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In this work, we study the annihilation of a pair of ‘t Hooft-Polyakov monopoles due to confinement by a
string. We analyze the regime in which the scales of monopoles and strings are comparable. We compute
the spectrum of the emitted gravitational waves and find it to agree with the previously calculated pointlike
case for wavelengths longer than the system width and before the collision. However, we observe that in a
head-on collision, monopoles are never recreated. Correspondingly, not even once the string oscillates.
Instead, the system decays into waves of Higgs and gauge fields. We explain this phenomenon by the loss
of coherence in the annihilation process. Due to this, the entropy suppression makes the recreation of a
monopole pair highly improbable. We argue that in a similar regime, analogous behavior is expected for the
heavy quarks connected by a QCD string. There too, instead of restretching a long string after the first
collapse, the system hadronizes and decays in a high multiplicity of mesons and glueballs. We discuss the
implications of our results.
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I. INTRODUCTION

It is well known [1–4] that monopoles carrying the
opposite magnetic charges under a Uð1Þ gauge symmetry
become connected by a string when Uð1Þ is Higgsed. The
string represents a magnetic flux tube of Nielsen-Olesen
type [5]. As long as the mass of the monopole is larger than
the scale of the string tension, energy per unit length μ, the
breakup of the string via nucleation of monopole pairs is
exponentially unlikely [3].
This system shares some similarity with a quark–

antiquark pair connected by a QCD string in a confining
gauge theory. The QCD string represents a flux tube of the
color electric field. The string tension, μ ¼ Λ2, is set by the
QCD scale, Λ. As long as all quarks in the theory are
heavier than Λ, the probability of breaking the string by a
pair creation is exponentially small.
Due to this analogy, studying monopoles connected by a

magnetic string can serve as a useful test-laboratory for
understanding certain features of confined heavy quarks.
The above systems have a number of interesting appli-

cations in particle physics and cosmology.

For example, recently a novel mechanism for producing
the primordial black holes was proposed in [6]. Therein,
quark pairs, produced and diluted in the inflationary era, are
confined in the late Universe. Upon horizon reentry, they
collapse and form black holes (BHs) due to the large
amount of energy stored in the flux tubes connecting them.
Given the constant acceleration of quarks sourced by the
string, gravitational waves (GWs) of frequency comparable
to the inverse of the horizon size are produced. Analogous
considerations could be applied to the case of confined
monopoles [7].
Previous calculations of the radiated GW spectrum were

performed by Martin and Vilenkin [8] in the pointlike
approximation, in which the size of monopoles as well as
the width of the string are set to zero. In this limit, they
obtained the following emitted power for a large range of
frequencies

Pn ∼
Λ4

M2
p

1

n
; ð1Þ

n being the frequency number, Mp the planck mass, and Λ
the confining scale. This relation was derived considering a
pair of monopoles connected by a string and is expected to
be valid in the case of confined quarks too. Such sources
could explain the recent hints of stochastic GW background
obtained from pulsar timing arrays [9,10]. Moreover, given
the flatness of the resulting energy density across several
orders of frequency [11], in the future, it will be possible to
cross-check with other gravitational wave detectors sensi-
tive to the lengths shorter than the pulsar timing arrays.
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Another scenario for which our study is relevant is the
Langacker-Pi mechanism [1]. In an attempt to solve the
monopole abundance problem, the theory ensures a tem-
porary (thermal) window in which the Uð1Þ group asso-
ciated to the monopole charge is broken, leading to their
confinement.
At lower temperatures the Uð1Þ symmetry is restored

again. This mechanism can be achieved by adequately
choosing the spectrum and couplings of the theory [12].
The system therefore has a finite window of opportunity for
getting rid of monopoles. If monopoles connected by string
can oscillate for too long, this window of opportunity is
insufficient for solving the monopole problem [13,14].
The goal of the present work is to analyze the dynamics of

a monopole=antimonopole pair in the confined phase in
detail. In order to do so,we considered aSUð2Þ gauge theory
and chose a simple scalar sector capable of achieving the
above-mentioned configuration via spontaneous symmetry
breaking: a scalar field in the adjoint representation, and a
complex scalar doublet. The former breaks (Higgses) the
gauge group SUð2Þ to Uð1Þ, therefore admitting ‘t Hooft-
Polyakov monopoles as a solution [15,16]. The latter breaks
the residualUð1Þ gauge group leading to the confinement of
the associated “magnetic flux.”Our study covers the regime
in which the monopole size and the string width are
comparable. The similarities with confined quarks are
established in the analogous regime.
It turns out that the pointlike limit approximates very

well the part of the classical dynamics in which the
monopole separation is much larger then the characteristic
width of the system. However, beyond this regime we
observe some new features.
Naively, it is expected that a collapsing straight string

