-bin configuration, so the corresponding
line is not shown.
The dashed and dotted curves in Fig. 2 are representative

of the directional sensitivity of an experiment in the
simplest and most sophisticated configurations. A kilo-
gram-year exposure of such an experiment would be
capable of detecting directionality for DM masses
keV≲mχ ≲ GeV. Both configurations discussed here
would be directionally sensitive at cross sections covering
important cosmological targets that are not currently
probed by any direct-detection experiments.

V. DISCUSSION

In thiswork, we have shown that superconductors [5,6,53]
can probe DM directionally, even in the case of an isotropic
medium. This has important implications for the design of
directional superconducting detectors. Directionality will
require detectors to push resolutions lower, with thresholds
close to the superconducting gap. Detectors that can trap
primary QPs are preferred, as they will be able to take
advantage of the directional correlations in the DM signal.
This is in contrast to the weak directionality in the phonon
system.
In order to scale detectors to kilogram-year exposures

while retaining directional sensitivity, a massive multi-
plexing scheme will likely be required: typical detector
volumes will be of order 1 cm3 or smaller in order to attain
high collection efficiencies [6]. Intrinsic QP lifetimes do
diverge for very low temperatures and QP occupancy, even
in the “dirty” limit [68].
For realistic applications of bulk superconducting tar-

gets, the characterization of mean QP diffusion length in
real samples will determine which materials are best suited
for directional DM detection. Such work has been done for
large niobium (Nb) crystals [72], but it has largely been put
aside over the last few decades. These programs will need
to be restarted in order to characterize samples with the
appropriate properties to detect small energy deposits in the
regime relevant to directional DM detection. For materials
with a known diffusion length, this directionality can be
converted to a rate modulation by making a detector in
which one path length to the sensor is much shorter than
this diffusion length, and the orthogonal path length is

much longer. Chemical-vapor-deposition-grown supercon-
ducting crystals of Nb or Al instrumented on their large
surface, with cross sections of a few mm2 and thicknesses
of around 100 microns, would achieve this behavior for
typical diffusion lengths of a few hundred microns.
Identifying a directional signal in the phonon system will

require low-energy single-phonon detection with angular
resolution. Phonon sensing has been explored at these
energy scales in previous work for superconducting and
semiconducting targets (see, e.g., Refs. [6,33]). Indeed,
single-pixel quantum sensors sensitive to meV-scale events
have already been demonstrated. See Ref. [73] for further
discussion of the application of such quantum sensors to
dark matter searches. In order to retain directional sensi-
tivity utilizing these techniques, detector volumes would
need to be smaller than the free-streaming length of
phonons in the detector, and relatively high coverage of
the detector surface with sensitive detectors would be
required to ensure that phonons are detected on their first
interaction with a surface. This likely requires multiplexed
readout strategies that allow for a segmented, phonon-
imaging readout, in which events can be isolated to small
pixels. However, as we have shown in this work, only
coarse angular resolution is required to establish direction-
ality of the signal, reducing the required complexity of the
readout system. A full description of the relevant detector
optimization is beyond the scope of this paper but will be
the subject of future work.
Our results demonstrate directional detection of DM in a

target that is otherwise isotropic, in contrast to most
directional studies. Here, directionality is inferred from
the geometric properties of the excitations themselves,
rather than from a rate variation. Our results strongly
suggest that for a gapless material with typical acoustic
phonon modes, no directional correlation is preserved
between the initial DM scatter and the outgoing excitations,
as phonons can always be emitted in the limit Δ → 0. In an
anisotropic material, some correlations may still persist
further above the gap due to an increased number of
forbidden transitions. As an example, indirect-gap materi-
als, if such superconductors exist, would be much more
likely to preserve directionality even in the limit of a small
gap if large energies are required for intervalley transitions.
We leave the exploration of such scenarios for future
work [74].
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APPENDIX A: DARK MATTER INTERACTIONS

In this section, we detail our treatment of DM-electron
interactions in the language of QP pair production. In
particular, we compute ImϵBCS using the BCS coherence
factor FBCSðp1; p2Þ, and we show that the free electron
scattering picture is recovered in the limit of large deposits.
Throughout this section, q denotes the four-momentum
transfer ðω;qÞ.
Consider a DM-electron interaction mediated by a scalar

particle φ, with interaction Lagrangian

Lint ¼ gχϕχ̄χ þ geϕψ̄ψ ; ðA1Þ
where χ is a spin-1=2 DM fermion and ψ is the electron.
Using the projection operator P ¼ ð1þ γ0Þ=2, we can
project out the so-called “large part” [75] of the electron
field ψ s, where s ¼ ↑;↓ refers to the two different spin
states. This gives, at lowest order, the interaction
Hamiltonian for the electron-mediator interaction:

Hint ≃ −ge
Z

d3xϕðxÞðψ†
↑ðxÞψ↑ðxÞ þ ψ†

↓ðxÞψ↓ðxÞÞ:

ðA2Þ
The DM-mediator interaction is governed by a Hamiltonian
of the same form with the replacement ψ → χ. Higher-
order terms are discussed by Ref. [76]. (Similarly, as shown
in that reference, for a light vector mediator Aμ, we will
have in the low-energy limit Lint ¼ gχA0χ

†χ þ geA0ψ
†ψ .

