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We formulate a Lagrangian hydrodynamics including shear and bulk viscosity in the presence of spin
density, and investigate it using the linear response functional formalism. The result is a careful accounting
of all sound and vortex interactions close to local equilibrium. In particular, we demonstrate that the mixing
of sound waves and vortices via polarization, first observed in the ideal fluid limit, extends to the shear
mode once dissipative effects are included. This provides a realization within Lagrangian hydrodynamics
of the symmetric shear polarization contribution recently advocated from transport and Zubarev approaches
as well as phenomenological considerations. Once causal relaxational dynamics is included, this effect,
seemingly puzzling because it results in a nondissipative coupling between a transient mode to an
equilibrium quantity, can be understood as a competition between the Israel-Stewart and the polarization
relaxation timescale, and a breakdown of local Markovianity. We close by discussing phenomenological
implications of these results.
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I. INTRODUCTION

Relativistic spin hydrodynamics has been part of a
vigorous theoretical investigation, triggered by the
experimental discovery of a vorticity-correlated hyperon
spin polarization and vector resonance spin alignment in
heavy ion collisions [1]. Recently, several versions of
hydrodynamics with spin have been proposed [2–17] but
basic conceptual questions, such as the role of spin-
vorticity coupling, pseudogauge dependence, entropy
production and the definition of equilibrium, remain
unanswered.
One approach that has the advantage of an immediate

connection with both microscopic statistical mechanics and
field theory is Lagrangian hydrodynamics [6] analyzed via
linear response techniques. In this formalism, one abandons
the definition of hydrodynamics as dictated by conserva-
tion laws, but instead develops it from a definition of a free
energy to be locally minimized. The advantages, as written
earlier, are a direct connection with microscopic entropy
and, since conservation laws do not dictate the dynamics, a
bypassing of the pseudogauge issue. The disadvantage is
that away from the ideal limit free energy is not maximized

exactly so a Schwinger-Keldysh formalism, and a precise
fluctuation-dissipation relation, are needed to hold for the
dynamics to be well defined [18].
The Lagrangian approach was previously used to

understand the properties of a nondissipative fluid
[19–22], then one with bulk [23] and shear [24] viscosity
as well as Israel-Stewart (IS) corrections. It was used in
[2,3] to understand the transport properties of a nearly
ideal fluid with spin and to show that this limit clashed
with causality [4]. Finally, [25] a rigorous connection
was made between spin hydrodynamics and the linear
response theory of [26,27], including a Higgs-like relation
between the polarization “condensate” and space-time
symmetries and a fluctuation dissipation relation between
polarization susceptibility and spin relaxation time,
whose long-time tail parallels the tail of hydrodynamic
fluctuations [28].
In this work, we would like to extend our earlier

analysis [25] to include dissipative effects as well as spin
effects. This is because, while spin is a necessary con-
tributor to dissipation [4], it is not its only source, since of
course momentum diffusion by microscopic collisions is
still present. As recently seen in [16], the interplay of the
“pure dissipation” scale with the “polarization scale” can be
quite nontrivial. Moreover, the broken time-reversal sym-
metry induced by dissipation, and the broken space-time
symmetry induced by polarization, can combine in rela-
tively nontrivial ways. In this work we will use the linear
response analysis developed in [25] to elucidate all these
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issues in detail, clarify how polarization and dissipation
combine in different regimes, and explain the role of
interactions between “macroscopic” sound and diffusive
modes and microscopic fluctuations as well as of
the effective symmetries. In Sec. II, we review the QFT
implementation via the Schwinger-Keldysh formalism
and the construction of both dissipative and spin
hydrodynamics as effective field theories. In Sec. III, we
will put together the dissipative and polarization terms
to study the interaction between them. This analysis is
developed via Feynman diagrams in Sec. IV by deriving
the EoS and transport corrections due to polarization and
elucidating the regimes in the different length scale
hierarchies. In Sec. V we provide an overview of the
Markovian limit and discuss the inclusion of the memory
effect to describe second-order polarized hydrodynamics.
Finally, in Sec. VI we present the general remarks and
summarize our findings. The detailed form of the Kubo
formulas and correlations is given in the Appendix. Finally,
we address the memory effect by means of hierarchy of the
relaxation timescale.
Conventions: ℏ ¼ 1. c ¼ 1 metric ημν ¼ diagðþ;−;

−;−Þ. μ; ν;… all space-time coordinates, I; J; K;… spatial
coordinates in the Lagrangian frame.

II. SCHWINGER-KELDYSH CTP FORMALISM

We have known hydrodynamics as an effective descrip-
tion of the infrared regime where the physical properties
manifest from underlying microscopic interactions. We
address hydrodynamics by using a bottom-up effective
field theory language [19–21]. In this section, we introduce
the closed time path formalism as a good qualitative
description of what is going on in a dissipative polarized
fluid in rotation.

A. CTP Wilsonian effective action

The Schwinger-Keldysh formalism has been developed
to exploit the fluctuation-dissipation theorem, which
calculates deviations from equilibrium. These deviations
are modeled as perturbations on a heath bath. The key
object to perform such analysis is the generating func-
tional

Z½J� ¼
Z

Dφρ½φðt;xÞ� exp
�
iS½φ� þ i

Z
C
d4xJ ·φ

�
; ð2:1Þ

where φ encodes fϕ;Ψg the infrared and ultraviolet
degrees of freedom, respectively, J is the usual classical
external source, and the ρ is the density matrix.
The integration contour C ¼ C1 ∪ C2 represents the branch
C1 running “toward” positive time axis and C2 running
“backward” negative time axis. In order to build the
n–point correlation function, we use Z½J�

Gðx1;…; xmÞ ¼ ið−1Þm δmZ½J�
δJðx1Þ…δJðxmÞ

¼ hT fϕðx1Þ…ϕðxmÞgi; ð2:2Þ

where T is the time-ordered-product and h…i the thermal
expectation value.1 Since the equilibrium is built around
stationarity deviations, implemented via the KMS
condition. It must necessarily come in two types, toward
and away from equilibrium. Microscopically, the equilib-
rium condition demands that transitions to and from
equilibrium must be equivalent, but in the long run, as
equilibrium maximizes the number of microstates (whose
logarithm is the entropy), fluctuations toward equilibrium,
will be more frequent. With the purpose to approach any
real process in the effective theory, these requirements are
investigated by doubling the degrees of freedom

φþ ¼ φ1 þ φ2

2
; φ− ¼ φ1 − φ2;

Jþ ¼ J1 þ J2
2

; J− ¼ J1 − J2; ð2:3Þ

as well as the Hilbert space. Substituting these coordinates
in (2.1), the generator functional in the Heisenberg
representation becomes

Z½φ�; J�� ¼ Tr½Uðþ∞;−∞;φþ; JþÞρo½φ�ðt;xÞ�
× U†ðþ∞;−∞;φ−; J−Þ�; ð2:4Þ

being ρo the initial density matrix. This transformation
explicitly makes the connection between the “exact”
quantum interaction with a thermal bath. As the unitary
matrix is U ¼ T fexp i R d4x½EðxÞ − JþðxÞφþðxÞ�g, the
generating function can be decomposed as

Z½ϕ�;Ψ�� ¼
Z

Dϕ�DΨ�ρ½ϕ�;Ψ�� exp½iS½ϕ��

þ iS½Ψ�� þ iS½ϕ�;Ψ���; ð2:5Þ

where S½ϕ�� is the conservative stress-tensor, bounded
from below, and S½Ψ�� is the action of the micro-
scopic variable. The fact that there are two directions,
toward and away from equilibrium, means that, from a
microscopic viewpoint, the coarse-grained procedure
produces fluctuations in S½ϕ�;Ψ��. Note that all nontrivial
couplings between ϕ −Ψ will be necessary according
to the dissipative-order needed to exploit the fluid behav-
ior. Physically, even though we cannot keep track of
inaccessible degrees of freedom, their feedback interferes
with the dynamics of accessible degrees of freedom. After
integrating out of the Ψ-sector in (2.5), we obtain

1The coordinate arguments is in 4-dimensional Minkowski
space.
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Z½ϕþ;ϕ−� ¼ Const ×
Z

Dϕ�ρ½ϕ�� exp½iS½ϕ�� þ iλ
Z

d4xϕaĜabϕ
b|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

SCTP

�: ð2:6Þ

We omit the derivatives upon ϕ to keep the notation light.
For the sake of simplicity, we are interested in linearized
perturbation to account for the time evolution of fluctua-
tions [see Eq. (2.8)]. Summarizing the expression above for
the effective action, we have

SCTP½ϕ�; J�� ¼
Z

tf

ti

d4xfLo½ϕþ; Jþ� − L�
o½ϕ−; J−�

þ Ls½ϕ�; J��g; ð2:7Þ

where ti and tf are the initial and final time, respectively. It
is useful, in this language, to separate the contributions
coming from different energy scales. The two copies
of the nondissipative Lagrangian Lo and L�

o manifest the
conservation of variables related to macrodimensions. The
inclusion of Ls represents the system-environment corre-
lation, keeping the infrared dynamics almost closed. In
addition, it enlarges the coupling space with thermal noise
and thermodynamic forces that break symmetries. In

addition, we demand δ2Ls
δϕþδϕ− ≠ 0 since the collision of

microscopic degrees of freedom and interactions with
the external fields are regulated by the second derivative
of action. The action (2.7) is subject to the “fluctuation-
dissipation” restrictions SCTP½ϕþ;ϕ−� ¼ −S�CTP½ϕ−;ϕþ�
and the future-pointing constraint ImSeff ½ϕþ;ϕ−� > 0.
One can develop a satisfactory definition of the Green’s
function in (2.2), 2 × 2 matrix in CTP internal space
fþ;−g

Ĝab ¼
�
Gþþ G−þ
Gþ− G−−

�
;

Gmnðx; x0Þ ¼
�

δ

iδJmðxÞ
��

δ

iδJnðx0Þ
�
eiW½Jþ;J−�

				
Jþ¼J−¼0

;

ð2:8Þ

with the generating functional iWðJðxÞÞ≡ lnZðJðxÞÞ.
The Green’s functions satisfy the algebraic identity
Gþþ þG−− ¼ Gþ− þ G−þ. Following the restrictions
δJþ ¼ δJ− ¼ 0, we define the classical fields as

ϕcðxÞ ¼ δW½ϕ̂�;Ω��
δJðxÞ . For arbitrary constant a ∈ R, we have

W½ϕ̂�; J�� ¼ W½ϕ̂� þ a; J�� with reflective condition:
W½ϕþ; Jþ;ϕ−; J−� ¼ W½ϕ−; J−;ϕþ; Jþ�, and normaliza-
tion condition:W½ϕ̂; J; ϕ̂; J� ¼ 0. It is appropriate to define
the generating functional of amputated 1PI by the func-
tional Legendre transformation

Γ½ϕþ;ϕ−� ¼ W½ϕ̂�; J�� − cab
Z
V
d4xJaðxÞϕbðxÞ: ð2:9Þ

It is clear that for a “classical” system one can use the
method of steepest descent to obtain an estimate for Γ. In
this limit, one has

δΓ
δϕþðxÞ

				
ϕþ¼ϕ−¼hϕi

¼ 0; ð2:10Þ

As the boundary condition ϕþðtfÞ ¼ ϕ−ðtfÞ introduces the
reminiscent long fluctuation, we can still interpret the
effective Lagrangian as a gradient expansion of infrared-
variables. In analogy with statistical mechanics, where Γ
would represent free energy. When (2.10) has ill-defined or
multiple minima, it indicates a phase structure with the
Landau theory of phase transitions. The CTP formalism
then allows calculating dynamical behavior (transport
coefficients) around the phase transition [29], via the
expansion around equilibrium outlined below, of course,
the semiclassical limit neglects fluctuations. If the method
of steepest descent is a good approximation, these can be
modeled by an expansion of (2.10) around the minimum
provided by the effective degrees of freedom. One can get
the leading order propagator term

Γ½ϕþ;ϕ−� ¼ SCTP½ϕþ;ϕ−� −
iℏ
2
ln det

�
δ2SCTP

δϕaðxÞδϕbðx0Þ
�

−1

× ½ϕþ;ϕ−� þ…: ð2:11Þ

As we will show later, using the generating function
technique, we get a self-consistent description of fluid
and a general perspective of what symmetries are involved
in dissipative phenomena.