performs several oscillations. That is, one would think that
after shrinking, the end points (monopoles) scatter and fly
apart stretching a long string again. In this way, the string
would contract and expand with certain periodicity, as
some sort of a rubber band.
However, we observe that in head-on collision the

outcome is very different. After the first shrinkage the
string never recovers. Instead, the entire energy is converted
into the waves of Higgs and gauge particles. These waves
can also be thought of as large number of overlapping short
strings.
We explain this phenomenon and argue that in analogous

kinematic regime the similar effect takes place in case of
confined quarks. In this particular regime, in both cases, the
outcome can be understood as the result of the entropy
suppression for production of a highly coherent state in a
collision process [17]. Due to this, instead of stretching a
long string, the system prefers to produce many particles
(short strings) which have a much higher entropy. In case of
QCD, the collapse of a long string results into a high
multiplicity of glueballs (closed strings) and mesons (open
strings).

We also point out that inability of monopole and
antimonopole to go through each other, falls in the same
category as the suppression of the passage of a magnetic
monopole through a domain wall, studied in [18]. In that
example, the domain wall provides a support base for
unwinding the monopole, similar to the role of the anti-
monopole in the present case. The recreation of the
monopole state on the other side of the wall is unlikely
due to the insufficiency of the microstate entropy of the
monopole for overcoming the exponential suppression of
the corresponding multiparticle amplitude [17]. This leads
to the “erasure” of monopoles by domain walls. In [18], this
mechanism was used to solve the cosmological monopole
problem in grand unified theories. However, the phenome-
non of erasure is of broader fundamental interest. In
particular, this is indicated by the similarities between
the erasure processes of confined quarks and confined
monopoles discussed in the present paper.
It emerges that in the studied regime, the processes of the

collapse of the confined pairs in both theories are governed
by the same universal effect: the exponential suppression of
production of a high occupation number (coherent) state,
albeit of insufficient entropy [17].
The GW spectrum produced by confined monopoles is

appropriately captured by the pointlike result for scales
larger than the monopole width. As expected, we observe
non-negligible corrections to the power spectrum for scales
comparable to the monopole radius, where the emitted
radiation is boosted, therefore providing corrections to the
GWs emission produced by the confinement dynamics.
We expect that our results have implications for the

collapse of the generic bounded strings such as the string-
theoretic strings bounded by D branes [19,20].
The paper is organized as follows. First we discuss the

system of confined monopoles and study it numerically.
Next, we explain the underlying physics that is shared by
confined quarks and monopoles. We then study emission of
gravitational waves. Finally, we discuss sphalerons and
give outlook and conclusions.

II. SETUP

We will work with a SU(2) gauged field theory that
contains a scalar field in the adjoint representation, φa

(a ¼ 1, 2, 3), a scalar field in the fundamental representa-
tion, ψ , and gauge fields,Wa

μ. The Lagrangian of the system
is given by

L ¼ 1

2
Dμφ

aDμφa þ ðDμψÞ†Dμψ −
1

4
Wa

μνWaμν

− Vðφ;ψÞ; ð2Þ

where summation over repeated SU(2) indices is under-
stood, and the field strengths for the gauge field is
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Wa
μν ¼ ∂μWa

μ − ∂νWa
μ þ gϵabcWb

μWc
ν: ð3Þ

The covariant derivatives are defined as

Dμφ
a ¼ ∂μφ

a þ gϵabcWb
μφ

c; ð4Þ

Dμψ ¼ ∂μψ − ig
σa

2
Wa

μψ ; ð5Þ

and the potential is given by [21]

Vðφ;ψÞ ¼ λ

4
ðφaφa − η2Þ2 þ λ̃

2
ðψ†ψ − v2Þ2 þ cψ†σaψφa:

ð6Þ

As the first stage of symmetry breaking, we give vacuum
expectation value to the adjoint field while keeping ψ ¼ 0.
The system admits ‘t Hooft-Polyakov monopoles [16,22].
As ψ acquires vacuum expectation value, the residual Uð1Þ
gauge symmetry is Higgsed, and the magnetic flux of a
monopole is trapped into a tube which can end on an
antimonopole. In this way, monopoles become confined.
The dynamics of such configuration are the main focus of
this work. The initial configuration utilized in this
work is sketched in Fig. 1. The monopoles are aligned
along the z axis at a distance d. In the figure θ and θ̄ denote
the respective monopole and antimonopole position azi-
muthal angle. In the approximation when the distance d is
much longer than the monopole size the string configura-
tion can be derived as follows. For θ̄ ¼ 0, a monopole
should be recovered ψ ∝ ðcos θ=2; sin θ=2eiϕÞt [23,24],
while for θ ¼ π an antimonopole should be obtained
ψ ∝ ðsin θ̄=2; cos θ̄=2eiϕÞt, ϕ being the polar angle.
Therefore, the string configuration is given by [25–27]

