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The modified vacuum fluctuations of quantum fields in the presence of a perfectly reflecting mirror lead
to divergent velocity dispersions of a charged test particle. Here, it is shown that when the mirror is modeled
by a material medium described by a Drude-like susceptibility, these dispersions become regular, thus
elucidating that the origin of the divergences that appear in the previous treatments is related to the
assumption of idealized boundary conditions. As a consequence of implementing this more realistic
description, the dispersion curves acquire an oscillatory behavior caused by the effective mass of the field
modes inside the dispersive medium. Additionally, it is found that the effects over the particle are delayed
when compared to the perfect mirror limit, a phenomenon attributed to the imperfect reflection of field
modes on the mirror. Therefore, although idealized boundary conditions are simplifying hypotheses, their
usage might hide or significantly modify relevant physical phenomena.
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I. INTRODUCTION

Within the realm of a relativistic quantum field theory, it
is customary to describe the interaction between field and
matter effectively by incorporating the matter degrees of
freedom into the field dynamics. Such a procedure is useful,
for instance, to avoid the complications imposed by the
microscopic aspects of the system. Examples include the
quantization of the electromagnetic field in the presence of
beam splitters in the regime of linear material response [1],
and the celebrated Casimir effect [2]. In the latter, the
modified vacuum fluctuations of the electromagnetic field
in the presence of two parallel perfectly conducting planes
lead to an attractive force between the planes, and the
material medium is modeled by certain boundary conditions
that capture the assumed perfectness of the conductors.
One unwanted feature observed in the Casimir result is a

reminiscent divergence in the force density with the distance
between the planes after renormalization. Such divergence
appears as the consequence of implementing idealized
boundary conditions, as for instance, assuming that all
the field modes vanish (Dirichlet boundary condition) at a
given surface, which is clearly a nonphysical assumption. In
general, the energy density of the electromagnetic field

diverges on any smooth perfect conductor regardless of its
geometry [3].
The above-mentioned divergences are also manifest in the

quantum Brownian motion, an induced motion of charged
test particles caused by the presence of the boundary [4,5].
Indeed, when a charged particle is placed at a distance x
from a perfect plane mirror, dispersions of its position and
velocity will be ill defined on the wall, as expected, but also
at an interaction time τ ¼ 2x, which corresponds to a round-
trip of a light signal between the particle and the mirror.
Notice that as soon as the particle is placed at its initial
position x, it will immediately be under action of the
modified (by the presence of the mirror) vacuum fluctuations
of the background field. Its presence will affect the charge
distribution of the mirror only after a time τ ¼ x, even
though the consequences of this effect are usually neglected
by assuming a test particle with a negligible charge. Finally,
only after a time τ ¼ 2x the particle measures the presence
of the mirror by means of its own reflex. Recap that in the
canonical quantization procedure the scalar field is treated as
an operator that is expanded in a complete set of normal
modes, each mode being a harmonic oscillator of a certain
frequency. These infinite frequency modes are all reflected
by the mirror, whose perfect reflectivity is again the source
of the divergence at τ ¼ 2x.
In order to regularize these divergences, but still keeping

the mathematical convenience of imposing the Dirichlet
boundary condition, the introduction of sample functions is
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usually adopted in the literature. Sample functions [6,7] can
be used to blur the position of the mirror [5], or to
implement a smooth mechanism of turning on and off
the interaction [8], among other possibilities. The use of
smooth sample functions is certainly a step forward bring-
ing more reality to the behavior of the system, but it is still a
mathematical artifact that misses information about the very
behavior of the system under examination.
A more realistic account should avoid the over-

idealization brought by the assumption of a perfect mirror.
A real reflecting boundary is an extensive material whose
reflectivity depends on the frequency of the incident wave.
In this sense, the previous boundary condition must be
exchanged in order to incorporate the information about
the optical properties of the medium, which is usually
described by means of its frequency-domain susceptibility
tensor χωðxÞ. In other words, in the presence of a real
reflecting material, the quantization scheme takes into
account that the field modes can be partially reflected and
partially transmitted through it, depending on the magni-
tude of their frequencies.
In this paper, a toy model based on a real massless scalar