Higher-order terms and magnetic interactions will be sup-
pressed by factors of vχ=c in the low-energy limit. In the
case of a heavy vector mediator, the A0 interaction will
again dominate, because the currents in the interactionA · j
will be suppressed by factors of vχ=c. Thus, light and heavy
vector mediators should also be described by interaction
Eq. (A2) in this limit.
One might object that a propagating A0 should be

suppressed in the nonrelativistic limit, by virtue of the
constraint ∂μAμ ¼ 0. Indeed, one can compute the time-
ordered propagator in the interaction picture,Z

dt d3xeiq
0t−iq·xh0jTfAμðx; tÞ; Aνð0; 0Þgj0i; ðA3Þ

and verify that it is not Lorentz-covariant, and that its 00
component is highly suppressed when jqj ≪ mA. However,
the absence of a kinetic term for A0 in the Lagrangian intro-
duces an additional term in the Hamiltonian to precisely
cancel this suppression. The effective propagator becomes
the Lorentz-covariant propagator −i=ðq2 −m2

A þ iεÞ×
ðημν − qμqν=m2

AÞ, which is unsuppressed for q0 ≪ jqj, or
when coupling to a conserved current. This is equivalent to
the statement that an off-shell vector can be polarized in any
direction. See Sec. 6.2 of Ref. [77] for further insight.
Defining the density operator ρeðxÞ≡P

s ψ
†
sðxÞψ sðxÞ,

its Fourier transform is

ρeðqÞ ¼
X
s

Z
d3p
ð2πÞ3 c

†
p−q;scp;s; ðA4Þ

where cp;s annihilates an electron with momentum p and
spin s. A similar expression is obtained for ρχ. We can then
write the interaction Hamiltonian as

Hint ¼ −
Z

d3xφðxÞðgeρeðxÞ þ gχρχðxÞÞ: ðA5Þ

At second order in perturbation theory, the S-matrix will
therefore contain a term

Ŝð2Þ ⊃ −gegχ
Z

d4xd4x0χ̄ðxÞχðxÞΔðx − x0Þψ̄ðx0Þψðx0Þ

¼ −gegχ
Z

d4q
ð2πÞ4 i

ρ†χðqÞρeðqÞ
q2 −m2

ϕ þ iε
; ðA6Þ

where

ρeðqÞ≡ ρeðq;ωÞ ¼
Z

dt eiωtρeðq; tÞ ðA7Þ

¼
Z

dt eiωteiH0tρeðqÞe−iH0t; ðA8Þ

with H0 being the free Hamiltonian. In the presence of the
lattice potential, an effective electron-electron potential is
induced through a phonon loop [78]. The energy eigen-
states in the presence of this effective potential are now
given by the Bogoliubov QPs, with creation/annihilation
operators γ† and γ, respectively [58]. To implement the
unitary transformation to the QP basis, we simply replace

cp↑ ¼ upγp↑ þ vpγ
†
−p;↓; c†−p;↓ ¼ −vpγp↑ þ upγ

†
−p↓;

ðA9Þ

where the coefficients up and vp satisfy

jupj2 ¼
1

2

�
1þ Ep

EQPðpÞ
�
; ðA10Þ
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jvpj2 ¼
1

2

�
1 −

Ep

EQPðpÞ
�
; ðA11Þ

with E and EQP defined as in Eq. (1). We can then isolate
the term in ρe that creates two quasiparticles (breaks a
Cooper pair):

ρeðqÞ ⊃
Z

d3p
ð2πÞ3 ðu

�
pþqvp þ upv�pþqÞγ†−p−q↑γ†p↓; ðA12Þ

giving, according to Eq. (A8),

ρeðq;ωÞ ¼
Z

d3p
ð2πÞ3 ðu

�
pþqvp þ upv�pþqÞγ†−p−q↑γ†p↓ð2πÞδðω − EQPðpÞ − EQPðpþ qÞÞ: ðA13Þ

Plugging this into the S-matrix of Eq. (A6), and using the fact that the scattering rate is given by Γ ¼ d
dt

P
f jhfjŜjiij2, we

find that the lowest-order Cooper-pair breaking rate is then simply given by

ΓðvχÞ ¼ g2eg2χ

Z
d3p1

ð2πÞ3
d3p2

ð2πÞ3 2πδðωp1þp2
− EQPðp1Þ − EQPðp2ÞÞ

ju�p1
vp2

þ up2
v�p1

j2
jðp1 þ p2Þ2 þm2

ϕ − ω2j2 ; ðA14Þ

where ωp1þp2
¼ ðp1 þ p2Þ · vχ − ðp1 þ p2Þ2=2mχ is the energy deposited. The quantity