ψ ∝
�

sinðθ=2Þ sinðθ̄=2Þeiγ þ cosðθ=2Þ cosðθ̄=2Þ
sinðθ=2Þ cosðθ̄=2Þeiϕ − cosðθ=2Þ sinðθ̄=2Þeiðϕ−γÞ

�

ð7Þ

with γ accounting for the possibility of twisting the
antimonopole with respect to the monopole. In fact, for
θ ¼ π, ψ corresponds to the above-mentioned antimono-
pole under the shift ϕ → ϕþ γ. Above the configuration,
for θ ¼ θ̄ ¼ 0, ψ ¼ ðv; 0Þt, while below θ ¼ θ̄ ¼ π,
ψ ¼ ðveiγ; 0Þt. Finally between the two monopoles,
θ ¼ π and θ̄ ¼ 0, ψ ∝ ðeiϕ; 0Þt corresponding to the unit
winding string.
Asymptotically the string is proportional to the positive

eigenvector of the third Pauli matrix. Since we choose
c < 0 in the last term of the potential (6), the adjoint field
direction φ̂a of the monopoles can be built asymptotically
as [23,24]

φ̂a ¼ 1

v2
ψ†τaψ ; a ¼ 1; 2; 3; ð8Þ

where τa denotes the three Pauli matrices (see Fig. 2).
In the next section we analyze the monopole=

antimonopole configuration after the first phase transition,
ignoring the doublet. Although this was already explored
by Vachaspati and Saurabh [26,27], it serves as a useful
exercise before turning to the symmetry broken phase.

III. MONOPOLE=ANTIMONOPOLE SYSTEM

The explicit equations of motion can be found in
Appendix. From now, we work in energy units of η−1

and set the gauge coupling g ¼ 1. Thus λ is the parameter in
the theory that controls the mass and size of the monopoles.
For a (spherically symmetric) monopole field configu-

ration, we use the following ansatz:

φa ¼ hðrÞr̂a; Wa
i ¼

ð1 − kðrÞÞ
r

ϵaijr̂j; ð9Þ

where r is the radial coordinate and r̂a ¼ ra=jr⃗j. Under
ansatz (9), the equations of motion become

FIG. 1. A sketch of the initial monopole=antimonopole initial
configuration.

FIG. 2. Example of field configuration φ̂a for twist γ ¼ 0
according to Eq. (14) in the yz plane. The circles denote the
position of the monopole and antimonopole.
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h00ðrÞ þ 2

r
h0ðrÞ ¼ 2

r2
kðrÞ2hðrÞ − λðhðrÞ2 − 1ÞhðrÞ; ð10Þ

k00ðrÞ ¼ 1

r2
ðkðrÞ2 − 1ÞkðrÞ þ hðrÞ2kðrÞ; ð11Þ

with asymptotic conditions

hðrÞ⟶r→0
0; kðrÞ⟶r→0

1; ð12Þ

hðrÞ⟶r→∞
1; kðrÞ⟶r→∞

0: ð13Þ

The above equations were solved numerically in order to
obtain the monopoles profile.
Finally the ansatz for the initial adjoint field configura-

tion is given by

φa ¼ hðrmÞhðr̄mÞφ̂a; ð14Þ

with rm (r̄m) denoting the monopole (antimonopole)
coordinate center and φ̂a is defined in (8). An example
of such configuration is shown in Fig. 2.
The stationary ansatz for the gauge fields considered by

Vachaspati and Saurabh [26,27], follows from the require-
ment that the covariant derivative of the Higgs isovector
vanish at spatial infinity, Dμφ̂jr→∞ ¼ 0. This gives

Wa
μ ¼ −ð1 − kðrmÞÞð1 − kðr̄mÞÞϵabcφ̂b

∂μφ̂
c: ð15Þ

As expected, and verified in [27], the monopole=
antimonopole are attracted to each other due to a
“magnetic” Coulomb-like interaction (for distances much
bigger than the monopole size). Moreover, the potential
energy is also affected by the initial system twist para-
metrized by γ [28]—such a correction, however, is expo-
nentially suppressed at large distances. The verification of
these properties served as a valuable check of the numerics
presented in this work.

IV. MONOPOLE=ANTIMONOPOLE
CONNECTED BY STRINGS

We solve field equations (A1)–(A4), with an initial
configuration of the monopole=antimonopole given by
(14) and (15). Before starting the dynamical evolution a
numerical relaxation of the configuration was performed
(cf. [27]).
Asymptotically φa ¼ ηδa3, implying that ψ , due to the

last interaction term in (6), needs to be proportional to the
positive σ3 eigenvector hjψ ji ∝ ð1; 0Þt, as correctly implied
by ansatz (7).1

