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It is challenging to build a model that can correctly and unifiedly account for the deconfinement phase
transition and thermodynamics of the hot SUðNÞ pure Yang-Mills (PYM) system, for any N. In this article,
we slightly generalize the massive PYMmodel to the situation with a quasigluon massMgðTÞ varying with
temperature, inspired by the quasigluon model. In such a framework, we can acquire an effective potential
for the temporal gauge field background by perturbative calculation, rather than adding by hand. The
resulting potential works well to describe the behavior of the hot PYM system for all N, via the single
parameter MgðTÞ. Moreover, under the assumption of unified eigenvalue distribution, the MgðTÞ fitted by
machine learning is found to follow N-universality.
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I. INTRODUCTION

To build a model that can describe the deconfinement
phase transition of the SUðNÞ PYM system at finite
temperature, which is hampered by the nonperturbative
effect, one should first figure out what knowledge we have
about such a system. In the very high-temperature region, it
should recover the Stefan-Boltzmann (SB) limit, following
the asymptotic freedom of the non-Abelian gauge theory.
The more crucial information comes from the lattice
simulations, which provide a reliable way to deal with
strong coupling, thus furnishing the order of deconfinement
phase transition and as well data of thermodynamic
observables, such as pressure and the latent heat L.1 The
deconfinement phase transition is a crossover for N ¼ 2
and FOPT for N ≥ 3. Moreover, combining the data for
pressure and the latent heat allows us to extract the
following large N scaling law [1]

pM ¼ M2 − 1

N2 − 1
pN; LM ¼ M2 − 1

N2 − 1
LN; ð1:1Þ

where N and M represent different color number. It is
challenging to build a model with strong theoretic ground
that can correctly account for all of the above aspects of the
hot PYM system, for any N beyond N ¼ 3. However, it is
very meaningful, not only in the theoretical sense but also in
the application to the new physics domain,where an (almost)
pure SUðNÞ gauge sector receives wide interest [7–12].
Recently, the prospects of gravitational wave signals during
the deconfinement phase transition are studied based on
different models [1–4,13,14].
The popular line is following the ZN center symmetry and

the traced Polyakov loop (PL) as order parameter, to
construct effective PL models, usually, the polynomial
models [1,4,15,16] also see review [17]. Another line is
underlined by theHaarmeasure,which gains great success in
the SUð3Þ case, even incorporating dynamic quarks [18–21].
For SUð3Þ only, both types of model can describe the
deconfinement phase transition and as well the thermody-
namics, at least in the semi-QGP region. However, when we
try to extend them to general SUðNÞ cases, we encounter
some difficulties. The Haar-type model is shown to be
inconsistent with the above large N scaling law [1] and
moreover, it cannot be handled for very large N. The
polynomial model proposed in Refs. [1,4] utilizes the
competition among terms with designed powers and signs
to realize the deconfinement phase transition. Since it
basically respects just a Z2 symmetry and thus works for
anyN, even includingN ¼ 2. Thematrixmodels, inspiredby
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1The latent heat is not only important to describe the first-order
phase transition (FOPT) but also critical in cosmology because
the gravitational-wave produced during the deconfinement
phase transition in the early universe is directly related to this
quantity [1–6].
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the property of perturbation potential, instead [22–25] treat
the eigenvalues of the thermal Wilson line as fundamental
variables, which may provide a feasible way to understand
the behavior of the hot PYM system for all N. Largely
speaking, thesemodels are phenomenally oriented, lacking a
more profound basis to derive the shape of the thermody-
namic potential.
As long as only thermodynamics is concerned, the

quasiparticle model (QPM) is even more attractive. It is
a statistical model where the gluons are assumed to
develop a temperature-dependent mass, due to the non-
perturbative interaction with the thermal environment.
This picture is strongly supported by the hard-thermal-
loop perturbation theory at high-temperature regions [26].
It can successfully explain the thermodynamics of the hot
SUðNÞ PYM system from Tc to the SB limit [27–30].
Later, taking into account the temporal gauge field back-
ground A0 brings a difference [23] and opens the possibility
to describe both thermodynamics and the deconfinement
phase transition at the same time. But most studies of the
interplay between quasigluon and background focus on the
modification to the pressure of hot PYM, the critical
nonperturbative dynamics driving the deconfinement phase
transition, says the Haar measure term, is still added by hand
and external to the QPM picture [31–33]. This might be
contradictory to the spirit of QPM, where most of the non
perturbation interaction has already been “absorbed” into
the quasiguon mass.
Although not a following study of QPM, the massive

PYM model [34–36] shares a similar philosophy with
QPM, and it also assumes that the effective gluon mass
parameter simply encodes the nonperturbative effects.
Then, the effective potential for the temporal background
can be derived, instead of added by hand, at one loop level
or even beyond [37,38]. This approach realizes the inverted
Weiss potential, attributed to the enhanced ghost contribu-
tion, as the mechanism for the deconfinement phase
transition. Surprisingly, for N ¼ 2, the resulting effective
potential indeed predicts a crossover instead of FOPT.
Thus, it is tempting to marry QPM with the massive

PYM. The original massive PYM model [35] just takes a
constant quasigluon mass, and now we generalize it to have
temperature dependence, which is in line with the frame-
work of hard-thermal-loop perturbation theory and may
serve as a quantum field basis for the QPM.We find that the
resulting one-loop effective potential indeed can success-
fully describe both the deconfinement phase transition and
the thermodynamics of the hot PYM system, for any color
number N. Our study is helpful to understand the decon-
finement phase transition in cosmology.
The paper is organized as follows: We give a short review

of the QPM in Sec. II and then goes to the generalized
massive PYM according to the QPM in Sec. III, where we
derive the effective potential at one loop and investigate the
deconfinement phase transition with the assumption of

uniform eigenvalue distribution, which reduces the poten-
tial to one-dimension. In Sec. IV we study thermodynamics
from the critical temperature to the SB limit, fitting the
quasigluon mass by lattice data via machine learning.
Conclusions and discussions and as well as the appendix
are cast in the remaining two sections.

II. QUASIGLUON: FROM HTL TO Tc

For thermal gauge theories at high temperature, the
classical solution should not be described by the gluonic
states without mass but with mass, which stems from the
plasma effects such as the screening of electric fields and
Landau damping. The hard-thermal-loop perturbation
theory (HTLpt) [26], which is a reorganization of the
perturbation series and can take into account the plasma
effects consistently. It is found that at next-next-leading
order, the hot gluon plasma can be well described by
weakly coupled quasigluons down to ð2 − 3ÞTc [39,40].
Within the HTLpt, the transverse quasigluon in the QCD

medium follows the dispersion equation

w2 − k2 − Π�
t ðw; kÞ ¼ 0; ð2:1Þ

where Π�
t ðw; kÞ is the transverse self-energy for the hot

gluons, having weak momentum dependence but strong
temperature dependence. At leading order, it is given by [26]

Π�
t ðw; kÞ ¼

N
6
g2T2; ð2:2Þ

with g the gauge coupling. The gluon quasiparticles mainly
propagate on shell.
For even lower temperature, the magnetic/nonperturba-

tive effects become important. But it is tempting to pursue
the possibility that even down to Tc, the plasma can still be
described by an ideal gas of “massive” noninteracting
“gluons,” where the strong interactions between gluon and
the in-medium have been “absorbed,” at least partially, into
the quasigluon mass. Following this line, the authors of
Refs. [27,29] explained the lattice QCD thermodynamics
near Tc via a simple quasiparticle model (QPM) inspired by
the above HTL quasiparticle. And to naturally match the
HTLpt quasiparticle at high T, they simply consider such a
QPM with quasigluon mass squared2

M2
gðTÞ¼

N
6
G2ðTÞT2; G2ðTÞ¼ 48π2

11N logð T
Tc=λ

þTs
Tc
Þ2 ð2:3Þ

which parametrizes the deviation from HTLpt quasiparticle
via the parameter Ts and λ. Other form of MgðTÞ is
possible, for instance the one in Ref. [41].