FBCSðp1;p2Þ≡ ju�p1
vp2

þ up2
v�p1

j2 ¼ 1

2

�
1 −

Ep1
Ep2

− Δ2

EQPðp1ÞEQPðp2Þ
�

ðA15Þ

is the BCS coherence factor2 [60], shown in Fig. 3. The
Ep1

Ep2
term can be dropped if p1 or p2 (or both) are

integrated over, provided the remainder of the integrand is
even in p1 and p2. But if, e.g., p2 is fixed to be q − p1, then
this term must be kept when integrating over p1.
It is straightforward to see that this matches onto the rate

for free electron scattering when p1 and p2 are away from
the gap (jp2

i =2m� − EFj ≫ Δ). In this limit, the matrix
element for QP pair production becomes that for electron
scattering, the coherence factor becomes a Pauli blocking
factor, and the two QPs become an electron-hole pair. In
particular, because of the functional form of the coherence
factor, we always have p1 <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m�EF

p
and p2 >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m�EF

p
(or vice versa), with FBCSðp1; p2Þ ≃ 1. Then Eðp1Þ ≃ EF −
p2
1=2m� and Eðp2Þ ≃ p2

2=2m� − EF, so the energy delta
function in the rate of Eq. (A14) reduces to

δðω − E1 − E2Þ → δ

�
ω −

�
p2
2

2m�
−

p2
1

2m�

��
: ðA16Þ

That is, the kinematical constraint reduces to that of
ordinary nonrelativistic scattering. Meanwhile, the quantity

Sðq;ωÞ ¼
X
f

jhfjρeðqÞj0ij2δðω − EfÞ ðA17Þ

is known in the literature as the dynamic structure factor, in
terms of which we have, at lowest order in perturbation
theory,

Im

�
−1

ϵð1Þðq;ωÞ

�
¼ πe2

q2
Sðq;ωÞ: ðA18Þ

In our case, the structure factor is simply given by

FIG. 3. The BCS coherence factor, FBCSðp1;p2Þ, for several
fixed values of jp1j. Note that FBCSðp1;p2Þ ¼ FBCSðp2;p1Þ.
When both momenta are far from the Fermi surface, the
coherence factor reduces to the Pauli blocking factor. Pauli
blocking only permits the creation of an electron-hole pair if
the electron is above the Fermi surface and the hole is below.
Accordingly, if both p1 and p2 are on the same side of the Fermi
surface, the coherence factor vanishes rapidly. Otherwise, it
quickly approaches 1. That FBCSðpF; pFÞ ¼ 1 is a consequence
of the sign in the coherence factor for the interactions considered
here. For interactions with the opposite sign, FBCSðpF; pFÞ ¼ 0.

2The signs of the various terms in the coherence factor depend
on the type of interaction. See, e.g., Refs. [57,60].
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Sðq;ωÞ ¼
Z

d3p1

ð2πÞ3
d3p2

ð2πÞ3 FBCSðp1;p2Þð2πÞ3δð3Þ

× ðq − p1 − p2Þδðω − EQPðp1Þ − EQPðp2ÞÞ;
ðA19Þ

allowing the loss function, Imð−1=ϵBCSÞ, to be expressed in
terms of the QP dispersion relation and the BCS coherence
factor. When higher-order terms are included, we can
resum the series (at zero temperature) in the random phase
approximation (RPA) [79,80]:

Ŝð2;RPAÞ ⊃ −gegχ
Z

d4q
ð2πÞ4 i

ρ†χðqÞρeðqÞ
q2 −m2

ϕ þ iε
1

ϵðRPAÞðqÞ ;