Above the pair, ψ ansatz minimizes the interaction
energy. As it crosses the monopole, the configuration

becomes singular at the south pole and its phase is flipped
by 2π. It follows that between the two monopoles, along
the axial axes, ψ ∝ ð0; eiϕÞt, ϕ being the polar angle.
By construction the associated winding number is one.
Finally, as it reaches the antimonopole, the string flips by
2π again and it becomes proportional to ψ ∝ ðeiγ; 0Þt.
While minimization of scalar potential is independent on
the value of γ, the same is not true for both the kinetic terms
and the gauge sector. In fact, γ ≠ 0 generates a repulsive
interaction [27] between the quark/antiquark pair which can
be easily shown to be maximal for γ ¼ π. Unless otherwise
stated, from now on we will focus on the case γ ¼ 0.
As the magnetic field of the pair is confined into tubes,

the monopoles accelerate towards each other, turning
rapidly, relativistic and annihilate. In Fig. 3, snapshots of
the time evolution of the magnetic field norm are shown.
The string formation is observed at early times. For another
visual representation of the collapse dynamics see the
following link (the sphaleron dynamics described below
is also shown there).
Effectively, the system behaves as a type II super-

conductor and the magnetic field is neutralized by the

FIG. 3. Evolution of the magnetic field norm. The picture is
sliced at y ¼ 0 for better readability.1We used c < 0 in our numerical simulations.
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longitudinal massive photon component which is nothing
but the eaten up Goldstone boson. Due to the compactness
of the group, as expected, no residual magnetic field is
observed. The confining string, being related to the break-
ing of theUð1Þ subgroup, carries the same magnetic flux as
the original monopoles and is therefore able to fully
neutralize the magnetic field.
An example of string formation is shown in Fig. 7, where

the initial phase of ψ was randomly chosen at each lattice
point. The emergence of the winding further justifies the
chosen initial conditions mentioned at the beginning of this
section, which is adopted from here onward.
The dynamics is well approximated by the pointlike

study of Martin and Vilenkin [8]. The system they
considered has action

I ¼ −mm

Z
ds1 −mm

Z
ds2 − Λ2

Z
dS; ð16Þ

where the first two terms correspond to the monopole=
antimonopole worldline, while the last term describes
the string world sheet for Nambu action [24]. The equation
of motion obtained by varying action (16) admits a
particular solution of an exactly straight string with the
monopole=antimonopole pair accelerating towards its
center. Their trajectories are given by [8]

xðtÞ ¼ � sgnðtÞ
a

�
γ0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðγ0v0 − ajtjÞ2

q �
; ð17Þ

where t0¼−γ0v0=a, a ¼ Λ2=mm, v0 and γ0 ¼ ð1 − v20Þ−1=2
are, respectively, the maximum velocity and Lorentz factor
of the monopoles, reached at t ¼ 0.
As shown in Fig. 4, the trajectory followed by the centers

of the monopoles (black dots) are nicely fitted by solution
(17) (dashed line). As expected, the monopoles, due to the
constant acceleration, rapidly become relativistic. However,
differently from the pointlike solution, they annihilate
upon reaching approximately zero distance. In contrast,

in solution (17), they simply pass through each other and
oscillate.

V. SIMILARITIES BETWEEN CONFINED
QUARKS AND MONOPOLES

Our numerical analysis shows that after the first direct
collision, the monopole and antimonopole always annihi-
late and decay into waves without further oscillations.
First of all, we would like to notice that, in the Coulomb

phase, the annihilation of monopoles and antimonopoloes
was also observed by Vachaspati in [26]. However, in that
analysis, the scattering takes place at quite mild relativistic
velocities, therefore leading to a rather prolonged over-
lapping between the two cores. In this sense, it is unsur-
prising that the monopoles can easily unwind.
In the present case, the process is ultra-relativistic and

occurs at center-of-mass energies much higher than the
mass of the two monopoles. Therefore, the observed
annihilation might seem counterintuitive, since a priori,
there is no reason for monopole and antimonopole not to
pass through each other, stretching the string of the
opposite polarity.
This phenomenon can be explained by the loss of

coherence or, equivalently, by entropy suppression. The
basic point is that once the monopole and antimonopole
come on top of each other, the system loses coherence due
to the emission of waves. A further re-creation of the
monopole-antimonopole pair connected by a string repre-
sents a process of a transition from a highly energetic
localized source into a coherent state of many soft quanta.
Very general arguments [17] indicate that such a process is
exponentially suppressed unless the microstate entropy of
the coherent state is close to saturating a certain upper
bound set by unitarity.
In the present case, the microstate degeneracy of the

coherent state describing the pair of confined monopoles is
not even close to this value.
Due to this, it is insufficient for matching the phase space

occupied by the waves of Higgs and gauge bosons.
Correspondingly, rather than creating a highly coherent
configuration of monopoles confined by a long string with
a much higher probability, the system chooses to decay into
those waves.
Interestingly, the reasoning of [17] indicates that, in the

analogous regime, a similar behavior is expected for the
quarks confined by a long QCD string.
In order to display the arguments in the language