B. Fluid dynamics as effective field theory

We devote this section to provide a big picture behind the
generation of dissipative polarizable fluid under rotation by
effective field theory. As we have known, hydro is a
nonlinear effective theory of long-wavelength that encodes
collective motion of microparticles. In the context of
Lagrangian hydrodynamics (actually any kind of con-
tinuum matter), the “field” is nothing else than the position
of a fluid cell, ϕi¼1;2;3. What distinguishes the ideal spinless
fluid limit [19] are the reparametrization symmetries of
these coordinates. As we will show later, using the
generating function technique, we get a self-consistent
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description of fluid and general perspective of what
symmetries are involved in dissipative phenomena.2

ϕiI → ϕiI þ αi; with αi ¼ const; ð2:12aÞ

ϕiI → Ri
jϕ

jJ; with Ri
j ∈ SOð3Þ; ð2:12bÞ

ϕiI → ξiIðϕÞ; with det½∂ξiI=∂ϕjJ� ¼ 1; ð2:12cÞ

The symmetry (2.12c) forces the Lagrangian of ideal fluid
to be of the form

Lfree ¼ fðbÞ; b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det½Bij�

q
; Bij ¼ ∂μϕi∂

μϕj;

ð2:13Þ

being b the entropy density. This variational principle
deduces Euler’s equations, but the converse is not generally
true. For further convenience, we shall replace the old-
hydrodynamics variables with more suitable ones. In this
case, we identify the hydrodynamic entropy vector as a
gradient expansion

KμI ≡ PμγI
k ∂γϕ

k; PμγI
k ¼ 1

6
ϵμαβγϵijk∂αϕ

iI
∂βϕ

jJ; ð2:14Þ

where PμγI
k is a projector and ðI; JÞ ¼ fð0; 0Þ; ð3; 3Þg. The

conservation law of entropy [21] is

∂μKμI ¼ ∂μðbuμIÞ ¼ 0; ð2:15Þ

where the ϕiI is invariant along its comoving frame
uμ∂μϕiI ¼ 0. The velocity vector norm is uμuμ ¼
1 → b2 ¼ KμKμ. Note that the comoving projector is
perpendicular to the flow direction

Δμν ¼ B−1
ij ∂

μϕi
∂
νϕj ¼ ημν − uμuν: ð2:16Þ

In this language, Kelvin’s theorem for circulation conser-
vation in ideal hydrodynamics can be written as an
application of Noether’s theorem for such a diffeomoro-
phism current going around a closed path [19] which spin
breaks, as it has an internal direction, and dissipative effects
break as well, in line with [22].
To continue our analytical approach, we shall show how

spin variables can be incorporated into the Lagrangian
formalism before introducing spin Lagrangian. First, one
argues that the energy density, pressure of the medium, and
vorticity are not enough thermodynamical quantities to
settle out a polarized system [3,4]. Second, this new degree
of freedom should act as a source breaking Kelvin’s
theorem. Following these lines, the last dynamical variable

to define polarizable fluid should have a long time behavior
matching

yμνjInfrared ∼ uα∂α
X
i

T̂iθiðϕÞ≡ χðb;ωμνωμνÞωμν; ð2:17Þ

where T̂i and θi are the generators and local phase,3

respectively, and the vortical susceptibility χðb;ω2Þ repre-
sents how inaccessible degrees of freedom coupled with
macroscopic ones. Because we cannot neglect feedback of
microscopic variables, the fluid turns out nonunitary by
assumption. The relation between yμν and spin is the same as
the relation between chemical potential and field phase in
[2]. With the help of the energy positivity y2 ≡ yμνyμν > 0

and yμνuμ ¼ 0, we restrict the polarization form. Note that
the nonexistence of Goldstone modes requires polarization
parallel to vorticity in thermodynamical equilibrium [2].
Even though the formulation of hydrodynamics system

via conservation of stress tensor leads to remarkable results
near-equilibrium, the gradient expansion partially presents
the fluid behavior since the physics of fluctuation remains
out of the partial differential equations [26]. Moving on to a
more realistic description, we solve this problem by using
the generating functional.

Z½b; y2� ¼
Z

DϕiDyμνρðϕ; yÞeiS; ð2:18Þ

We begin with a complete description of the dissipative
polarizable fluid in accord with symmetries.
where the action S describes the physical model pro-

posed in our work

S ¼ Sfree þ Sshear þ Sbulk þ SpolðYμνÞ; ð2:19Þ

Sshear ¼
Z

d4xzIJKðb2Þb2B−1
ij ∂

μϕiI
∂
νϕjJ

∂μKK
ν ; ð2:20Þ

Sbulk ¼
Z

d4xhIJKðb2ÞKμIKνJ
∂μKK

ν ; ð2:21Þ

Sfree ¼
Z

d4xFðbð1 − cy2ÞÞ: ð2:22Þ

Note that as shown in [2,4] the equilibrium component of
polarization can be absorbed into Sfree and in non-
equilibrium polarization necessarily acquires relaxational
Israel-Stewart like degrees of freedom, denoted by Yμν. The
relaxational parts of the Lagrangian, Spol and SIS will be

2CTP internal space are now the capital Latin indices f−;þg,
while the small ones, spatial directions, run 1 to 3.

3These solutions are no longer stationary as in the ideal Euler’s
equations. After a sufficient length of time, if the source is absent,
the gradient will vanish, and thus the fluid establish the
homogeneous configuration.
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discussed later in Sec. IV C where Sshear;bulk will also be
modified.
Remembering that the coefficients fzIJK; hIJKg becomes

physical ones fz̄IJK; h̄IJKg if we remove theCTP degeneracy
ϕþ ¼ ϕ− in the equations of motion [2]. Following the
guidelines of thevariational principle, we assume all relations
are valid locally. The dissipative construction of the shear
viscosity η involves the linear introduction of inverse matrix
B−1
IJ . This transport coefficient breaks the volume-preserving

diffeomorphism group in Table I (a uniform ball-shaped
volume element has different dissipative forces than a stick-
shaped inhomogeneous element of the same volume). It
causes instability by turning the action unbounded from
below. For bulk viscosity ξ, it is enough to doubleKμ in (2.21)
since this dissipative mechanism still preserves the homo-
geneity, isotropy, and parity symmetry. Finally, in the local
polarization phenomena, we slightly perturb the Lagrangian
by introducing a term breaking the symmetry in (2.22). This
ingredient, forcing each cell fluid from SOð3Þ to SOð2Þ
group, arises a well-defined polarization with intrinsic aniso-
tropic degrees of freedom. Furthermore, the physical origin of
this “new” induced polarization comes from linking vortex to
spin (2.17), which introduces a degeneracy that changes the
structure stability. We will postpone the stability question for
Sec. IVB when including relaxation terms.

III. LINEAR RESPONSE THEORY FOR
DISSIPATIVE SPIN HYDRODYNAMICS

A. Fluctuation-dissipation theorem

The motivations for including Navier-Stokes viscosity in
polarizable hydrodynamics models are based on theoretical
and experimental perspectives. We can argue to provide a
more realistic role for predicting the spatial distribution of
spin [30], to correct the analytical predictions of polariza-
tion momentum dependence [31], to claim dissipative
effects of RHIC fluid [32], and for outstanding theoretical
properties. We proceed with the approach introduced in
Sec. II A, which includes angular momentum as per the
prescription of [17], to the density matrix

ρ ¼ Z−1 exp

�
−β

�
E − v · p −

1

2
ϖλν · Jλν

��
; ð3:1Þ

where the partition function Z with Tr½ρ� ¼ 1 is the
normalizing constant, v is spatial velocity, p is momentum

density, E is Hamiltonian, β ¼ 1=T is inverse of temper-
ature, ϖλν is vorticity, and Jλν is finite total angular
momentum. By disturbing the energy density, we have

δEðtÞ ¼
Z

d3x

�
δT
T

ðt;xÞϵðt;xÞ þ piðt;xÞviðt;xÞ

þ Yμνðt;xÞωμνðt;xÞ
�
; ð3:2Þ

where ϵ is the energy density. We discard terms up to
second order because the thermodynamics forces are small
within the limit of the near-equilibrium state. The ρ evolves
in according with

ρðtÞ ¼ UðtÞρ0ðtÞU−1ðtÞ; ð3:3Þ

whereUðtÞ is a unitary matrix. After taking an average over
the equilibrium ensemble, any operator A becomes

hAi ¼ Tr½ρA� ¼ hρeqU†ðt; t0ÞAUðt; t0Þi: ð3:4Þ

Using the interaction picture UðtÞ ¼ T fexp ð−i R t
0 dt

0

Eðt0ÞÞg, we can obtain the perturbative information of
how deviations out of equilibrium disappear. Following
the linear response approach, the expectation value is
calculated via

δhAðt;xÞi ¼ hAðt;xÞi − hAðt;xÞieq
¼ i

Z
d3x0

Z
t

−∞
dt0eαtΘð−t0Þ

× h½Aðt;xÞ; δEðt0;x0Þ�ieq; ð3:5Þ

where hAieq ¼ Tr½ρ0A� and α encodes the adiabatic switch-
ing operation for the external sources. The fluctuation-
dissipation theorem establishes the response to small
perturbation as the correlation between the perturbed
observable and another conjugated one concerning to
energy in (3.2). The retarded and advanced Green’s
functions are defined via the Heaviside function Θ by
GR=Aðt−t0;x−x0Þ¼−iΘð�ðt−t0ÞÞh½Aðt;xÞ;Aðt0;x0Þ�i. The
foregoing discussion allows us to elucidate new physical
phenomena from the interaction of polarization, shear, and
bulk viscosity. Following themacroscopic perspective, let us
begin with the average of polarization

hYμνðt;xÞiω − hYμνðt;xÞieq;ω¼0

≈þi
Z

dt0
Z
V
d3x0h½Yμνðt;xÞ; Yαβðt0;x0Þ�ieqωαβ

þ i
Z

dt0
Z
V
d3xh½Yμνðt;xÞ; pi

Tðt0;x0Þ�ieqviT

þ i
Z

dt0
Z
V
d3xh½Yμνðt;xÞ; pi

Lðt0;x0Þ�ieqviL; ð3:6Þ

TABLE I. Symmetries of various terms beyond local equilib-
rium hydrodynamics.