field in 1þ 1 dimensional spacetime half filled with a
material medium characterized by a frequency-dependent
“susceptibility” function is investigated. A test particle of
mass m and scalar charge g is left to interact with the
modified vacuum fluctuations of the background field
whose quantization is implemented by assuming that the
“optical” properties of the medium is described by a Drude-
like susceptibility. Dispersions of the particle velocity are
thus calculated and compared with solutions that are
obtained by using idealized models. The results are natu-
rally free of the divergences discussed above. Furthermore,
new features on the behavior of the dispersions are unveiled,
highlighting the displacement of its minimum value from
τ ¼ 2x and the presence of oscillations that are linked to the
effective mass of the field quanta due to the presence of the
material medium.
In the next section some basic features about the

quantum Brownian motion of a charged test particle
interacting with a background field are presented. The
field equations are discussed in Sec. III, where a model for
the susceptibility of the material half-space is discussed.
The main results on the quantization of the system are thus
presented in Sec. IV where the expression for the renor-
malized propagator is derived. The results are thus used in
Sec. V, where the dispersion of the particle velocity is
calculated and numerically examined. A comparison with
previous results is provided. In particular, it is shown that
well-known divergences associated with the idealized
boundary condition do not appear in this formulation.
Final remarks and conclusions are presented in Sec. VI.
Full details on the quantization of the system are developed
in Appendix A. Finally, in Appendix B the evolution of a

Gaussian wave packet is examined as it is reflected by the
boundary of the material medium at x ¼ 0.
Units are such that ℏ ¼ c ¼ 1.

II. QUANTUM BROWNIAN MOTION

Let ϕ ¼ ϕðt; xÞ denote a relativistic massless real scalar
field in 1þ 1 dimensions and suppose that a nonrelativistic
test particle can be used to probe the background field ϕ.
Specifically, ifm and g denote the particle’s mass and scalar
charge, respectively, in the nonrelativistic regime its inter-
action with ϕ is modeled by the Newtonian law [5]:

m
dv
dt

¼ −g
∂ϕ

∂x
; ð1Þ

where x ¼ xðtÞ denotes the particle’s position and
v ¼ dx=dt. If the particle is at rest at t ¼ 0, Eq. (1) can
be integrated to obtain the particle velocity in general as

vðτÞ ¼ −
g
m

Z
τ

0

dt
∂ϕ

∂x
ðt; xðtÞÞ; ð2Þ

which is an integro-differential equation for the unknown
xðtÞ. Following the discussion in [5], in the nonrelativistic
regime it can be assumed that the particle position xðtÞ is
approximately constant during a certain interval of time τ,
for which case, in a first approximation, the time depend-
ence of ∂ϕ=∂x through xðtÞ in Eq. (2) can be neglected [5,8].
Furthermore, if the field ϕ is a quantum field, the particle

velocity v given by Eq. (2) becomes an operator-valued
distribution that can be used to study dispersions induced
by quantum fluctuations of ϕ. It is here assumed that ϕ is
prepared in a vacuum state, for which case hϕi ¼ 0, but
hϕ2i ≠ 0. Accordingly, it follows that hvi ¼ 0, and thus
measurements of the particle velocity are distributed around
zero with variance hðΔvÞ2i ¼ hðv − hviÞ2i ¼ hv2i. This is
the essence of the quantum Brownian motion.

III. FIELD EQUATION IN THE PRESENCE
OF AN IMPERFECT DIELECTRIC

In order to write down a general equation of motion for
ϕ, let us start from the usual Klein-Gordon equation
ð∂2t − ∂

2
xÞϕ ¼ 0, and perform the Fourier decomposition

ϕðt; xÞ ¼ 1ffiffiffiffiffiffi
2π

p
Z

∞

−∞
dωe−iωtϕωðxÞ; ð3Þ

such that ϕ�
ω ¼ ϕ−ω and ð−ω2 − ∂

2
xÞϕω ¼ 0. A material

medium is modeled by adding to the latter equation a
frequency-dependent “permittivity” ϵωðxÞ,

½−ω2ϵωðxÞ − ∂
2
x�ϕω ¼ 0; ð4Þ

under the physical requirement that χωðxÞ ≔ ϵωðxÞ − 1 → 0
as jωj → ∞, where χωðxÞ plays the role of a field
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susceptibility of the material medium, in equivalence with
the notation used in the case of the electromagnetic
interaction. This allows modeling a sort of dielectric
medium for the scalar field that is transparent to high-
frequency field modes.
The quantity χωðxÞ cannot be an arbitrary function of ω,

as the underlying theory must respect causality. Indeed, by
taking the inverse Fourier transform of Eq. (4) we obtain
that [9]

