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The nucleon axial coupling constant gA is calculated in the presence of an external uniform magnetic
field using finite energy sum rules. The correlation function of proton, neutron and axial-vector currents is
calculated both the hadronic and the QCD sector. Once the axial contribution in the form factor is isolated, a
double sum rule is considered, i.e., the usual QCD contour integration for the external moments of both the
proton and neutron current. The effects of the external magnetic field come mainly through the in-medium
current-nucleon coupling constants λNðBÞ and the hadronic thresholds s0ðBÞ provided by the nucleon-
nucleon correlators. As a result, the axial coupling constant decreases in the presence of the magnetic field.
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The axial-vector form factor is present in weak processes
such as beta decay. In particular, the neutron decay width is
proportional to the factor 1þ 3g2A, with gA being the axial
coupling constant of the nucleon, also known as axial
charge, which is experimentally measured from beta decay
[1,2], with gA ≈ 1.275. Medium effects on the axial
coupling constant could have interesting implications, in
particular high density effects in compact stars, where the
neutrino emissivity in the Urca process, the main cooling
process of neutron stars, is also proportional to the
aforementioned factor [3]. It is established that axial
coupling exhibits quenching, where gA → 1 for high
baryon density [4], although nonquenching behavior [5]
has also been suggested. Thermal effects on the axial
coupling constant have also been studied in the framework
of relativistic heavy ion collision (HIC) experiments. In this
case, the axial coupling decreases dramatically near the
deconfinement/chiral phase transition [6,7].
One of the important effects to take into account are the

strong magnetic fields produced in peripheral HIC experi-
ments, as well as the strong magnetic field inside the
magnetars. In this work, the axial coupling constant in the
presence of a uniform and constant external magnetic field
will be obtained using finite energy sum rules (FESR). The
series expansion of the magnetic field can be applied in sum
rules [8–13], reaching more realistic values for the

magnetic field compared to other methods using Landau
level summation.
This paper begins with the proton-axial-neutron currents

correlator, looking at how to isolate the axial component in
the form factor. A double FESR is then applied in vacuum.
In combination with the results obtained in the nucleon-
nucleon current correlator, the axial coupling constant is
obtained as a function of the quark condensate and the
gluon condensate, which must be properly fixed. Magnetic
field effects are then introduced using nucleon-current
couplings and hadronic thresholds, both dependent on
the magnetic field. The paper concludes with a discussion
of the results and perspectives.

I. CURRENT CORRELATOR

The starting point is the analysis of the three currents
correlator in configuration space,

Πμðx; y; zÞ ¼ −h0jT ηpðxÞAμðyÞη̄nðzÞj0i; ð1Þ

being ηN the interpolating current of the nucleons and Amu
the axial-vector current. In the hadronic sector, the nucle-
onic and axial currents are defined by

h0jηpðxÞjp0; s0i ¼ λpus
0
pðp0Þe−ip0·x; ð2Þ

hp; sjη̄nðzÞj0i ¼ λnūsnðpÞeip·z; ð3Þ

hp0; s0jAμðyÞjp; si ¼ ūs
0
pðp0ÞTμðqÞusnðpÞeiq·y; ð4Þ

with q ¼ p0 − p, and where λp and λn are the current-proton
coupling and the current-neutron coupling, respectively.
The function T is defined as
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TμðqÞ ¼ GAðtÞγμγ5 þ GPðtÞγ5
qμ
2mN

þGTðtÞσμνγ5
qν
2mN

;

ð5Þ

with t ¼ q2, and wheremN is the vacuum nucleonmass. The
axial coupling is defined as

gA ≡GAð0Þ: ð6Þ

In the QCD sector, the nucleon interpolating currents and
the axial vector current are defined in terms of the quark
fields as

ηpðxÞ ¼ ϵabc½uaðxÞTCγμubðxÞ�γμγ5dcðxÞ; ð7Þ

η̄nðzÞ ¼ ϵabc½d̄bðzÞγμCd̄aðzÞT �ūcðzÞγμγ5; ð8Þ

AμðyÞ ¼ d̄ðyÞγμγ5uðyÞ; ð9Þ

where C ¼ iγ0γ2 is the charge conjugation operator.
The correlator in momentum space is defined as

Πμðp; p0Þ ¼
Z

d4yd4ze−iðq·yþp·zÞΠμð0; y; zÞ; ð10Þ

where the energy momentum is conserved as shown in the
diagram on the left of Fig. 1. The idea is to obtain the gA by
relating the hadronic sector to the QCD sector through the
FESR using the quark-hadron duality principle. But first we
need to isolate the contribution of GA from the other
contributions.