applicable to both systems, let us consider a SUðNcÞ gauge
theory with a heavy quark transforming in a fundamental
representation. The term “heavy” implies that the mass of
the quark, mq, is higher than the QCD scale, Λ. No light
quarks are assumed to exist in the theory. The spin of the
quark is not important for our analysis.
The scale Λ sets the boundary between the two descrip-

tions. At distances shorter than the QCD length, Λ−1, the

0 2 4 6 8 10 12

�5

0

5

FIG. 4. Time evolution of the position of the cores of the
monopole and antimonopole. The dots are numerical results
while the dashed line is the pointlike solution (17). Here
a ¼ μ=mm ¼ 0.16η.
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viable degrees of freedom are gluons and quarks. At
distances larger than Λ−1, the theory confines and the
physical degrees of freedom are colorless composites such
as glueballs and mesons.
The phenomenon of confinement is often described as a

dual version of the Meissner effect [22,23,29]. The essence
of this description is that the gluon “electric” field gets
trapped in a flux tube when sources are separated by a
distance d ≫ Λ−1. This is analogous to the behavior of the
magnetic field of monopoles in the Uð1Þ-Higgs phase. In
the present discussion, the role of the sources will be played
by a heavy quark-antiquark pair. When separated by a
distance d ≫ Λ−1, the pair is connected by a QCD string.
The thickness of the string is set by the QCD length Λ−1.
The string’s tension is given by the QCD scale, μ ∼ Λ2.
Thus, a quark–antiquark pair connected by a QCD string

is strikingly similar to a monopole–antimonopole con-
nected by a magnetic flux tube. It is a long-standing
question of how much of QCD physics is captured by
this analogy.
In the processes in which the string stays longer than its

thickness, the similarity between the two systems is not
surprising. Naively, this similarity is not expected to extend
to the processes in which the string shrinks to the size of its
thickness, since physics governing the two systems at such
distances are very different:

(i) In the case of confined monopoles, the gauge theory
is in the Higgs phase. The degrees of freedom are
gauge and Higgs bosons. The monopoles, as well as
the string connecting them, represent the solitonic
objects.

(ii) On the other hand, in QCD the quarks are funda-
mental particles rather than solitons. Also, the color
string connecting them is not describable as a
solitonic solution of the classical equations of
motion.

Despite these differences, we can find out that the two
systems do exhibit similarities even in certain processes
controlled by physics below and around the scale Λ−1.
This similarity concerns the observation in our numerical

analysis that in a head-on collision the recreation of a long
string never takes place. This behavior is expected to be
shared by the confined quarks in the similar kinematic
regime. Below we give supporting arguments. Our dis-
cussion will be mostly qualitative. In order to keep close to
the parameters of our numerical analysis, we shall assume
that mq ∼ Λ. Of course, we must assume that quark masses
are somewhat larger than Λ in order for the long string to be
sufficiently stable against the quantum break-up via pair
nucleation. The system then is characterized by the two
scales: Λ and the initial separation of quarks, d.
A useful physical way for understanding the suppression

is via describing the string-formation process in an effective
theory of glueballs and mesons. As said, these represent the
correct physical degrees of freedom at distances larger than

the QCD length. In our parameter regime, the characteristic
size of an unexcited glueball or a meson is Λ−1, and their
masses are ∼Λ.
Qualitatively, one can think of glueballs and mesons as

of closed and open strings of sizes Λ−1. We must however
remember that such strings cannot be described as classical
solitons. For this, it suffices to notice that the Compton
wavelengths of glueballs and mesons are ∼Λ−1. We shall
assume that the initial energy is dominated by the energy of
the string, and that the contributions from the quark masses
are subdominant. That is, d ≫ 1=mq ∼ Λ−1. This implies
that in the moment of the collision the quarks are
ultrarelativistic.
The string that is shrunk to the size of its width Λ−1,

represents a blob of energy ∼dΛ2. The energy per volume
of quark Compton wavelength, is much larger than the
masses of quarks. Correspondingly, quarks are effectively
massless. Of course, the energy density is also much larger
than the masses of unexcited mesons and glueballs.
Correspondingly, the shrunk string is free to produce
mesons and glueballs of high multiplicity, n ∼ dΛ.
Thus, the system has to decide whether to produce a

single long string or to hadronize into n short strings, in the
form of the glueballs and mesons. The outcome is decided
by the entropy of the final state. This entropy, in the case of
a long string, is much less than the entropy of a generic state
with high multiplicity of mesons and glueballs.
This can be understood from the fact that in an effective

theory of glueballs and mesons, a long QCD string
represents a coherent state. For d ≫ Λ−1, such a state
can be viewed as approximately classical. The mean
occupation number of its constituents can be estimated as

n ∼ dΛ: ð18Þ

Their characteristic de Broglie wavelengths are given by
∼d. Now, it is intuitively clear that from all possible
microstates of n mesons and glueballs, only a small
fraction represents a highly coherent state of a long string.
Correspondingly, the phase space for string formation
is tiny.
For a better estimate, let us follow the scattering process

more closely. When the initial string of size d collapses to
the size Λ−1, it can be viewed as a highly excited state of a
meson. In this language a further formation of a long string
represents a transition process from a highly energetic
quantum meson into a coherent state of n soft quanta.
According to [17], the probability of such a transition
process is suppressed by the following universal factor,