ð∂2t − ∂
2
xÞϕðt; xÞ þ ∂t

Z
∞

−∞
dt0χðt0; xÞ∂tϕðt − t0; xÞ ¼ 0; ð5Þ

where the linear response function is

χðt; xÞ ¼ 1

2π

Z
∞

−∞
dω χωðxÞe−iωt: ð6Þ

Thus, it follows from Eq. (5) that causality is ensured as
long as χðt; xÞ ¼ 0 for t < 0, in which case

χωðxÞ ¼
Z

∞

0

dt χðt; xÞeiωt; ð7Þ

viewed as a function of ω is analytical in the upper half
complex plane. In particular, it satisfies the Kramers-
Kronig relations [10].
In what follows, only theories such that χωðxÞ is a Drude-

type susceptibility and factorizes as χωðxÞ ¼ Θð−xÞfðωÞ
are considered, where

fðωÞ ¼ iσ0
ω

1

1 − ibω
; ð8Þ

and ΘðxÞ is the unit step function: ΘðxÞ ¼ 1 if x ≥ 0 and 0
otherwise. In particular, the χω analytic in the upper half
plane implies that b > 0, σ0 > 0, which in the present case
is sufficient to guarantee we have an absorbing (stable)
dielectric, i.e., ImðχωÞ > 0 for ω > 0 [11]. We note that
σ0 → ∞ enforces that ϕ ¼ 0 is the only normalizable
solution of Eq. (5) for x < 0. Thus this model allows
one to study the scalar field dynamics in the presence of
half-space filled by a dispersive dielectric that contains the
dispersionless perfect mirror at x ¼ 0 as a limiting case.

IV. FIELD QUANTIZATION

In this section a general expression for the Wightman
function hϕðt; xÞϕðt0; x0Þi for the dielectric model of Eq. (8)
is presented. Note that canonical quantization is not possible
for this theory, as causality, through the Kramers-Kronig
relations, implies that χω is always a complex function, and
so the field equation (4) is also complex. In physical terms,
this system is necessarily dissipative. In what follows, the
method of Langevin operators [10,12] is adopted in order to
obtain a quantum field expansion for ϕ valid for the empty
space region (x > 0).

In the absence of the medium, it is straightforward to
show that for x > 0, ϕðt; xÞ can be expanded as

ϕðt; xÞ ¼ 1ffiffiffiffiffiffi
2π

p
Z

∞

0

dω
e−iωtffiffiffiffiffiffi
2ω

p ðaL;ωe−iωx þ aR;ωeiωxÞ þH:c:;

ð9Þ

where L and R stand for leftwards and rightwards,
respectively, and indicate if the field mode is propagating
towards or away from x ¼ 0. Moreover, the canonical
commutation relation reads ½aL;ω; a†L;ω0 � ¼ ½aR;ω; a†R;ω0 � ¼
δðω − ω0Þ, and all other commutators vanish. In particular,
there is no correlation between leftwards and rightwards
propagating modes: ½aL;ω; a†R;ω0 � ¼ 0.
When the dispersive medium is present, the quantum

field expansion can be written in the same form of Eq. (9)
(see Appendix A for details), with the difference that in this
scenario leftwards and rightwards propagating waves are
correlated, i.e.,

½aR;ω; a†L;ω0 � ¼ Rωδðω − ω0Þ; ð10Þ

where Rω is the reflection coefficient obtained by solving
the scattering problem for waves of frequency ω reaching
the material medium from the empty space region,

Rω ¼ 1 − nω
1þ nω

; ð11Þ

with

nω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ fðωÞ

p
; ð12Þ

being the “index of refraction” of the medium.
Furthermore, R�

ω ¼ R−ω for all real ω, and Rω, viewed
as a function of ω, is analytic and bounded in the upper half
plane. From this property it follows that for x; x0 > 0