Parity Time Charge SOð3Þ SDiffðR1;3Þ
Perfect fluid Even Even Even Unbroken Unbroken
Bulk viscosity Even Even Even Unbroken Unbroken
Shear viscosity Even Even Even Unbroken Broken
Polarization Odd Odd Even Broken Unbroken
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where the last two terms represent the coupling of polari-
zation with transverse pi

T and longitudinal pi
L momentum,

respectively. The pi
T is the shear-induced by polarization

[13], while the pi
L is the anisotropic expansion of the

fluid. We can gather varieties of dissipative phenomena
by using the statistic correlation function to evaluate (3.6).
Nonetheless, these three natural fluctuations will not have
the same weight in all physical problems as a result of
considering both initial and boundary conditions, as well as
the free energy scale. Moreover, the small viscosity and
weak coupling of linearized theory restrain the interaction
among the fluctuations in (3.6), only proposed for nonlinear
circumstances.
As we restrict ourselves to the first-order processes near-

thermal equilibrium, the cumulative effects, due to different
external sources, also run in a reverse trajectory. Hence, we
derive the average of transverse momentum density as

hpi
Tðt;xÞiω − hpi

Tðt;xÞieq;ω¼0

≈ i
Z

dt0
Z
V
d3xh½pi

Tðt;xÞ; pj
Tðt0;x0Þ�ieqvjT

þ i
Z

dt0
Z
V
d3x0h½pi

Tðt;xÞ; Yαβðt0;x0Þ�ieqωαβ: ð3:7Þ

The last term exhibits a vorticity resistance, called the
rotational shear viscosity. It is a mechanism in which
the spin-vortex coupling losses angular momentum due to
the friction of rotational fluid. We shall recall that viscosity
forces tend to quench the velocity gradient from fluid layers.
This friction effect, a mechanism of momentum transfer
between adjacent fluid layers, produces distinct velocity
distribution curves, as shown qualitatively in Fig. 1.
For rotational flows, it expresses the velocity increases from
outer annuli layers to inner ones, so the dissipation rate
depends on the height disc. We then assume that shear
viscosity plays a role in the spatial structure of the spin by
redistributing its location in the fluid. In practice, the vortical
fluid deforms the spin current because spins lose angular
momentum and move inward, whereas the shear viscosity
transfer angular momentum to outer layers.

As spins lay out a vortex structure, the vortices interfere
with the propagation and scattering of sound waves. This
phenomenon was already studied in the literature [33].
Last but not least, the average of longitudinal momentum
density is

hpi
Lðt;xÞiω − hpi

Lðt;xÞieq;ω¼0

≈ i
Z

dt0
Z
V
d3xh½pi

Lðt;xÞ; pj
Lðt0;x0Þ�ieqvjL

þ i
Z

dt0
Z
V
d3x0h½pi

Lðt;xÞ; Yαβðt0;x0Þ�ieqωαβ; ð3:8Þ

where the first correlation function measures the deviation
from equilibrium pressure, while the last one determines
the antisymmetric pressure from the expansion of fluid
with spin.
In principle, to achieve a complete description of spin-

shear interplay, we shall establish further assumptions, more
precisely at first-order, in accordance with Markovian
diffusion. For that reason, the average of any operator at
the equilibrium stage must satisfy defined thermodynamic
relations in (3.6) at t < 0 as ∂ lnZ=∂ω⃗ ¼ hJ⃗ · ω̂i=T and
∂ lnZ=∂vj ¼ hp · v̂iv̂j=T. Hence these thermodynamic
derivatives in the long wavelength limit are limk→0 χ ¼
∂Yμν=∂ωμν and limk→0 wo ¼ ∂pi=∂vi, wherewo is enthalpy,
with the initial conditions expressed appropriately as

pi
T;Lð0;xÞ ¼ wouiT;L; ∂thpi

T;Lð0;xÞijt¼0 ¼ 0;

hYμνð0;xÞi ¼ χωμν; ∂thYμνð0;xÞijt¼0 ¼ 0: ð3:9Þ

Beyond that, we shall discuss the general concept of
dissipative current around local equilibrium of (3.5)

δhAðxÞi ¼
Z

d4x0Gαβðx − x0ÞFβðx0Þ þOðF2Þ; ð3:10Þ

where the Green’s function Gαβðx − x0Þ depends on local
currents δhAðxÞi and external thermodynamical sources
FβðxÞ. Note the currents corresponding to fYμν; pi

T; p
i
Lg

have the respective sources fωμν; viT; v
i
Lg. The equation

above helps expressing the linear relations of dissipative
currents in terms of thermodynamics forces asymptotically
close to equilibrium. Nonetheless, these same linear equa-
tions rule, in the statistical equilibrium, the decaying of
the steady-state fluctuations. Thus we cannot predict if a
fluctuation or a small external thermodynamical source
creates a perturbation. This observation elucidates that
different classes of independent elementary mechanisms
involved in the irreversible integral (3.10) yield the same
expected result due to microscopic reversibility. We then
categorize this property according to the famous Onsager
reciprocity Gαβ ¼ Gβα, associated with detailed bal-
ance [26].

FIG. 1. A schematic view describing the velocity profile
shape by arrows for parallel (left) and rotating (right) viscous
fluid. The former follows σxy ∼ η ∂vx

∂y , with y perpendicular to the
interface, while the latter adopts the azimuthal ψ direction

σxy ∼ σrψ ∼ ð∂vψ
∂r − vψ

r Þ ¼ ηr ∂Ω
∂r , with r the radius.
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B. Variational approach

In this subsection, we present an alternative way to
derive linear relations between dissipative and spin terms
near equilibrium. The motivation is that previous method
can lack a clear physical meaning for generic two-
point correlation functions. Even though thermodynam-
ical identity and conservation laws are the tools for
writing fluctuation-dissipation theorem, previous studies
already anticipated the observable as spin requires knowl-
edge that goes beyond the simple expansion in gradients
of conserved quantities [13]. For instance, we cannot
determine the correlation between acceleration of spin
and energy density. To bypass this difficulty, we suggest
another scheme in which metric fluctuations rather
than external sources originate the small deviation from
equilibrium. We introduce in (3.5) the stress tensor
operator

δhT μνðt; kiÞi ¼
Z

∞

−∞
dt0Θð−t0Þeαt0Gμν

λδðt − t0; kiÞSλδðt0; kiÞ;

ð3:11Þ

where the new source Sλδ encodes not only metric
fluctuation hμν but also gauge field ωμ. We can replace
the energy-momentum tensor for the conserved current
J μν. We explicitly rewrite (3.11) by using the variational
principle4 [34]

GR
TστTμν ¼ −2

δT στ

δhμν

				
hαβ¼ωα¼0

; GR
TμνJσ ¼ −

δT μν

δωσ

				
hαβ≡ωα¼0

;

GR
JσTμν ¼ −2

δJ σ

δhμν

				
hαβ¼ωα¼0

; GR
JμJν ¼ −

δJ μ

δων

				
hαβ¼ωα¼0

:

ð3:12Þ

By inspection, these equations give in the first order the
equivalent of the propagator in (2.11). By conservation of
energy-momentum, one finds (only the equilibrium d.o.f.s
are kept for now)

ωðGTx0;Tx0ðω; kxÞ þ Fyy − f|fflfflfflffl{zfflfflfflffl}
ϵ

Þ ¼ kxGTx0;Txyðω; kxÞ; ð3:13Þ

ωðGTx0;Txyðω; kxÞÞ ¼ kxðGTxy;Txyðω; kxÞ þ f − fbb|fflfflfflffl{zfflfflfflffl}
P

Þ;

ð3:14Þ

where P is the fluid pressure. Note that the contact terms
appear naturally because of the reminiscent “functions”
δðωÞδ3ðkÞ. Let us then sum the two equations above

ω2GTx0;Tx0ðω; kxÞ − k2xGTxy;Txyðω; kxÞ ¼ 0: ð3:15Þ

Here, by suppressing the contact terms, we satisfy the
conservation law. The correlation function decays to
asymptotic configuration in long-wavelength limit where
the well-known thermodynamic quantity emerges

lim
kx→0

GT0x;T0xð0;kÞ ¼
Z

d3x
Z

β

0

dthT0xðt;xÞT0xð0Þi

¼ βðhET0xi − hEihT0xiÞ: ð3:16Þ

The enthalpy is explicitly written analogously to [20,21]

lim
ω→0

lim
k→0

1

ω
ReGR

T0x;T0xðω;kÞ ¼ ϵþ P ¼ Fyy − fbb: ð3:17Þ

The explicit relation between the retarded Green function
and the transport coefficient originated fromKubo formulas
are

1

12
lim
ω→0

lim
k→0

∂
3
ωReGR

T0x;T0xðω;kÞ ¼ χ2; ð3:18Þ

lim
ω→0

1

ω
lim
k→0

ImGR
T0x;T0xðω;kÞ

¼ fb þ b3oð2z̄003 − 3z̄033 þ 4z̄303 þ 3z̄333Þ; ð3:19Þ

lim
ω→0

lim
k→0

1

k
∂ωGR

Jx;ωxy ¼ b3oðh̄003;03 þ h̄303;03 þ h̄333;03 þ h̄033;03 þ 2h̄300;03Þ − 4b5oðh̄333;00 þ h̄303;00Þ
þ 4b5oðh̄003;33 þ h̄303;33 þ h̄333;33 þ h̄033;33 þ h̄330;33 þ h̄300;33Þ: ð3:20Þ

The Eqs. (3.18)–(3.20) are valid within a limited range
(near-equilibrium) and fail to include nonperturbative
analysis. We have then identified the relevant couplings
from polarizable dissipative fluid in terms of the effective
action expansion (2.19).

C. Interactions of hydrodynamic modes

In the previous section, the results obtained are governed
by a linearized hydrodynamic regime in which we char-
acterize slow internal fluctuations by an averaging over the
equilibrium ensemble. To go beyond linear response while
remaining in the perturbative domain, we analyze the
correlation function behavior in more complex circum-
stances. Following this thought, the structures closely

4Note that the ϕIs and hμν are equivalent ways of encoding
metric perturbations, so the canonical energy-momentum tensor
described in the Appendix A and the metric one are equivalent.
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connected with thermal fluctuations are a dominant factor
in studying nonhydrodynamics modes. Hence, one can
investigate the collective excitations appearing in a limited
region ðω;kÞ, sensitive to microscopic dynamics.
Furthermore, we also consider the hydrodynamics modes
subjected to nonanalytical conditions whose correlation
functions decay at long-time power law tails.

