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In 2004 the matrix element method was used in a pioneering work by the Tevatron experiment D=0 to
determine the top-quark mass from a handful of events. Since then the method has matured into a powerful
analysis tool. While the first applications were restricted to leading-order accuracy, the extension to next-to-
leading order (NLO) accuracy has also been studied. In this article we explore the potential of the matrix
element method at NLO to determine the top-quark mass using events with pair-produced top quarks. We
simulate a toy experiment by generating unweighted events with a fixed input mass and apply the matrix
element method to construct an estimator for the top-quark mass. Two different setups are investigated;
unweighted events obtained from the fixed-order cross section at NLO accuracy as well as events obtained
using POWHEGmatched to a parton shower. The latter lead to a more realistic simulation and allow to study
the impact of higher-order corrections as well as the robustness of the approach. We find that the matrix
element method in NLO accuracy leads to a significant reduction of the theoretical uncertainties compared
to leading order. In view of the high-luminosity phase of the LHC, this observation is especially relevant in
analyses which are no longer dominated by statistical uncertainties.
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I. INTRODUCTION

Regarding experimental as well as theoretical progress,
hadronic top-quark pair production has evolved into one of
the flagship processes at the LHC. This development is
propelled by the expectation of the top quark to play a
prominent role in extensions of the Standard Model due to
it being by far the heaviest of the elementary particles with
a lifetime significantly shorter than the time scale of
hadronization. The high production rate of top-quark pairs
at the LHC as well as onward advances in experimental
data taking enable for ever-decreasing statistical and
systematic uncertainties in the recorded data. In order to
make optimal use of this fact in experimental analyses, the

employed theoretical predictions are required to keep up in
terms of uncertainties.
The next-to-leading order QCD corrections for top-

quark pair production have been calculated for the spin-
independent case more then 30 years ago [1–4]. Later, also
the spin-dependent cross sections were evaluated at NLO
accuracy in QCD [5,6]. In a series of ground breaking
articles also the next-to-next-to-leading order QCD correc-
tions were calculated [7–11]. Furthermore, beyond fixed
order also the resummation of soft-gluon corrections has
been studied in great detail ([12–19]). In addition to QCD
corrections also weak and QED corrections have been
calculated [20–24]. In summary, many detailed theoretical
predictions for top-quark pair production are available.
However, these might not be readily applicable in the
experimental analysis. It is thus important to put more effort
in improving the interface between experiment and theory
to make optimal use of the increasing precision reached in
both fields.
Multivariate analysis methods like the matrix element

method (MEM), turn out to be particularly useful in making
optimal use of the theoretical predictions. The MEM
requires the calculation of event weights in terms of
differential cross sections and is thus often formulated at
lower-order accuracy only. At leading order (LO), the
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MEM has been established as a powerful analysis tool for
both signal searches as well as parameter inference by
virtue of its optimal utilization of the information content of
the available data. Typically, the impact of higher-order
QCD corrections on theoretical predictions can be signifi-
cant while often simultaneously decreasing the theoretical
uncertainties. In the quest for accuracy and precision to
match experimental achievements, the MEM at next-to-
leading order (NLO) represents a promising remedy. But
when taking higher-order corrections into account, the
calculation of event weights constitutes a nontrivial task
due to the intricate combination of virtual and real con-
tributions to obtain meaningful finite results. The problem
of extending the MEM beyond the Born approximation has
been solved in the past by introducing modified jet
algorithms on the one hand or sensible event definitions
on the other hand ([25–27]). At the same time, the
application of the MEM at NLO has been demonstrated
for top-quark mass extraction from simulated single top-
quark events ([25–27]) as well as anomalous coupling
parameter determination from simulated Higgs boson
events in association with a single top quark ([28]).
Additionally, the effects of a parton shower applied to
simulated single top-quark data has been investigated with
the MEM at NLO ([27]). In this work, we present the
application of the MEM at NLO to top-quark pair pro-
duction at the LHC. In contrast to the electroweak pro-
duction mechanism of single top quarks studied before,
top-quark pair production is QCD induced at LO already
with the two production channels of quark-antiquark
annihilation and gluon-gluon fusion constituting the dom-
inant source of top quarks at the LHC. Given the afore-
mentioned prominent role of top-quark pair production in
both experimental as well as theoretical advances at the
LHC, it represents an ideal example to study higher-order
effects within the MEM. Furthermore, in view of the
ongoing progress in top-quark mass measurements, the
MEM at NLO accuracy could be an interesting alternative
to existing approaches.
The paper is structured as follows. In Sec. II the NLOQCD

calculation of the differential cross section for top-quark pair
production with the phase space slicing method and the
subsequent generation of unweighted events are briefly
reviewed. Section III focuses on the application of the
MEM to the generated events. To study parton shower effects,
events generated with POWHEGþ Pythia [29–33] are also
analyzed. The conclusions are presented in Sec. IV.