σ ≲ e−nþS: ð19Þ

The first term e−n encodes an exponential suppression
characteristic of the transitions from a single particle state
into a state of high occupation number n. The second factor,
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eS, comes from the microstate entropy S of the final n-
particle state. Not surprisingly, the entropy enhances the
transition probability as it counts the number of the
available final states.
In the present case, the final macrostate we are looking

for is a QCD string of length d. For such a string, the
degenerate microstates are given by all possible distinct
orientations. Their number is ∼ðdΛÞ2 and the correspond-
ing microstate entropy is given by,

S ∼ lnðd2Λ2Þ: ð20Þ

Taking into account (18), we obtain the following estimate
for the suppression factor

σ ≲ e−dΛþ2 lnðdΛÞ: ð21Þ

This exponentially small number explains why in head-on
collisions the system prefers to hadronize in a high
multiplicity of short strings, rather than to produce a single
long one.
In other words, due to insufficient entropy, a long QCD

string cannot saturate the transition process from a highly
energetic meson state. As argued in [17], for an unsup-
pressed production of an n-particle coherent state in a
transition process of the type, 1 → n, its microstate entropy
must be S ≃ n. This is clear from Eq. (19). The states with
such a high entropy were referred to as “saturons.” The
expression (20) shows that the entropy of the long string is
much less than the saturation entropy. This is the main
reason for the suppression. Since the production of a long
string is exponentially suppressed, the system fills the
remaining phase space by a hadronization into a high
multiplicity of mesons and glueballs.
Physics that governs dynamics in the similar kinematic

process with monopoles is analogous. After the collapse of
a long string, the system forms a blob with very high energy
density. It is entropically preferred to dissipate this energy
in high multiplicity of Higgs and gauge bosons rather then
in a highly coherent state of monopoles connected by a long
string.
Thus, the suppression of the monopoles-passage through

each other, as well as the inability of self-recreation of a
long QCD string after its fist collapse, represent the
phenomena belonging to the same universality class of
effects taking place in high energy collisions. Their uni-
fying feature is the exponential suppression of production
of coherent states with insufficient microstate entropy [17].
Another phenomenon belonging to the same universality

class is the inability of a monopole to go through a domain
wall, discussed in [18]. In this theory, the domain wall
represents a two-dimensional sheet in which the Higgs field
vanishes and the non-Abelian (grand unification) symmetry
is restored. Due to this, when a monopole meets the wall,
it is no longer subject to the topological obstruction

that keeps the entire magnetic charge in one point.
Correspondingly, the monopole unwinds and the magnetic
charge is spread along the wall.2

In [18] this effect was called the “erasure” of topological
defects. It was argued that, as a bonus, this mechanism can
substantially reduce the cosmological abundance of monop-
oles in grand unified theories. In such theories the phase
transition that forms monopoles, at the same time, forms the
unstable domain walls. The walls sweep away monopoles
and then disappear. A somewhat analogous effect of erasure
was observed in 2þ 1 dimensions in interactions between
skyrmions and domain walls [31], and, more recently,
between vortices and domain walls [32].
Although it is both energetically and topologically

permitted for the monopole (or a skyrmion) to go through
the wall and materialize on the other side, the process is
highly unlikely. This is also confirmed by more recent
numerical analysis of the monopole-wall system [33].
Again, the reason is the loss of coherence and the entropy
suppression. In the example of [18], the domain wall
provides a support for unwinding the magnetic charge in
the same way as the antimonopole does in the present case.
The loss of coherence due to induced waves makes the
recreation of monopole configuration improbable.3

We expect that a similar entropy reasoning can be
applicable also for the scattering of a monopole-antimono-
pole pair in the Coulomb phase both in the regime
considered in [26], as well as at ultrarelativistic energies.
However, in these regimes, there exists no confining string
of comparable width that would contribute to the entropy
count, cf. (21). The entropies that must be confronted are
the entropy of free waves versus the entropy of the
monopole-antimonopole pair. In a mildly relativistic
regime, it is natural that the entropy of a monopole pair
is subdominant, and thereby annihilation is expected with a
high probability. This matches the result of [26]. However,
the regime of the ultrarelativistic Coulomb case requires a
separate study.
From the point of view of Ref. [17], all the considered

cases fall in the universal category of the processes in which

2Of course, within specific grand unified models, there can
exist monopoles that are not affected topologically by a given
domain wall and thereby can pass through without spreading the
magnetic charge [30]. These are not relevant for the present
discussion.

