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We revisit standard arguments for hyperscaling of the spectrumwhen a nonzero fermionmass is introduced
to a gauge-fermion theory which is conformal in the infrared limit. With some general assumptions, we argue
that the induced confinement scale will be significantly enhanced near the edge of the conformal to confining
transition. This enhancement can allow for the fermion mass to be arbitrarily small compared to the
confinement scale. This scale separation may allow for apparent spontaneous breaking of chiral symmetry
within the conformal window, which may be of interest for construction of dilaton effective field theories in
this regime.
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I. INTRODUCTION

In the presence of enough fermion degrees of freedom,
Yang-Mills gauge theories become scale invariant in the
infrared limit. This effect was noticed following early
calculations of the two-loop Yang-Mills β function [1,2].
For a theory with Nf Dirac fermions charged under some
representation of the gauge group, the range Ns

f <Nf <NAF
f

for which a given theory remains infrared conformal
(Nf > Ns

f) and asymptotically free (Nf < NAF
f ) is known

as the “conformal window.” Such theories, and the properties
of the conformal field theories (CFTs) that they approach in
the far infrared, are of interest in their own right and in the
context of composite Higgs models; see [3–6] for recent
reviews in the context of lattice calculations investigating the
conformal window.
Studying the infrared limit of such a theory requires that

no additional mass scales are introduced which would
break the emergent conformal symmetry. In particular, all
fermions must be kept massless; for any nonzero fermion
mass m, at scales μ ≪ m the influence of the fermions on
the theory will vanish and the remaining pure-gauge theory
will confine. However, for lattice calculations inside the
conformal window, this effect can be a useful feature.
Inducing the confinement of such a theory by working at
finitemf allows the use of traditional lattice methods suited

for confining theories, such as spectroscopy of hadronic
bound states. Studying the behavior of the spectrum as a
function of mf (“mass hyperscaling,” to be described
further below) can be used to ascertain whether a given
theory is indeed within the conformal window, and even
determine properties of the infrared-limit CFT (in particu-
lar, the anomalous dimension of the mass operator, which
dictates the m dependence of the spectrum).
Standard derivations of mass hyperscaling apply generi-

cally to theories inside the conformal window. Such a generic
derivation neglects the effect of how close a given theory is to
the “sill” of the conformal window at Nf ¼ Ns

f. It has been
arguedpreviously in the literature [7–9] that asNf approaches
Ns

f from below, the dynamical fermion mass (an order
parameter for spontaneous breaking of chiral symmetry
and scale symmetry) should exhibit “Miransky scaling,”
exponential in the inverse distance to the conformal sill:

mdyn ∼ exp

�
−Cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ns
f − Nf

p
�
: ð1Þ

Other authors [10,11] have noted the possibility that the
conformal window transition could be an infinite-order
transition resembling the Berezinskii-Kosterlitz-Thouless
(BKT) phase transition [12–14]—we will refer to this
scenario as “BKT-like.” Miransky scaling of the dynamical
mass for Nf < Ns

f is also predicted in this scenario.
In this paper, we revisit the standard derivation of mass

hyperscaling to consider the effects of varying Nf. In
particular, we will argue that as Nf approaches Ns

f from
above, the induced confinement scale Λc scales as

Λc ∼
�

1

Nf − Ns
f

�
ζ

; ð2Þ
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where the exponent ζ is related to the properties of the
conformal transition. For Nf sufficiently close to the sill,
this large enhancement of Λc implies that a parametric
range of the theory opens up for which the fermion mass
satisfies m0 ≪ Λc. This raises the intriguing possibility of
apparently spontaneous chiral symmetry breaking within
the conformal window, which could give key insights into
extending dilaton effective field theories [15–21] to
Nf > Ns

f. Moreover, study of the Nf dependence to extract
the ζ exponent can give direct information on the properties
of the conformal transition.
The paper is organized as follows. In Sec. II, we review

standard arguments for mass hyperscaling, and then pro-
vide an alternative description in terms of a mass-dependent
renormalization picture, the Gell-Mann–Low renormaliza-
tion group. We rederive standard results in this picture,
including a predicted suppression of the confinement
scale near NAF

f . Section III contains our main results which
concern how this behavior is modified near the conformal
sill, where we find a large enhancement of Λc compared to
the fermion mass. We briefly summarize and discuss the
implications of our results in Sec. IV.

II. MASS HYPERSCALING, REVISITED

For the following discussion, we assume that we are
working in a Yang-Mills gauge theory with Nf fermion
flavors in a single common gauge representation R. The
theory is assumed to lie in the conformal window, so that
in the limit μ → 0 for the massless theory (here μ is the
renormalization-group scale) the gauge coupling αðμÞ≡
gðμÞ2=4π approaches an infrared fixed point value
αð0Þ≡ α⋆. The mass anomalous dimension γðμÞ similarly
approaches the value γð0Þ≡ γ⋆.

A. Confinement and the critical coupling

An important assumption in the following is that there
exists a “critical coupling” αc which determines an
approximate confinement scale Λc through dimensional
transmutation, i.e. αðΛcÞ ¼ αc. The existence of such a
critical coupling can be justified within certain nonpertur-
bative approximations; for example, solution of Schwinger-
Dyson equations in ladder approximation [9,22] leads to
the prediction of an αc beyond which solutions exist for a
nonzero dynamical fermion mass and chiral symmetry will
spontaneously break. We will not adopt any particular
method for estimation of αc; we only need assume that such
a critical coupling exists.
By definition, any theory in the conformal window is

chirally symmetric and does not confine, and therefore
must satisfy α⋆ < αc. Assuming that the conformal tran-
sition is continuous, we may alternatively identify αc as the
fixed-point coupling value where exit from the conformal
window occurs,