II. TOP-QUARK PAIR PRODUCTION AT THE LHC

A. Implementing the NLO prediction
with the phase space slicing method

The MEM at NLO as presented in [25–27] requires the
cross section calculation at NLO to be carried out using the
phase space slicing method [34]. The respective calculation
is available in the literature [5]. Thus, in this section we

only give a brief review of the important aspects of the
calculation and present the validation for the choice of
the slicing parameter. In the phase space slicing method,
the cross sectionprediction atNLOaccuracydσNLO is formed
of two contributions: First, the so-called hard part dσHard is
just the matrix element for the real corrections evaluated for
phase-space points where all partons are resolved, that is the
additional parton is neither collinear to the incoming partons
nor soft. Second, a Born-like part is comprised of the Born
contribution dσLO, the virtual corrections dσvirtual (taken from
Ref. [35]) as well as the so-called soft and collinear parts
dσsoft=coll stemming from approximated real corrections
integrated over phase-space regions in which the additional
parton is unresolved.The separationof the phase space for the
real corrections into resolved and unresolved regions is
mediated by the so-called slicing parameter xmin which acts
as a scale to separate the two. In the unresolved regions, well-
known factorization properties of QCD real corrections can
be employed allowing to analytically integrate over the
additional radiation in the singular limits in an approximate
way thereby reducing the respective phase space to Born-like
kinematics. The divergences of these integrations can be
regularized within dimensional regularization leading to
poles in the dimensional shift away from four space-time
dimensions. The outcome can be combined with the virtual
contributions to cancel the respective poles from the loop
integration and yield finite results according to theKinoshita-
Lee-Nauenberg theorem [36,37]. Since the real corrections
are approximated in the unresolved (singular) regions, the
result is only accurate up to deviations proportional to the
slicing parameter xmin,

dσNLO ¼ dσHard þ dσLO þ dσvirtual þ dσsoft=coll þOðxminÞ:
ð1Þ

Additionally, the separationof the real phase space in termsof
the slicing parameter introduces logarithmic dependencies of
the hard and soft/collinear contributions on xmin which cancel
in the sum. However, when numerically integrating over the
finite hard contribution, these logarithms can lead to numeri-
cal instabilities if xmin is chosen too small. Hence, the value of
xmin has to be chosen as a compromise between numerical
stability and the demand that the deviation in Eq. (1) is
negligible compared to the statistical uncertainties of the total
cross section as well as distributions calculated at NLO
accuracy. Figure 1 shows NLO predictions for the total cross
sectionof top-quark pair production for different values of the
slicing parameter xmin. The total cross section as the sum of
Born, virtual and real contributions in Fig. 1 is indeed finite.
However, it shows a systematic deviation from the reference
value taken from HATHOR [38] for values xmin ⪆ 2 × 10−3

while for values xmin ⪅ 5 × 10−6 numerical instabilities
dominate. Accordingly, a value of xmin ¼ 10−4 is chosen.
As an example of a differential distribution the top-quark
transverse momentum calculated at NLO accuracy is shown
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for three different choices of xmin in Fig. 2. In the lower plot
we show for different choices of xmin the differences in units
of the statistical uncertainties. We conclude that all three
choices lead to coherent predictions justifying the choice
xmin ¼ 10−4. In addition to the top-quark transverse momen-
tum this has been checked also for the top-quark energy
distribution and the rapidity distribution. Furthermore, the
distributions calculated here have been cross checked with
results frommadgraph5aMC@NLO [39]. The comparison is
shown in Appendix, Fig. 9, and Fig. 10. The impact of the
NLO corrections on kinematic distributions is displayed in
Fig. 3 where NLO and LO predictions for kinematic dis-
tributions are compared and their ratios (the k-factor) are
shown at the bottom of the plots. Results for further
distributions are shown in Fig. 11 in Appendix. As can be
seen from the rather constant k-factors, the NLO corrections
only mildly affect the shapes of the kinematic distributions.
However, theNLOcorrections lead to a significant increase of
the cross sections by a factor of roughly 1.5. In Fig. 4 the
impact of variations of the factorization scale μF and renorm-
alization scale μR by a factor of 2 as a means to estimate the

effect of uncalculated higher orders are illustrated for the
shapes of two representative kinematic distributions of the top
quark. For moderate energy scales, one observes a significant
reduction of the impact of the scale variation.