½ϕðt;xÞ;∂tϕðt;x0Þ� ¼ iδðx− x0Þþ i
2π

Z
∞

−∞
dωRωeiωΔ̂x; ð13Þ

with Δ̂x ≔ xþ x0, and the integral on the right-hand side of
the above equation is zero, as seen by closing the
integration contour from the above.
Finally, with the creation and annihilation operators

identified, the quantum vacuum state j0i is defined by
aL;ωj0i¼aR;ωj0i¼0 for all ω > 0, from which the
Wightman function is shown to acquire the form
hϕðt;xÞϕðt0; x0Þi ¼ hϕðt;xÞϕðt0; x0Þi0þhϕðt;xÞϕðt0; x0ÞiRen,
where hϕðt; xÞϕðt0; x0Þi0 is the empty space two-point
function [8] and

hϕðt; xÞϕðt0; x0ÞiRen ¼
1

4π

Z
∞

−∞
dk

e−iωΔt

ω
RkeikΔ̂x; ð14Þ
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where now ω ¼ jkj. The subindex “Ren” denotes the renor-
malized two-point function, i.e., with the empty space
contribution subtracted. Equation (14) is valid for all
absorbing media for which χωðxÞ ¼ Θð−xÞfðωÞ. Within
the model of Eq. (8) it follows that as σ0 → ∞, Rk → −1,
and the renormalized Wightman function for the perfect
(Dirichlet) mirror defined by ϕðt; 0Þ ¼ 0 is found [5,8],
as expected.
Note that in the perfect mirror limit, the reflection

coefficient is constant for all frequencies, showing that
all modes are affected by the mirror in the same manner. In
contrast, for the material medium under consideration, the
reflection coefficient behaves as

Rω →
σ0

4bω2
; ð15Þ

as jωj → ∞, providing an extra decay in the correlation (14)
for high energy modes. This theory, therefore, is naturally
well behaved in the UV sector. Note, however, that the
unavoidable infrared divergence of two-dimensional mass-
less field theories [13] is present in the renormalized
Wightman function, as it should.

V. VELOCITY DISPERSIONS

With the aid of the renormalized two-point function, it is
straightforward to show that the velocity dispersion hv2i
assumes the form

hv2i ¼ −
g2

2πm2

Z
∞

−∞
dk

1 − cosωτ
ω

Rke2ikx: ð16Þ

In particular, in the perfect mirror limit, Eq. (16) can be
exactly integrated to obtain [5]

hv2iDirichlet ¼
g2

2πm2
ln

����1 − τ2

4x2

����; ð17Þ

from which the divergence at τ ¼ 2x is manifest. Now,
because the latter occurs sharply at τ ¼ 2x, it depends on
how high frequency modes are scattered by the material,
and it is not expected to occur for realistic scenarios where
the effects of the high energy field modes are removed by
renormalizing the correlations, as shown in [8]. For the
dispersive medium under consideration, Eq. (15) shows
that the material transparency for high frequency modes
ensures that the velocity dispersions modeled by Eq. (16)
are divergence free, as depicted in Fig. 1.
Figure 1 also reveals that for the perfect mirror limit the

velocity dispersion presents a valley around τ ¼ 2x where
the (logarithmic) divergence occurs. In contrast, the global
minima of all the curves obtained for the dispersive
materials occur after τ ¼ 2x. This behavior is attributed
to the longer time taken for wave packets sent towards the
dielectric to be scattered back to the source in comparison

to the perfect mirror setup. This phenomenon is illustrated
in Appendix B for a Gaussian pulse.
Also, Fig. 1 unveils the existence of an oscillatory

behavior after τ ¼ 2x which is absent in the Dirichlet mirror.
A similar phenomenon was reported in [8] for the velocity
dispersions when the background field was massive. Here,
although the background field is massless, the field
dispersion relation inside the medium reads ω2n2ω ¼ k2,
and becomes ω2 ¼ k2 þ σ0=b for ω → ∞, which is the
typical dispersion relation of a massive field with mass
ðσ0=bÞ1=2. Accordingly, high frequency modes inside the
medium behave effectively as massive modes, from which
the observed oscillations are expected.
Finally, it is instructive to compare the divergence-free

dispersion of Eq. (16) with the regularized dispersions
found with the use of switching functions. The latter are
calculated assuming a Dirichlet mirror in a scenario where
the test particle starts to experience the background field
state in a continuous manner, such that Eq. (2) can be
amended as

vðτÞ ¼ −
g
m

Z
∞

−∞
dtFτ;τsðtÞ

∂ϕ

∂x
ðt; xÞ; ð18Þ

where Fτ;τs is normalized as
R∞
−∞ dtFτ;τsðtÞ ¼ τ and τs →

0þ implies Fτ;τsðtÞ → ΘðtÞΘðτ − tÞ. The parameter τs is
then identified as the switching time, and a convenient
choice for a switching is πFτ;τsðtÞ ¼ arctanðt=τsÞþ
arctan½ðτ − tÞ=τs�, such that the velocity dispersions can
be exactly integrated in the limit of the Dirichlet mirror:

FIG. 1. Velocity dispersions for the susceptibility presented in
Eq. (8). We set b=x ¼ 1. The continuous gray line depicts the
dispersions for the case of a Dirichlet mirror [Eq. (17)]. Dashed,
dot-dashed, and dotted curves show that the velocity dispersions
are divergence free when the dispersive nature of material media
is taken into account. The valleys of the latter curves do not occur
at τ ¼ 2x as happens in the Dirichlet limit, a phenomenon linked
to the increased penetration depth into the material of higher
frequency modes. Also, we note the presence of oscillations after
τ ¼ 2x, suggestive of massive field behavior [8].
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hv2iDirichlet;τs ¼
g2

4πm2
ln

�ðτ2−4x2Þ2þ8ðτ2þ4x2Þτ2sþ16τ4s
16ðx2þτ2sÞ2

�
:

ð19Þ

Thus, when τs → 0 the sudden limit dispersion of Eq. (17)
is found, and Eq. (19) is a regular function of τ for all
τs > 0. Figure 2 shows that the effect of the switching
function is to tame the divergent dispersions only around
τ ¼ 2x, allowing one to obtain estimates for the effect near
τ ¼ 2x from exact expressions. However, as seen from the
curves in Fig. 1 and the dot-dashed curve in Fig. 2, the
regularization obtained from the switching is not capable of
capturing most of the dispersive material implications, as
these cannot be extracted from the perfect mirror limit in
any meaningful way.

VI. FINAL REMARKS

The renormalized correlation function defined by
Eq. (14) generalizes previous results found in the literature.
For instance, the Wightman function obtained when a
perfect reflecting boundary condition is adopted is here
found as the limiting case of σ0 → ∞ (Rω → −1), which is
equivalent of assuming a material medium with infinite
conductivity (a perfect conductor) in the electromagnetic
case. It is worth noting that the dominant contribution of Rω

when ω → 0 is also −1, which coincides with the above
discussed limit of a perfect conductor, showing that the
Drude-like model under consideration enforces perfect
reflection of low frequency modes and no reflection at
all of higher frequency modes. Accordingly, renormaliza-
tion with respect to Minkowski vacuum leads to well-
behaved theory in the UV sector. Yet, the infrared

divergence survives, which is a feature of massless quantum
field theory in two-dimensional spacetime [13,14]. This
divergence has no consequences for the velocity dispersion,
as it is removed under the action of the derivatives of the
field correlations.
Finally, although the scalar field model adopted here

does not correspond to any known fundamental field, it is
important to stress that analogous results and conclusions
are found, for instance, for the electric monopole if only the
quantum nature of electromagnetic waves propagating
perpendicularly to a dielectric wall is considered, as done
in [10,12].
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APPENDIX A: QUANTUM FIELD EXPANSION

The quantization needed in order to deduce Eq. (14) can
be performed in a similar manner as was done, for instance,
in Refs. [10,12] for the electromagnetic field using
Langevin operators. Specifically, let the Hermitian operator
J be a Langevin source term such that the quantum
field satisfies

ð∂2t − ∂
2
xÞϕðt; xÞ þ ∂t

Z
∞

−∞
dt0χðt0; xÞ∂tϕðt− t0; xÞ ¼ Jðt; xÞ:

ðA1Þ

For stationary configurations, J also admits the Fourier
decomposition

Jðt; xÞ ¼ 1ffiffiffiffiffiffi
2π

p
Z

∞

−∞
dωe−iωtJωðxÞ; ðA2Þ

with J†ω ¼ J−ω, and it is subjected to the commutation
relations

½JωðxÞ; J†ω0 ðx0Þ� ¼ 2ω2ImðϵωÞδðω − ω0Þδðx − x0Þ; ðA3Þ

and ½JωðxÞ; Jω0 ðx0Þ� ¼ 0. Accordingly, the frequency-
domain field equation reads

½−ω2ϵωðxÞ − ∂
2
x�ϕωðxÞ ¼ JωðxÞ: ðA4Þ

The most general solution of Eq. (A4) can be written as a
sum of a particular solution ϕp