αc ¼ lim
Nf ↘ Ns

f

α⋆ðNfÞ: ð3Þ

In the picture of [10,11] where the transition is BKT-like,
the sill of the conformal window corresponds to at least
one irrelevant operatorO becoming marginal. The physical
idea is then that even for Nf > Ns

f, as the coupling
increases to αc, the operator’s anomalous dimension
γOðαÞ will increase to make it relevant and the theory will
confine. Alternatively, in the BKT-like picture the con-
formal transition can be interpreted as resulting from the
merger of two fixed points, the infrared (IR) fixed point at
α⋆ and an ultraviolet (UV) fixed point at stronger coupling;
the merger occurs at α⋆ ¼ αc.
We emphasize that with the assumption of existence of

the critical coupling αc, the identification in Eq. (3) applies
even beyond the BKT-like scenario. For example, although
perturbation theory is not a reliable guide near the bottom
of the conformal window, we may consider the conformal
transition predicted by two-loop perturbation theory as a
qualitative example. In this case, the predicted value of
α⋆ðNfÞ diverges as Nf decreases (see Appendix A).
However, if a given theory confines when αðμÞ > αc at
any scale μ, then the conformal transition in the two-loop
scenario must occur at Ns

f such that α⋆ðNs
fÞ ¼ αc, rather

than at the value of Nf for which α⋆ðNfÞ → ∞.
It is possible that the identification Eq. (3) may fail under

certain scenarios. For example, in the “jumping” scenario
of [23], the αc defined by this limit may be different from
the αc defined through dimensional transmutation of the
confinement scale. In other words, in the jumping scenario
we may have limNf↘Ns

f
α⋆ðNfÞ ¼ αJ < αc, where the latter

is the critical coupling for confinement. This will not
significantly change our results below, which may gen-
erally be modified to account for this scenario simply by
substituting αJ for αc in the derivation. So long as there is
not a very large scale separation between Λc and the scale
ΛJ defined by αðΛJÞ ¼ αJ, the jumping scenario should
exhibit the same enhancement of Λc as the bottom of the
conformal window is approached.

B. Mass hyperscaling: The standard picture

We begin by outlining the standard mass hyperscaling
scenario. A sketch of the derivation is given in Fig. 1. First,
we identify an ultraviolet scale Λ at which a “seed mass”
m0 ¼ mðΛÞ is introduced into the theory. The scale Λ is
chosen so that it is within the regime where the theory is
approximately scale invariant, i.e. αðΛÞ ≈ α⋆ and thus
γðΛÞ ≈ γ⋆. (Because the beta function dα=dμ is vanishing
in the infrared limit, it is always possible to choose such
a Λ.) At lower scales, the mass evolves according to its
anomalous dimension as

mðμÞ ¼ m0

�
Λ
μ

�
γ⋆
: ð4Þ
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As the renormalization group (RG) scale μ decreases, the
mass increases, until eventually they are comparable; we
define the energy scale at which they are equal to beM, i.e.

M ≡mðMÞ: ð5Þ

Solving this equation for M using the RG evolution of
the mass gives the relationship between M and the seed
mass m0 to be

M ¼ Λ
γ⋆

1þγ⋆m0

1
1þγ⋆ : ð6Þ

At scales μ < M, the fermions no longer have negligible
mass, and in particular as μ ≪ M they can be integrated out
of the theory [24], leaving a pure-gauge Yang-Mills theory.
The β function of such a theory will be large and negative,
quickly driving α → αc and triggering confinement and
chiral symmetry breaking. Assuming that this happens
rapidly as soon as the fermion mass is no longer negligible,
we have the result for the confinement scale:

Λc ≈M ∝ m0

1
1þγ⋆ : ð7Þ

This is the mass hyperscaling relation [25–29]; it predicts
that all hadronic quantities will scale as a power law of the
fermion mass. This power-law scaling has been observed in
a number of lattice simulations [27–34].

C. Running coupling in the Gell-Mann–Low
renormalization group

Although the derivation above does not make explicit
reference to a renormalization scheme, it is implicitly
carried out in a Callan-Symanzik (CS) renormalization
group scheme (such as MS) where both the coupling αðμÞ
and mass parameter mðμÞ are taken to depend directly
on the RG scale μ. For our analysis to follow, we will
instead find it convenient to adopt a renormalization
scheme in which the fermion mass m is fixed equal to
the physical or pole mass mP. Specifically, we will adopt

the Gell-Mann–Low (GML) renormalization group pic-
ture [35]. Although most modern renormalization proce-
dures are performed in the CS renormalization group, we
find that the GML renormalization group is advantageous
for our purposes due to the explicit dependence of α on the
particle mass. This is in contrast to MS, in which α is taken
to be independent of fermion mass, with m only influ-
encing the running through decoupling of the fermions at
mass threshold. Our results should of course be indepen-
dent of renormalization scheme, but the derivation is
clearer in GML. For more information, the relationship
between these renormalization groups is described in
Refs. [36–40].
An advantage of using the GML renormalization group

is that, rather than having mass run with renormalization
scale, the mass is fixed to be the pole of the propagator,mP,
with the trade-off that the running of α now depends on
both the renormalization scale Q and the mass mP. Hence,
the analog of the β function, the Gell-Mann–Low Ψ
function, is not only a function of α but also of Q2=m2

P:

dα
d logQ2

¼ Ψðα; Q2=m2
PÞ ¼ −

α2

4π

X∞
k¼0

ψ ðkÞðQ2=m2
PÞ
�
α

4π

�
k
:

ð8Þ

In order to investigate the confinement scale, it is useful
to work in a scheme in which the coupling constant is
defined in terms of the QCD static quark potential [41]
(we will refer to this as the V scheme), defining the
coupling such that

VðQ2Þ ¼ −CF
4παðQ2Þ

Q2
; ð9Þ

where CF is the Casimir invariant in the fundamental
representation.
There is a useful and direct connection between the pole

massmP and the mass scaleM introduced in Eq. (5) above:

FIG. 1. Sketch of the scale dependence of the running coupling αðμÞ and the running fermion mass mðμÞ in the standard mass
hyperscaling scenario, as described in the text.