B. Unweighted event generation

From the calculation of the cross section at NLO
accuracy outlined in the previous section, event weights
can be calculated which can be used to generate
unweighted events which are distributed according to the
NLO cross section. As described in Ref. [27], a sensible
event definition is mandatory for obtaining meaningful
event weights at NLO accuracy. In particular, the event
definition must not fix the invariant masses or the overall
transverse momentum of the final-state objects. For top-
quark pair production, we define events x⃗ in terms of the
transverse momentum k⊥t , azimuthal angle ϕt and pseu-
dorapidity ηt of the top quark as well as the pseudorapidity
of the antitop quark ηt̄,

x⃗ ¼ ðk⊥t ;ϕt; ηt; ηt̄Þ: ð2Þ

The two-particle Born phase space as well as the three-
particle phase space for the real radiation can be para-
metrized in terms of these variables

FIG. 1. Phase-space slicing parameter (in-)dependence of the
total cross section predicted at NLO accuracy. The red line shows
the reference value taken from HATHOR [38].

FIG. 2. Phase space slicing parameter (in)dependence of the
top-quark transverse momentum k⊥t predicted at NLO accuracy.

FIG. 3. Differential distributions together with the respective
k-factors.
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dR2 ¼
k⊥t 3 cosh ηt cosh ηt̄

8π2EtEt̄shad
dk⊥t dϕtdηtdηt̄; ð3Þ

dR3 ¼
k⊥t 2k⊥̄t k⊥3 2 cosh ηt cosh ηt̄ cosh η3

128π5EtEt̄E3shad
× dk⊥t dϕtdηtdηt̄dk⊥3 dϕ3dη3; ð4Þ

where Ei (i ¼ t; t̄; 3) denotes the energy of particle i and
shad is the hadronic center-of-mass energy squared. The
additional radiation occurring in the real corrections is
parametrized by the transverse momentum k⊥3 , the azimu-
thal angle ϕ3 and the pseudorapidity η3 of the radiated
parton. These parametrizations allow us, together with
Eq. (1), to calculate the event weight at NLO accuracy
for each event x⃗ using

d4σNLO
dk⊥t dϕtdηtdηt̄

¼ d4σLO
dk⊥t dϕtdηtdηt̄

þ
Z

d7σHard
dk⊥t dϕtdηtdηt̄dk⊥3 dϕ3dη3

dk⊥3 dϕ3dη3

þ d4σvirtual
dk⊥t dϕtdηtdηt̄

þ d4σsoft=collinear
dk⊥t dϕtdηtdηt̄

: ð5Þ

The weights calculated in this way can also be used to
generate unweighted events with, e.g., the von-Neumann

acception-rejection method ([40]). Figure 5 shows the
distribution of the unweighted events compared to kin-
ematic distributions obtained with the madgraph5
aMC@NLO code [39]. The events obtained from the event
weights defined in Eq. (5) are within the uncertainties in
perfect agreement with the predictions obtained using
madgraph5 aMC@NLO. In Appendix (Fig. 12) we show
in addition the calculation of theMtt̄ and the ϕt-distribution
with the same perfect agreement. The comparison of the
generated unweighted events with the results from mad-
graph5 aMC@NLO also serves as a further validation for
the choice of the slicing parameter.

III. APPLICATION: DETERMINATION OF THE
TOP-QUARK MASS USING THE MEM AT NLO

The event weights defined in Eq. (5) can be used in the
MEM to calculate the likelihood at NLO accuracy for a
given sample of N events fx⃗ig; i ¼ 1;…; N,

Lðfx⃗igjmtÞ ¼
1

ðσNLOðmtÞÞN
YN
i¼1

d4σNLOðmtÞ
dk⊥t dϕtdηtdηt̄

����
x⃗¼x⃗i

; ð6Þ

where the dependence of the total and differential
cross sections on the value of the top-quark mass is

FIG. 4. Effect of scale variations on the shapes of kinematic
distributions of the top quark.