Our main point is to understand how vorticity effects and
spin thermal fluctuations interplay in a dissipative polar-
izable fluid. We continue to study this system from a
perturbative perspective by following the approach [28],
adapted to the Lagrangian picture. Examining the stress
tensor in the co-moving frame, up to the second-power of
the hydrodynamical variable, we have

Tpq ∼
�
c2s ½∂π2� þ

1

2
ð1þ c2sÞð _π½∂π� þ _π2Þ þ 1

6
ð3c2s þ f3Þ½∂π�2

�
δpq − 2ðz00K þ h00K;00Þδpk ½∂ _π�∂qπkK

þ zIJ0

�
πmIπnJSpqmn þ

�
_π2 þ 1

2
½∂π�2 − ½∂π · ∂π�

�
δpqδIJ þ ð _π · ∂πpI − ½∂π� _πpIÞδqJ

�
þ 2Fbχ

2

× ðgi½ρ∂0� _πiπ̈ρδpq þ _πiHpq
ij _πjÞ þ 2Fbχy

p
ρ δ0q þ c2P

3
Fby

p
σ ϵqραϵ0ρi∂

σ
∂απ

i þ…; ð3:21Þ

where the dots contain third or higher-order terms of π. The f3 corresponds to f000, cs is the sound speed, cP is the
longitudinal perturbation emitted by vortex-spin source, and the projectors read Sabmn ¼ 1

2
ðδamδbn þ δanδ

b
m − 2

3
δabδmnÞ and

Hij
kl ¼ ðδikδjl − δilδ

j
kÞ. The spin current is

Jp ∼
�
_π2δp0 −

1

2
ðc2s − f3Þ∂pπ · _π

�
þ 1

6
ðh0JK;00 þ z0JKÞ _πJ · ð _πKδp0 þ ∂

pπKÞ þ 1

6
zIJ0ϵpabϵ0mn∂aπ

mI

× ∂bπ
nJ þ 2zIJKð _πI · _πJδpK þ _πI · ∂πpJδK0 Þ þ z000ð _π2 þ ½∂π�2 − ∂

p½∂π2�Þ þ woc2pFbχ∂
p
∂jπ

j

− 2woFbðχ2∂p _πI · ∂ _πI − χ∂pχ½∂ _π · ∂ _π�Þ þ…: ð3:22Þ

This current, a conserved dynamical variable, presents the irreversible flux as a decomposition of polarization JP and hydro J
currents. The physical meaning of Tpq and Jp is to explore the influence of collective excitations on transport coefficient
values. These short-livedmodes involve nonequilibrium states, which correct the bareGreen’s function in Eqs. (3.18)–(3.20).
To evaluate the quadratic-order correlation (3.21), we assume Gaussian fluctuations (Markovian dynamics). It is because

the fluctuation-dissipation theorem lies in regions where the stable steady states have a well-distinct small and large-scale
time [26].

Gð2Þ
TijTklðt;xÞ ¼ T

w2
0

hπiðt;xÞπjðt;xÞπkð0Þπlð0Þieq;

¼ T
w2
0

hπiðt;xÞπkð0Þieqhπjðt;xÞπlð0Þieq;

¼ 2T
w2
o

Z
dω0

2π

Z
d3k0

ð2πÞ3 G
ð0Þ
T0iT0jðω0;k0ÞGð0Þ

T0kT0lðω − ω0;k − k0Þ;

¼ ðSijmnSklpq þHij
mnHkl

pqÞ
2T
w2
o

Z
dω0

2π

Z
d3k0

ð2πÞ3G
ð0Þ
T0iT0jðω0;k0ÞGð0Þ

T0kT0lðω − ω0;k − k0Þ; ð3:23Þ

factorizing the Green function as the product of two zero-order ones. In particular, we evaluate (3.23) in the long-
wavelength limit χ2k2 ≪ γðz; hÞk ≪ cs; cP by

Gð0Þ
T0iT0jðω;kÞ ¼ woT

2

��
δij −

kikj

k2

�
k2 − γηω

2k − 2χ2ðω4 − k2ω2Þ
fbω2 − iγðz; hÞωk2 − 2χ2ω4

þ
�
kikj

k2

�
ω2 þ γηωk2 − χ2ð3ω4 þ 2ω2k2Þ

fbðω2 − c2sk2Þ − iγηð2ω2kþ 3ωk2Þ − iγðz; hÞωk2 − 2χ2ðω4 − k2ω2Þ
�
; ð3:24Þ

where γðz; hÞ ¼ γηðzÞ þ γξðhÞ is the function composed by elementary components of the shear fzIJKg and bulk fhIJK;LMg
viscosity, respectively. Making the following association with (3.23), we obtain
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VhfTijðt;xÞ; Tklð0Þgi ¼ T
w2
o
ðSijmnSklpq þHij

mnHkl
pqÞGð2Þ

TmnTpq
ðt;xÞ; ð3:25Þ

where V is the spatial volume. For t > 0, to characterize the hydrodynamic regime, we take the limit at zero momentum and
low frequency

VhfTijðt;xÞ; Tklð0Þgi ∼OðΛÞ þHij
kl

wo

T2

6π

�
χ−5=2

t3=2
þ
�
3þ

�
1

6

�
1=2

�
χ−3=2

2t1=2

�
−

Sijkl
60π

�
7þ

�
3

2

�
3=2

�

×
1

ðγηðzÞtÞ3=2
þ ðexponential decayÞ; ð3:26Þ

where OðΛÞ represents the correction for transport coef-
ficient from shear and sound collective modes. Before
starting this discussion, let us analyze the symmetry
properties of the excitations. The broken rotation group
in Table I determines the spin alignment (orientation) as a
new hydrodynamic degree of freedom responsible for
describing the equilibrium thermodynamic state. This
physical quantity acts as a nonconservative source gen-
erating a nonvanishing current from the conversion of
angular into spin momentum. We found this current-current
correlation, more precisely the autocorrelation of spin
velocity hvsðtÞ; vsð0Þi, decays by a time power-law
∼t−3=2. Supposing at t ¼ 0, the average velocity of a spin
particle hvsi2 decreases slowly through an elliptical shell
region in the neighborhood of a rotating fluid. Since the
randomization motion governs this whole process, the
mechanism of vorticity diffusion is responsible for spread-
ing out the average spin velocity inside this shell column.
As the neighborhood rearranges at a time τ longer than the
spin takes to approach a “local equilibrium,” we expect
therefore the decay of hvsi2 be t ∼ A=ðθ × rÞ2τ, with the
azimuthal angle θ, and the transverse area of elliptical shell
column A. Recalling this diffusion process, shear momen-
tum induced from vortical susceptibility, depends on the
shell surface radius r Fig. 1.
The contribution of each separable sum in (3.26)

represents a conserved quantity of collective modes.
Indeed, these modes emerge from length scales ∼ micro-
scopic degrees of freedoms, not-generated by old-fashioned
hydrodynamic [35]. This relevant aspect can be understood
as a breaking down of gradient expansion signature for out-

of-equilibrium systems. In this case, the fluctuation (3.26),
at the initial condition, is sensible to the presence of
nonanalytical and exponential terms.

IV. FEYNMAN DIAGRAMS FOR POLARIZABLE
FLUID WITH DISSIPATION

This section uses Feynman diagram techniques to for-
mulate a guide to how the polarization current modifies
with the inclusion of well-know dissipative effects. We
apply the ideas developed in [24,25] to explore the behavior
of a dissipative polarizable fluid. Even though our effective
action (2.19) in (3þ 1) dimensions is nonrenormalizable
because of the coupling χ with negative mass dimension, it
should not be interpreted as ultraviolet completion of a
spinless fluid. Our independent d.o.f.s are summarized in
the Table II below.

A. The linearized effective action

Let us incorporate perturbative effects into the generating
functional

Z½b; y2� ¼
Z

DϕiDyμνρðϕi; yÞei
R

d4xðLshearþLpolÞ; ð4:1Þ

by expanding at the long-wavelength and low frequencies,
the Lagrangian (2.19) up to fourth-order. We can easily
separate the perturbative information from the free hydrom-
odes of the 2-point correlator function hδK0; δK0i at
OðwoÞ order

Lfree ¼ wofb

�
1

2
_π2 −

1

2
c2s ½∂π�2 þ

1

2
½∂πT∂π�

�
− z0JKð _πJ · ∂½∂πK� þ ∂

2πJ · ∂πK þ ½∂πJ · ∂ _πK�Þ

þ 2z00JK½∂ _πJ�½∂πK�Þ þ Fb

�
1

2
_π2 −

1

2
c2p½∂π�2 − χ2ð∂μ _π · ∂μ _π þ ½∂ _π · ∂ _π�Þ

�
; ð4:2Þ

from the interacting
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Lint ⊃ w2
o

�
c2s
2
½∂π�½∂π2� þ 1

2
ð1þ c2sÞ½∂π� _π2 −

1

6
ð3c2s þ f3Þ½∂π�3 − _π · ∂π · _π − c2s ½∂π� det ∂π

�
þ wozIJK½πI · ∂πJ · ∂πK þ 3½∂πI�πJ · ∂πK − πI · πJ½∂ _πK� − ð∂πIÞ · ðπJ · ∂πKÞ�
þ woχ

2½½∂π�ð½∂ _π · ∂ _π� þ ð∂μ _πÞ · ð∂μ _πÞÞ�ð1þ c2sÞ þ zIJK½j∂πT · _πIj2δJK þ ½∂π�2 _πI · _πJδK0
þ ½∂π� _πI · ∂ _πJ · _πK þ…� þ zIIIχ2½½∂ _π�½∂ _π · ∂ _π� þ ∂

2½∂2π�π̈ · π þ 2½∂2π�2½∂ _π� þ…�; ð4:3Þ

and self-interacting ones

Lself−int ⊃ w2
o

�
1

2
½∂π� _π2 þ c2s

2
½∂π�3 þ 1

2
½∂π�2½∂π2� þ ð1þ c2sÞ

2
½∂π�2 _π2 − 1

6
ð3c2s þ f3Þ½∂π�4 − ½∂π�

× _π · ∂π · _π − c2s ½∂π� det ∂π� þ z2½ð∂½∂π�Þ · ð∂½∂π�Þ½∂π� þ 2_π · ∂ _π½∂ _π� þ 2½∂π�½∂ _π�2 þ…

�
þ 2χbχ½½∂π�½∂ _π · ∂ _π� þ ½∂π�ð∂μ _πÞ · ð∂μ _πÞ� þ χ∂ω2χ½ð∂μ _π2Þ · ð∂μ _π2Þ þ 2ð∂μ _πÞð∂μ _πÞ
× ½∂ _π · ∂ _π� þ ½∂ _π · ∂ _π�2 þ…�: ð4:4Þ

To derive the Feynman diagrams, we need to present
WðJÞ (4.1) in a manageable form. The main Feynman
propagators are in the Table II. For the general scattering
process, all amplitude are calculated in a long-wavelength
approximation. The Feynman rules: all “in-” and “out-”
states are on-shell, it means, they satisfy the Euler hydro-
dynamics equation, internal line 1=wo, external line
1=

ffiffiffiffiffiffi
wo

p
.5 Consider the amplitude decay mechanism of

the diagram below

where a transverse polarization decay into a transverse
polarization and excitation. The amplitude of this tree-level
diagram is

iMT →T T ¼ ðϵ̂ · k̂Þk2ffiffiffiffiffiffi
wo

p fzI00½2 sin ð3θ=2Þ�

þ zIII;00½sin θðc2s − 2 cos θÞ� − 4cs sin ðθ=2Þ
þ z0I0χ2½ωk sin θ þ k2 sin ð2θÞ�g; ð4:5Þ

where θ is the angle between the ingoing and outgoing
transverse mode. The kinematical restriction of energy and

angular momentum conservation, as well as the breaking
symmetry, impose constraints on the amplitude. Before
going further, we shall note that the energy required for the
vortex to act as the emission of transverse excitations has to
be greater than already found in [25]. If these specific
conditions are satisfied, we can draw a class of relevant
Feynman diagrams which manifest the coupling of η with
χ2. Now we restrict ourselves to three-level scattering
problems T T → T T in which the polarized dissipative
problems take new phenomena.

where the scattering amplitude for the diagram above is

TABLE II. We list each Feynman line of polarizable fluid with
dissipation.