ðA20Þ

where ϵðRPAÞðq;ωÞ≡ 1þ χðq;ωÞ, for 1 − χðq;ωÞ≡
−1=ϵð1Þðq;ωÞ. Importantly, we have

ImϵðRPAÞðq;ωÞ ¼ Im

�
−1

ϵð1Þðq;ωÞ

�
¼ Imχðq;ωÞ

¼ πe2

q2
Sðq;ωÞ: ðA21Þ

Putting everything together, we have

ΓðRPAÞðvχÞ ¼ g2eg2χ

Z
d3p1

ð2πÞ3
d3p2

ð2πÞ3
ju�p1

vp2
þ up2

v�p1
j2

jðp1 þ p2Þ2 þm2
ϕ − ω2j2

1

jϵðRPAÞðp1 þ p2;ωp1þp2
Þj2

× 2πδðωp1þp2
− EQPðp1Þ − EQPðp2ÞÞ; ðA22Þ

and writing the coherence factor in terms of ϵð1Þ gives

ΓðRPAÞðvχÞ ¼
Z

d3q
ð2πÞ3

jVðqÞj2
jϵðRPAÞðq;ωqÞj2

2q2

e2
Im

�
−1

ϵð1Þðq;ωqÞ

�

¼
Z

d3q
ð2πÞ3

jVðqÞj2
jϵðRPAÞðq;ωqÞj2

2q2

e2
ImðϵðRPAÞðq;ωqÞÞ

¼
Z

d3q
ð2πÞ3 jVðqÞj

2
2q2

e2
Im

�
−1

ϵðRPAÞðq;ωqÞ

�
: ðA23Þ

To the accuracy that ϵðRPAÞ represents the true dielectric function ϵ, we have derived Eq. (2).3 The full form of ϵðRPAÞ in the
BCS vacuum will be discussed in future work [61]. In this work, we make the approximation

Im

�
−1

ϵðRPAÞðq;ωqÞ

�
≃
ImϵðRPAÞBCS ðq;ωqÞ
jϵLðq;ωqÞj2

; ðA24Þ

where the Lindhard function [59,79] ϵL ≡ ϵðRPAÞFEG is the RPA dielectric function for a free electron gas (FEG), and it accounts

for screening and in-medium effects in a normal metal. Fortunately, by Eq. (A21), ImϵðRPAÞBCS can be evaluated from the

dynamic structure function without knowing the full form of ϵðRPAÞBCS ðq;ωÞ:

ImðϵðRPAÞBCS ðq;ωÞÞ ¼ πe2

q2
Sðq;ωÞ

¼ e2

2q2

Z
d3p1

ð2πÞ3
d3p2

ð2πÞ3FBCSðp1;p2Þð2πÞ4δð3Þðq − p1 − p2Þδðω − EQPðp1Þ − EQPðp2ÞÞ: ðA25Þ

This is because the imaginary part depends only on the spectrum of the Hamiltonian and on its relation to the operator ρe. It
corresponds precisely to the sum over states in the scattering rate.

3Note the subtle difference in our approach (following Ref. [79]) from that of Ref. [81]. We define Sðq;ωÞ to be given strictly by
Eq. (A17), while ϵðRPAÞ has been resummed in perturbation theory. One may optionally redefine S in terms of a resummed density
operator ρðRPAÞ following Ref. [79].
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APPENDIX B: QUASIPARTICLE
DOWN-CONVERSION

We simulate QP down-conversion by following a similar
procedure to the calculations of Refs. [66,68,82,83]. The
principal difference is that we track the full momentum
vector for scattered particles to retain information about the
scattering direction relative to the momentum of the initial
scattering event. Here, we review the relevant scattering
rate calculations, and we derive the emission angles of
QPs and phonons in each relaxation process. We compare
the final result to the well-established normal-metal case
described in Refs. [84,85]. Down-conversion in the limit of
high-energy initial QPs is also discussed by Refs. [66,67].

1. Phonon scattering at the Fermi surface

We treat QP-phonon interactions following Ref. [68].
The simplified model in this treatment contains a single
acoustic phonon branch with the dispersion relation
ωq ¼ qcs, where q is the phonon momentum and cs is
the sound speed in the material. For the dynamics of the
problem, scattering is contained to the first Brillouin zone
(q < 2π

a ), so we do not include an explicit upper limit in
momentum in the rate integral. As significant down-
conversion already occurs at energies well below the
optical phonon modes in most superconductors, we do
not explicitly include optical phonon emission in our
calculations. This is compatible with the conclusions of
past down-conversion codes (see, e.g., Refs. [66,82]).
For acoustic phonon emission, we first adopt the result of

Ref. [68] for the emission rate of an acoustic phonon of
momentum q in the zero-temperature limit:

dΓ
dωq

ðEQPÞ ¼
2π

Z0

α2FðqÞRe

0
B@ EQP − ωqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðEQP − ωqÞ2 − Δ2
q

1
CA

×

�
1 −

Δ2

EQPðEQP − ωqÞ
�
; ðB1Þ

where Z0 is the “renormalization parameter” defined in
Ref. [68] (typically Z0 ∼ 2). We have also assumed that
α2ðqÞFðqÞ ≈ bω2

q, the Debye solution for this quantity [84].
The QP energy EQP is defined in Eq. (1).