FIG. 5. Validation of the event generation: Comparison of
differential distributions of the top quark obtained from un-
weighted events with results from madgraph5 aMC@NLO.

MARTINI, NURALIYEV, and UWER PHYS. REV. D 107, 076013 (2023)

076013-4



highlighted—exemplarily for generic model parameters.
Here, the so-called transfer functions, parametrizing the
probability ofmeasuring a certain signal in the detector given
a particular partonic configuration, are set to delta functions.
The transfer functions account for particle decays, additional
radiation as well as detector effects. Thus, this choice for the
transfer functions corresponds to the assumption of a perfect
detector which allows a perfect unfolding from the detector
signals to partonic variables. While for variables related to
angles, setting the transfer function to delta function may
give a reasonable approximation, this is not necessarily true
in case of variables sensitive to energies. In future applica-
tions nontrivial transfer functions should thus be incorpo-
rated. This may be done using invertible neural networks
trained to a full simulation as discussed in great detail in
Ref. [41]. This is however beyond the scope of this work
which focuses on exploring the potential of the method for
top-quark mass measurements. Maximizing the likelihood
with respect to the parameter mt yields an estimator for the
top-quark mass m̂t,

Lðfx⃗igjm̂tÞ ¼ max
mt

ðLðfx⃗igjmtÞÞ: ð7Þ

Because the event weights in Eq. (6) are normalized to yield
probabilities, the MEM is only sensitive to the shapes of
kinematic distributions but not to the total number of events
in the sample. To also benefit from the informationof the total
event number the so-called extended likelihood can be used.
The extended likelihood is obtained from the likelihood in
Eq. (7) by multiplying with the Poisson probability for
observing N events when the expected number of events is
given by the total cross section times the integrated lumi-
nosity Lint of the collider,

Lextðfx⃗igjmtÞ ¼
ðσNLOðmtÞLintÞN

N!
e−σNLOðmtÞLintLðfx⃗igjmtÞ:

ð8Þ

In Fig. 6 we show the likelihood obtained analyzing 9900
unweighted top-quark pair events distributed according to
the NLO prediction. Likelihood (upper plot) as well as the
extended likelihood (lower plot) have been studied. The
green curves correspond to likelihoods calculated at NLO
accuracy using different choices for the factorization and
renormalization scale. The orange curves are obtained using
only LO predictions again for different scale settings in the
likelihood calculation. The analyzed events are generated for
an input value of the top-quark mass of mtrue ¼ 173.2 GeV
and the scale choice μF ¼ μR ¼ μ0 ¼ mt. The extracted
values for the estimator of the top-quark mass together with
statistical and systematic uncertainties are summarized in
Table I. The estimators m̂t are determined from theminima of
the parabolas fitted to the negative logarithms of the like-
lihood functions while the statistical uncertainties Δstat are
estimated from their widths. The systematic uncertainties

Δ2μ0
sys , Δμ0=2

sys are estimated by varying the scale by a factor 2
around μ0. As can be seen from Fig. 6 and Table I, both the
NLO and the LO analyses have similar statistical uncertain-
ties of about 1.2 GeV and 0.35 GeV depending on whether
the likelihood or the extended likelihood is employed. As
expected, the statistical uncertainties are to good approxi-
mation independent from the perturbative order of the
theoretical predictions of the cross sections. Taking the
statistical uncertainties into account, the extracted estimators
from the NLO analyses are in perfect agreement with the
input value. For the likelihood as well as for the extended
likelihood the NLO differential cross section matches the
probability distribution underlying the event sample thus
leading to an unbiased estimator. Obviously, taking into

FIG. 6. Analysis of unweighted events following the fixed-
order NLO prediction with (extended) likelihoods calculated at
LO and NLO accuracy.

TABLE I. Extracted values for the estimator of the top-quark
mass from 9900 unweighted events following the fixed-order
NLO prediction.