Feynman propagator

Transverse excitation i
ω2−c2sk2þiγηðzÞωk2

Longitudinal excitation i
ωþiγηðzÞk2

Transverse Polarization iðω2−k2Þ
ðω2−k2Þ−χ−2

Longitudinal Polarization i
ω2−c2pk2−χ−2

5A pedagogical review could be found in [19].
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iMT T →T T ¼ 1

wo

�
zIIIχ2c2p½ðω2k4 − ðωkÞ3ð3 − cos θÞÞ þ ω4k2ðk̂1 · k̂2Þ� þ zIII½ω3kþ ðωkÞ2 cos ðθ=2Þ�

þ ω4ð2k2
∂bχ þ ω3

∂ω2χÞ½ðk̂1 · k̂2Þ þ cos θ�2 þ 1

2
k4c2sðcos θ − cos ð2θÞÞ

�
iDð0Þ

ij ðω;kÞ; ð4:6Þ

the terms proportional to zIII contribute to the sound
generation effect and χ2 provides relevant information to
the transverse generation by vortices source. These phe-
nomena are qualitatively different from those studied in
[25] because both the sound mode and dissipative mode are
included. Unavoidably, as we have seen above, this means
that shear modes, not just propagating sound waves but the
symmetric shear tensor fields sourcing heat via shear
viscosity, couple to polarization via zIIIχ2. It is not
surprising that χ2 turns the fluid dynamics into a non-
renormalizable theory. In the next sections, we shall
explore the more direct physical consequences of this
new process.

B. Polarization mass correction

The case of virtual correction for ideal polarized fluid has
been discussed in [25]. Our starting point is the free
Lagrangian (4.2). from the longitudinal polarization and
excitation terms one can obtain the propagators

iHð0Þ
ij ðω;kÞ ¼

1

wo

i
ω2 − c2pk2 − χ−20

;

iDð0Þ
ij ðω;kÞ ¼

1

wo

i
ω2 − c2sk2 þ iγηðz0Þωk2

; ð4:7Þ

where we denote the bare quantities with the subscript 0.
The beauty of this propagator is the presence of shear
viscosity and spin degrees of freedom. As we are primarily
interested in the complete correction of the 2-point Green’s
function, we include the sum of all relevant one-particle-
irreducible contribution

iHijðω;kÞ ¼ iHð0Þ
ij ðω;kÞ þ iHð0Þ

im ðω;kÞiΣ̃mnðω;kÞ
× iHð0Þ

nj ðω;kÞ þ…;

iDijðω;kÞ ¼ iDð0Þ
ij ðω;kÞ þ iDð0Þ

im ðω;kÞ
× iΣ̃mnðω;kÞiDð0Þ

nj ðω;kÞ þ…; ð4:8Þ

where the self-energy function Σ̃mn encodes all reliable
aspects of dissipative and polarized effects in effective field
theory. We begin with the trivial sum for the inverse
propagator

H−1
ij ðω;kÞ ¼ ω2 − c2pk2 − χ−20 þ Σ̃ω;k;

D−1
ij ðω;kÞ ¼ ω2 − c2sk2 þ iγηðz0Þωk2 þ Σ̃ω;k; ð4:9Þ

where Σ̃ω;k is the sum of all one-particle-irreducible
Feynman diagrams. Physically, these diagram’s role is
analogous to the electroweak mixing of η and η0 mesons:
shear-polarization coupling can, beyond leading order, lead
to physical states which are mixtures of states defined by
their symmetry properties.
We therefore decompose this self-energy contribution as

Σ̃ω;k ¼ iðΣP
ω;k þ ΣS

ω;kÞ1; ð4:10Þ

being 1 the unitary matrix. We label the polarized and shear
contributions by the superscripts S and P, respectively. In
the lowest order, the relevant contributions for the one-loop
diagrams are6

iΣP
ω;k ¼ −χ2

Z
d4q
ð2πÞ4H

ð0Þ
im ðqÞHð0Þ

mjðk − qÞ − χzIJK

×
Z

d4q
ð2πÞ4H

ð0Þ
im ðqÞDð0Þ

mjðk − qÞ

− z2
Z

d4q
ð2πÞ4 D

ð0Þ
im ðqÞDð0Þ

mjðk − qÞ: ð4:11Þ

Our effective field method requires a careful calculation to
separate the infrared and ultraviolet contributions, and as a
consequence, the SOð3Þ symmetry is broken. The self-
energy diagrams are
Each loop in Fig. 2 displays one general property of

dissipative fluids with spin. The (a) loop, already inves-
tigated in [25], corresponds to the dissipative vortex mass.
The (b) loop tells us the interaction between shear and
polarization, responsible for driving the vortex toward the
principal axes, loses angular momentum from vortex-spin
coupling to fluid. The loop (c) is mediated by compres-
sional modes due to χz2 coupling. Let us now estimate the
one-loop diagrams for the longitudinal excitation.
The (a) loop provides a dissipative mass to sound waves

generated by the vortex-spin coupling. Such a process
produces an infrared limit to compressional modes given by
the vortex mass. In fact, such configuration arises only if
the momentum of internal line is k2 > χ−2. The (b) loop
mediates the interaction between sound waves and vortex-
coupling. Below the energy scale χ−2, the vortices are
massless low-energy degrees of freedom where sound
waves scattering elastically with spins. Above this gap,

6The polarization Feynman propagator in (4.7) is free of
ultraviolet divergences if we consider a relaxation time [4].
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we have access to inelastic scattering and absorption
processes of sound waves in the vortex-spin. In the general
case, we observe anisotropy due to the angle between spin
and sound vector. We here restrict ourselves to sound waves
propagating parallel to spin in Fig. 3, so that the orientation
of sound wave velocity is not anisotropic. We can compute
these implications in the dynamics of longitudinal com-

pressional modes by insertion of (4.10) into iDð0Þ
ij [refer

to Eq. (4.16)].
Our framework allows us to absorb the divergence in the

parameters of effective field theory, a necessary procedure
even though this theory is nonrenormalizeable [36]. The
renormalization constants are expanding around tree-level
solution

Zi ¼ 1þ
X∞
j¼1

1

ϵj
Zijðz; χÞ; ð4:12Þ

where the analytical functions Zij are independent of ϵ and
exclusively dependent on hydrodynamic couplings

Zij ¼
�
1þ δZii; i ¼ j

δZij; i ≠ j
ð4:13Þ

We split the bare fields and insert the renormalized
constants to render ultraviolet finite states to Green’s
function (2.8).

�
χ0

z0IJK

�
¼

�
1þ 1

2
δZχχ δZχz

δZzχ 1þ 1
2
δZzz

��
χ

zIJK

�
; ð4:14Þ

where the renormalized parameters fzIJK; χg are finite. The
expansion of this matrix only correspond to the vertex
corrections because the field π is renormalized independ-
ently π0 ¼ Z1=2

ππ π ¼ ð1þ 1
2
δZππÞπ. By linking the bare

parameters with the measured ones, we can renormalize

the coupling and fields. Since this matrix is no longer
diagonal, we cannot express the renormalized parameters
as eigenvalues of the bare ones. As we expected from the
assumption of microscopic reversibility (5.1), the dissipa-
tive currents of shear and polarization take place simulta-
neously on a fluid cell. Switching these probe forces
produces the same effect (commutation), so the counter-
terms of nondiagonal elements produce an orthogonal
matrix7

δZχz ¼ δZzχ : ð4:15Þ

With the previous notation, we can obtain the renormalized
propagator (4.7). In the case of polarization, the on-shell
renormalization condition fixes the dissipative mass,
found in [25], by the restrictions ΣP

ω;kðk2Þjk2¼χ−2 ¼ 0 and
d
dk2 Σ

P
ω;kðk2Þjk2¼χ−2 ¼ 0. Up to first order, the sum of

all 1PI diagrams is ΣP
ω;k ¼ Zππ þ k2

2
δZππ − ð1

2
δZχχþ

1
2
δZπ þ δZχzÞχ−2. Next, we write the exact propagator of

longitudinal polarization and excitation as

iHijðω;kÞ ¼
1

wo

iLij

ω2 − c2pk2 − χ−2
;

iDijðω;kÞ ¼
1

wo

iLij

ω2 − c2sk2 þ iγηðzÞωk2
; ð4:16Þ

where the renormalized coupling constants are χ2ðωÞ ¼
χ20 þ ImΣS

ω;k þ ReΣP
ω;k and γηðωÞ ¼ γηðz0Þ þ ImΣP

ω;k

þReΣS
ω;k. According to the Lagrangian Eqs. (4.2)–(4.4),

we evaluate the relativistic correction to shear and vortical
susceptibility up to the first order. The physical measurable
quantities are

FIG. 2. The diagrams corresponds to the self-energy correction of the longitudinal polarization propagator.

FIG. 3. The one-loop corrections to the longitudinal excitation.