MASS-INDUCED CONFINEMENT NEAR THE SILL OF THE … PHYS. REV. D 107, 076011 (2023)

076011-3



they are directly proportional. The pole mass itself is
physical and scheme independent; on the other hand, M
is defined through M ¼ mðMÞ based on a running-mass
renormalization scheme. As discussed in [42], the relation-
ship between the pole mass and the mass scaleM in the MS
scheme can be written as an asymptotic expansion in the
coupling α, including threshold effects. The details are
unimportant for our argument; what matters is that
M ∝ mP, with no additional scale dependence.
To finish the connection to hyperscaling using the

Gell-Mann–Low renormalization group, we observe that
due to the dependence of α on Q2=m2

P, the condition
αðQ ¼ ΛcÞ ¼ αc immediately implies the relation

Λ2
c ¼ m2

Pα
−1ðαcÞ: ð10Þ

The relationship Λc ∝ M is thus recovered naturally on
dimensional grounds; in a mass-deformed conformal

theory, we may further identify M ∝ m1=ð1þγ⋆Þ
0 to recover

the standard hyperscaling relation. Moreover, working in
this scheme allows us to directly examine the factor of
proportionality between Λc and mP, the function α−1ðαcÞ,
and in particular how it depends on the number of fermions
present.

D. Mass hyperscaling near the top
of the conformal window

The standard hyperscaling derivation of Sec. II B applies
universally throughout the conformal window, making no
reference to the value of α⋆. This is because the running
needed to induce confinement from α⋆ to αc is ignored,
presuming that it is a small effect. We can attempt to
improve the derivation and elucidate the dependence on Nf

by taking this running into account.
We begin by studying the Caswell-Banks-Zaks limit

[1,2], with Nf close to NAF
f , so that α⋆ can be reliably

obtained with two-loop perturbation theory. The quali-
tative behavior that we expect in this limit was pointed
out by Miransky [8]: as α⋆ becomes very small, the effect
of running from α⋆ to αc opens up an exponentially large
scale separation between M and Λc (so that, for example,
the masses of glueballs are predicted to be highly
suppressed).
This scale separation effect can be obtained in a running-

mass scheme, as was done in [8]. We will study this effect
using the Gell-Mann–Low renormalization group, which
will allow us to obtain a formula for the scale separation
and will also serve to validate our methods. We will work in
the large-Nc limit, which will simplify the algebra some-
what, although we expect the qualitative result to hold at
finite Nc. As a further check, this result can also be readily
obtained in MS; see Appendix A.
In the V scheme, the running of the coupling in the large

Nc limit of an SUðNcÞ gauge theory with Nf ¼ nfNc

fermions of mass mP in two-loop perturbation theory is
given by the equation

dλ
d log Q2

¼ −ψ ð0ÞðQ2=m2
PÞλ2 − ψ ð1ÞðQ2=m2

PÞλ3 þ � � � ;

ð11Þ

where we are using λ ¼ Nc
4π α and the first two coefficients

are given by [40]

ψ ð0ÞðxÞ ¼ 11

3
−
2

3
nf þ

2

3
nffð0ÞðxÞ; ð12Þ

and

ψ ð1ÞðxÞ ¼ 34

3
−
13

3
nf þ

13

3
nffð1ÞðxÞ; ð13Þ

where x ¼ Q2=m2
P. The functions fðiÞðxÞ satisfy

limx→0 fðiÞðxÞ ¼ 1 and limx→∞ fðiÞðxÞ ¼ 0, reflecting that
the theory effectively has zero fermions at Q ≪ mP, and
nfNc fermions at Q ≫ mP. The function fð0ÞðxÞ is deter-
mined exactly in Ref. [39] as

fð0ÞðxÞ ¼ 6

x

�
1 −

4

x

ffiffiffiffiffiffiffiffiffiffiffi
x

xþ 4

r
tanh−1

� ffiffiffiffiffiffiffiffiffiffiffi
x

xþ 4

r ��
ð14Þ

while fð1ÞðxÞ is determined numerically in Ref. [40].
We will consider a perturbative expansion about δnAFf ≡

nAFf − nf ¼ 11=2 − nf, where the infrared fixed-point
coupling (in the massless limit x → ∞) is

λ⋆ ¼ 11 − 2nf
13nf − 34

≈
4

75
δnAFf : ð15Þ

Since λ⋆ ¼ OðδnAFf Þ, we expect λ ¼ OðδnAFf Þ until x ≪ 1,
and hence we can expand to first order in λ. Doing so yields
a separable differential equation,

dλ
d log x

¼ −
11

3
λ2fð0ÞðxÞ: ð16Þ

Solving this equation requires us to specify an initial
condition; in line with the hyperscaling derivation pre-
sented in Sec. II B, we want to choose an ultraviolet scale Λ
where λðΛÞ ≈ λ⋆, so that the (small) running of the coupling
between 0 and λ⋆ is not relevant. The simplest possibility is
to take the limit Λ → ∞ (equivalent to working in the limit
mP ≪ Λ). To do so, we define

FðxÞ ¼
Z

∞

x

fð0Þðx0Þ
x0

dx0

¼ 4

x
− log xþ 2ðx − 2Þ

x

ffiffiffiffiffiffiffiffiffiffiffi
xþ 4

x

r
tanh−1

� ffiffiffiffiffiffiffiffiffiffiffi
x

xþ 4

r �

ð17Þ
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and then we can arrive at a solution to λ which corresponds
to λð∞Þ ¼ λ⋆. We then have