A. Hadronic sector

Inserting a complete set of intermediate states of nucle-
ons, the correlator in momentum space for the hadronic
sector leads to

Πhad
μ ðp; p0Þ ¼ λnλp

ðpþmnÞTμðqÞðp0 þmpÞ
ðp2 −m2

nÞðp02 −m2
pÞ

: ð11Þ

This correlator is described by the left diagram in Fig. 1,
corresponding to an incoming neutron current with

momentum p, an outgoing axial current with momentum
q and an outgoing proton current with momentum p0.
To isolate the contribution of the axial coupling, we can

decompose the correlator into the different structures
relative to the Dirac matrices by tracing the correlator
multiplied with the different Dirac structures, i.e. tr½ΠμΓ�
with Γ ¼ I; γ5; γμ; γμγ5; σμν. As a result, the different
structures include combinations of GA, GP and GT . In
particular

tr½Πμðp; p0Þγν� ¼ −4iϵμναβpαp0βΠðs; s0; tÞ; ð12Þ

where Π in the case of the hadronic correlator is

Πhadðs; s0; tÞ ¼ λnλp
GAðtÞ þ GTðtÞðmn −mpÞ=mN

ðs −m2
nÞðs0 −m2

pÞ
; ð13Þ

with s ¼ p2, s0 ¼ p02. The difference in nucleon masses
can be neglected in vacuum. If different nucleon masses are
assumed, it is possible to completely isolate the axial
coupling part with the appropriate combination of the other
correlator structures, however it is more complicated and
unnecessary, even in the presence of magnetic fields.

B. QCD sector

Once the appropriate operation to isolate gA is obtained
in Eq. (12), it can be applied in the QCD sector. The
projected correlator for the perturbative part of QCD in the
chiral limit produces a two-loop contribution.

tr½ΠpQCD
μ ðp; p0Þγν�

¼ 4iϵμναβNcðNc − 1Þ

×
Z

d4k
ð2πÞ4

d4k0

ð2πÞ4
32qαkβk0 · ðp0 − k − k0Þ

k2k02ðk − qÞ2ðp0 − k − k0Þ2 ; ð14Þ

which is described diagrammatically on the right side of
Fig. 1. After the integration of the internal momentum in
the frame t ¼ 0 the result is

ΠpQCDðs; s0; 0Þ ¼ s2 lnð−s=μ2Þ − s02 lnð−s0=μ2Þ
ð2πÞ4ðs0 − sÞ

þ regular terms; ð15Þ

where μ is the MS scale. Terms without discontinuities on
the real axes or singularities are omitted because they
vanish when the FESR are applied.
The next contribution comes from the nonperturbative

sector. Considering the operator product expansion, the
next contribution in the chiral limit corresponds to dimen-
sion three operators: the quark condensate. However, this
term vanishes when performing the projection described in
Eq. (12), as well as for all diagrams with odd-dimensional
operators in the chiral limit. Therefore, the next nonvanishing

FIG. 1. Feynman diagrams representing the current correlator
in the hadronic sector (left) and in the QCD sector (right).
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contribution comes from the dimension four operator,
which in the chiral limit corresponds to the gluon con-
densate. This diagram is complicated to handle and is not
quite relevant. Therefore, only the leading term, which
corresponds to the perturbative part, will be considered.

II. AXIAL COUPLING CONSTANT FROM FESR

The FESR in this case are applied for two momentum
correlators: s and s0. The usual procedure corresponds to
integrate the correlator multiplied by an analytical kernel
KðsÞ along the pacman contour described in Fig. 2. The
radius of the circle is the hadronic continuum threshold.
UsingCauchy’s theorem, quark-hadron duality is introduced
by placing the hadronic sector at the discontinuity on the
positive real axis, and the QCD sector on the complex circle:

Z
sn

0

ds
π
ImsΠhadðs; s0; tÞ ¼ −

I
ds
2πi

ΠQCDðs; s0; tÞ; ð16Þ

where the variable s is first integrated with the weight
function KðsÞ ¼ 1, and where sn denotes the continuum
threshold related with neutron current. The subscript intro-
duced in the imaginary part is defined as