2The quasigluon mass is determined by the pole of gluon self-
energy in the complex momentum plane, but the exact location is
hampered by the nonperturbative effect.
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Then, such a pool of ideal quasi gluon gas, assumed to
respect the Bose distribution fB, has pressure

pðTÞ ¼ gðTÞ
6π2

Z
∞

0

fBðEkÞ
k4

Ek
dk − BðTÞ; ð2:4Þ

with Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

gðTÞ
q

. Owing to the temperature

dependence of mass, the self-consistent thermodynamic
relation for ideal gas, namely the Gibbs-Duhem relation,
ϵþ p ¼ sT with s ¼ ∂p=∂T is violated. Including BðTÞ
can solve this problem [30]. It is not independent and is
determined by MgðTÞ, up to a bag constant. Surprisingly,
this simple QPM is capable of reproducing the quenched
QCD or SUð3Þ PYM lattice data in the whole region above
Tc [29]. Study for other N ¼ 4, 5, 6 is presented in
Refs. [42,43]. It is common that, in order to reduce the
contribution of quasigluons near the critical temperature, a
very large quasigluon mass is usually required.
However, the original QPM is just a statistical model and

thus cannot explain the order of SUðNÞ phase transition.
The latter is supposed to be understood in the framework of
Landau phase transition: Find a proper order parameter η
and construct a (coarse-grained) Landau free energy as a
function of the order parameter, and then one can study the
order of phase transition by surveying its ground state. In
studying the deconfinement phase transition of SUðNÞ
PYM, the Polyakov loop (PL) associated with the center
symmetry ZN is identified with η; it is defined as
lN ¼ trL̂F=N, the traced thermal Wilson line in the funda-
mental representation

L̂F ¼ Peig
R

β

0
Aa
4
ðx;tÞtadt; ð2:5Þ

with P denoting path ordering and ta the generators of the
fundamental representation for SUðNÞ.

III. QUASIPARTICLES MOVE
IN THE PL BACKGROUND

So, it is a natural idea to combine quasiparticle model
with PLM, to study the deconfinement phase transition
dynamics and thermodynamics simultaneously [23,32].3 In
such models, quasigluons moving in the PL background
generate thermodynamic potential which depends on the
PL in the adjoint representation L̂A [23]:

ΩQGðL̂A; TÞ ¼ 2Ttr
Z

d3p⃗
ð2πÞ2 logð1 − L̂Ae−Eg=TÞ: ð3:1Þ

It is a phenomenological generalization to the usual Weiss
potential [44] for the fundamental gluons to quasigluons,

by replacing jp⃗j with Eg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MgðTÞ2 þ p2

q
. Later, we will

derive a similarity grounded on the QFT, but with a
remarkable difference. The quasigluons dominate thermo-
dynamics in the high-temperature region, where Mg ≪ T
and L̂A → 1, explain the blackbody behavior. At the lower
temperature, typically below 2Tc, the decreasing PL
combined with the increasingMgðTÞ, is capable of explain-
ing the deviation from the blackbody spectrum toward
Tc [23,31–33,45].
But that is all. We cannot expect this part to give the

deconfinement phase transition at the same time, which
needs additional interaction, such as the van der Monde
determinant interaction [23,31,33,46]. In this article, we
follow another line proposed in Ref. [35], which enables
us to study the nonperturbative PT in the perturbative
approach; in their philosophy, nonperturbation effects are
encoded in the gluon mass, in line with the QPM picture. In
the following, we will first present an effective model,
which is a slight generalization to that in Ref. [35]. Then,
we reproduce the effective potential Eq. (3.1) as well as the
confining potential from the model through the leading
order thermal correction.

A. Effective model for quasigluon above Tc

The model in Ref. [35] quantizes PYM in the back-
ground field gauge formalism, including massive fluctua-
tions. Then, the Faddeev-Popov gauge-fixed Lagrangian
reads

L ¼ −
1

2g2
trðFμνFμνÞ þ D̄μc̄aDμca þ ihaD̄μÂ

μ;a

þ 1

2
M2

gðTÞÂa
μÂ

a;μ; ð3:2Þ

where c; c̄ and h are the Ghost fields, real Nakanishi-
Lautrup field, respectively. We have split the gauge field Aμ

as Aμ ¼ Āμ þ Âμ with Âμ the massive fluctuations. The
background Āμ is restricted to merely have the constant
temporal component, Āμ ¼ Ā0δ0μ, for the sake of preserv-
ing invariance of the PYM system, under both temporal and
spatial translations and spatial rotations at finite T. The
covariant derivative acting on ϕ ¼ ðc; c̄; h; ÂμÞ is defined as

D̄ab
μ ¼ ∂μδ

ab þ gfacbĀc
μ; ð3:3Þ

where the gauge field is the background field. The above
Lagrangian has implemented the Landau-DeWitt gauge
D̄μÂ

μ ¼ 0. This gauge fixed PYM, including the gluon
mass term, still respects the background local SUðNÞ
symmetry, with covariant derivative defined above and
treating ϕ as adjoint matter fields.
In the effective model specified by Eq. (3.2), the gluon

mass is not originally interpreted as quasigluon mass.
3This idea originated from an earlier work [22], although there

the authors have not introduced quasigluon explicitly yet.
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Instead, it is regarded as a gauge fixing parameter, to further
remove the degeneracy among the Gribov copies, whose
existence may make the Faddeev-Popov procedure in the
deep infrared region invalid [47]. This region is associated
with the nonperturbative dynamics of PYM. Hence, people
hope that Mg at the same time can “absorb” strong
interactions, so that some nonperturbation phenomena
can be studied by the perturbation method. Such a
philosophy is consistent with the QPM, and therefore it
is tempting to simply identify Mg as the quasigluon mass,
which is reasonable at least at zero temperature. If such a
formalism is consistent with the Hamilton approach which
establishes a QFT basis for quasiparticle [48], is open.
However, to explain thermodynamics, we need a temper-

ature-dependent quasigluon mass,MgðTÞ. This may be odd
with the usual understanding of thermal mass origin in
perturbative thermal QFT: The underlying Lagrangian is
the same as that of T ¼ 0 and does not include the
temperature-dependent quantity, and this kind of depend-
ence originates from thermal correction. However, it is not
strange that the Lagrangian includes a temperature depen-
dent quantity. In fact, the HTL resummation scheme based
on quasiparticle picture is just based on the effective
Lagrangian including thermal mass, which gives rise to
the modified propagator for the calculation of thermal
corrections. Since we are extending the quasiparticle
picture down to near Tc, we should naturally include the
temperature-dependent quasigluon mass term.
Therefore, as a slight generalization to the model in

Ref. [35], the effective Lagrangian Eq. (3.2) is supposed to
furnish a phenomenological framework to perturbatively
study deconfinement phase transition along with full
thermodynamics above Tc.

B. The thermodynamic potential for quasiparticle
model: Pure gluonic part

In this subsection, we will calculate the thermodynamic
potential for the fundamental PL in a general PYM with
gauge group SUðNÞ, following the textbook approach.
That is to integrate out all fluctuations Âμ ¼ Aμ − Āμ over
the temporal background Āμ ¼ Ā0δ0μ, in the 3þ 1

Euclidean QFT. For a homogeneous background, one
can always make Ā0 diagonal via some global SUðNÞ
rotation. Therefore, we can expand Ā0 in the suðNÞ Cartan
space, which is spanned by the diagonal subgroup fHig
ði ¼ 1; 2;…N − 1Þwith ½Hi;Hj� ¼ 0, and then Ā0 ¼ Āi

0H
i

with Āi
0 is the Cartan coordinates.

Let us first deal with the pure gluonic part of Eq. (3.2),
from which one can get the quadratic Lagrangian of the
fluctuation field Âμ

Lð2Þ ¼ −
1

2
Âa
μ½δabgμν∂2 − fabcð∂νĀμ;c þ 2gμνĀc

ρ∂
ρÞ

þ facdfcbegμνĀd
ρĀρ;e þ 2fabcF̄μν;c�Âb

ν : ð3:4Þ

It can be written as the following

Lð2Þ ¼ 1

2
Âa
μðD−1ÞabÂμ;b; ð3:5Þ

with the operator defined as

ðD−1Þab ¼ δabðp2 þM2
gÞ þ 2i

X
i

fabiĀi
0p0

−
X
i;j

facifcbjĀi
0Ā

j
0: ð3:6Þ

The last term denotes the mass of the fluctuations
(explained as the quasigluons) from the temporal back-
ground, and hence the background field will obtain a
thermodynamic potential from the plasma of quasigluons.
Before we calculate this potential, let us deal with the

propagator, diagonalizing the fluctuations in the color
space through a unitary transformation. Then, the diagonal
propagators takes the form of

D̃−1
aaðpÞ ¼ ðp0 − AaÞ2 þ jp⃗j2 þM2

g: ð3:7Þ

Following the standard approach of path integral, one can
get the generating function (Z below should be understood
as ZI, the gluonic part contribution, but for the sake of
simplicity, we ignore the superscript, which we believe will
not cause ambiguity)

log Z ¼ 1

2
log det

�
−
δ2Lð2Þ

δAδA

�
¼ 1

2
log det½D−1�

¼ 1

2
log det½D̃−1�: ð3:8Þ

where we have used the property that unitary transforma-
tion does not change determinate. Then, using the trick that
log detA ¼ Tr logA we get

log det½D̃−1� ¼ Tr log½D̃−1�: ð3:9Þ

“Tr” is the trace over the functional propagator operator,
and can be split into two parts: a function trace over
momentum space and a color space trace denoted by “trc”,
explicitly,