7The detailed balance condition shows that transport coeffi-
cients are not dependent on the path history, but rather on their
immediate predecessor states.
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γηðωÞ ¼ γη þ
23T
30woπ

�jωj1=2
8γ3=2η

þ
�
ωγ−1=2η

2c2s
þ ω3=2γ−5=2η

�
ln

�
Λ2

ω2

�
þ
�
1

16
þ 1

7γ2ηω
2

�
Θðω2Þ

�

þ 4T2

27π2

� ðχγηÞ1=2
woðχ2ω2 þ 1Þ2=3 þ

2χ5=2

woγ
1=2
η

� jωj1=2
ð2þ χ2ω2Þ

�
þ
�
1

3
þ ω2χ2

15

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2χ2

q �
γη
jωj

�
1=2

Θðω2 − χ−2Þ
�
; ð4:17Þ

χ2ðωÞ ¼ χ2 þ T2

ð4πÞ2wo

�
1þ 2

3
χ2 þ

�
6þ 2ω2χ2 þ χ4

4

�
ln ðχ2Λ2Þ

�
þ T2χ3=2jω1=2j

3π2wo

�
4 −

χ−2 − μ2

ω2

�

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

χ−2 − μ2

ω2

�
− 4χ2μ2

s
þ 7T2

25π2wo

�
1þ 1

6
ω2χ2

�
ln

�
2 −

ω2 − χ−2

μ2

�
þ 4T2

27π2

×

� ðχγηÞ1=2
woðχ2ω2 þ 1Þ2=3 þ

2χ5=2

woγ
1=2
η

� jωj1=2
ð2þ χ2ω2Þ

�
þ
�
1

3
þ ω2χ2

15

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2χ2

q �
γη
jωj

�
1=2

Θðω2 − χ−2Þ
�
: ð4:18Þ

We omit the script of fγrenη ; χ2reng to keep the notation light.
This process reflects, in the Lagrangian picture, the
phenomenon identified in [13,17]. The symmetric shear
and polarization states have the same symmetry properties.
Hence, it is natural to expect them to mix. [13,17]
characterize the mixing process as nondissipative, and,
indeed, the equations above make it clear that they are
based on microscopic susceptibility and occur under
conditions of detailed balance. Then the investigation of
effective field theory creates a scenario in which the one-
loop corrections in 2 and 3 are simultaneous.
However, one should note that the symmetric shear is not

an equilibrium quantity and generally relaxes to zero as
global equilibrium is reached in a fluid, as it carries no
conserved quantum numbers. Polarization also relaxes,
generally not to zero but to the anti- symmetric vorticity
gradient carrying angular momentum [4]. The key here is
the realization that under detailed balance the mixing
happens instantaneously. This generally violates causality,
as we showed before in [4]. The next section explores how
extending the action to second-order clarifies the relation-
ship between the nondissipative mixing of transient quan-
tities, and also determines under what conditions this
mixing really occurs.

C. Second-order fluid action

From the previous section, we introduce the first-order
correction of hydrodynamics as an effective field theory.
This dynamics still presents well-known tensions with
relativistic causality [37]. The origin of these problems
in Eqs. (2.20)–(2.22) is the entropy divergence at
Lagrangian level, which leads to acausality and instability
modes.8 To remedy these failures, we require the inclusion

of additional degrees of freedom breaking the symmetries
associated with the equilibrium but having relaxational
dynamics (although fluctuations mean these are not
uniquely defined [18]) [25]. Microscopic interactions are
responsible for the relaxation of degrees of freedom and the
second law of thermodynamics means that in the absence of
backreaction dynamics [6] should be relaxational concern-
ing their source. This requirement, which turns out the
Lagrangian of Eqs. (2.20)–(2.22) causal and stable,
enlarges the parameter space of our theory via the intro-
duction of new couplings. The new Lagrangian, written
using the doubled variable prescription outlined in Sec. 2
is [23,24]

S ¼ Sfree þ SIS−shear þ SIS−bulk þ SIS−pol; ð4:19Þ

SIS−shear ¼
Z

d4x

�
τη
2
ðπμν− uαþ∂απþμν − πμνþ uα−∂απ−μνÞ

þ πμν�
2

2
þ zIJKðb2Þb2B−1

ij ∂
μϕiI

∂
νϕjJ

∂μKK
ν

�
;

ð4:20Þ

SIS−bulk ¼
Z

d4x

�
τξ
2
ðΠ−uαþ∂αΠþ − Πþuα−∂αΠ−Þ

þ Π2
�
2

þ hIJKðb2ÞKμIKνJ
∂μKK

ν

�
; ð4:21Þ

SIS−pol ¼
Z

d4x

�
τχ
2
ðYμν

− uαþ∂αYþ
μν − Yμν

þ uα−∂αY−
μνÞ

þ Yμν2
�
2

þ Fðbð1 − cy2ÞÞ
�
: ð4:22Þ

The on-shell equations of motion are

8We relate these effects to the inclusion of correlations between
microstates having no equilibrium counterpart (2.5). It means the
perturbative calculation at the local level of the Ψ–sector has no
meaningful hydrodynamic.
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8>><
>>:
τη

τξ

τχ

9>>=
>>;uα∂α

8>><
>>:
πμν

Π
Yμν

9>>=
>>;þ

8>><
>>:
πμν

Π
Yμν

9>>=
>>;¼

8>><
>>:
Δμναβ

∂αuβ

Δαβ
∂αuβ

χωμν

9>>=
>>;; ð4:23Þ

where Δμναβ ¼ 1
2
ðΔμαΔνβ þ ΔμβΔνα − 2

3
ΔμνΔαβÞ. The πμν,

Π, and Yμν are new dynamical variables, which relax to
their first-order gradient expansion: shear πμνjshear, bulk

Πjbulk, and polarization Yμν
jpol by following their respective

characteristic timescale. The transversality condition
uμπμν ¼ 0 can be enforced as it was in [24], by writing
πμν ≡ XIJ∂μϕ

I
∂νϕ

J, and considering XIJ as degrees of
freedom. In this work we do not use this parametrization
as it does not affect the results.
In absence of homogeneous part, the fluid dynamic force

decays exponentially to zero on the timescale τη;ξ;χ dictated

by the underlying microscopic interactions. As per the
Israel-Stewart prescription, the acausal modes into
Eqs. (3.18)–(3.20) must be crucially cut off after replacing
the transport coefficients by

0
B@ η

ξ

χ

1
CA →

0
B@ η

ξ

χ

1
CA 1

1þ iωτη;ξ;χ
: ð4:24Þ

The new Green-Kubo formulas are

1

2
lim
ω→0

lim
k→0

∂
2
ωImGR

Jz;ωxyðω;kÞ ¼ χ2τχ ; ð4:25Þ

1

2
lim
ω→0

lim
k→0

∂
2
kImGR

Jz;Txyðω;kÞ ¼ τηðz̄333 þ z̄303 þ z̄033 þ z̄003Þ þ τξððh̄003;03 þ h̄303;03 þ h̄333;03 þ h̄033;03 − 2h̄333;03 − 2h̄303;03

þ 2h̄330;03 þ 2h̄300;03Þ − 4b5oðh̄333;00 þ h̄303;00Þ þ 4b5oðh̄003;33 þ h̄303;33

þ h̄333;33 þ h̄033;33 þ h̄330;33 þ h̄300;33Þ − b3oðh̄003 þ h̄303 þ 2h̄333 þ 2h̄033 þ h̄333 þ h̄300ÞÞ:
ð4:26Þ

Our main goal is to restore the causal behavior of fluctua-
tions encoded in kernel (3.10). In a “bottom-up” effective
theory, τχ , τη, and τχ are not arbitrary but reflect how
different fluctuations conspire. We can determine them
from thermodynamical identities and conserved quantities.
However, as shown in [20], there is no well-defined limit
when η; χ; τη; τχ go to zero without IR instabilities due to
vorticity.

The new set of variables in (4.23) arises nonhydrody-
namics modes obeying the causality and stability condi-
tions. These collective modes keep track of microscopic
processes, which help us extend our analysis outside the
hydrodynamic regime. Using the same procedure in III C,
we evaluate the tensor-tensor correlation function
for t > 0

hfTijðt;xÞ; Tklð0Þgi ∼OðΛÞ þHij
kl

wo

T2

6π

�
χ−5=2

ðð1þ τ2χ=χ2ÞtÞ3=2
þ
�
3þ

�
1

6

�
1=2

�
χ−3=2

2ðð1þ τ2χ=χ2ÞtÞ1=2
�

þ
�
7þ

�
3

2

�
3=2

�
Sijkl
60π

T2

ðγηðzÞtÞ3=2
þ Hij

klT
2

ððγηðzÞ þ 4
3
γξðzÞÞtÞ3=2

þ T2

2πwo

�
e−γηk

2t

32

þ 1

3
kikje−

1
2
k2γðz;hÞt cosðjkjcstÞ

� ¯hp2i
V

þ T2

2π
e−χ

2k4t=fbb
hy2i
V

þ…: ð4:27Þ

This generalized matrix corresponds to the transverse
conserved quantity of the stress dynamics. Clearly, we
label the first and last exponential contributions as the fast
variable in which the former is connected with the relaxing
mode of shear dissipation, and the latter is related to vortex
diffusivity. The manifestation of the oscillatory term, the
longitudinal momentum solution, is irrelevant for long-time
tails. The higher-order terms for (4.27) will lead to
subdominant effects in the long-time tails with time

power-law of t5=2 and t7=2. One essential feature is that
the polarization dynamics satisfy the bounded causality

relation dP
ds ≤

χ2

τ2χ
[4]. The pole solution for small wave-

number is

ωðkÞ ≃ −
i
τη

−
i
τχ

þ iγηðzÞk2 þ i
χ2

fbb
k4 þ…: ð4:28Þ
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This dispersion relation, partially in accord with [28], rules
the system evolution at initial time when the gradient
expansion scale is weaker than nonhydrodynamics modes.
The lifetime of collective modes (4.28), characterized by
the inverse of damping behavior, increases with k and their
decaying evolve in according to Re½ωðk → 0Þ� ¼
finite damping terms. In particular, we can evaluate the
exponential decay time of χ ∼ e−ωðkÞt by Re½ωðkÞ� ∝ k4.
We identify this high wave number dependence as the
aspect denoting how fast spin modes increase in non-
hydrodynamic regime. Note that (4.28) exhibits an infinite
lifetime for long-wavelength limit and survive for k → 0.
This last interpretation is, in fact, reinforced by conserva-
tion laws in hydrodynamics picture. It means the balance
equation of transverse pT and longitudinal pL momentum
decouples. So the relaxation process limits the transverse
macroscopic current, purely diffusive. Indeed, a more
careful analysis of the relaxation time opens the door for
an interesting qualitative result since this calculation is
affected by nonlocal time contribution (see discussion in
Sec. V). Such statement is related to the critical wave
number in which fluid shows the dynamics of transverse
excitations. First of all, the transverse momentum (3.7) of
polarizable dissipative fluid is nontrivial and can be divided
into two parts: spin and hydro-particle. For considered task,
one evaluate the corrections induced by thermal fluctua-
tions from spin and shear viscosity in case of domain
spectrum approaches interatomic distance (high fre-
quency). We should recall the eigenvalues of stress tensor
operator (4.27) express, on the microscopic scale, the
propagation of both shear viscosity and transverse polari-
zation from kinetic modes. At this point, we can determine
the emergence of these collective modes based on the
kinetic characteristic of Maxwell relaxation time [38] by
following the procedure in [39]

kη ∼
�
ϵGη

η2

�
1=2

k→0

; kχ ∼
�

fbb
8Gχχ

4

�
1=4

k→0

; ð4:29Þ

where τη ¼ η=Gη and τχ ¼ χ2Gχ . The modes of shear-
stress kη and transverse polarization kχ show wave-
solutions propagation for k > kη and kχ , while they
present diffusive behavior for length > Lη and Lχ , where
L ∼ 2π=k is the upper bound limit to observe excitations. If
Lη > Lχ , the shear waves have a dominant role in the
collective modes before the manifestation of wavelike
transverse polarization. On the other hand, if Lη < Lχ ,
the wavelike transverse polarization manifests the collec-
tive modes before shear waves. The former corrects the
GR

T0iT0jðω;kÞ by hJTPðt;kÞJTPðt ¼ 0;kÞi.9 The later corrects
positively the shear viscosity by increasing more the spin

displacement toward the principal axes of dissipative
rotational fluids, e.g., transferring (x)momentum in the
(−y) direction Fig. 1. It turns out that after increasing k to
the spectrum region < Lη and < Lχ , both of transverse
modes are relevant for correcting the transport coefficients.
In this region, they become frequency dependent
fγηðωÞ; χðωÞg and reduce to the “bare” quantities fγη; χg
in limω→0. In our approach, we cannot determine by
analytical methods the magnitude of kη and kχ , as it is
done in [39]. In other words, we cannot distinguish which
wave occurs first because it depends on how η and χ
compete. It means the collective excitation of the shear and
polarization are originating from different microscopic
forces depending on the spatial scale. Many hydrodynam-
ics treatments are build-up for low ðω;kÞ. Hence, they
cannot provide a satisfactory prediction for high frequency
by a straightforward extrapolation of higher derivatives.
That is why the results (4.29) are important to understand
the relevant aspects of fluid dynamics. We can only make
progress in investigating further questions by appealing to
experimental data, which will be postponed for future
work.