2. Computing the scattering angle

Given the general scattering rate of Eq. (B1), we also
need to determine the scattering angle for a phonon of
energy ωq ¼ qcs emitted by a QP of energy EQPðkÞ. We
find this angle by first solving for k0 from the conservation-
of-energy relation, EQPðk0Þ ¼ EQPðkÞ − qcs, where
EQPðkÞ≡ EQPðkÞ, as defined in Eq. (1). Solving, we get

k02 ¼ 2m�½ðEQPðkÞ − ωqÞ2 − Δ2�1=2 þ p2
F: ðB2Þ

In a normal metal or a semiconductor, the pF dependence
cancels. However, for a superconductor with Δ > 0, the pF
dependence is retained.
We can now use momentum conservation to solve for

the scattering angle. Writing k ¼ k0 þ q, we have k02 ¼
k2 þ q2 − 2kq cos θq. Solving explicitly for k in the QP
dispersion relation gives

k ¼
�
2m�ðEF þ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
QP − Δ2

q
Þ
�
1=2

; ðB3Þ

where s ¼ �1. An analogous sign s0 appears in the solution
for k0. We then find

cosθq¼
ω2
qþ4γ2Δ

�
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2

QP−Δ2Þ
q

−s0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEQP−ωqÞ2−Δ2

q �

4γωq

�
EFΔþsΔ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2

QP−Δ2Þ
q �

1=2 ;

γ≡
ffiffiffiffiffiffiffiffiffiffiffiffi
1
2
m�c2s
Δ

s
: ðB4Þ

We now consider a few limiting cases to understand the
angular spread in the phonon spectrum. First, we observe
that for QPs far from the gap, with Δ ≪ EQP ≪ EF, the
scattering angle is unrestricted. In this limit, we have

cos θq ≃
1

4γ

ωq

Δ

�
Δ
EF

�
1=2

þ s0γ
�
Δ
EF

�
1=2

þ ðs − s0Þγ EQP

ωq

�
Δ
EF

�
1=2

: ðB5Þ

For typical materials, γ is Oð1Þ and EF ≫ Δ. Thus, if
s ≠ s0, the last term dominates in the limit of small ωq, and
j cos θqj ¼ 1 is allowed. On the other hand, if s ¼ s0, then
the last term vanishes. The first term can be made arbitrarily
small in the small-ωq limit, and it can even be made to
cancel with the second term, which is itself always small. In
this case, cos θq ¼ 0 is allowed.
On the other hand, we consider the near-gap regime,

where k ∼ pF. Here, we can write EQP ¼ ð1þ δÞΔ with
δ ≪ 1, and since the final-state QP energy is at least Δ, we
must have ωq ¼ aδΔ with 0 < a < 1. Inserting these
expressions into Eq. (B4) and expanding for small δ gives

cos θq ≃
sδ − s0

ffiffiffiffiffiffiffiffiffiffiffi
1 − a

p

ðδ=2Þ1=2ða=γÞ
�
Δ
EF

�
1=2

: ðB6Þ

However, the phonon emission process is kinematically
forbidden if j cos θqj > 1, and minimizing Eq. (B6) over a
gives

min
a∈ð0;1Þ

cos θq ≃ γ

�
EF

Δ

�
−3=2

�
s
EF

Δ

ffiffiffi
2

δ

r
− 1

�
: ðB7Þ

Thus, phonon emission is only kinematically allowed for
sufficiently large δ—i.e., for
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δ≳ δmin ≡ 2γ2ðEF=ΔÞ2
½ðEF=ΔÞ3=2 þ γ�2 : ðB8Þ

This result is self-consistent: in typical materials, γ isOð1Þ,
and EF ≫ Δ, so δmin ≪ 1. This gives rise to a condition for
phonon emission:

EQP ≳ Δþ 4c2sE2
Fm�

ð2E3=2
F þ Δ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2m�c2s

p
Þ2
Δ: ðB9Þ

QPs with energies below this threshold are ballistic: no
phonon emission is allowed.
The angular distribution of final-state phonons is peaked

oppositely to that of final-state QPs and is closer to the
isotropic distribution. The distribution is shown explicitly
in Fig. 4 for the same cases as in Fig. 1.

3. Relation to normal-metal scattering

It is instructive to compare Eq. (B1) to the equivalent rate
in the normal-metal case. In a normal metal, this emission
rate becomes [84]

ΓðEkÞ ¼ 2π

Z
d3k0

ð2πÞ3 jαqj
2δðEk − Ek0 − ωqÞ

× δð3Þðk − k0 − qÞ; ðB10Þ

where αq is the coupling for electron-phonon scattering. If
we assume that scattering is isotropic, we can make a
change of variables such that

R
dp0 ∝

R
dωqdðcos θÞ, where

cos θ is the scattering angle between k and k0. For
scattering near the Fermi energy in the metal, conservation
of momentum gives

q2 ¼ k2 þ k02 − 2kk0 cos θ ≈ 2p2
Fð1 − cos θÞ; ðB11Þ

where pF ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2mEF

p
is the Fermi momentum. This implies

that dðcos θÞ ¼ −qdq=p2
F, which in turn allows us to write

the differential scattering rate for ωq < EQP as

dΓn

dωq
ðEQPÞ ¼ 2πα2FðqÞ: ðB12Þ

Here, the subscript n indicates the normal metal case, N0 is
the normal metal density of states at EF, and α2FðqÞ is the
coupling-weighted phonon density of states, given by