ω plus solutions to the
(homogeneous) sourceless equation ϕh

ω, and the method
of Green functions is useful to find particular solutions for
the model under study. Indeed, if Gωðx; x0Þ satisfies

FIG. 2. Velocity dispersions for a Dirichlet mirror regularized
by the switching function. The continuous gray line is the sudden
regime τs ¼ 0. Dashed and dotted curves are obtained for finite
τs, from which we see that the effect of the switching occurs only
about the divergence at τ ¼ 2x. The dot-dashed curve corre-
sponds to the dot-dashed curve of Fig. 1, and it is here for the sake
of comparison.
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½−ω2ϵωðxÞ − ∂
2
x�Gωðx; x0Þ ¼ δðx − x0Þ; ðA5Þ

then

ϕp
ωðxÞ ¼

Z
∞

−∞
dx0Gωðx; x0ÞJωðx0Þ ðA6Þ

solves Eq. (A1). We note that Gωðx; x0Þ is not uniquely
determined by Eq. (A5) as boundary conditions must be
specified in order to select a physical propagator. We work
with the causal propagator for which ω has a small positive
imaginary part included [14]. Let us consider the Fourier
transform G̃ωðx; kÞ ¼

R∞
−∞ dx0 expðikx0ÞGωðx; x0Þ, such that

½−ω2ϵωðxÞ − ∂
2
x�G̃ωðx; kÞ ¼ eikx: ðA7Þ

For the case where ϵωðxÞ ¼ 1þ Θð−xÞfðωÞ, the general
solution of the above equation for x ≠ 0 reads

G̃ωðx; kÞ ¼
eikx

k2 − ω2ϵω
þ ΘðxÞAeiωx þ Θð−xÞBe−iωnωx;

ðA8Þ

where nω is the index of refraction defined in Eq. (12), and
the coefficients A, B are determined by imposing continuity
of G̃ωðx; kÞ and its derivative with respect to x at x ¼ 0. The
latter conditions are enforced by Eq. (A7), and we find that

A ¼ ωðnω − 1Þ
ðk2 − ω2Þðk − ωnωÞ

;

B ¼ ωðnω − 1Þ
ðk2 − ω2n2ωÞðkþ ωÞ : ðA9Þ

Thus, by taking the inverse transform Gωðx; x0Þ ¼
ð1=2πÞ R dk expð−ikx0ÞG̃ωðx; kÞ, we find that, for x > 0

and x0 < 0,

Gωðx; x0Þ ¼ i
eiωðx−nωx0Þ

ωð1þ nωÞ
: ðA10Þ

The above propagator describes waves at x > 0 that were
originated at x0 < 0 (inside the medium). It vanishes when
the limit of nω → ∞ is considered, as expected, and it
recovers the free space causal propagator when nω → 1.
Therefore,

ϕp
ωðxÞ ¼ i

ω

eiωx

1þ nω

Z
0

−∞
dx0Jωðx0Þe−iωnωx0 ðA11Þ

is the required particular solution for x > 0.
Finally, the last ingredient for the quantization is to add

relevant homogeneous solutions of Eq. (A4) to the field
expansion. Because ϕ−ω ¼ ϕ�

ω, we need only to focus on
ω > 0. Let us note first that for x < 0, the solutions of

ð−ω2n2ω − ∂
2
xÞϕω ¼ 0 read expð�iωnωxÞ, and because we

are assuming ImðϵωÞ > 0 for ω > 0, only expð−iωnωxÞ is
normalizable. As for x > 0, the solutions are expð�iωxÞ,
and both are normalizable, with expð−iωxÞ corresponding
to a plane wave propagating towards the dielectric. Thus,
we find that

ffiffiffiffiffiffi
2ω

p
ϕh
ωðxÞ ¼ ðe−iωx þ RωeiωxÞΘðxÞ þ Tωe−iωnωxΘð−xÞ

ðA12Þ

is the homogeneous solution we need. The matching
constants Rω, Tω read

Rω ¼ 1 − nω
1þ nω

; ðA13Þ

Tω ¼ 2nω
1þ nω

; ðA14Þ

and the normalization
ffiffiffiffiffiffi
2ω

p
is obtained by the empty-space

field quantization far away from the dielectric x → ∞.
Therefore, the quantum field expansion for x > 0 reads

ϕðt; xÞ ¼ 1ffiffiffiffiffiffi
2π

p
Z

∞

0

dωe−iωt½aL;ωϕh
ωðxÞ þ ϕp

ωðxÞ� þ H:c:;

ðA15Þ

and the operator aL;ω commutes with Jω0 , J†ω0 . By sepa-
rating the distinct components into leftwards and right-
wards propagating waves, we obtain Eq. (9), where

aR;ω ¼ RωaL;ω þ i
ffiffiffiffiffiffiffiffiffi
2=ω

p
1þ nω

Z
0

−∞
dx0Jωðx0Þe−iωnωx0 : ðA16Þ

Thus, it follows from Eq. (A3) that ½aR;ω; a†R;ω0 � ¼
δðω − ω0Þ, and this concludes the quantization.