m̂t � Δstat
Δ2μ0

sys

Δμ0=2
sys

½GeV�

Likelihood LO prediction NLO prediction

L 169.77� 1.18þ2.21
−2.66 173.65� 1.20þ0.30

þ0.17
Lext 160.22� 0.34−6.97þ7.86 173.68� 0.36−4.11þ3.69
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account the information on the total number of events via the
extended likelihood leads to a reduction of the statistical
uncertainties as additional information contained in the event
sample is used. Since the cross section shows amuch stronger
residual scale dependence than the normalized distributions,
the extended likelihood leads however to a significantly larger
systematic uncertainty due to uncalculated higher order
corrections. In addition, the uncertainty of the luminosity
measurement which is not taken into account in the extended
likelihood analysis leads to an additional uncertainty out-
weighing the gain in the reduced statistical uncertainty.
The estimators from the LO analyses on the other hand

show a bias of 2.9 × Δstat and 38 × Δstat depending on
whether the likelihood or the extended likelihood is used. It
should be emphasized that the occurrence of a bias per se

does not rule out the application of the MEM. It is well
known, that the MEM typically leads to a bias if the
probability distribution used in the evaluation of the like-
lihood does not match the distribution underlying the event
sample. However, via a calibration procedure it is possible
to compensate the bias and obtain an unbiased determi-
nation. Since the calibration can introduce additional
uncertainties the preferred situation is that the probability
distribution used in the likelihood determination matches
the probability distribution of the event sample as best as
possible thus reducing the need of additional calibration.
As shown in Sec. II, the NLO corrections dominantly alter
the normalization of the kinematic distributions rather than
their shape. Accordingly, the analysis employing extended
likelihoods which is sensitive to the total cross section
shows thus a much stronger separation between the results
obtained from the NLO and LO predictions.
Significant improvement from taking NLO corrections

into account can be seen in their impact on the theoretical
uncertainties; in the NLO analyses the theoretical uncer-
tainties due to uncalculated higher order corrections are
roughly halved with respect to the LO analyses.
In order to further study the robustness of the approach

and having a more realistic simulation, unweighted events
obtained from a parton shower simulation matched to the
NLO calculation can be used. The parton shower resums
certain logarithmic corrections to all orders on top of the
fixed-order NLO parton-level calculation. Since these
additional corrections present in the event sample are not
accounted for in the fixed-order-only likelihood calculation
based on Eq. (5), there is a mismatch between the under-
lying probability distribution of the generated events and
the basis of the likelihood calculation [Eq. (5)]. As seen
before in case of the LO analysis, this mismatch can cause a
systematic bias in the extracted estimator.
Figure 7 shows the distributions obtained using

POWHEGþ Pythia [29–33] to generate about the same
number of events as in the case of the fixed-order analysis.
The parton shower only mildly affects the kinematic

FIG. 7. Impact of the parton shower on the kinematic distri-
butions of the top quark.

FIG. 8. Analysis of 9232 POWHEGþ Pythia events with
fixed-order likelihoods calculated at LO and NLO accuracy.
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distributions relevant for the event definition. Further
distributions supporting this observation are shown in
Fig. 13 in Appendix. Apart from minor differences in
the k⊥t distribution at low k⊥t , a small difference is visible
for k⊥t > 300 GeV, where the POWHEGþ Pythia events
lead to a slightly harder distribution than the events
generated from the fixed-order NLO cross section.
The result of the likelihood analysis using LO and NLO

cross section predictions is shown in Fig. 8 and summa-
rized in Table II. We do not study the extended likelihood,
since the extended likelihood leads to much larger sys-
tematic uncertainties. Again the statistical uncertainties are
very similar for the LO and NLO analysis, while the
systematic uncertainty is significantly reduced when using
NLO predictions. In both cases we observe a shift of about
4 GeV compared to the results based on the event sample
generated from the fixed-order NLO predictions. The large
shift shows the high sensitivity of the MEM with respect to
tiny changes in the distributions. In a mass determination
from events registered at the LHC this shift must be taken
into account via a calibration procedure. It is remarkable
that the shift is, taking the uncertainties into account,
independent from the perturbative order of the employed
likelihood calculation. This is similar to what has been
observed in Refs. [26,27]. The LO likelihood analysis
reproduces the true mass value used in the POWHEGþ
Pythia analysis. However, this ist most likely accidental
and due to the fact that the LO fixed-order results under-
shoots the true mass value by about 4 GeV which is
compensated by the aforementioned shift.

IV. CONCLUSION

In this work theMEM at NLO is applied to top-quark pair
production at the LHC. To investigate the potential of the
matrix element method to measure the top-quark mass, the
MEM at NLO is applied to pseudodata; unweighted events
generated from the fixed-order NLO cross section as well as
events obtained using POWHEGþ Pythia incorporating
the parton shower effects. Using pseudodata based on
POWHEGþ Pythia allows to study the effect of the parton
shower and gives a more realistic simulation. Including the
NLO corrections in the likelihood calculation leads to a
significant reduction of the theoretical uncertainties of the
extracted top-quark mass, while the statistical uncertainties
remain almost unchanged compared to the LO analysis.