α2FðqÞ ¼ N0

2p2
F

Z
qmax

0

dq0 q0jα2q0 jδðq0 − qÞ: ðB13Þ

For the scaling used earlier, this gives the normal result that
the acoustic scattering rate goes as E3

QP when integrated
over energy, and the differential spectrum goes as ω2

q.
When we derive the emission rate for superconductors,

there are two important modifications required to get from
Eq. (B10) to the final differential rate in emitted phonon
energy. First, we modify the dispersion relation to that of
the QPs in the superconductor. In the metal, we had Ek ¼
Ek ≡ p2=ð2m�Þ − EF relative to the Fermi surface, but in a
superconductor, the gap energy modifies this to

FIG. 4. Angular distributions of phonons produced by DM scattering in Al. The angles shown are defined with respect to the axis of
the DMwind. The distribution of DM orientations in the standard halo model is included. The left and right panels show the distributions
in the light- and heavy-mediator limits, respectively. In each panel, the colors correspond to different DM masses, and a dashed
horizontal line at cos θi ¼ 1

2
indicates the isotropic distribution. Thick lines interpolate between histogram values (thin lines) for ease of

visualization. In the right panel, the curves include only events with total deposit ω < 20Δ, for which the effects of down-conversion are
less significant.
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EQPðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ek þ Δ2

q
: ðB14Þ

In the normal-metal phonon interaction, the total coupling
has a density-of-states term that is valid in the metal, but not
in the superconductor, since there are no states at Ek < Δ.
We can use the fact that the total number of states is the
same to find the modified density of states at a given energy
—i.e., we have dENsðEÞ ¼ dENnðEÞ, where the subscript
s indicates the superconductor case. We thus find that

NsðEÞ ≈ N0

dE
dE

¼ N0

Effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − Δ2

p : ðB15Þ

Thus, to rescale α2FðqÞ for the superconducting case, we
have to rescale by the ratio of superconducting to normal
states at a given energy. This gives us the first additional
factor in the superconducting rate equation. Reference [60]
points out that, in principle, the gap function is complex
valued, hence the need to take only the real part.
The second correction factor is the coherence factor

described in the previous section. This is a purely BCS
effect that arises from the collective nature of the super-
conducting states. This factor ensures that the divergence in
the density of states does not lead to a divergence in the
phonon scattering rate. Taking the type-I coherence factor
for phonon emission from Ref. [60], we find

FBCSðΔ; EQP;ωqÞ ≈
1

Z0

�
1 −

Δ2

EQPðEQP − ωqÞ
�

ðB16Þ

using the same normalization procedure as Ref. [68].
Combining this with the previous correction factor and
multiplying by the normal-metal scattering rate produces
the scattering rate of Eq. (B1). This heuristic argument
elucidates the origin of Eq. (B1) in the low-temperature
limit with a less formal approach than that in Ref. [68].

APPENDIX C: ESTIMATION OF
DIRECTIONAL REACH

In this section, we detail the methodology used to
produce Fig. 2 in the main text, and we demonstrate the
impact of total-deposit cuts on the directionality of the signal.
As in the main text, we assume the standard halo model
(SHM)—i.e., fχðvÞ ∝ Θðvesc − vÞe−v2=v20 in the Galactic
frame, taking v0 ¼ 220 km=s, vesc ¼ 550 km=s, and Earth
velocity vE ¼ 230 km=s relative to the Galactic frame [62].

1. Statistical methods

The directional reach in Fig. 2 is estimated in two distinct
ways. The dashed curves are based on the measurement of
an asymmetry in the counts of final-state QPs between two
bins of equal solid angle, and the dotted curve is based on
the comparison of the full angular distribution against the
null hypothesis.

a. Two-bin reach

We first discuss the two-bin reach estimate. The premise
of this test is that an isotropic background gives rise to an
isotropic distribution of final-state quasiparticles and, in
particular, produces statistically indistinguishable counts in
any two bins of equal solid angle. Since the DMwind is not
isotropic, it is possible to statistically distinguish the counts
in the two bins given a sufficient number of events.
We make the simplifying assumption that the angles of

the final-state QPs are independent random variables. This
is not strictly the case, since QPs that originate from the
same event have some angular correlation. However, given
a large number of events, such correlations are extremely
sparse. Moreover, by simulating an ensemble of isotropic
DM scattering events, we have directly checked that such
correlations are irrelevant at the number of events needed to
establish directionality. Having made this assumption, the
assignment of an angular bin to each QP can be treated as a
Bernoulli trial. We can then use the binomial test to
determine whether to reject the isotropic distribution given
a particular set of QPs.
This procedure allows us to determine whether a