Tr log½D̃−1� ¼ trc

Z
d4p
ð2πÞ4 log½D̃

−1ðpÞ�: ð3:10Þ

In order to get the finite temperature potential, one can
discretize the energy by p0 → ωn ¼ 2iπnT and transform
Ā0 → −iĀ4, obtaining

logZ ¼ 2Vtrc

Z
d3p⃗
ð2πÞ2

X∞
n¼−∞

log½D̃−1
aaðωn; jp⃗jÞ�; ð3:11Þ
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where V is the space volume and 2 ¼ 1
2
× 4 with 4 denoting

the multiplicity from the four components of Aμ. From
Eq. (3.7), the structure of the propagator D̃−1ðωn; jp⃗jÞ takes
the form of

D̃−1
aaðωn; jp⃗jÞ ¼ ðωn − AaÞ2 þ jp⃗j2 þM2

g; ð3:12Þ

where Aa is a linear combination of the background Āi
4,

with coefficients determined by the structure constant, but
we do not find a general expression for any N yet. As a
matter of fact, the concrete expression is not important in
our discussion, since later we will switch to a parametriza-
tion of the background which is independent of Aa.
Anyway, in Appendix B, we present the details of our
calculation for SUð4Þ, and the procedure applies to other
values of N.
The summation of the thermal excitation modes n can be

done explicitly using a trick in Appendix C. And finally, the
generating function can be compactly written as

log Z ¼ 4Vtrc

Z
d3p⃗
ð2πÞ2 logð1 − L̂Ae−Eg=TÞ; ð3:13Þ

where L̂A is expressed in terms of background field Āμ, and
it is nothing but the PL in the adjoint representation. For
instance, in SUð3Þ it is given by

L̂A ¼ diag½1; 1; eiĀ3
4
=T; e−iĀ

3
4
=T; eiðĀ

3
4
þ ffiffi

3
p

Ā8
4
Þ=2T;

e−iðĀ3
4
þ ffiffi

3
p

Ā8
4
Þ=2T; eiðĀ3

4
−

ffiffi
3

p
Ā8
4
Þ=2T; e−iðĀ3

4
−

ffiffi
3

p
Ā8
4
Þ=2T �; ð3:14Þ

where we have written it in terms of the original back-
ground. It is seen that the temporal background behaves as
an imaginary chemical potential. Equation (3.13) yields the
effective potential Veff ¼ T

V logZ which almost recovers
the generalized Weiss potential given in Eq. (3.1), up to the
coefficient. But the ghost contribution, which will be
included in the following subsection, will result in a
substantial deviation related to the deconfinement potential.
Equation (3.14) demonstrates the general structure of

thermal Wilson line in the adjoint representation, i.e., its
elements are organized such that it can be rewritten in terms
of the eigenphases of the fundamental thermal Wilson
line [46]

L̂F ¼ Peig
R

β

0
A4ðx;tÞdt

→ diag½ei2πq1 ; ei2πq2 ;…; ei2πqN �; ð3:15Þ

by virtue of the parametrization of background Ā4 ¼
2π=ðgβÞdiagðq1; q2;…; qNÞ, with the real qi satisfying
the constraint

P
N
i¼1 qi ¼ 0. As a phase factor, it is sufficient

to work in the interval 0 ≤ qi ≤ 1. And now,

L̂A ¼ diag½1; 1;…; 1; ei2πqij ;…; e−i2πqij �; ð3:16Þ

where the N − 1 “1” corresponds to the Cartan part, while
the NðN − 1Þ=2 pairs of qij ≡ qi − qj with N ≥ i > j ≥ 1

corresponds to the non-Cartan part. The above form is
more convenient and will be adopted hereafter. Then
1 − L̂Ae−Eg=T ¼ diagð1 − e−Eg=T;…; 1 − ei2πqij−Eg=T;…;
1 − e−i2πqij−Eg=TÞ. We also define

Ωðqij;MgÞ≡ 2T
Z

d3p⃗
ð2πÞ2 logðdetð1 − L̂Ae−Eg=TÞÞ

¼ 2T
XN
i;j¼1

�
1 −

δij
N

�Z
d3p⃗
ð2πÞ3

× logð1 − e−Eg=Te2πiqijÞ; ð3:17Þ
where in the second line we use qij ¼ −qji and allow i ¼ j,
to write the summation compactly.4 In this notation, the
gluonic part contribution to the effective potential Veff is
2Ωðqij;MgÞ.
In the following, we present two important expansions of

this potential, the low temperature and the high temperature
expansion. Both will be used in the later discussions.

1. Low temperature expansion

In the QPM, it is found that the fitted MgðTÞ=T is
sufficiently large at least around Tc, hence one has
Eg=T > Mg=T ≳Oð1Þ. We will find this is also true in
our model from a full numerical study, which enables us to
make a low temperature expansion for the effective
potential around Tc. This leads to an analytical expression,
which is useful in the phase transition analysis. First, we
expand the logarithm in Ωðqij;MgÞ, retaining L̂A,

ΩðL̂A;MgÞ ¼ −
T
π2

X∞
n¼1

1

n
trðL̂AÞn

Z
p2e−nEg=Tdp: ð3:18Þ

Then we substitute p ¼ Mg sinh t to get

ΩðL̂A;MgÞ ¼ −
TM3

g

π2
X∞
n¼1

1

n
trðL̂AÞn

×
Z

∞

0

cosh t sinh2te−nðMg=TÞ cosh tdt ð3:19Þ

Now we use the following trick to rewrite the integral as

ΩðL̂A;MgÞ ¼
T2M3

g

π2
X∞
n¼1

1

n2
trðL̂AÞn

×
d

dMg

Z
∞

0

sinh2te−nðMg=TÞ cosh tdt; ð3:20Þ

4Actually, ifwe instead adopt the ladder basis for suðNÞ and start
from the eigenphase parametrization of Ā4 [17], the above
expression can be explicitly obtained from the covariant derivative
whose background dependent term reads ½Ā4; Âμ� ∼ ðqi − qjÞδμ4.
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where the integral can be done explicitly, ∼K1ðxÞ, and we
finally arrive

ΩðL̂A;MgÞ ¼ −
T2M2

g

π2
X∞
n¼1

1

n2
trðL̂AÞnK2ðnMg=TÞ: ð3:21Þ

withKiðxÞ the modified Bessel function of the second kind,
of order i. For Mg=T moderately larger than 1, the leading
order is a good approximation.

2. High temperature expansion

At the high temperature limit, where 1 ≫ Mg=T, one can
find a simple analytic expression of Ωðqij;MgÞ; see also
Ref. [49] for the complete high temperature expansions
beyond the leading term. To that end, we again expand the
logarithmic function:

Ωðqij;MgÞ ¼ −
T4

π2
XN
i;j¼1

�
1 −

δij
N

�Z
∞

0

dxx2

×
X∞
n¼1

1

n
e2πniqije−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2ðx2þβ2M2

gÞ
p

: ð3:22Þ

Expand this expression according to βMg, and we get

Ωðqij;MgÞ ¼ −
T4

π2
XN
i;j¼1

�
1 −

δij
N

�Z
∞

0

dxx2

×
X∞
n¼1

1

n
e2πniqij

�
e−nx − β2M2

g
ne−nx

2x

�

þOðβ2M2
gÞ: ð3:23Þ

The summation over n in the first term is straightforward,
while in the second term, with one more “n” factor from the
Taylor expansion, can be done as the following,

X∞
n¼1

1

n
ne−nx ¼−

�X∞
n¼1

1

n
e−nx

�0
¼−

d
dx

logð1−e−xÞ: ð3:24Þ

Similar operations can be generalized to higher order of n,
leading to higher derivative to log ð1 − e−xÞ. Now, the first
two terms are summed to

Ωðqij;MgÞ ¼ −
T4

π2
XN
i;j¼1

�
1 −

δij
N

�

×
Z

∞

0

dxx2½log ð1 − e−xþ2πiqijÞ

þ β2M2
g

2x
d
dx

log ð1 − e−xþ2πiqijÞ�: ð3:25Þ

The result of these integration are just two Polylogarithm
function

Ωðqij;MgÞ ¼ −
T4

π2
XN
i;j¼1

�
1 −

δij
N

�

×

�
2Li4ðe2πiqijÞ −

β2M2
g

2
Li2ðe2πiqijÞ

�

þOðβ2M2
gÞ: ð3:26Þ

Since qij ¼ qi − qj ¼ −qji we can rewrite this expression
into an analytic form by Jonquière’s inversion formula

Linðe2πixÞ þ ð−1ÞnLinðe−2πixÞ ¼ −
ð2πiÞn
n!