V. MEMORY EFFECT

In relativistic nuclear collisions, hydrodynamics models
validate the interpretation of data in the QGP as a quasi-
ideal fluid [32]. Strictly speaking, the hydrosignature
reproduces a wealth information about the QGP because
we assume local thermal equilibrium to collective flow.
However, most proposal theoretical models run into con-
ceptual issues10 in predicting polarizable fluid because the
presence of spin excitations in a perfect fluid creates
inherently an out-of-equilibrium scenario because of cau-
sality bounds [4]. The complexity of such a system
concerns the incorporation of micro- and macroscales. It
implies that we can cover the same phenomena from
“bottom” to “up” by different coarse-grained processes.
The strategy to set the appropriate hierarchical levels
regards how far fluctuations are from linearized hydro-
dynamics. We have shown in the previous sections that the
relevant aspects for a more accurate description of fluid
dynamics are related to the high energy spectrum region.
The aforementioned Secs. III and IV show that fluc-

tuation-dissipation theorem becomes an indispensable tool
for describing the rotation of heavy ion collisions. To do
this, we assume reversibility temporal and time-symmetry
as the majors rule at the microscopic scale. As we have
seen, the cross-phenomena between η and χ (4.15) stands,
within a certain approximation, due to the Markov char-
acteristic of linear approximation. By comparing (3.6) and
(3.7), whenever the transfer of angular momentum

9JTP the microscopic current of transverse polarization, en-
coded in (3.22).

10The theory behind spin dependent momentum distribution
shows disagreement when contrasted with experiments [1,40].
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happens, the displacement of spin toward the rotational
axes follows δt time later. On the other hand, the inverse
process must occur at the same time. Hence, since the fluid
does not depend on the previous history, the correlation
function for pi

T and Yμν in (3.10) assumes the form of

hpi
TðtÞ; Yμνðtþ δt;ΩÞieq ¼ hYμνðt;−ΩÞ; pi

Tðtþ δtÞieq;
ð5:1Þ

where Ω is an odd external vorticity field. The microscopic
interactions yield the same correlation function for both
processes and demand a special connection between η and
χ. Thus this irreversible current demands that the scale time
of spin evolution is comparable with the hydrovariables in
the near-equilibrium state. In fact, the dynamics generator
leads to the same physical state that the time-reversed
symmetry generator. So far, the arguments raised by
Markov approximation are well suited for a near-
equilibrium system.
By looking at the conservation of stress tensor up to the

first order ∂μhTμνi ¼ h∂μTμνi ¼ 0, the Markovian approxi-
mation is another reason to adopt Noether’s theorem to
investigate polarizable fluids. Collective behavior can be
generalized to a continuous medium, and the interaction
between fluid variables and the background configuration
can be neglected. In what follows, fluctuations are not
observed in the lhydro scale, and stochastic variables are
present in linear equations as white noise. It is easy to see if
we compare the relaxation time of hydrovariables-t and
thermofluctuations-tm, what one calls “system” and “bath,”
respectively. Thus, the environment restores its stationary
solution for t ≫ tm since the perturbation of hydro-varia-
bles does not survive for a long-time.
At a coarse-grained level, the fluid under certain physical

circumstances can lead to a process where the memory
effects influence the macroscopic dynamics [41]. In one of
these, the relaxation timescale of hydrodynamical and
nonhydrodynamical variables are comparable [42]. The
need for a non-Markovian process may not seem obvious
when theories beyond local equilibrium dismiss that the
relaxation time of microscopic variables can reflect macro-
scopic dynamics. If the hydrodynamics fluctuations are
within the second order dissipative equation, the fluid with
spin faces a memory effect.

Since χ and η have different symmetries I, the rate of
mechanical relaxation must provide two different scenarios
in hydrodynamics.11 To discuss both of them, let us
first consider the spin out of equilibrium (not aligned with
the external vortical fluid). For the first case τχ > τη, the
transfer of angular momentum from spin to fluid happens at
τη time, and so the spin moves in the direction to inner
layers: points 1 and 2 in Fig. 4. The spin alignment toward
the external vortex direction only follows τχ − τη later:
points 2–5 in Fig. 4. On the other hand, for the case τη > τχ ,
the flow produces a scenario where the polarization align-
ment occurs before the spin moves toward the principal
rotation axis. In this inverse process, whenever the spin
begins to align at τχ time: points 1 and 2 in Fig. 4, its only
shifts to the rotational axis τη − τχ later: points 2–4 Fig. 4.
In both situations, the fluid reaches a thermodynamical
equilibrium when the polarization current is parallel to the
external vorticity field.
These characteristics appear when the time corre-

lation between microstates is not neglected, and so
∂μhTμνi ≠ h∂μTμνi. Then the friction, including memory
effect, is not instantaneous but depends on the previous
steps. Consequently, the fluctuations turn the white noise
degrees of freedom into colored ones. We can only restore
the equality if freezing the environment for a short time in
which nonhydrodynamics modes are relevant. Other sce-
narios are possible: τη ≪ τχ , τη ≫ τχ , or τη ∼ τχ. The
classification of all these cases leads to a clear meaning
of the interaction between spin and fluid particles.
The manifestation of non-Markov properties becomes

evident if we examine the spectral properties of the physical
variables. This framework should encode knowledge for
out-equilibrium process since each relaxation time depends
upon the nature of interaction: range-action, symmetry,
potential, and microscopic forces. Taking the evolution
time of the density matrix in the interaction picture by (3.3),
we have

ρIðtÞ ¼ eiE0tρeqðtÞe−iE0t; E0 ¼ E0ðϕÞ þ E0ðΨÞ: ð5:2Þ

FIG. 4. This schematic picture shows how the inclusion of shear process redistributes the spin location in the polarizable fluid.

11We also expect the specification of symmetric and antisym-
metric interaction between microscopic degrees of freedom yields
different dynamics for the spin particle.
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Showing that we can rewrite in a compact form

_ρIðtÞ ¼ i½ρIðtÞ; EIðtÞ�; ð5:3Þ

where the interaction Hamiltonian coming from the interact-
ing Lagrangian in (2.7) evolves as EIðtÞ ¼ eiE0tEIð0Þe−iE0t.
The general solution of (5.2) is ρIðtÞ ¼ ρð0Þþ
i
R
t
0 dt

0½ρIðt0Þ; EIðtÞ�. An interactive recursive solution with
(5.3) leads to

_ρIðtÞ ¼ i½ρIð0Þ; EIðtÞ� þ
Z

t

0

dt0½½EIðt0Þ; ρIðt0Þ�; EIðtÞ�:

ð5:4Þ

The factorization ρI ¼ ρϕ ⊗ ρΨ and TrfEIðtÞρIð0Þg ¼ 0 are
fundamental assumptions to implement aMarkovian approxi-
mation. However, the second interactive term is a non-
commutative dissipative processZ

t

t0

dτχEIðτχÞ
Z

τχ

t0

dτηEIðτηÞ
Z

τη

t0

dt0EIðt0Þ

≠
Z

t

t0

dτηEIðτηÞ
Z

τη

t0

dτχEIðτχÞ
Z

τχ

t0

dt0EIðt0Þ; ð5:5Þ

where the left-hand side (lhs) and right-hand side (rhs)
correspond to the left and right picture of 4, respectively.
The presence of noncommutative diffusion dictates δZχz ≠
δZzχ in effective field theory language. In particular, it shows
that thememory effects influence loop corrections. For the rhs
(5.5), it is seen that the (a) loopof2 and3occurs at τχ time, and
so the information of this early states is transferred to the other
ones at τη − τχ time.On the other hand, for the lhs (5.5), the c)
loop of 2 and 3 arises at τη time, while the other ones at
τχ − τη time.
The aforementioned discussion opens a window of

theoretical effort to deal with the discrepancy found in
the QGP. We will see in the future publication of how the
non-Markovian effects are appropriate adjectives.

VI. SUMMARY AND OUTLOOK

In this work we have examined Lagrangian hydrody-
namics with both polarization and dissipative effects, from
the perspective of the field theory. We have examined the
interplay of viscosity, vortical susceptibility and sound
wave backreaction on fluid dynamics. We hope that this is a
step toward a full theory of hydrodynamics with spin.
Our main conclusion is that the shear forces and the

polarization dynamics “do not commute,” resulting in
several different regimes determined by the respective
relaxation timescales. While this paper is theoretical and
specific to the Lagrangian picture and the linear response
approach, it is directly related to different topics, both
theoretical and phenomenological which have been

discussed in the literature. The fact that viscous forces
interact with polarization has been realized in the context of
coarse-graining Zubarev hydrodynamics [43] and transport
theory [13]. It has been advocated as a solution of the
longitudinal polarization phenomenological puzzle
[31,44,45]. However, since the symmetric shear is not an
equilibrium nor a conserved quantity, a general effective
theory of this dynamics was missing. This work has
clarified the regime where such terms are significant in
the scale expansion.
If [44,45] will become accepted as an explanation of the

longitudinal spin puzzle, it would imply that the spin
relaxation time is in fact not small with respect to the
relaxation time of shear quantities, since,as we show, this is
the regime where the shear forces drive polarization. It
would likely mean that spin and vorticity are not in
equilibrium throughout hydrodynamic evolution, and the
Cooper-Frye type freeze out assuming that which has so far
been used for phenomenology [46] needs correcting.
The “mass correction” derived in Sec. IV B is equally

interesting phenomenologically. It would mean vorticity is
not linearly proportional to angular momentum but acquires
components dependent on characteristic vortex size ω
weighted by microscopic parameters [χ2 and γðz; hÞ].
This is again of potential phenomenological interest in
the transverse polarization (produced at the scale compa-
rable to the system size) vs longitudinal polarization
(produced on finer scales determined by anisotropic flow),
as well as the impact parameter dependence of global
polarization. One would need to input a frequency depen-
dent polarization susceptibility correction into the freeze-out
code (in practice, a correction to the Boltzmann polarization
factor depending on the vortex size) to estimate such effects
quantitatively. A conclusive deviation of the linear depend-
ence of polarization with respect to impact parameter (not
seen as yet [1]) could provide evidence for such “anomalous
vorticity propagation.”
On the theory side, while the approach presented here is

based on the fluctuation-dissipation theorem, the back-
reaction on hydrodynamic evolution of fluctuations has not
yet been explored. It is reasonable that, analogously for
[34] spin fluctuations will affect evolution more in a regime
where τY is sub-dominant, while hydrodynamic fluctua-
tions become important when shear relaxation time is
small. A full understanding of fluctuations is necessary
if spin is to drive a “ferromagnetic type” (or rather
“ferrovortetic”) phase transition, as originally discussed
in [4]. The presence of a phase transition will add another
scale, to be studied using the Landau theory of phase
transitions [4,35] and either Maxwell construction or
nucleation, depending on fluctuation probabilities. Large
scale vortical structure, dissipation, fluctuation and phase
structure would then each has a dominant regime.
In conclusion, we have developed an effective theory of

dissipative hydrodynamics with spin, based on the
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Lagrangian picture and linear response theory. We hope
this is a step toward the still elusive goal to understand, both
at a theoretical and phenomenological level, the effect that
spin dynamics has on hydrodynamic evolution.
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APPENDIX: DERIVATION OF GREEN-KUBO
RELATIONS