particular sample of final-state QPs is consistent with an
isotropic signal. Next, we must translate this to a minimum
number of events needed to establish directionality. To that
end, we randomly draw samples of NQP ¼ 2; 3; 4;…QPs
and evaluate the binomial test for each sample, repeating
the process many times for each fixed N to obtain a median
p value. We advance NQP until this median p value drops
below the threshold value of 0.05, and we interpret the
resulting value of N as the typical number of QPs needed
in order to establish directionality. Finally, this number of
QPs must be translated to a number of scattering events. We
estimate this number as Ne ≡ NQP=n̄, where n̄ is the
average number of final-state QPs produced by a scattering
event. This Ne is indicated by the dashed curves in Fig. 2.
For the heavy-mediator case, we introduce an additional

step. As we discuss below, the distribution of final-state
QPs produced by an event approaches the isotropic dis-
tribution as the deposit becomes much larger than the
superconducting gap 2Δ. Thus, it is advantageous to
restrict attention to events with a total deposit below some
cut, even at the cost of a reduced event rate below the cut.
The dashed curve in the right panel of Fig. 2 is a composite
of two reach curves obtained with cuts ω < 10Δ and
ω < 50Δ. Due to the complicated relationship between
the total deposit, the initial directionality, and the effects of
down-conversion, each of these cuts preserves overall
directionality for a different mass range, and the combi-
nation of the two gives directional sensitivity over the entire
mass range. Due to the large deposits favored in the heavy-
mediator case, a cut on the total deposit is essential to
establish directionality for all but the lowest masses.
This simplistic treatment produces a rough upper bound

on the number of events needed to detect directionality and
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admits a very direct interpretation. Even at the level of a
two-bin experimental configuration, more sophisticated
statistical treatments may yield slightly stronger results.
In particular, it is possible to extract directionality using the
Skellam distribution, as in rate modulation experiments
[38]. Here, one treats the count in each bin as a Poisson
random variable, so that the difference in the number of
counts between the two bins is a Skellam-distributed
random variable. It is then possible to test whether the
two Poisson counts are produced with the same rate.
However, our case is simpler than a traditional rate
modulation experiment in that the target is isotropic, so
the total rate is fixed. We have checked that using the
Skellam distribution offers a slight enhancement to the two-
bin reach, but it does not qualitatively change the result.

b. Full angular distribution

Figure 2 also includes an estimate based on the full
angular distribution of the final-state QPs, assuming an
experimental configuration with great angular precision.
For this estimate, we begin with an ensemble of simulated
DM scattering events. Next, a second “null” ensemble of
DM scattering events is simulated with an isotropic dis-
tribution of DM directions, using the same speed distri-
bution as the standard halo model. For each simulated

event, we compute the mean angle of the final-state QPs,
hcos θii. We thus obtain two sets of samples, fhcos θiigSHM,
and fhcos θiignull for the two ensembles. We then determine
the average number of events needed to reject at 95% CL
the hypothesis that the “SHM” and “null” samples are
drawn from the same distribution, using the two-sample
Kolmogorov-Smirnov test. Note that unlike the binomial
test of the previous case, the samples being compared in
this case are truly independent: since each mean angle
corresponds to a single event, and vice versa, all of the
values we draw originate from different scattering events,
and they are thus independent random variates.
For light mediators, the two procedures give a nearly

identical result, and Fig. 2 shows only the simpler two-bin
result. This is easily understood in light of the typical
number of QPs produced in a scattering event: for a light
mediator, a typical final state consists of anOð1Þ number of
QPs, and deviation of these QPs from the isotropic
distribution generally gives rise to a two-bin asymmetry.
In fact, for large DM masses, taking the mean angle in
each event discards information to the point that the
distributional test slightly underperforms the two-bin test.
For a heavy mediator, on the other hand, a typical final state
may consist of Oð104Þ QPs for large DM masses. The
angular mean hcos θii will typically be very close to zero,

FIG. 5. Simulation of the QP down-conversion process for two initial energy deposits. The black line indicates the direction of the
incoming DM. For visualization purposes, each line terminates at an angular coordinate corresponding to its angle from the incoming
DM axis. Thus, the directions of the plotted excitations are represented by their end points, not by their slopes. Left: since ω ¼ 2.09Δ,
neither initial QP can emit a phonon with energy above 2Δ, so no phonons can produce QP pairs. Thus, the only QPs in the final state are
those produced in the DM scattering event, with their directions barely altered. Right: now ω ¼ 12.44Δ, and the emission of above-gap
phonons is allowed. Thus, a chain of phonon emissions and decays erases much of the initial directionality, although a preference for off-
axis final states remains visible.
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and distinguishing the distribution of these means from the
isotropic case becomes a problem of precision measure-
ment. The large number of QPs makes this a realistic
possibility. However, we estimate that achieving the high-
resolution dotted curve in Fig. 2 would require a meas-
urement precision of Oð10−2Þ in cos θi.