BnðxÞ; ð3:27Þ

where Bn is the Bernoulli polynomials. In our case, we can
find that

Li2ðe2πiqijÞ þ Li2ðe2πiqjiÞ ¼ 2π2B2ðqijÞ;

Li4ðe2πiqijÞ þ Li4ðe2πiqjiÞ ¼ −
2π4

3
B4ðqijÞ: ð3:28Þ

Substitute this formula into our expression to get

Ωðqij;MgÞ ¼
1

π2
XN
i≥j¼1

�
1 −

N − 1

N
δij

�

×

�
4π4

3β4
B4ðqijÞ þ

M2
gπ

2

β2
B2ðqijÞ

�

þOðβ2M2
gÞ; ð3:29Þ

We can write it into a more simple form

Ωðqij;MgÞ ¼
1

π2
XN
i;j¼1

�
1 −

δij
N

�

×

�
2π4

3β4
B4ðjqijjÞ þ

M2
gπ

2

2β2
B2ðjqijjÞ

�

þOðβ2M2
gÞ: ð3:30Þ

In the massless limit only B4 is present.

C. The thermodynamic potential: Gauge-fixed part
and phase transition

In this subsection, we include the contribution from the
gauge-fixed part to the thermodynamic potential, and then
study how first order deconfinement phase transition occurs
due to the ghost contribution [35].

1. Infrared ghost domination

The ghost contribution is similar to that from the gluons
because it is also in the adjoint representation. However,
there are two key differences, which enable the contribution
of the thermodynamic potential from the ghost fields to
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successfully trigger the deconfinement phase transition.
First, the ghost fields belong to Grassmann fields, and thus
there is a minus sign relative to the gluon contribution.
Second, the ghosts are still massless since the lattice data
does not show that the correlators of ghost develop a
massive pole. Moreover, we have to take into account the
contribution from the gauge-fixing term. To deal with this
term, we should do the quadratic partition between Âa and
field ha, to get two quadratic terms with the mixing term
eliminated; the details can be found in Appendix A or in the
textbook [50]. The final result of the total effective potential
is given by

Veff ¼
3

2
ΩðMgÞ −

1

2
ΩðMg ¼ 0Þ; ð3:31Þ

The above result is in the Landau-DeWitt gauge, and as
usual, the effective potential is gauge-dependent.
Without a quasigluon mass, the ghost contribution

cancels the nonphysical gluonic contribution and then
the potential fails to admit a phase transition. On the
contrary, the presence of Mg makes the enhanced ghost
contribution (relative to gluon contribution) dominate the
potential at low temperature, realizing the inverted Weiss
potential as the confining mechanism.
Because we are dealing with the phase transition where

T → Tc and Mg=T ≫ 1, it is fair for us to expand the first
term by low temperature expansion Eq. (3.21). The second
term is just the zero mass limit of Eq. (3.30) and thus high
temperature expansion applies. Combining the above
information, we can get the following analytic form of
this effective potential

Veff ¼ 3T
Z

d3p⃗
ð2πÞ3 tr log

�
1 − L̂Ae−

Eg
T

�

− T
Z

d3p⃗
ð2πÞ3 tr log

�
1 − L̂Ae−

jp⃗j
T

�

≃ −
3T4

2π2

�
Mg

T

�
2

K2ðMg=TÞtrðL̂AÞ

−
1

2π2
XN
i;j¼1

�
1 −

δij
N

��
2π4

3β4
B4ðqijÞ

�
: ð3:32Þ

The first term can be translated to a function of PL, by using
the identity trL̂A ¼ trL̂FtrL̂

†
F − 1. Nevertheless, the ghost

term contains N − 1 independent variables qi, rather than
merely the trace part of L̂F. Hence, usually, one has to deal
with a multidimensional field space, case by case.
A way to reduce the potential to the one-dimension

problem is assuming the uniform eigenvalue distribution,
i.e., qij ¼ i−j

N r. It is automatically true for N ¼ 2, 3, 4 with
the number of independent eigenphases less than 4, but it is
merely an ansatz for the even higher N. Such an ansatz has
been adopted in Ref. [25], and is shown to work well. The

ansatz is based on the observation that the confining
vacuum, which is center symmetric, is characterized by
the uniform eigenvalue distribution; dynamically, the
distribution is a result of the eigenvalue repulse from
the confining potential which involves the difference
between eigenvalues qi [25,51,52]. Furthermore, it is
conjectured that the transition from the deconfining vac-
uum to the confining vacuum takes the shortest path, a
straight line connecting the origin and the confining
vacuum [25].5 Then, we get the analytic potential for
any color number

Veff ≃ −
3T4N2

2π2

�
Mg

T

�
2

K2ðMg=TÞl2N

−
2π2T4

3

XN
i¼1

ðN − iÞB4

�
i
N
r

�
þ fðN; TÞ; ð3:33Þ

where fðN; TÞ is a function does not depend on the order
parameter, only relevant to thermodynamics. We can easily
carry out this summation and find that

Veff ≃ −
N2

2

�
3T4

π2

�
Mg

T

�
2

K2ðMg=TÞlNðrÞ2

þ π2T4

45

�
ð−1þ rÞ2ð−1 − 2rþ 2r2Þ − 5ð−1þ rÞ2r2

N2

þ r3ð−4þ 3rÞ
N4

��
þ fðN; TÞ; ð3:34Þ

which is somehow a hybrid of the PL model and matrix
model.
Usually, lN ¼ trL̂F=N as a function of s is complicated.

By definition, we can find that

lNðrÞ¼

8>>>>><
>>>>>:

1
N

�
1þ2

XN−1
2

i¼1

cosð2π i
N
rÞ
�
; N is odd;

2
N

�XN
2

i¼1

cosð2π2i−1

2N
rÞ
�
; N is even:

ð3:35Þ

The summation can be implemented by writing cosðnxÞ ¼
Re exp ðinxÞ, translating it to the geometric series, and then
we obtain the simple expression

lNðrÞ ¼
1

N
sinðπrÞ

sinðπr=NÞ ; ð3:36Þ

5This is not the very precise statement. At high T, the origin
namely A0 ¼ 0 is the deconfining vacuum. As T decreases to near
Tc, it moves away from the origin to the configuration still
characterized by the uniform eigenvalue distribution. In the
effective matrix model, this is shown to be a good approximation
even for the relatively small N [25].
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which holds both for odd and even N. In particular, when
the color number approaching infinity, PL takes the
limit sinðπrÞ=ðπrÞ.

2. Deconfinement phase transition

Now we arrive the effective potential which can be used
to study deconfinement phase transition for any color
number N. For a sufficiently large N, one can simply
use the following rescaled potential

VNðr; TÞ
N2=2

≃ −
3T4

π2

�
Mg

T

�
2

K2ðMg=TÞ
�
sinðπrÞ
πr

�
2

þ π2T4

45
ðr − 1Þ2ð1þ 2r − 2r2Þ; ð3:37Þ

which is N-independent. To find the vacuum position of
this potential, one should calculate the derivative of this
potential with respect to r, to solve the following tadpole
equation

6

π2

�
Mg

T

�
2

K2ðMg=TÞ
πsinðπrÞðcosðπrÞ− 1

NsinðπrÞcotðπrNÞÞ
N2sin2ðπr=NÞ

þπ2

45
rðr−1Þ

�
2ð4r−5Þ− 10

N2
ð2r−1Þþ 12

N4
r

�
¼0: ð3:38Þ

It has two obvious solutions: (1) r ¼ 0, the deconfined
vacuum position at high temperature; (2) r ¼ 1, the
confining vacuum position, which is consistent with the
ZN symmetry argument: The confining vacuum should
preserve the ZN symmetry and then the PL value must be
lNðr ¼ 1Þ ¼ 0. In our model, this is trivially satisfied for
the potential from gluons, which contributes the quadratic
term l2N . However, the inverted Weiss term is not a
polynomial of lN , and therefore r ¼ 1 (namely lN ¼ 0)
being its extremum is nontrivial. It is attributed to the
eigenvalue repulse of the potential. Equation (3.38) may

also admit solutions for r ≠ 1, the candidates for the
deconfined vacuum at the lower temperature.
For a given N, the shape of the potential Eq. (3.34) is

solely determined by the single dimensionless parameter
MgðTÞ=T. Then, we plot the shape function UN ≡
VNðr; TÞ=N2 at different values of MgðTÞ=T, to search
the vacuum structure; the plots are displayed in Fig. 1. For
the N ¼ 2 case, there is only one minimum at s ≠ 1, and
eventually, only the minimum at s ¼ 1 survives as the
increasingMgðTÞ=T; see the left panel of Fig. 1. So, in this
case, the transition from the deconfined phase to the
confining phase is crossover. On the contrary, for the case
N ≥ 3, UN has two minimums when MgðTÞ=T approaches
2.7, with one located at r ¼ 1 and the other one at r ≠ 1. It
implies that the deconfinement phase transition is first
order. Furthermore, via the degeneracy condition, we can
determine the critical temperature Tc in the unit ofMgðTcÞ;
see the right panel of Fig. 1.
The phase transition behavior predicted by the model is

consistent with the results of lattice simulation. Hence, it is
of importance to understand what causes the qualitative
difference between the shape functions for N ¼ 2 and
N ≥ 3. To that end, we investigate the shape function near
r ¼ 1, and hence it is convenient to set t ¼ 1 − r; then,
we expand it around t ¼ 0,keeping the irrelevant terms up
to Oðt5Þ,