APPENDIX B: SCATTERING OF WAVE SIGNALS
SENT TOWARDS THE MATERIAL MEDIUM

This Appendix presents an integral formula for the
backscattering of wave packets sent from the vacuum sector
towards the material medium at x ¼ 0. In general, the
formulation of initial value problems for the theory under
consideration is naturally convoluted by memory effects,
and in order to avoid unnecessary complications it is here
assumed that signals are always originated outside the
material medium, where the theory is local. Specifically,
suppose ϕ0 ¼ ϕ0ðt; xÞ is any given wave packet such that
ϕ0 ¼ 0 for x ≤ 0 and t ≤ 0, i.e., the wave packet does not
meet the material before t ¼ 0. The causal development of
ϕ0 to later times is then ruled by Eq. (5), with ϕ0 furnishing
the Cauchy data at t ¼ 0.
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A convenient way of determining the evolution of ϕ0 to
later times is to calculate the auxiliary field ϕ, solution of

ð∂2t − ∂
2
xÞϕðt; xÞ þ ∂t

Z
∞

−∞
dt0χðt0; xÞ∂tϕðt − t0; xÞ

¼ ϕ0ð0; xÞ∂tδðtÞ þ ½∂tϕ0ðt; xÞ�δðtÞ; ðB1Þ

under the condition that ϕ ¼ 0 for t < 0. Then it is
straightforward to see that ϕ coincides with the causal
development of ϕ0 for t > 0, i.e., ϕð0; xÞ ¼ ϕ0ð0; xÞ
and ∂tϕð0; xÞ ¼ ∂tϕ0ð0; xÞ.
Equation (B1) can be solved by means of the causal

propagator Gðt; x; t0; x0Þ solution of

ð∂2t − ∂
2
xÞGðt; x; t0; x0Þ þ ∂t

Z
∞

−∞
dηχðη; xÞ∂tGðt− η; x; t0; x0Þ

¼ δðt− t0Þδðx− x0Þ; ðB2Þ

such that

ϕðt; xÞ ¼
Z

dt0dx0Gðt; x; t0; x0Þfϕ0ð0; x0Þ∂t0δðt0Þ

þ ½∂ηϕ0ðη; x0Þjη¼0�δðt0Þg: ðB3Þ

Gðt; x; t0; x0Þ can be found with the representation

Gðt; x; t0; x0Þ ¼ 1

2π

Z
∞

−∞
dωe−iωΔtGωðx; x0Þ; ðB4Þ

where Gωðx; x0Þ is the solution of Eq. (A5). Thus, from the
results presented in Appendix A, it follows that

Gωðx; x0Þ ¼
i
2ω

ðeiωjΔxj þ RωeiωΔ̂xÞ; ðB5Þ

for x; x0 > 0, and

Gðt; x; t0; x0Þ ¼G0ðt; x; t0; x0Þ−
1

2π

Z
∞

0

dk
k
Im½Rke−ikðΔt−Δ̂xÞ�;

ðB6Þ

where G0ðt; x; t0; x0Þ is the empty space causal propagator.
Finally,

ϕðt;xÞ¼ϕ0ðt;xÞ−
1

2π

Z
∞

0

dk
k
Im

�
Rke−ikðt−xÞ

×
Z

∞

−∞
dx0eikx0 ½∂t0ϕ0ðt0;x0Þjt0¼0−ikϕ0ð0;x0Þ�

�
ðB7Þ

is the causal development of ϕ0 for t, x > 0. Figure 3 depicts
ϕ for the Gaussian pulse ϕðt; xÞ ¼ exp½−ðtþ x − x0Þ2=
ð2l2Þ�=

ffiffiffiffiffiffiffiffiffiffi
2πl2

p
centered at x0=l ¼ 10 at t=l ¼ 0.
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