ImsfðsÞ≡ lim
ϵ→0

Imfðsþ iϵÞ: ð17Þ

Of course, Eq. (16) is valid in the absence of poles within the
contour, otherwise the residuesmust be incorporated into the
equation. In particular we can see from Eq. (15) that the pole
in s ¼ s0 in the denominator cancels with the numerator, so
there is no singularity at all within the contour.
Proceeding in the same way, but now with the variable s0,

the double FESR gives

Z
sp

0

ds0

π
Ims0

Z
sn

0

ds
π
ImsΠhadðs; s0; tÞ

¼
I
sp

ds0

2πi

I
sn

ds
2πi

ΠQCDðs; s0; tÞ; ð18Þ

where sp is the continuum threshold related with the proton
current.
Once FESR are applied to the hadronic sector in Eq. (13)

and to the QCD sector in Eq. (15), after setting t ¼ 0, the
above equation gives the relation

gAλnλpθðsn −m2
nÞθðsp −m2

pÞ

¼ 1

48π4
½s3nθðsp − snÞ þ s3pθðsn − spÞ�: ð19Þ

In vacuum, all parameters are practically the same for
protons and neutrons, so sp ≈ sn ≡ s0 and λp ≈ λn ≡ λN

gA ¼ 1

48π4
s30
λ2N

: ð20Þ

The nucleon-current coupling can be obtained from the
nucleon-nucleon channel. The most appropriate channel is
the nucleon-nucleon current correlator [8,13–17]

ΠNðxÞ ¼ h0jT ηNðxÞη̄Nð0Þj0i: ð21Þ

In vacuum there are only two Dirac structures, so the FESR
[13] provide two equations:

λ2N ¼ s30
192π4

þ s0
32π2

hG2i þ 2

3
hq̄qi2; ð22Þ

λ2NmN ¼ −
s20
8π2

hq̄qi þ 1

12
hG2ihq̄qi; ð23Þ

where, in the last expression, vacuum dominance was
considered. The quark and gluon condensates are
defined as

hq̄qi≡ 1

Nf

X
f

h0jq̄fqfj0i; ð24Þ

hG2i≡ h0j αs
π
Ga

μνGaμνj0i: ð25Þ

The axial coupling constant depends strongly on the
quark and gluon condensates. The most often used
values for these operators are hq̄qi ¼ −ð0.24 GeVÞ3 and
hG2i ¼ ð0.33 GeVÞ4. If these values are used, then the
axial coupling results in gA ¼ 1.52. Recent lattice results
for 2þ 1 flavors at the MS renormalization scale of 2 GeV
obtain on average h−q̄qi1=3 ≈ 0.272 GeV [18]. Close
results were obtained for 2-flavor FESR, which provide
h−q̄qi1=3 ≈ 0.267 GeV [19].
The gluon condensate is an scale invariant quantity.

In this case the situation is not so clear, where different
estimations provide important variations: hG2i1=4 ¼
0.3–0.5 GeV [20].

FIG. 2. The FESR contour. The integration is performed over
the variables s and s0.
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Actual estimates of the axial coupling fluctuate around
gA ≈ 1.275 [1]. Figure 3 shows the relation between the
gluon condensate and the quark condensate by fixing the
axial coupling. We can see that the range of values for
the chiral condensate are those frequently used in the
literature, and the values obtained for the gluon condensate
are also in the range of accepted values.
The inclusion of more terms in the operator product

expansion, as well as radiative corrections, is expected to
limit solutions with more precise results.

III. AXIAL COUPLING CONSTANT AT FINITE
EXTERNAL MAGNETIC FIELD

The FESR result h−q̄qi1=3 ¼ 0.267 GeV will be con-
sidered, and the gluon condensate will be set to hG2i1=4 ¼
0.3775 GeV in order to obtain gA ¼ 1.275. This choice of
condensates generates, from Eq. (23), λN ¼ 0.022 GeV3

and s0 ¼ 1.429 GeV2.
As can be seen in [10,12,13], the magnetic field can be

treated by considering the expanded fermion propagator in
powers of eB, even for light quarks. The series is truncated
by the contour integral depending on the analytical kernel
used in the FESR. The expansion of the magnetic field
allows reaching values of eB higher than 10m2

π , which is
enough to obtain the phenomenology of the strong mag-
netic field produced in relativistic HIC experiments and in
the interior of magnetars. In this sense, the lowest order
contribution is the result obtained in vacuum in Eq. (19),
but replacing the different parameters by those dependent
on the magnetic field.
Aforementioned approximation is evident in the QCD

sector, and the result at the lowest order is just the right-
hand side of Eq. (19), but what about the hadronic sector?
Let us describe the currents in the hadronic sector in
another way. The nucleon current is the nucleon field times
the nucleon-current coupling. To reproduce the matrix
elements described in Eqs. (2)–(4), the axial-vector current
can be expressed through the nucleon fields in configura-
tion space in the following way

ηNðxÞ ¼ λNψNðxÞ; ð26Þ

AμðyÞ ¼
Z

d4ξψ̄pðξÞTμðξ − yÞψnðξÞ; ð27Þ

where TμðqÞ in Eq. (4) corresponds to the Fourier transform
in the momentum space of the function TμðxÞ in the
configuration space described in the previous equation.
The correlator in the configuration space is therefore