In this appendix, we follow [2] to briefly demonstrate the
derivation of the Green’s functions from the higher-order
stress tensor. The main object to accomplish this task is the
Lagrangian which describes our polarizable dissipative
fluid system in (2.19). Thus, we can expand the stress
tensor for higher orders defined as

Tμν ¼
�

∂L
∂ð∂μϕIÞ − ∂β

∂L
∂ð∂μ∂βϕIÞ þ ∂β∂γ

∂L
∂ð∂μ∂β∂γϕIÞ −…

�
∂
νϕI þ

�
∂L

∂ð∂μ∂βϕIÞ

− ∂γ
∂L

∂ð∂μ∂β∂γϕIÞ þ…

�
∂β∂

νϕI þ
�

∂L
∂ð∂μ∂β∂γϕIÞ −…

�
∂β∂γ∂

νϕI þ � � � − ημνL: ðA1Þ

note that because ϕIs are physical coordinates (rather than internal space ones), this definition of Tμν maintains its symmetry
as long as polarization degrees of freedom are not involved.
It is convenient to introduce another physical object to the current vector

Jμ ¼ iϵ

�
∂L

∂ð∂μϕIÞ − ∂β
∂L

∂ð∂μ∂βϕIÞ þ…

�
ϕI þ

�
∂L

∂ð∂μ∂βϕIÞ þ…

�
∂
βϕI þ…; ðA2Þ

upon substituting (2.19) into (A1), we obtain

Tμν ¼
�
wouγPγμðc2sfb þ ðγη − 2γξÞb3Δαβ

IJ ∂αK
K
β þ γξϵ

ζρβϵ0LM∂ζϕ
I
∂ρϕ

JKK
β − c2pbFyω

2
∂bχ

2 þ Fbð1 − cy2ÞÞ

þ woγηðΔIJ
αζK

K
β þ KI

αΔJK
βζ Þ∂ζKαPμβ þ Fyγχð2ω2

∂ω2χ þ χÞ
�
ω2uμ − yβθð _Kβ − uα∇βKαÞPθμ þ 1

6
ϵμθσγyρθ∂ρ∂σϕ∂γϕ

�

− ∂βðzIJKb2ΔIJ
ασP

αfμ
K δβgσ − 2c2pFyγχð1þ 2ω∂ω2χÞyαθPθfβδμgαÞ

�
∂
νϕ

þ fwoγηΔIJ
ασP

αfμ
K δβgσ − 2c2pFyð1þ 2ω∂ω2χÞγχyαθPθfβδμgαg∂β∂νϕ − ημνL; ðA3Þ

where we introduce the transport coefficient and thermodynamic derivative

c2s ¼
fbbb
fb

; γξ ≡ 1

wo

X
IJK

�
hIJK þ

X
LM

hIJK;LM

�
; χ ≡ ∂Yμν

∂ωμν ; γχ ≡ χ2

wo
;

c2p ≡ 1

2

�
1þ Fbb

Fb

�
; γη ≡ 1

wo

X
IJK

�
zIJK þ

X
MN

zIJK;LM

�
; wo ¼ Fyy − fbb: ðA4Þ

The linearized “equation of motion” describes the macro-
scopic near-equilibrium system. Now, introducing the
identity uμΔμν ¼ 0 to fulfill the requirement of projection,
we let the equation of motion ∂μhTμνi ¼ 0 onto parallel and
perpendicular fluid velocity

uν∂μhTμνi ¼ 0; ðA5aÞ

Δα
ν∂μhTμνi ¼ 0: ðA5bÞ

By following the Taylor expansion around the static
equilibrium, we shall express the main out-equilibrium field
ϕiIðxÞ ¼ xiI þ πiI þ 1

2!
π · ∂πiI þ 1

3!
π · ∂ðπ · ∂πiIÞ þ � � �. To

calculate the collective modes near-equilibrium limit, we
linearize the equations above around ϕiI ¼ xiI þ πiI where
xiI is the hydrostatic background. The four-velocity is
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uμ ¼ uμ0 þ δuμ; ðA6Þ

where u0 ¼ 1þ δg00=2 and uμδuμ ¼ 0, with ∇μ ¼ Δμα
∂α.

One checks by (2.15) that

uμ ≃ δμ0

�
1þ 1

2
_π2
�
þ δμi ð− _πi þ _π · ∂πiÞ: ðA7Þ

Using the fact that

ωμν ¼ 2∇½μwuν�
¼ 2wð∇½μuν� − _u½μuν� þ u½μ∇ν� lnwÞ ≃|{z}

linear

∇μuν −∇νuμ;

we similarly derive the same expansion for

ω2 ≃ −ð∂μ _πÞ · ð∂μ _πÞ − ½∂ _π · ∂ _π�: ðA8Þ
Following the linearization, the stress tensor and current for
the first order are

Tμν ⊃ fbbð _πδμ0 − ∂l _π
jδμj − c2s ½∂π�δμl Þδν0 þ zIJKð3½∂ _π�δμν − δμI ∂

ν _πIÞ þ bhIJK;LM2½∂ _π�δμν − zIJK

× ð4∂l½∂π�δμl δν0 − ∂
μ
∂
νπ þ ∂

μ _πJδνJ − ∂l∂
mπδμl δ

ν
m þ 2½∂ _π�δμνÞ þ χ2ðπ̈lδμl þ ∂

2 _πlδμl þ ∂
μπ̈

þ ∂
μ½∂π̈�Þδν0 − ημν½∂π�; ðA9Þ

The Green-Kubo formalism for variational principle points out gμν and ωμν as the independent background. To avoid self-
interaction and second order terms, we use gμν ¼ ημν þ hμν through the covariant derivative

∇μuν ¼ ∂μuν þ
1

2
ηνβð∂μhβρ þ ∂ρhβμ − ∂βhμρÞuρ0: ðA10Þ

Choosing the metric direction parallel to the external vortex field δgμν ¼ δgμνðt; x3Þ. We employ the definition in (3.12) to
evaluate the retarded functions δϕiIðω;kÞ ¼ R

dωdk3eiωt−ikxδϕiIðt; xÞ. The correlation functions for dissipative spin
hydrodynamics are

GTxz;Txz ¼ ðω2 þ ωkÞ þ χ2ðω5 − 2ω3k2Þ þ izIJKχ2ð2ω5 − ω4kþ ω2k3Þ þ z2IJKðωk4 − 4ω2k3

ω2 þ k2 − izIJKωk2 − 2ihIJK;LMωk2 − 2χ2ω4

−3ω3k2Þ þ izIJKω3 − 4χ4ðω6 − ω4k2Þ; ðA11Þ

GTxy;Txy ¼ ωk − hIJK;LMðω4 − c2sω2k2Þ þ hIJK;LMχ2ðω4k2 − ω3k3Þ þ zIJKχ2ðω6 − ω4k2Þ
ω2 − c2sk2 − izIJKð2ω2kþ 3ωk2Þ − 2ihIJK;LMωk2 − 2χ2ðω4 − k2ω2Þ

−3z2IJKðω4kþ ω3k2Þ − 2z02IJKω
2k2 þ χ4ð2ω7 þ 2ω6k − ω4k3Þ; ðA12Þ

GT0z;T0z ¼ zIJKðω4 − 2k4Þ − 2χ2ðω4 þ ω2k2Þ þ z2IJKðω4 − 4ω2k2 þ ω3k − 4ωk3Þ þ 8hIJK;LM
ω2 − izIJKωk2 − 2ihIJK;LMωk2 − 2χ2ω4

×χ2ω2k2 þ 2χ4ðω5k − ω4k2 − ω2k4Þ; ðA13Þ

GT0x;T0x ¼ ð4zIJK þ hIJK;LMÞω2k2 þ χ2ð2ω5 − ω3k2Þ þ zIJKχ2ð2ω5kþ 5ω4k2 − 3ω2k4Þþ
ω2 − izIJKωk2 − 2ihIJK;LMωk2 − 2χ2ω4

2hIJK;LMχ2ðω4k2 þ ω2k4Þ − 4χ4ðω5k − ω3k3Þ; ðA14Þ

GT00;T00 ¼ ðωkþ k2Þ − 2zIJKðω3kþ 2ω2k2 þ 5ωk3Þ þ hIJK;LMð4ω2k2 þ ωk3Þ þ χ2ðω3k
ω2 − c2sk2 − izIJKð2ω2kþ 3ωk2Þ − 2ihIJK;LMωk2 − 2χ2ðω4 − k2ω2Þ

þω2k2Þ þ z2IJKð5ωk3 þ ω2k2Þ þ 2χ2ðzIJK þ hIJK;LMÞðω4k2 − ω2k4 þ ω3k3Þ−
χ4ðω5kþ ω4k2 − ω3k3Þ: ðA15Þ

It is straightforward the above calculation for conserved current
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GJz;ωxy ¼ 4iω2kþ 4χ2zIJKω3k
ðω2 − c2sk2Þ − iχ2ðω4 − ω2k2Þ − 2χ2ω2; ðA16Þ

GJx;ωxy ¼ 2z2IJKω
2k2

ðω2 − c2sk2Þ − iχ2ðω4 − ω2k2Þ − zIJKωk; ðA17Þ

GJ0;T00 ¼ ω2kþ 3z2IJKωk
4 − χ4ðω5kþ ω3k3Þ

ðω2 − c2sk2Þ þ 8izIJKωk2 − χ2ðω4 − ω2k2Þ þ zIJKðk2 − ωkÞ − 2χ2ðω2 − k2Þ; ðA18Þ

GJz;Txy ¼ zIJKωk2 þ 3z2IJKωk
4 þ zIJKχ2ðω2k3Þ − χ4ðω4k2 þ ω3k3Þ

ðω2 − c2sk2Þ þ 8izIJKωk2 − χ2ðω4 − ω2k2Þ þ izIJKðk2 − ωkÞkþ χ2ω2: ðA19Þ
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