UN ¼ t2
�
π2cgcsc2 π

N

N2
þ 6

N4
−

5

N2
−1

�

þ t3
�
2π3cg cot

π
N csc

2 π
N

N3
−

8

N4
þ 10

N2
−2

�

þ t4
�
cg
π4csc2 π

N

3N2

�
3

N2
þ9cot2 π

N

N2
−1

�
þ 3

N4
−

5

N2
þ2

�
;

ð3:39Þ
where cg ≡ ðMg=TÞ2K2ðMg=TÞ. The special property of
N ¼ 2 case is that the cubic term vanishes and therefore

N=2,Mg/T=3.020

N=2,Mg/T=3.000

N=2,Mg/T=2.980

N=2,Mg/T=2.960
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V
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2

FIG. 1. Left panel: The potential behavior for SUð2Þ theory around the critical temperature. Right panel: The potential shape for
SUðN ≥ 3Þ at the critical temperature.
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there is no barrier. For N > 2, the cubic term is present and
moreover carries a positive coefficient (attributed to the
gluon potential), and as a consequence UN is able to give
rise to the first order deconfinement phase transition.
We end up this section with a comment on the Haar-type

model [18–21], whose potential is supposed to resemble

V ¼ −aðTÞl2=2þ bðTÞ log HNðLÞ: ð3:40Þ

The first term of this potential comes from the kinetic term of
SUðNÞ theory which also exists in our model. The second
term, characterized by HNðLÞ, actually is known as the
Vandermonde determinant interaction of the SUðNÞ theory;
it appears mathematically to define an integration over a
continuous group, which requires an invariant Haar group
measure. Such an interaction is non perturbative, and is
argued to be consistent with the picture of ghost dominance.
Explicitly, the integrand functional of our effective potential
−ΩðMg ¼ 0Þ in the infrared regime (E; p → 0) resembles
the Vandermonde determinant interaction. In other words,
roughly speaking it is a part of the ghost contribution.

IV. THERMODYNAMICS

Although the model can surprisingly describe the order
of deconfinement phase transition for any N, it is still
important to check if it is able to correctly account for the
thermodynamics above Tc, in particular in the semi-QGP
region around 1.4Tc where the nonperturbative effect is
significant. We have to rely on the temperature varying
MgðTÞ, with MgðTcÞ fixed (traded with the critical temper-
ature Tc), to do this job.
We should start from fitting latent heat. Because the

quasi gluon mass is temperature dependent, the latent heat
is sensitive to dMg=dT at Tc. Actually, the latent heat data
can fix the value of this derivative at Tc, which is crucial to
fit MgðTÞ via thermodynamics.

A. Latent heat and determination of dMgðTÞ=dT at Tc

From the thermodynamics, it is known that the latent
heat LN released during the first order phase transition is
the energy density difference between two vacua,
LN ¼ εd − εc, with subscripts d and c denoting for the
deconfined and confining vacuum, respectively. Then,
using the second law of thermodynamics, one can find that

LN¼Tc
∂ΔP
∂T

−ΔP¼−Tc
∂ΔVðTÞ

∂T

				
T¼Tc

þΔVNðTcÞ; ð4:1Þ

where ΔVN ¼ Vd − Vc is the potential energy difference,
vanishing at Tc. As a consequence, the latent heat is

determined by the entropy part, i.e., LN ¼ −Tc
∂ΔVðTÞ

∂T jT¼Tc
.

Note that so far we cannot guarantee the confining
vacuum at s ¼ 1 is indeed the absolute minimum below Tc,
but it is simply an inference of the requirement that latent
heat should be positive: It means ∂Vd=∂Tc < ∂Vc=∂Tc, and
moreover at Tc two vacua is degenerate, Vd ¼ Vc, so,
below Tc one indeed has Vd < Vc.
We are now in the position to calculate the latent heat in

our model. The straightforward calculation of the temper-
ature derivative of the effective potential gives

∂Vðr; TÞ
∂T

¼ −
3M2

gN2

2π2
l2N

�
4TK2ðMg=TÞ

þ K1ðMg=TÞ
�
Mg − T

dMg

dT

��

− N2
2π2

45

�
ð−1þ rÞ2ð−1 − 2rþ 2r2Þ

−
5ð−1þ rÞ2r2

N2
þ r3ð−4þ 3rÞ

N4

�
T3; ð4:2Þ

In our model, the confining vacuum is always located at
r ¼ 1 or lN ¼ 0, and thus the contribution of the above
derivative in this vacuum is a trivial term.Then, the latent heat
is determined by the contribution from the deconfined
vacuum,

LN

ðN2−1ÞT4
c
¼ N2

N2−1

�
3l2N;d

2π2

�
Mg

Tc

�
2
�
4K2ðMg=TcÞ

þK1ðMg=TcÞ
�
Mg

Tc
−
dMg

dTc

��

þ2π2

45

��
−1þrdÞ2ð−1−2rdþ2s2dÞ

−
5ð−1þrdÞ2r2d

N2
þr3dð−4þ3rdÞþ1

N4

��
; ð4:3Þ

where rd (or lN;d) is the value of r (or lN) in the deconfined
vacuum, numerically calculated by virtue of the tadpole
Eq. (3.38), shown in Table I.

TABLE I. Effective mass, the position of deconfined vacuum and, latent heat around the critical temperature for different color
number N.

Color number N ¼ 3 N ¼ 4 N ¼ 5 N ¼ 6 N ¼ 7 N ¼ 8 N → ∞

rd 0.5605 0.5186 0.5073 0.5033 0.5016 0.5009 0.5004
ld 0.5910 0.6300 0.6380 0.6398 0.6400 0.6396 0.6367
MgðTcÞ=Tc 2.7499 2.7203 2.7126 2.7099 2.7088 2.7083 2.7077
dMgðTcÞ=dTc −5.7727 −7.9951 −9.2891 −10.0965 −10.6261 −10.9954 −12.3376
LN=ðN2 − 1ÞT4

c 0.2091 0.2874 0.3236 0.3433 0.3551 0.3628 0.3880
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On the other hand, for N ¼ 3;…8, the current lattice
data gives the following behavior of latent heat [53]

LN

ðN2 − 1ÞT4
c
≃ 0.388 −

1.61
N2

; ð4:4Þ

We require the calculated latent heat Eq. (4.3) to fit it. For
the given N, Eq. (4.3) just contains a single parameter,
dMgðTÞ=dT at Tc, and therefore its value can be uniquely
fixed. We show the results in Table I. The resulting values
typically are around −10 for all N, indicating a sharp
increasing of quasi-gluon mass as the temperature drops
down to Tc from above. This is a well-understood behavior

since it can be regarded as a sign of the “strongest”
nonperturbative effect near Tc.