λ ¼ 12δnAFf
225 − 44δnAFf FðxÞ : ð18Þ

It can be verified numerically that for small δnAFf , the
inversion of Eq. (18) corresponds to a small value of x.
Hence, we can expand Eq. (18) for small x and solve for
the scale at which δλ ¼ δλc. Doing so, we find a confine-
ment scale

Λ2
c ¼ m2

P exp

�
5

3
þ 3

11λc
−

225

44δnAFf

�
ð19Þ

indicating that along with the expected scaling proportional
to the pole mass mP, the confinement scales with δnAFf
according to

Λc

mP
∼ exp

�
−

225

88δnAFf

�
; ð20Þ

so that the confinement scale will be exponentially sup-
pressed. This reproduces the predicted scaling of Ref. [8],
including the numerical prefactor which comes from
perturbation theory (see Appendix A). It is further noted
in Ref. [8] that an observable consequence of this sup-
pression could be that glueball states (whose mass will be
set by Λc) become exponentially light compared to fer-
mionic bound states (whose mass will be dominated by mP
if mP ≫ Λc).

III. MASS HYPERSCALING APPROACHING
THE CONFORMAL SILL

Next, we turn to the case where Nf ↘ Ns
f. In this

case, we have λ⋆ ≈ λc, so that we expect that the running
between these two scales will be small indeed (as assumed
in the standard hyperscaling derivation). However, as
λc − λ⋆ → 0, another formerly negligible effect can become

important: the influence of the fermion mass itself on the
running of λðμÞ. We know that this influence is important,
because the hyperscaling derivation relies on decoupling;
that is, the β function and thus λðμÞ changes dramatically
for μ ≫ M and for μ ≪ M, becoming the β function for an
Nf ¼ 0 pure-gauge theory in the latter case.
When λ⋆ is close enough to λc, a relatively small change

in the coupling due to the introduction of a fermion mass
should be sufficient to cause the theory to confine. Below,
we will argue that, with careful consideration of the order
of limits, there exists a regime where the confinement
scale is arbitrarily large compared to the fermion mass,
Λc ≫ m. We begin with an existence argument on general
grounds, and then repeat the derivation with a specific
form for the Ψ function. The qualitative situation is
depicted in Fig. 2.

A. Existence argument

Consider a theory inside the conformal window with
λ� ¼ λc − ϵc and ϵc ≪ 1. In the large-Nc limit, we can
adjust nf − nsf continuously to satisfy this condition for
any ϵc. To study the effect of a nonzero fermion mass, we
will denote the difference between the running coupling in
the massless theory and in the massive theory by

ΔλðQ2Þ≡ λm¼mP
ðQ2Þ − λm¼0ðQ2Þ: ð21Þ

This comparison requires us to hold everything else
fixed, aside from the fermion mass. To do so explicitly, we
can identify an energy scale Λ such that λðΛ2Þ ¼ λ⋆ − ϵΛ
for some infinitesimal ϵΛ, but also require mP ≪ Λ so that
the effect of the mass on the running near Λ is negligible.
Since the β function in the massless theory has a zero,
this separation of scales can be arbitrarily large. (Roughly
speaking, Λ is on the infrared “plateau” region of the
running coupling where the β function is approximately
zero.) Because the effect of the fermions is always one of
screening, adding a fermion mass will always increase the β
function and therefore ΔλðQ2Þ is strictly positive.

FIG. 2. Sketch of how the standard hyperscaling argument breaks down near the sill of the conformal window.
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Suppose we evaluate ΔλðQ2Þ at some value of Q ≫ mP.
By construction, ΔλðQÞ should go to 0 as mP does, so we
can write

ΔλðQ2Þ ¼ ðaþOðϵcÞÞ
m2

P

Q2
þO

�
m4

P

Q4

�
þO

�
m2

P

Λ2

�
; ð22Þ

where we neglect terms containing mP=Λ because we have
already ensured that this ratio is small.
Keeping full generality, we can also rewrite λm¼0ðQ2Þ

for Q < Λ in the following form to highlight its ϵΛ
dependence:

λm¼0ðQ2Þ ¼ λ⋆ − ðbðϵΛ; QÞ þOðϵcÞÞϵΛ − � � � : ð23Þ

Here the function b is not assumed to be analytic, however
we do know it must be between 1 and 0 for all Q < Λ
because of the definition of ϵΛ and the fact that λðQ2Þ is
monotonic.
Now we can use these relations to manufacture a Λc in

the regime we are hoping for. Suppose a new arbitrary mass
scale Q0 is defined as the solution to the equation

a
m2

P

Q2
0

¼ ϵc þ bðϵΛ; Q0ÞϵΛ: ð24Þ

It is not difficult to see that since ϵc and ϵΛ are assumed to

be very small, we have m2
P

Q2
0

≪1 as well. [For an explicit

solution verifying this, see Eq. (41).] Equations (22) and
(23) can then be used to rewrite the above expression as

ΔλðQ2
0Þ ¼ ϵc þ ðλ� − λm¼0ðQ2

0ÞÞ ð25Þ

⇒ λm¼mP
ðQ2

0Þ − λm¼0ðQ2
0Þ ¼ λc − λm¼0ðQ2

0Þ ð26Þ

⇒ λm¼mP
ðQ2

0Þ ¼ λc ð27Þ

⇒ Q0 ¼ Λc: ð28Þ

Equation (24) can now be solved to find general solutions
for Λc.
To make this process more straightforward, we can use

the parametric control over ϵΛ we have access to. No
assumptions were made about ϵc and ϵΛ other than that they
are small, so we are free to take relative limits of them
without losing the existence of Λc. The region we are most
interested in occurs when ϵc ≫ ϵΛ. In this case, one obtains

ϵc ¼ a
m2

P

Λ2
c
⇒ Λc ∝

mPffiffiffiffi
ϵc

p : ð29Þ

This is a very general result, and it establishes the
existence of a regime for which mP ≪ Λc. To make it
more practically useful, we can consider the relationship

between ϵc and nf. We know that ϵc → 0 as nf → nsf by
definition. Assuming the relationship between the two
quantities is analytic, we may write at small ϵc

δnf ¼ n0ϵkc þOðϵkþ1
c Þ; ð30Þ

where k is an integer corresponding to the first nonzero
order in the expansion. (This form and the integer k can also
be derived by considering an expansion of the β or Ψ
function about λc—see Sec. III B below.) From Eq. (29),
the physical confinement scale can then be expressed
scheme independently as

Λc ∝
mP

ðδnfÞζ
; ð31Þ

where the exponent is defined as ζ≡ 1
2k.