We stress that the uncertainties due to scale variation cannot
be reduced by a calibration. The reduction of the uncertain-
ties associated with the scale variation when going from LO
toNLO thus presents an important improvement and a strong
argument in favor of the MEM at NLO accuracy.
Another important observation is the fact that the extended

likelihood yields a significant improvement in terms of the
statistical uncertainties. However, in practical applications
this gain in precision is completely outweighed by the
theoretical uncertainties of the number of expected events.
This can be understood from the fact that, much as the NLO
corrections (see Fig. 3), the scale variations do not dramati-
cally change the shape of the kinematic distributions but
mostly their normalization (see Fig. 4) thereby making the
extended likelihood analyses more sensitive to their effect.
Additionally, employing the extended likelihood requires
precise knowledge of the integrated luminosity of the LHC.
The dependence on this parameter introduces an additional
source of systematic uncertainty. This has to be taken into
account for future experimental applications of the MEM
with realistic event numbers for abundantly produced top-
quark pairs at the LHC which will most likely be dominated
by systematic uncertainties. As has already been stated
before in [25–28], for parameter inference with the MEM
it is mandatory to perform the likelihood calculation at least
at NLO accuracy in order to properly fix the renormalization
scheme of the extracted parameter.
The application of the MEM at NLO to top-quark pair

events at the LHC can offer an alternative approach to
determine the top-quark mass with high accuracy. As has
been demonstrated in this work, already for a few ten
thousand events the precision of the analysis becomes
dominated by systematic uncertainties. As the LHC pro-
duces millions of top-quark pairs, the analysis could be
performed with a rather small fraction of cherry-picked
events allowing to minimize the overall systematic uncer-
tainty. The results obtained in this article suggest that top-
quark mass determination with an uncertainty below 1 GeV
could be feasible. Of course, for a realistic application of
the MEM to experimental data, transfer functions account-
ing for decays, additional radiation and detector effects
have to be considered. In addition, as the analysis based on
the events including parton shower effects shows, a further
calibration is required.

ACKNOWLEDGMENTS

This work was supported in part by the German Federal
Ministry of Education and Research (Bundesministerium für
Bildung und Forschung) under Contract No. 05H18KHCA1.

APPENDIX: ADDITIONAL RESULTS ON
DISTRIBUTIONS USED FOR THE VALIDATION

In this appendix we show further cross checks used
for the validation of the implementation. Figure 9

TABLE II. Extracted values for the estimator of the top-quark
mass from unweighted POWHEG þ Pythia events following the
NLO prediction matched to a parton shower.

m̂t � Δstat
Δ2μ0

sys

Δμ0=2
sys

½GeV�

Likelihood LO prediction NLO prediction

L 173.88� 1.22þ2.13
−2.57 177.93� 1.24þ0.22

þ0.38
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FIG. 9. Validation of the implementation: Comparison of
differential distributions of the top quark obtained in this work
with results from madgraph5 aMC@NLO.

FIG. 10. Same as Fig. 9 but for the ϕt- and the k⊥t -distribution.

FIG. 11. Same as Fig. 3 but for the Mtt̄ and the ϕt-distribution.

FIG. 12. Same as Fig. 5 but for theMtt̄- and the ϕt-distribution.
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shows comparisons of NLO predictions for differential
distributions calculated in this work with distributions
obtained from madgraph5 aMC@NLO [39] which is based
on the dipole subtraction method [42,43]. The pull dis-
tributions in the bottom plots of Fig. 9 and Fig. 10 illustrate
the agreement between both implementations within stat-
istical uncertainties. This comparisons serve as a further
validation for the choice of the slicing parameter. Figure 11
shows the NLO corrections (upper part) together with the

k-factors (lower part) for the Mtt̄ and the ϕt-distribution.
Similar to what is shown in Fig. 3, a flat k-factor is
observed again. As a check of the event generation and the
unweighting procedure Fig. 12 shows distributions calcu-
lated from the generated unweighted events compared with
a calculation using madgraph5 aMC@NLO [39]. Similar
to Fig. 7 we show in Fig. 13 for further distributions the
comparison of distributions obtained at fixed-order NLO
accuracy with results using POWHEGþ Pythia.

FIG. 13. Same as Fig. 7 but for the energy, Mtt̄- and ϕt-distribution.
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