3In this respect, it is interesting to compare the situation with
scattering of solitons in 1þ 1 dimensional theory, which are
known to be able to go through each other [34]. There are at least
two factors that make difference with the monopole case. First is
dimensionality which restricts the phase space for the loss of
coherence. Unlike monopoles, in case of kinks there is no
transverse direction available for emitting the waves. Correspond-
ingly, the precursors that could potentially take away coherence
can only travel in the same directions as kinks and cannot escape
efficiently. The second factor is confinement. It will be interesting
to study the system within our parameter space. We thank
Tanmay Vachaspasti for raising this question.
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the microstate entropy of the final coherent state is not
sufficient for compensating the exponential suppression
(19). As discussed, the same conclusion applies to a long
QCD string viewed as a coherent state in the effective
theory of mesons and glueballs.
This said, one can certainly imagine the parameter

regimes in which the long string can be recreated with
less suppression. For example, let us assume mq ≫ Λ and
the energy of the initial string ¼ 3mq. In such a case, the
quark–antiquark pair moving apart after the first collision,
can stretch a string of the length d ∼mq=Λ2. This is
because the system does not possess the energy required
for creating an additional quark–antiquark pair, necessary
for the string breakup. Of course, even in this regime,
quarks can annihilate into gluons which then will hadron-
ize, without recreating a long string. However, the anni-
hilation cross section is perturbative since the scattering
length is much shorter than Λ−1.
Also, in the case of monopoles, behavior can be very

different in the regime where the monopole size is much
smaller than the string’s width. In this situation, for the
nonzero impact parameter, the monopole and antimonopole
can miss each other, and the string can oscillate, while
shrinking to the size of its width. One may expect that the
efficiency of annihilation requires that the impact parameter
is less than the size of the monopole core. In this case, the
annihilation cross section presumably will be suppressed
by a geometric factor.4 However, the understanding of this
regime requires a separate study.

VI. GRAVITATIONAL WAVES

The radiated power at frequency ωn ¼ 2πn=T (T being
the collapse time),5 per unit solid angle in the direction k,
jkj ¼ ωn can be computed as [35]

P ¼
X
n

Pn ¼
X
n

Z
dΩ

dPn

dΩ
;

dPn

dΩ
¼ Gω2

n

π

�
T�
μνðωn;kÞTμνðωn;kÞ −

1

2
jTμ

μðωn;kÞj2
�
;

ð22Þ

where the energy-momentum tensor in momentum space is
given by

Tμνðωn;kÞ ¼
1

T

Z
T

0

dt eiωnt

Z
d3xe−ik·xTμνðt;xÞ: ð23Þ

The radiated spectrum obtained from our simulation is
shown in Fig. 5, where the dependence of ðPn · nÞ vs n is

shown over logarithmic intervals. We normalised the plot
with respect to P2, corresponding to a wavelength com-
parable to half of the monopoles initial distance. Direct
comparison with the pointlike study of Martin and
Vilenkin [8] shows interesting salient features.
As expected, for low frequencies, n ≲ 7 (red shaded area

in the plot), corresponding to an emitted radiation when the
monopoles are still far from each other, our result is well
approximated by the pointlike study. In fact, a spectrum
behavior Pn ∝ n−1 is observed similar to the pointlike
case [8]. However, the spectrum is different when the
monopoles annihilate. In fact, as shown in Fig. 5 the
monopole annihilation boosts the radiation spectrum for
frequencies comparable to the monopoles and string width.
Even though it was not possible to find an exact scaling of
the spectrum in this region, this behavior is different from
the pointlike case where no enhancement is observed.
The corrections to the spectrum of gravitational waves

coming from the finite widths of the string and monopoles,
can be of observational interest in cases when this length
scale is macroscopic. For example, a string of the tension
μ ¼ ð1016 GeVÞ2 can have a width of order km, provided
the gauge coupling of the theory is g ∼ 10−35. Existence of
such superweak gauge interaction in some hidden sector
of the theory is fully consistent with all known laws of
physics. Of course, the parameters in our simulation could
not be taken with such extreme values. However, the
dynamic of the string can be significantly affected due
to the difference of Higgs and magnetic cores as in the
regimes discussed in [36]. Correspondingly, applications of
our results for such parameter ranges, can only be viewed as
indicative.

VII. SPHALERON

So far we have been focused on the untwisted configu-
ration, i.e., γ ¼ 0. This corresponds to a minimum of the
string energy. While it is obvious from (7) that rotating γ by

1 5 10

0.5
1

5
10

50
100

500

FIG. 5. Angularly integrated power emitted Pn according
to (22). The amplitude was normalized with respect to the lowest
frequency comparable to the initial distance between monopole
and antimonopole, up to frequencies comparable to the monop-
oles size Pn ∝ n−1 (shaded region).