B. Fit Mg with the thermal quantity using
machine learning

According to the original idea of QPM, the proper
temperature dependence beyond Tc of quasigluon mass
is supposed to successfully explain the thermodynamics of
the hot PYM system up to the high T region. Here, the
main thermodynamic observables of interest are the pres-
sure p, the energy density ϵ, and the entropy density s.
Actually, they are not independent quantities. In particular,

FIG. 2. The first panel: The fittedMg=T as a function of temperature for N ¼ 3, 4, 5, 6, 8. The second to the sixth panels: Fitting p=T4

in our model for various color number.
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if one has p, then ϵ and s can be calculated by the second
law of thermodynamics

ϵ ¼ T
dp
dT

− p; s ¼ ϵþ p
T

: ð4:5Þ

The one loop calculation leads to p ¼ −Veff , given in
Eq. (3.34). Currently, their lattice data is available only for
N ¼ 3, 4, 6 [53]. However, as stated in the introduction, the
lattice data demonstrates N scaling property, which means

PM ¼ M2−1
N2−1 PN and the latent Eq. (4.4), and thus we also

have “data” for other N values by simple extrapolation, for
instance to N ¼ 5, 8 used later.
In the QPM, it is known that the SB limit can be trivially

recovered. The most challenging range is the so-called
semi-QGP region T ∈ ðTc; 3TcÞ, where the deviation to the
blackbody behavior becomes more and more remarkable as
T approaching Tc. In the previous discussion, we have used
effective potential Eq. (3.32), which is based on the high
and low temperature expansion, to analyze the phase

FIG. 3. From the first to the fifth panels: energy density for N ¼ 3, 4, 5, 6, 8 (the blue square denoting for model prediction using the
numerical functionMg from machine learning; the yellow star denoting for lattice data; in the first panel, for comparison, the prediction
using the smooth fitting function Eq. (4.9) for Mg labeled as the blue line). The last panel: the value of the order parameter in the
deconfinement phase ld (or rd) varying with temperature for N ¼ 3.
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transition at Tc. Nevertheless, we do not have such a simple
analytic expression to analyze thermodynamics. It is well
expected that the low temperature expansion just holds very
near Tc and soon becomes not reliable in the higher
temperature region. Hence, we should use its complete
expression:

Veff ¼
T4

2π2

Z
∞

0

dxx2
�
ðN − 1Þ log½1 − e−Êðx;Mg;TÞ�

þ
XN
i¼1

ðN − iÞ log
�
1þ e−2Êðx;Mg;TÞ

− 2e−Êðx;Mg;TÞ cos
�
2π

ir
N

���
þ � � � ; ð4:6Þ

where Êðx;Mg; TÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ðMg=TÞ2

q
and dots denote for

the remaining term that does not need summation.
Then, we try to obtain the interpolation function of the

fitted effective gluon mass MgðTÞ for N ¼ 3, 4, 5, 6, 8,
through the method of machine learning. Physical infor-
mation neural network [54] provides us with a flexible and
accurate method for the fitting task. It treats functions of
any complexity under fitting as a neural network, and the
training goal is making the neural network satisfying the
required partial differential relationships (such as partial
differential equations and boundary conditions) and the
given data points values. In our work, we use two separate
deep neural networks MgðTÞ and rðTÞ for the fitting task,
and our training goal is making MgðTÞ and rðTÞ to satisfy:

(i) the extreme condition for the deconfined vacuum,

∂Vðr; T; NÞ
∂r

				
r¼rdðTÞ

¼ 0; ð4:7Þ

(ii) the degeneracy between the deconfined vacuum and
the confining vacuum,

Vðr; T; NÞjr¼rdðT¼TcÞ;T¼Tc
¼ Vð1; Tc; NÞ; ð4:8Þ

(iii) mass parameter relationship in Table I and
(iv) the lattice data for thermodynamics.

We implement the task using TensorFlow2.0 [55], bothMgðTÞ
and rðTÞ containing 7 hidden layers, each of which
includes 64, 128, 256, 512, 256, 128, 64 neutrons respec-
tively. For the complexity of our problem, we should adopt
a two-step training: We pretrain MgðTÞ and rðTÞ to fit the
lattice data first, and then fine adjust MgðTÞ and rðTÞ to
satisfy other fitting requirements. Such a procedure moti-
vates us to divide the training samples into two types, the
first type satisfies the lattice thermodynamic data at Tc, and
the second type is 128 points randomly distributing in the
temperature region ½Tc; 4Tc�, which meet the other three
theoretical conditions listed above. For more details, please
check the code in Github.6 The fittedMgðTÞ is shown in the
first panel of Fig. 2, and the perfect fitting of pressure above
Tc is displayed in other panels of Fig. 2.
With the fitted MgðTÞ, one can plot the energy density ϵ,

shown in Fig. 3. From the first five plots one can see that our
model predictions fairly well match the lattice data for allN,
except that the point around 1.3Tc always mildly deviates
from the lattice result. The reason is that our training did not
include energy density data, and the resulting numerical
function MgðTÞ is continuous but its derivative is discon-
tinuous (retraining may lead to slight improvement).
However, if we instead use the smooth fitting function
Eq. (4.9) obtained later rather than the original numerical
function, the calculated energy density can fit well with the
lattice data, as shown in the example of SUð3Þ in Fig. 3.
We also plot the value of the order parameter in the

deconfinement phase, the Polyakov loop ld or equivalently
rd here. We only show the SUð3Þ case in the last panel of
Fig. 3, which has been studied on the lattice; from the plot
we can see that as the temperature rises, the value of ld=rd
soon approaches 1=0. The overall trend is right, but the
ldðTÞ predicted in our model reaches 1 faster than the lattice
result. This issue might be resolved by considering the

FIG. 4. The fitting for the quasigluon mass ansatz Eqs. (4.9) (left panel) and (2.3) (right panel), where the fitting parameters are given
in Table II.

6https://github.com/JGuoHep/QuasiParticle.
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dressing propagators, which introduce more parameters; for
comparison, here we have only one parameter, Mg. We
leave this study to the future work.
The MgðTÞ is supposed to depend on N: Although

MgðTcÞ=Tc is almost universal determined by the condition
of degeneracy, dMgðTÞ=dT takes different values at Tc for
different color number for the sake of correct latent heat,
see Table I. However, it is found that the fitted MgðTÞ are
almost the same, which leads us to conjecture that this is an
universal behavior for all N.7 By the way, one can check
the invalidation of low temperature expansion in the
region T ≳ 1.4Tc: The ratio Mg=T drops to ≈1.5 as T
increases to 1.4Tc, and then from Eq. (3.21) one can see
that the next leading order is only suppressed by a factor
K2ð2 × 1.5Þ=K2ð1.5Þ ∼ 0.1.
Actually, the N universal behavior of quasigluon mass is

encoded in the quasigluonmass in theHTLpt; see the formula
Eq. (2.3) where N cancels. At this point, our model is
consistent with the HTLpt effective mass. So, it is anticipated
that the interpolation function can be fitted by theMgðTÞwith
the function given in Eq. (2.3), with two parameters λ and Ts.
We also try another function with three parameters

MgðTÞ ¼ αT þ βT= logðγT=TcÞ: ð4:9Þ

which is recently adopted in Ref. [33]. Note that unlike the
conventionalMgðTÞ ansatz, which simply goes to the HTLpt
quasigluonmass in the high T region, Eq. (4.9) does not. The
fitted parameters for both functions of MgðTÞ are shown in
Table II. The latter has better quality, which can be seen from
the comparison in two panels of Fig. 4. This may raise the
issue of well consistence between our model with the HTLpt
in the higher T region, and wewill come back to this point in
the section of Conclusion and Discussion. Besides, for the
function Eq. (4.9), fromTable II one can see that the values of

the α parameter are far smaller than the other two parameters,
which means that it is almost irrelevant to fitting. So, we tried
the fitting with the vanishing α, to find that it works
equally well.

V. CONCLUSION AND DISCUSSION

The HTL resummation in the quasi-particle picture
reveals that QGP is a pool of weakly interacting quasi-
gluons for T ≳ 2Tc. Such a picture is further used in the
QPM to describe QCD thermodynamics down to Tc and
works fairly well. The crucial idea is that the quasigluon
mass could “absorb” strong interaction and merely leaves
weak interactions on quasigluons. In this work we attempt
to embed this idea to the massive PYM [35], introducing a
temperature-dependent quasigluon mass in the effective
SUðNÞ PYM Lagrangian Eq. (3.2). Via the standard
perturbative calculation, we obtain an effective model that
can successfully explain the critical behavior for any N,
not also the first order deconfinement phase transition for
N > 2 but also the crossover for N ¼ 2. Moreover, the
lattice data of thermodynamics can be fitted via the single
parameter MgðTÞ, which is found to demonstrate the
N-universal behavior, based on the available case N ¼ 3,
4, 6. This is supported by the HTLpt quasigluon mass, but
now is extended to the semi-QGP region, and might convey
some secrets of the nonperturbative effects. We look forward
to the future lattice data for other N, in particular, N ¼ 5, 8
whose “lattice data” is obtained by extrapolation via
the N-scaling law, to test the universal quasigluon mass
conjecture.
Fitting MgðTÞ via a function that well matches with the

HTLpt quasigluon mass does not have a very good quality,
and it may be improved by considering the dressing
propagator of the gluons [56]. Then, the modified model
contains more parameter and have the potential to deal with
more detailed problems.
We are capable of conducting a unified analysis of all N,

depending on the assumption of uniform eigenvalue dis-
tribution of the temporal background, which reduces the
effective potential to the one-dimensional case. But it is
based on the eigenvalue repulsion and a more solid argu-
ment may be necessary.
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TABLE II. α, β and γ are fitting parameters in the quasigluon
mass ansatz Eq. (4.9), while λ and Ts are fitting parameters in the
conventional ansatz Eq. (2.3).