The value of the exponent k is closely related to the
nature of the conformal window transition. For example,
suppose that the transition is “BKT-like,” with two fixed-
point solutions merging at nf ¼ nsf. Then recalling the
definition ϵc ¼ λc − λ⋆, for any nf > nsf we expect to find
two solutions for ϵc, while at nf < nsf there should be no
solutions. This behavior is consistent with only even terms
appearing in the expansion Eq. (30), with the simplest
possibility being k ¼ 2.
We may contrast this with a scenario in which the

transition at the sill happens abruptly. An example of this is
a situation in which the two-loop Ψ function [Eq. (11)] is
exact, so that the sill is crossed at the value of nsf for which
λ⋆ðnsfÞ ¼ λc, with λ� given by Eq. (15). Expanding about
nf ¼ nsf, we have ϵc ¼ λc − λ⋆ ¼ 75δnf=ð13nsf − 34Þ2,
implying k ¼ 1. We will hence refer to k ¼ 1 as a “PT-
like” scenario, although we recognize that there are other
scenarios in which one may have ϵc ∝ δnf. Measurement
of the exponent ζ allows us to determine the value of k and
shed light on the nature of the conformal window transition.
Although the results above with ϵc ≫ ϵΛ are of primary

interest to us, it is worth noting that the opposite limit
ϵΛ ≫ ϵc leads to a secondary region of parameter space for
Eq. (24) with different properties. In this case, we have

a
m2

P

Λ2
c
¼ bðϵΛ;ΛcÞϵΛ: ð32Þ

Recall that b is totally δnf independent through its
definition as the zeroth order term in an ϵc expansion.
Therefore, this solution for Λc has no δnf dependence.
Thus, if we hold ϵΛ fixed and attempt to tune nf → 0, we
will eventually enter this solution regime and the depend-
ence of Λc on δnf will vanish again. (This may always be
avoided, however, by taking ϵΛ to always be small enough
that the ϵc term is never negligible.)
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The Ψ-function based arguments in the next section do
provide insight into the explicit form of bðϵΛ;ΛcÞ, allowing
us to actually solve Eq. (32). We obtain in Eq. (40) that for
some positive real number p,

bðϵΛ; QÞ ¼ b0
Q2p

Λ2p þO

�
Q4p

Λ4p

�
ð33Þ

⇒ a
m2

P

Λ2
c
¼ b0ϵΛ

Λ2p
c

Λ2p ð34Þ

⇒ Λc ∝ Λ
�

1ffiffiffiffiffi
ϵΛ

p mP

Λ

� 1
pþ1

: ð35Þ

If p is small, as it is in perturbation theory, then Λc is
once again just governed by m:

Λc ∝
mPffiffiffiffiffi
ϵΛ

p : ð36Þ

There is an interesting similarity between Eqs. (29)
and (36); in both cases the enhancement of the confinement
scale is present, with Λc determined by the inverse square
root of an infinitesimal difference in λ. The key change
from the first equation to the second is the complete lack of
δnf dependence.

B. Expansion of the Ψ function

Having established the existence of a regime where
mP ≪ Λc with characteristic scaling of the confinement
scale with δnf ¼ nf − nsf by the general argument above,
we now turn to an alternative analysis based on study of the
Ψ function in the same regime. In this section we assume
m2

P=Λ2 ≪ 1, restricting us to the light-mass scaling regime
found above.
To study the δnf dependence of Λc in the δnf → 0

regime, we consider a Ψ function of the form

dλ
d log Q2

¼ −fðλ; m2
P=Q

2Þλ2½ðλc − λÞk − Aδnf

þ gðλ; m2
P=Q

2Þ�; ð37Þ

where k is a positive integer, gðλ; 0Þ ¼ 0, and fðλ; 0Þ has no
zeros in the region of interest. This form is expected
to capture the most general possible structure of the Ψ
function in this regime, near λ⋆ ≈ λc. When mP ¼ 0, there
is a fixed point at λ⋆ ¼ λc − ðAδnfÞ1=k, so ϵc ¼ ðAδnfÞ1=k.
For even k, it can be seen that λ⋆ becomes imaginary for
nf < nsf. This is similar to the BKT-like scenario suggested
by Ref. [10], with the simplest possible realization of this
effect being at k ¼ 2. For odd k, λ⋆ > λc for nf < nsf, so the
theory confines before the IR fixed point is reached. We
briefly note that one can consider a slightly more exotic

form where the term containing δnf is given by AðδnfÞ2mþ1

for any positive integer m. Though this recovers the same
phenomenological aspects of Eq. (37) for odd and even k,
such a structure for the leading term in δnf would require
miraculous cancellations at all orders in perturbation
theory, so we omit it for simplicity.
To analyze the scaling behavior of Λc with δnf, we will

obtain a solution for λðQ2Þ in the regime of interest.
Invoking our general argument (see Fig. 2), we anticipate
that for δnf ≪ 1 the theory will confine long before the
scale of the fermion mass mP is reached. As a result, we
may expand in m2