2. Energy dependence of directionality

In this section, we demonstrate the dependence of final-
state directionality on the deposited energy. As noted in the
main text, larger deposits allow for a larger number of
relaxation events during thedown-conversion process,which
attenuates the correlation between the directions of the final-
state excitations and those of the initial excitations produced
by DM scattering. This is illustrated for particular realiza-
tions in Fig. 5. In the left panel, the relatively small number of
relaxation events and the low energies of the emitted phonons
guarantee that the directions of the initial QPs are well
preserved, and no additional QPs are produced. In the right
panel, on the other hand, the larger deposit allows for a larger
number of relaxation events, with additional QP pair pro-
duction. While there remains a directional correlation
between the final state and the initial QPs, this correlation
is partially erased by down-conversion. Directional informa-
tion is effectively lost for very large deposits.
The impact of down-conversionmeans that small deposits

are favorable for directionality even if the directionality of the
initial QPs is smaller in this regime.We can demonstrate this
explicitly by evaluating the final-state asymmetry as a
function of the deposited energy. To facilitate quantitative
discussion of directionality, we introduce a quantitative
“two-bin asymmetry” A2, defined as follows. As discussed
above, we divide the final-state QPs into two bins of equal

solid angle: the “on-axis” bin, with j cos θj > 1
2
, and the “off-

axis” bin,with j cos θj < 1
2
.We denote the counts in these two

bins by non and noff , respectively, and then define

A2 ≡
����2 × non

non þ noff
− 1

����: ðC1Þ

In particular, the isotropic distribution gives A2 ¼ 0, and a
totally asymmetric distribution gives A2 ¼ 1.
The left panel of Fig. 6 shows A2 for the final-state

QPs produced by a single QP injected at fixed energy ω
with cos θ ¼ 1. This serves as a proxy for the preservation
of directionality at fixed deposit. Directionality is almost
perfectly preserved for very low-energy QPs with ω < 3Δ.
Above this threshold, it becomes possible for the QP to
emit an above-gap phonon, with Eph > 2Δ. Such a phonon
subsequently decays to another pair of QPs, which have
only weak angular correlation with the original QP. The
nature of the 3Δ threshold is also clearly visible in the right
panel of Fig. 6, which shows the fraction of the total energy
that resides in the QP system after down-conversion. For
EQP < 3Δ, the QP relaxes almost all the way to the gap by
the emission of subgap phonons, which cannot produce
any additional QPs. Thus, the final state consists of a single
QP with EQP ≈ Δ, and a set of phonons with all the
remaining energy from the deposit. The fraction of the
initial energy in the QP system is approximately Δ=ω.
Upon reaching ω > 3Δ, the emission of above-gap pho-
nons produces additional QPs in the final state, sharply
raising the fraction of the total energy in the QP system. At
large ω, this fraction asymptotically reaches ∼0.6. This is
consistent with previous studies of down-conversion in the

FIG. 6. Directionality of final-state QPs resulting from the down-conversion of a single QP of energy ω oriented with cos θ ¼ 1. Left:
asymmetryA2 of final-state QPs (blue) and phonons (orange). Directionality of the final excitations is quickly erased for ω ≫ Δ, andA2

approaches zero in the large-ω limit. Right: fraction of the total energy residing in the QP system after down-conversion. The gray band
shows the range of asymptotic results 0.57–0.60 obtained in the literature for bulk Al superconductors [66,82].
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high-energy limit, which find fractions between 0.57 and
0.60 [66,82] (gray band in Fig. 6).
Naively, Fig. 6 suggests that the smallest deposits will

yield the strongest directionality. However, imposing an
upper limit on the deposit also influences the directionality
of the initial excitations and, of course, the rate of events
which fall below the cut. To study the total directionality as
a function of the deposited energy, in Fig. 7, we show the
spectrum of final-state QPs in each of the two angular bins
(“on-axis” and “off-axis”) for several DM masses in the
light- and heavy-mediator limits. The bottom panels of
Fig. 7 show the ratios of these spectra—i.e., a signed and
shifted version of the two-bin asymmetry A2.

For light mediators, directionality is quickly lost for
deposits well above the gap, and the ratio approaches 1.
Moreover, the ratio is generally above 1. For heavy
mediators, due to the directionality of the initial exci-
tations, the ratio declines less noticeably, but it is near 1
throughout the plot and asymptotically reaches 1. As
anticipated in Fig. 1, light mediators always enhance the
off-axis rate, while heavy mediators can enhance either
the off-axis or on-axis rates, depending on the DM
mass: since scattering through a heavy mediator can
produce a QP distribution peaked either in the forward
direction or off-axis, the ratio can be either below or
above 1.
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