α β γ RMSD

0.029534 1.130884 1.541299 0.015707
0 1.186505 1.570699 0.016224

Void λ Ts RMSD

Void 10.843298 −8.336149 0.081482

7For large N this is trivial, because the N dependence of the
observables in our model is scaled out, well consistent with the
lattice data. But it is not trivial that it is true also for N ¼ 3, 4. By
contrast, in the polynomial model [1], the fitting parameters in the
small N cases are very different than those in the large N cases.
We guess it is attributed to the exponential dependence of the
fitting parameter MgðTÞ.
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APPENDIX A: DERIVATION OF THE
GENERATING FUNCTION IN THE

LANDAU-DEWITT GAUGE

The complete Faddeev-Popov Lagrangian in the Landau-
DeWitt gauge reads

L ¼ −
1

2g2
trðFμνFμνÞ þ D̄μc̄aDμca þ ihaD̄μÂ

μ;a

þ 1

2
MgðTÞAa

tr;μA
a;μ
tr ; ðA1Þ

We are considering the constant background Āa
μ ¼ Āa

0δμ0
and keep only the quadratic terms. Then the action can be
split into two parts SA;h and Sc, where

SA;h ¼
Z

d4x

�
1

2
Âa
μðD−1ÞabÂμ;b þ ihaD̄μÂ

μ;a

�

Sc ¼
Z

d4x½D̄μc̄aD̄μca�; ðA2Þ

where D−1 is given in Eq. (3.6).
Now we come to deal with the first part of the action. We

can rewrite this action in its color diagonalization basis Ãa
μ

and h̃a, to get

SA;h ¼
Z

d4x
�
1

2
Ãa
μðD̃−1ÞaÃμ;a þ ih̃aD̃a

μÃ
μ;a

�

¼
Z

d4p
ð2πÞ4

�
1

2
Ãa
μðD̃−1ÞaÃμ;a þ ih̃aD̃a

μÃ
μ;a

�
; ðA3Þ

where ðD̃−1Þa and D̃a
μ in the momentum space are respec-

tively given by

D̃−1
a ðpÞ≡DðMgÞ−1a ¼ ðp0 − AaÞ2 þ jp⃗j2 þM2

g;

D̃a
μD̃μ;a ≡Dð0Þ−1a ¼ ðp0 − AaÞ2 þ jp⃗j2: ðA4Þ

To integrate this action through path integration, we must
do the quadratic partition between Ãa and h̃a. After a
tedious quadratic partition, the action takes the form of

SA;h¼
Z

d4p
ð2πÞ4

1

2

�
ðD̃−1Þa

�
Ãa
μþi

D̃a
μ

D̃−1
a
h̃a
�

×

�
Ãμ;aþi

D̃μ;a

D̃−1
a
h̃a
�
þD̃a

μD̃μ;a

D̃−1
a

h̃ah̃a
�
: ðA5Þ

Now define a new field Aa
μ ¼ Ãa

μ þ i D̃a
μ

D̃−1
a
h̃a, and one can

rewrite the original mixed action as

SA;h ¼
Z

d4p
ð2πÞ4

1

2

�
Aa

μDðMgÞ−1a Aμ;a þ Dð0Þ−1a
DðMgÞ−1a

h̃ah̃a
�
:

ðA6Þ

The redefined Nakanishi-Lautrup field h̃a now gains a
mass, and its propagator is a combination of the massive
and massless propagators, which is a result of the Landau-
Dewitt gauge. Then the 1-loop effective action is given by

logZA;h ¼
1

2
log det

�
δ2Sh;A
δϕa

i ϕ
a
j

�

¼ 2 log detðDðMgÞ−1Þ−
1

2
log detðDðMgÞ−1Þ

þ1

2
log detðDð0Þ−1Þ

¼ 3

2
log detðDðMgÞ−1Þþ

1

2
log detðDð0Þ−1Þ: ðA7Þ

where ϕa
i represent fAa

μ; h̃
ag. Note that there is a overall

factor 4 for the Aa
μ contribution, denoting for four massive

modes. But the Nakanishi-Lautrup field cancels one mas-
sive mode and effectively just leaves one massless mode.
The massless ghost contribution, taking into account its

statistics, is simply given by

log Zc ¼ − log detðDð0Þ−1Þ: ðA8Þ
Its contribution is halved due to the massless mode of the
Nakanishi-Lautrup field. Finally, the total effective action is

log Z ¼ 3

2
log detðDðMgÞ−1Þ −

1

2
log detðDð0Þ−1Þ: ðA9Þ

APPENDIX B: CALCULATING THE PURE
GLUONIC GENERATING FUNCTION:

THE SUð4Þ SAMPLE

In this appendix we present the details of calculating the
pure glunoic part, i.e., the first term of the second line of
Eq. (A7), specified to SUð4Þ. Its Cartan generators are

T3 ¼ 1

2

0
BBB@
1 0 0 0

0 −1 0 0

0 0 0 0

0 0 0 0

1
CCCA; T8 ¼ 1

2
ffiffiffi
3

p

0
BBB@
1 0 0 0

0 1 0 0

0 0 −2 0

0 0 0 0

1
CCCA;

T15 ¼ 1

2
ffiffiffi
6

p

0
BBB@
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −3

1
CCCA: ðB1Þ

Now the propagators take the form of (the quasigluon mass
can be trivially included)

ðD−1Þab ¼ δabp2 þ 2i
X

i¼3;8;15

fabiĀi
0p0

−
X

i;j¼3;8;15

facifcbjĀi
0Ā

j
0: ðB2Þ
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After a careful calculation, one can get all the nonzero propagators