P=Q
2. Alternatively, we may begin by

assuming m2
P ≪ Q2, which will limit the range of validity

of our solution; if we find that our solution remains valid at
Q2 ¼ Λ2

c, then we have a self-consistent result.
Since we are only concerned with the running very

close to the fixed-point coupling (since λc is close to λ⋆),
we will expand λ ¼ λ⋆ þ δλ and work in terms of δλ.
Doing so yields

dðδλÞ
d log Q2

¼−fðλ⋆;0Þλ⋆2
�
ðϵc− δλÞk− ϵkcþ gð0;1Þðλ⋆;0Þm

2
P

Q2

�
:

ð38Þ

For k > 1, perturbative analysis reveals that the first
two terms in the differential equation are always small
compared to the second, since ϵc ∼ δλ ∝ m2

P=Q
2, and

ðm2
P=Q

2Þk ≪ m2
P=Q

2. For k ¼ 1, this is no longer the
case, but the differential equation can be solved exactly.
For brevity, we keep the linear term in δλ when solving
for k > 1, even though it is smaller than m2

P=Q
2 by a factor

of ϵk−1c . Doing so, we can solve for any k ≥ 1, finding that
with initial condition δλðΛ2Þ ¼ −ϵΛ, Eq. (38) has the
solution

δλ ≈
fðλ⋆; 0Þλ⋆2gð0;1Þðλ⋆; 0Þ
1þ kϵk−1c fðλ⋆; 0Þλ⋆2

�
m2

P

Q2
−
m2

P

Λ2

�
Q2

Λ2

�
kϵk−1c fðλ⋆;0Þλ⋆2�

− ϵΛ

�
Q2

Λ2

�
kϵk−1c fðλ⋆;0Þλ⋆2

ð39Þ

≈
fðλ⋆; 0Þλ⋆2gð0;1Þðλ⋆; 0Þ
1þ kϵk−1c fðλ⋆; 0Þλ⋆2

m2
P

Q2
− ϵΛ

�
Q2

Λ2

�
kϵk−1c fðλ⋆;0Þλ⋆2

:

ð40Þ

We note that the dependence on Q2=Λ2 matches that found
for g − g� in Ref. [43], and the additional mass dependence
is due to us working in the Gell-Mann–Low renormaliza-
tion group. Our scaling results appear qualitatively different
than those of Ref. [43], but this is because we have taken
the limit nf → nsf in addition to α → α�. We can now use
Eq. (40) to solve for the confinement scale, which occurs at
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λ ¼ λc (δλ ¼ ϵc ¼ ðAδnfÞ1=k). Substituting δλ ¼ ϵc and
Q ¼ Λc into Eq. (40) and rearranging yields

Λ2
c

�
1þ ϵΛ

ϵc

�
Λ2
c

Λ2

�
kϵk−1c fðλ⋆;0Þλ⋆2�

¼ fðλ⋆; 0Þλ⋆2gð0;1Þðλ⋆; 0Þ
1þ kϵk−1c fðλ⋆; 0Þλ⋆2

m2
P

ϵc
: ð41Þ

If ϵΛ ≪ ϵc, the running of λ is primarily due to the region
λ⋆ < λ < λc, and Λc scales according to

Λc ∼
mPffiffiffiffi
ϵc

p ∼
mP

ðδnfÞ1=2k
: ð42Þ

Hence, in addition to hyperscaling, there is an enhancement
proportional to some inverse power of δnf. k ¼ 1 corre-
sponds to a scenario like two-loop perturbation theory,
where the confinement happens abruptly at some nsf before
λ⋆ðnsfÞ diverges and the form of the Ψ function is always
linear (PT-like). k ¼ 2 corresponds to a BKT-like scenario,
as described in Ref. [10], where an IR and UV fixed point
meet at λ�ðnsfÞ ¼ λc, marking the end of the conformal
window (BKT like). In the latter case, the fixed-point
merger results in a second-order zero precisely at the end of
the conformal window. The behavior of Λc over the range
nsf < nf < nAFf is depicted in Fig. 3 for PT-like (k ¼ 1)

and BKT-like (k ¼ 2) confinement. For nf ≈ nAFf , the two
confinement mechanisms are indistinguishable, but for
nf → nsf, differences in scaling are apparent.
If ϵΛ ≫ ϵc, the running of λ is primarily due to the region

λðΛ2Þ < λ < λ⋆, and Λc scales like

Λc ∼ Λ
�

mPffiffiffiffiffi
ϵΛ

p Λ

�
1=ð1þkϵk−1c fðλ⋆;0Þλ⋆2Þ

: ð43Þ

In particular, as nf → nsf,

Λc ¼ fðλ⋆; 0Þλ⋆2gð0;1Þðλ⋆; 0Þ mPffiffiffiffiffi
ϵΛ

p ; ð44Þ
FIG. 3. Illustrative sketch showing, within the conformal
window, the scale of confinement Λc vs the number of fermions
nf ¼ Nf=Nc in the large Nc limit for two confinement hypoth-
eses. The plot demonstrates the qualitative scaling of Λc vs nf in
the k ¼ 1 (PT-like) scenario, and the k ¼ 2 (BKT-like) scenario.
To produce the plots, we have arbitrarily taken nsf ¼ 4 (corre-
sponding to λc ¼ 1=6 in the two-loop case). Loss of asymptotic
freedom occurs at nAFf ¼ 11=2. The numerical results are
obtained by solving Eq. (11) for λ and solving λðQ2Þ ¼ λc for
Q. The initial condition was taken to be λð103mPÞ ¼ λ⋆ðnfÞ for
nf > 5.2 and λð106mPÞ ¼ λ⋆ðnfÞ for nf ≤ 5.2.