Πμðx; y; zÞ ¼ −
Z

d4ξeiΦðx;ξÞSBpðx − ξÞTμðξ − yÞSBn ðξ − zÞ;

ð28Þ

where the magnetic field dependent proton propagator is
described by the local part multiplied by the Schwinger
phase. The neutron propagator in the presence of the
magnetic field contains the anomalous magnetic moment
contribution. The definition of the correlator in momentum
space in Eq. (10) is not arbitrary. In fact, choosing the
frame x ¼ 0, the Schwinger phase disappears if the Fock-
Schwinger gauge AμðxÞ ¼ − 1

2
Fμνxν is considered for the

external electromagnetic vector field. The correlator in
momentum space is therefore

Πμðp0; pÞ ¼ −SBpðp0ÞTμðqÞSBn ðpÞ: ð29Þ

Considering the expanded propagators in magnetic field
power series [13], it is not difficult to see that, in the sum
rule considered in Eq. (16), only the lowest order term in
the expansion will survive if we keep the same Tμ structure
described in Eq. (5). However, when a magnetized medium
is present, the overall structure of Tμ must incorporate the
external electromagnetic tensor Fμ which contributes to
other structures, dividing the axial contribution of the form
factor as

GAγμ → Gk
Aγ

k
μ þ G⊥

A γ
⊥
μ þ G̃AFμνγ

ν; ð30Þ

as well as the other form factor terms in Eq. (5) will be
divided into several substructures. The difference between

Gk
A and G⊥

A will be of order ðeBÞ2=s0. Since we are
considering the lowest term of the expansion, there will

be no difference between Gk
A and G⊥

A .
With all the above considerations, the axial coupling

constant at finite magnetic field is given by Eq. (19). The
hadronic thresholds and current-nucleus couplings are
obtained from [13], changing the values of the quark
and gluon condensates in vacuum to the values defined
at the beginning of this section. The resulting hadronic
thresholds and nucleon-current couplings are plotted in
Fig. 4. The first thing to note is that sp > sn, and therefore
the axial coupling constant of the relation in Eq. (19) can be
written as

FIG. 3. Range of values for the gluon condensate and the quark
condensate for a fixed value of the axial coupling.
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gA ¼ 1

48π4
s3n
λpλn

: ð31Þ

Both the hadronic threshold of the nucleons and the
nucleon-current couplings increase with the magnetic field
as can be seen in Fig. 4. The evolution of the axial coupling
constant as a function of external magnetic field is shown in

Fig. 5. The axial coupling constant decreases, as the
magnetic field increases. For lowest values of the magnetic
field, this decrease is linear.
The decrease in axial nucleon coupling is due to flavor

asymmetry. Since there is competition between the smaller
hadronic threshold of nucleons and the nucleon-current
couplings, then the proton coupling dominates.

IV. CONCLUSIONS AND DISCUSSION

The effects of an external uniform magnetic field on the
axial coupling constant were obtained by finite energy sum
rules. By isolating the axial structure in the proton-axial-
neutron current correlator, and performing a double contour
integral, it is possible to match the hadronic part with the
perturbative QCD part. The relevant parameters in this case,
the nucleon-current couplings and the hadronic thresholds
are obtained through the nucleon-nucleon correlator at
finite external magnetic field calculated in [13].
The axial coupling is then proportional to the neutron

threshold cubed and inversely proportional to the proton-
current and neutron-current couplings. Both thresholds and
couplings are increasing quantities as a function of mag-
netic field, but the proton-current coupling dominates, and
the axial coupling constant decreases with B. The change
with the magnetic field about 10% for eB ¼ 0.1 GeV2. In
particular, the factor 1þ 3g2A, which is proportional to the
neutron decay width as well as the neutrino emissivity in
the Urca process, decreases by 16%. This is an effect to take
into consideration. Unfortunately, since this is the first
attempt to find the magnetic evolution of the axial coupling
constant, there are no other solutions to compare with. The
axial coupling of pions with constituent quarks has been
calculated for eB ∼ 0.01 GeV2, presenting a linear behav-
ior [21]. This could be a related form factor but not the
same, so it is necessary to verify nucleon axial coupling
constant under an external magnetic field using other
models and techniques.
It is interesting to see what happens in high temperature

scenarios, such as the relativistic HIC experiments and
high density scenarios such as in magnetars. Apparently
temperature and baryon density effects tend to reduce
axial coupling, but it is not clear what may happen with
temperature or density effects in combination with the
external magnetic field. The case of baryon density and
magnetic field effects will be addressed soon.
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FIG. 5. Axial coupling constant as a function of an external
magnetic field.

FIG. 4. Hadronic threshold (upper panel) and nucleon current
coupling (lower panel) for proton (solid line) and neutron
(dashed line).
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