ðD−1Þ1;1 ¼ p2 þ ðĀ3
0Þ2 ðD−1Þ1;2 ¼ 2ip0Ā3

0

ðD−1Þ2;2 ¼ p2 þ ðĀ3
0Þ2 ðD−1Þ1;2 ¼ −2ip0Ā3

0

ðD−1Þ3;3 ¼ p2

ðD−1Þ4;4 ¼ p2 þ 1

4
ðĀ3

0Þ2 þ
4

3
ðĀ8

0Þ2 þ
ffiffiffi
3

p

2
Ā3
0Ā

8
0 ðD−1Þ4;5 ¼ ip0Ā3

0 þ
ffiffiffi
3

p
ip0Ā8

0

ðD−1Þ5;5 ¼ p2 þ 1

4
ðĀ3

0Þ2 þ
4

3
ðĀ8

0Þ2 þ
ffiffiffi
3

p

2
Ā3
0Ā

8
0 ðD−1Þ5;4 ¼ −ip0Ā3

0 −
ffiffiffi
3

p
ip0Ā8

0

ðD−1Þ6;6 ¼ p2 þ 1

4
ðĀ3

0Þ2 þ
4

3
ðĀ8

0Þ2 −
ffiffiffi
3

p

2
Ā3
0Ā

8
0 ðD−1Þ6;7 ¼ −ip0Ā3

0 þ
ffiffiffi
3

p
ip0Ā8

0

ðD−1Þ7;7 ¼ p2 þ 1

4
ðĀ3

0Þ2 þ
4

3
ðĀ8

0Þ2 −
ffiffiffi
3

p

2
Ā3
0Ā

8
0 ðD−1Þ7;6 ¼ ip0Ā3

0 −
ffiffiffi
3

p
ip0Ā8

0

ðD−1Þ8;8 ¼ p2

ðD−1Þ9;9 ¼ p2 þ 1

4
ðĀ3

0Þ2 þ
1

12
ðĀ8

0Þ2 þ
1

12
ðĀ15

0 Þ2 þ 1

2
ffiffiffi
3

p Ā3
0Ā

8
0 þ

1

2
ffiffiffi
3

p Ā3
0Ā

15
0 þ 1

6
Ā8
0Ā

15
0

ðD−1Þ9;10 ¼ ip0Ā3
0 þ

iffiffiffi
3

p p0 þ Ā8
0 þ

iffiffiffi
3

p p0Ā15
0

ðD−1Þ10;10 ¼ p2 þ 1

4
ðĀ3

0Þ2 þ
1

12
ðĀ8

0Þ2 þ
1

12
ðĀ15

0 Þ2 þ 1

2
ffiffiffi
3

p Ā3
0Ā

8
0 þ

1

2
ffiffiffi
3

p Ā3
0Ā

15
0 þ 1

6
Ā8
0Ā

15
0

ðD−1Þ10;9 ¼ −ip0Ā3
0 −

iffiffiffi
3

p p0 þ Ā8
0 −

iffiffiffi
3

p p0Ā15
0 ðB3Þ

ðD−1Þ11;11 ¼ p2 þ 1

4
ðĀ3

0Þ2 þ
1

12
ðĀ8

0Þ2 þ
1

12
ðĀ15

0 Þ2 − 1

2
ffiffiffi
3

p Ā3
0Ā

8
0 −

1

2
ffiffiffi
3

p Ā3
0Ā

15
0 þ 1

6
Ā8
0Ā

15
0

ðD−1Þ11;12 ¼ −ip0Ā3
0 þ

iffiffiffi
3

p p0 þ Ā8
0 þ

iffiffiffi
3

p p0Ā15
0

ðD−1Þ12;12 ¼ p2 þ 1

4
ðĀ3

0Þ2 þ
1

12
ðĀ8

0Þ2 þ
1

12
ðĀ15

0 Þ2 − 1

2
ffiffiffi
3

p Ā3
0Ā

8
0 −

1

2
ffiffiffi
3

p Ā3
0Ā

15
0 þ 1

6
Ā8
0Ā

15
0

ðD−1Þ12;11 ¼ ip0Ā3
0 −

iffiffiffi
3

p p0 þ Ā8
0 −

iffiffiffi
3

p p0Ā15
0

ðD−1Þ13;13 ¼ p2 þ 1

12
ðĀ8

0Þ2 þ
1

12
ðĀ15

0 Þ2 − 1

6
Ā8
0Ā

15
0 ðD−1Þ13;14 ¼ −ip0Ā8

0 þ
iffiffiffi
3

p p0Ā15
0

ðD−1Þ14;14 ¼ p2 þ 1

12
ðĀ8

0Þ2 þ
1

12
ðĀ15

0 Þ2 − 1

6
Ā8
0Ā

15
0 ðD−1Þ14;13 ¼ ip0Ā8

0 −
iffiffiffi
3

p p0Ā15
0

ðD−1Þ15;15 ¼ p2 ðB4Þ

It is observed that the 15 × 15 propagator matrix in the color space D−1
a;b is a block diagonal matrix, consisting of three

diagonal elements p2 corresponding to the Cartan part and six 2 × 2 submatrices corresponding to the non-Cartan parts.
Concretely, these six matrices are

Mi ¼
�
p2
0 þ Ã2

i − jp⃗j2 ip0Ãi

−ip0Ãi p2
0 þ Ã2

i − jp⃗j2
�
; ðB5Þ

where Ãi is a combination of A0. From this expression we can see that the eigenvalues ofMi must be ðp0 þ AiÞ2 − jp⃗j2 and
ðp0 þ AiÞ2 þ jp⃗j2. After a unitary diagonalization we can get D̃−1 ≡U†D−1U as
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ðD̃−1Þ1;1 ¼ ðp0 − Ā3
0Þ2 − jp⃗j2; ðD̃−1Þ2;2 ¼ ðp0 þ Ā3

0Þ2 − jp⃗j2
ðD̃−1Þ3;3 ¼ ðD̃−1Þ8;8 ¼ ðD̃−1Þ15;15 ¼ p2

ðD̃−1Þ4;4 ¼
�
p0 −

1

2
ðĀ3

0 þ
ffiffiffi
3

p
Ā8
0Þ
�
2

− jp⃗j2; ðD̃−1Þ5;5 ¼
�
p0 þ

1

2
ðĀ3

0 þ
ffiffiffi
3

p
Ā8
0Þ
�
2

− jp⃗j2

ðD̃−1Þ6;6 ¼
�
p0 þ

1

2
ðĀ3

0 −
ffiffiffi
3

p
Ā8
0Þ
�
2

− jp⃗j2; ðD̃−1Þ7;7 ¼
�
p0 −

1

2
ðĀ3

0 −
ffiffiffi
3

p
Ā8
0Þ
�
2

− jp⃗j2

ðD̃−1Þ9;9 ¼
�
p0 −

1

2

�
Ā3
0 þ

1ffiffiffi
3

p Ā8
0 þ

1ffiffiffi
3

p Ā15
0

��
2

− jp⃗j2

ðD̃−1Þ10;10 ¼
�
p0 þ

1

2

�
Ā3
0 þ

1ffiffiffi
3

p Ā8
0 þ

1ffiffiffi
3

p Ā15
0

��
2

− jp⃗j2

ðD̃−1Þ11;11 ¼
�
p0 þ

1

2

�
Ā3
0 −

1ffiffiffi
3

p Ā8
0 −

1ffiffiffi
3

p Ā15
0

��
2

− jp⃗j2

ðD̃−1Þ12;12 ¼
�
p0 −

1

2

�
Ā3
0 −

1ffiffiffi
3

p Ā8
0 −

1ffiffiffi
3

p Ā15
0

��
2

− jp⃗j2

ðD̃−1Þ13;13 ¼
�
p0 −

1

2

Ā8
0 − Ā15

0ffiffiffi
3

p
�

2

− jp⃗j2; ðD̃−1Þ14;14 ¼
�
p0 þ

1

2

Ā8
0 − Ā15

0ffiffiffi
3

p
�

2

− jp⃗j2: ðB6Þ

This leads to the quadratic Lagrangian written as

L ¼ −
1

2
Ãa
μðD̃−1ÞaÃμ;a; ðB7Þ

with D̃−1 ¼ diagððp0 þ A1Þ2 − jp⃗j2; ðp0 þA2Þ2 − jp⃗j2;…;
ðp0 þA15Þ2 − jp⃗j2Þ ¼ diagfðp0 þ AaÞ2 − jp⃗j2g where Aa
is zero or opposite numbers appearing in pairs. This
structure is insured by the structural constant fabc. One
can check this structure for other SUðNÞ theory. For
example in SUð3Þ, the diagonal propagator is the same
as the first eight propagators of SUð4Þ.

APPENDIX C: SUMMATION OVER
THE THERMAL MODES

In this appendix we explicitly implement the summation
over the thermal modes present in Eq. (3.11), rewritten as

log Z ¼ 2Vtrc

Z
d3p⃗
ð2πÞ2 νðEgÞ; ðC1Þ

where we have introduced the function

νðEgÞ≡
X∞
n¼−∞

log½D̃−1
aa �¼

X∞
n¼−∞

log½ðωn−AaÞ2þE2
g�; ðC2Þ

with E2
g ¼ jp⃗j2 þM2

g. To pull out the object to be summed
from the logarithm, we differentiate νðEgÞ with respect
to Eg,

∂νðEgÞ
∂Eg

¼
X∞
n¼−∞

2Eg

ðωn − AaÞ2 þ E2
g

¼ 1

πT

X∞
n¼−∞

Eg=2πT

ðn − Aa=2πTÞ2 þ ðEg=2πTÞ2
: ðC3Þ

Such a series can be summed explicitly, to get

∂νðEgÞ
∂Eg

¼ 1

T

sinh2 ðEg=2πTÞ
sin2ðAa=2πTÞ þ sinh2ðEg=2πTÞ

×

�
1þ e−Eg=T

1 − e−Eg=T

�
: ðC4Þ

Then, integrating both sides over Eg, we have

νðEgÞ ¼
Eg

T
þ 2 log

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 − e−iAaT e

−Eg
T

��
1 − ei

Aa
T e

−Eg
T

�r �

þ ðEg independent termsÞ: ðC5Þ

Using the identity logM ¼ log detM and the fact that
νðEgÞ is a diagonal matrix in the color space thus a simple
trace operation, we obtain

logZ¼2V
Z

d3p⃗
ð2πÞ2

×2 log
Y
a

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1−e−i

Aa
T e

−Eg
T

��
1−ei

Aa
T e

−Eg
T

�r �
; ðC6Þ
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where we have ignored the infinite vacuum energy and Eg independent terms. One should notice that each Aa is paired with
another Ab ¼ −Aa. Eventually, the generating function can be written as a more compacted form:

logZ ¼ 4Vtrc

Z
d3p⃗
ð2πÞ2 log

�
1 − L̂Ae−Eg=T

�
; ðC7Þ

with L̂A ¼ diagðexpð−iA1=TÞ; expð−iA2=TÞ;…; expð−iAN2−1=TÞÞ where, again, �Aa pairwise appear.
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