FIG. 4. Exact solution (circles) and numerical solution to
Eq. (41) for two values of ϵΛ. The functions fðλ; m2

P=Q
2Þ and

gðλ; m2
P=Q

2Þ along with the constant A were chosen so that the
expansion of Eq. (37) matches the two-loopΨ function [Eq. (11)]
to order λ2. See Appendix B for details. On the top, ϵΛ ≫ ϵc for
most of the plot, so Λc approaches a constant value as ϵc → 0. On
the bottom, ϵΛ ≪ ϵc for most of the plot, and the ðδnfÞ−1=2k
scaling is apparent.
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or (for k ¼ 1)

Λc ¼
fðλ⋆; 0Þλ⋆2gð0;1Þðλ⋆; 0Þ

1þ fðλ⋆; 0Þλ⋆2
mPffiffiffiffiffi
ϵΛ

p : ð45Þ

Here, the standard hyperscaling appears to be enhanced
by a constant factor 1=

ffiffiffiffiffi
ϵΛ

p
, but no longer has strong nf

dependence. The behavior of Λc for small δnf is shown in
Fig. 4 for two representative values of ϵΛ. The ðδnfÞ1=2k
scaling is present for a wider range of δnf when ϵΛ is small.
Otherwise, the value of Λc plateaus quickly for small δnf,
as predicted by Eqs. (44) and (45).

IV. CONCLUSION

In this paper, we have studied the dependence of the
induced confinement scale λðΛcÞ ¼ λc on the number of
fermion flavors Nf. For large Nf near the loss of asymp-
totic freedom, we have confirmed the known exponential
suppression of Λc with respect to the scale of the fermion
mass m.
For Nf approaching the conformal sill Ns

f, we have
argued above using two different lines of argument that the
confinement scale Λc will obey the scaling relation

Λc ∝
mP

ðNf − Ns
fÞζ

; ð46Þ

where the precise value of the exponent ζ in the denom-
inator is sensitive to the nature of the conformal transition;
in the simplest BKT-like transition scenario, ζ ¼ 1=4,
while in general ζ ¼ 1=ð2kÞ for integer k, where k is
related to the nature of the β orΨ function at the edge of the
conformal transition. This is written in terms of the physical
mass mP; using the identification mP ∼M as discussed
in II C, we can rewrite this relation in terms of a running
mass in the form

Λc ∝
M

ðNf − Ns
fÞ1=4

∝
m1=ð1þγ⋆Þ

0

ðNf − Ns
fÞ1=4

: ð47Þ

In other words, even near the conformal sill we expect
hyperscaling of the mass spectrum as a function of the
fermion mass. However, due to the sharp enhancement of
the confinement scale, we have that for Nf ↘ Ns

f the
confinement scale will be much larger than the fermion
mass, m0 ≪ Λc.
Although the parametric dependence of Λc on the

fermion mass remains (as it must within the conformal
window, since the theory will not confine at m ¼ 0), the
existence of a regime wheremP ≪ Λc is very interesting. It
is possible that this separation of scales indicates the
opening of a regime within the conformal window in
which chiral symmetry breaking will be approximately

spontaneous, in the sense that observables related to chiral
symmetry breaking will be dominated by contributions
from Λc and direct dependence on mP will be negligible.
If this is the case, we may expect that the pion states

become near-massless pseudo-Nambu-Goldstone bosons
compared to the rest of the spectrum, even within the
conformal window—so long as the theory is at small but
finite mass. It would be very interesting to study whether
dilaton effective field theories [15–21] could be extended to
apply to mass-deformed theories just inside the sill of the
conformal window, and whether this extension could give
new qualitative insights for lattice studies or for applica-
tions to phenomenology. In [44] for instance, a new phase
with light dilatons and pions is suggested to exist just below
the edge of the conformal window. Our results may predict
that this same qualitative behavior persists on the other side
of the conformal transition. It could be interesting to study
the implications of our work for their model in particular.
An interesting direction for future work could be to

explore whether the effect described here can also be
applied to physical theories other than SUðNcÞ Yang-
Mills theory. In particular, N ¼ 1 supersymmetric QCD
exhibits a non-Abelian Coulomb phase for a certain range
ofNf [45], similar to the conformal window studied here. It
would be worthwhile to study whether a similar enhance-
ment of an induced confinement scale occurs in these
theories with mass deformation.
In Fig. 3, we summarize our results by showing the

dependence of the confinement scale Λc on the number of
fermion flavors across the conformal window. If a similar
curve could be obtained numerically from lattice simula-
tions, it may be possible to use the scaling of Λc to estimate
both the edge of the conformal window Ns

f and the nature
of the transition via the exponent k. Since most lattice
calculations for the conformal window are done at rela-
tively small Nc such as Nc ¼ 3, the specific enhancement
factor for any given theory is likely to be small, as
nf ¼ Nf=Nc will vary in relatively large and discrete
steps. However, it may be possible to determine the scaling
with Nf even if the enhancement of Λc is not very large
for any particular value of Nf simulated. As discussed in
Sec. III and shown in Fig. 4, the apparent divergence of Λc
as Ns

f is approached will saturate and cut off depending on
the value of the ultraviolet cutoff Λ at which the running
begins; control of lattice cutoff dependence will thus be an
important systematic effect to consider in any lattice study
of this phenomenon.
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APPENDIX A: THE BANKS-ZAKS LIMIT IN MS

In the Banks-Zaks limit, we can reliably make use of the
two-loop β function. The two-loop universal β function
takes the form

βðαÞ ¼ dα
dðlog μ2Þ ¼ −β0α2 − β1α

3 þ � � � ðA1Þ

with the coefficients equal to

β0 ¼
1

4π

�
11

3
Nc −

4

3
TðRÞNf

�
; ðA2Þ

β1 ¼
1

ð4πÞ2
�
34

3
N2

c −
�
20

3
Nc þ 4C2ðRÞ

�
TðRÞNf

�
: ðA3Þ

Here TðRÞ is the trace normalization, also known as the first
Casimir invariant; we adopt the normalization convention
that TðRÞ ¼ 1=2 for the fundamental representation of
SUðNÞ. C2ðRÞ is the standard quadratic Casimir invariant
of representation R.
The predicted value of the fixed-point coupling is then

α⋆ ¼ −
β0ðNfÞ
β1ðNfÞ

¼ −
1

Nc

4πð11 − 2nfÞ
34 − 13nf

: ðA4Þ

In this regime, there is generally a more significant
distance betweenM and Λc than in the focus main body of
the paper. In [8], Miransky suggests that in the Banks-Zaks

case, Λc ¼ Me
− 1
11
6π

Ncα� . If so, we can now recognize the MS
result matches our Gell-Mann-Low calculation from
Eq. (20):

Λc ¼ M exp

�
−
225

88

1

δnAFf

�
: ðA5Þ

APPENDIX B: NUMERICAL EVALUATION
OF THE Ψ FUNCTION

In Sec. III B, we consider a model Gell-Mann-Low Ψ
function of the form

dλ
d log Q2

¼ −pðλ; m2
P=Q

2Þλ2½ðλc − λÞk − Aðnf − nsfÞ

þ qðλ; m2
P=Q

2Þ� ðB1Þ

with the additional constraint that qðλ; 0Þ ¼ 0 and
qðλ;∞Þ ¼ Anf. In order to numerically evaluate this
differential equation, we need to select reasonable values
for λc, A, and nsf, and reasonable functions for p and q.
Rather than choosing parameters arbitrarily, we require that
for small λ, the differential equation should be equivalent to
the two-loop Ψ function

�
dλ

d log Q2

�ð2Þ
¼ −λ2

�
11

3
−
2

3
nfð1 − fð0Þðm2

P=Q
2ÞÞ þ

�
34

3
−
13

3
nfð1 − fð1Þðm2

P=Q
2ÞÞ

�
λ

�
ðB2Þ

with fðiÞð0Þ ¼ 0 and fðiÞð∞Þ ¼ 1. Let us begin by matching at m2
P=Q

2 ¼ 0:

dλ
d log Q2

¼ −λ2½pð0Þð0Þðλkc þ Ansf − AnfÞ þ ðpð0Þð0Þkλk−1c þ pð1Þð0Þðλkc þ Ansf − AnfÞÞλ�: ðB3Þ

For simplicity, we assume that p is independent of nf, so
that matching can be done term by term in nf. Matching nf
and λ dependence, we have the following equations:

pð0Þð0Þðλkc þ AnsfÞ ¼
11

3

pð0Þð0Þkλk−1c þ pð1Þð0Þðλkc þ AnsfÞ ¼
34

3
ðB4Þ

pð0Þð0ÞA ¼ 2

3
pð1Þð0ÞA ¼ 13

3
: ðB5Þ

These equations can be combined to yield

λkc ¼ AðnAFf − nsfÞ ðB6Þ

and

3kλk−1c þ 26AnAFf ¼ 68A; ðB7Þ

where nAFf ¼ 11=2. Noting that 34 − 13nAFf ¼ 75=2 and
multiplying by λc allows us to substitute Eq. (B6), and
we find

λc ¼
4k
75

ðnAFf − nsfÞ: ðB8Þ

Using this, we can eliminate λc from Eq. (B6), yielding

A ¼
�
16πk
75

�
k
ðnAFf − nsfÞk−1: ðB9Þ
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Hence, with this modelΨ function, A and λc can be entirely
determined in terms of k and nsf. For the numerical
simulations, we choose various k and nsf ¼ 4. We note
that when k ¼ 2 (which is the simplest BKT-like model)
and nsf ¼ 4 (which is supported by theoretical consider-
ations [9]), one finds 4πλc ¼ 16π=25 ≈ 2.01. This is very
close to the large-Nc critical coupling Ncαc ¼ 2π=3 ≈ 2.09
predicted by analyzing the gap equation [9].
Let us now match at m2

P=Q
2 → ∞. The first two

formulas are virtually the same, with pðiÞð0Þ replaced with
pðiÞð∞Þ, and there are no other formulas since there is no
more nf dependence. This implies that pðiÞð0Þ ¼ pðiÞð∞Þ.
Let us additionally assume that p is completely constant in
m2

P=Q
2, so that the only additional running comes from q.

The Q-dependent terms are then of the form

�
dλ

d log Q2

�
Q
¼ −λ2½pð0Þqð0Þðm2

P=Q
2Þ

þ ½pð1Þqð0Þðm2
P=Q

2Þ þpð0Þqð1Þðm2
P=Q

2Þ�λ�;
ðB10Þ

immediately implying that

pð0Þqð0Þðm2
P=Q

2Þ ¼ 2

3
nffð0Þðm2

P=Q
2Þ ðB11Þ

pð1Þqð0Þðm2
P=Q

2Þ þpð0Þqð1Þðm2
P=Q

2Þ ¼ 13

3
nffð1Þðm2

P=Q
2Þ:

ðB12Þ

We can multiply these equations on both sides by A to get
rid of the pðiÞ to find that

qð0Þðm2
P=Q

2Þ ¼ Anffð0Þðm2
P=Q

2Þ ðB13Þ

qð1Þðm2
P=Q

2Þ ¼ 13

3
Anfðfð1Þðm2

P=Q
2Þ − fð0Þðm2

P=Q
2ÞÞ:
ðB14Þ

These are the functions and parameters we choose for the
numerical solutions in Fig. 4. Although Eq. (B1) is slightly
more general than Eq. (37) in the text, the results we derive
in the text are consistent for small δnf and small m2

P=Q
2 as

predicted.
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