4We thank Alex Vilenkin for commenting.
5For practical purposes we chose T ¼ 2dη−1, d being the

lattice distance between monopoles.
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2π gives back the same configuration, it is straightforward
to see how the energy varies with γ (at fixed distance d) and
find that γ ¼ π is an energy maximum.
The role of the twist γ has a deep topological meaning.

There exists a static bound state configuration known as
“sphaleron”—see, e.g., [37] for a review and [38–40] for
solutions in the electroweak sector. This bounded configu-
ration interpolates between vacua of different Chern-
Simons number. It corresponds to the maximum of the
noncontractible loop interpolating between two such min-
ima and has Chern-Simons number 1=2 [39].
It was argued in [41] that such unstable solutions can be

understood as a monopole and a rotated antimonopole. For
the maximal twist γ ¼ π, the Chern-Simons number of (15)
corresponds to that of a sphaleron as it can be easily
checked.
References [27,42] have numerically verified the behav-

ior of this object in the unconfined case. They observed that
the twist γ ¼ π prevents the monopole-antimonopole anni-
hilation. To our knowledge, the behavior of this configu-
ration in the confined phase has not been studied so far.
In Fig. 6, the position of the two monopoles core centers

is shown as a function of time. As it can be seen, at initial
time the two magnetic cores start to accelerate towards each
other due to the flux tubes connecting them, dragging the
scalar core along and the system becomes relativistic.
The dynamics is analogous to the untwisted one,

cf. Fig. 4, up to the collapse moment. While in the
untwisted case the two monopoles annihilate right away,
in the twisted case they do not. Instead, the magnetic cores
repel each other, slow down and bounce back.
From there on the two monopoles have a bouncing

behavior, and dissipate energy up to settling to a constant
distance where the confining energy is balanced by the
repulsive twist energy. Eventually, the pair fully annihi-
lates. Concomitantly, a deviation from axial symmetry is
observed. Given the axial symmetry of the initial configu-
ration, and the fact that the dynamics should preserve such
symmetry, we believe this to be a numerical artifact.

In Fig. 6, Λ ≃ η was used. For lower value of this
parameter the bouncing sizes, as well as distance of the
bound state were observed to be larger. For a different
initial distance, two-dimensional slices of the dynamics can
be found at the following link.
For γ ≠ π, no bounce is observed, as the system can

always untwist in the direction of a favorable minimum,
thereby annihilating right away.

VIII. CONCLUSION AND OUTLOOK

In this articlewe numerically studied the confinement of a
SUð2Þmonopole=antimonopole pair. Initially the pair is in a
dipolar configuration as in Fig. 2. The confinement is
instantaneously imposed by setting an extra complex dou-
blet field in its Higgs phase, therefore breaking the residual
Uð1Þ and giving mass to the previously massless “photon.”
As shown in Fig. 4, very quickly the monopoles become

relativistic due to confinement. Taking initial random
phases for the confining scalar field, it is possible to see
the dynamical emergence of the tube as shown in Fig. 7.
The GW spectrum is also computed and is compared

with the pointlike study of Martin and Vilenkin [8]. Before
the collision and for the wavelengths longer than the
relevant widths of the system (i.e., monopoles and string
width) we find perfect agreement. Namely, we confirm a
power spectrum Pn ∝ n−1, n denoting the frequency
number. As previously mentioned, this type of spectrum
can lead to a flat density of GWs ΩGW across several orders
of the frequency, therefore making it interesting from a
phenomenological perspective in view of future refinement
of the stochastic GW background hints obtained from
pulsar timing arrays [9,10].
However, in our parameter regime, in which the scales of

string and monopoles are of the same order, we observe the
following differences from the pointlike case.
Firstly, an enhancement of the GW spectrum for wave-

lengths comparable to the monopoles and string size as
shown in Fig. 5, therefore providing finite-width correc-
tions to the pointlike case [8]. This can be of phenomeno-
logical interest for the strings of a macroscopic width.
Notice that such strings can have a high tension provided
the gauge coupling is sufficiently weak and can produce
intense gravitational waves.
Secondly, in our numerical analysis we have observed an

interesting effect. After the first collision, the monopoles
annihilate without any further oscillations. We gave a quali-
tative explanation to this observation in terms of a general
phenomenon of suppressed production of low-entropy coher-
ent states in a collision process [17]. In the present case, the
loss of coherence in the monopole–antimonopole collision,
makes the recreation of a monopole-string system unlikely
due to an insufficient entropy of such a state.
Applying the general reasoning of [17], we argued that in

the similar parameter regime this behavior must be shared
by heavy quarks confined by a long QCD string. There too,
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FIG. 6. Evolution of the magnetic and scalar cores of the
monopole=antimonopole pair for initial twist γ ¼ π.
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after the collapse of a straight long string, instead of
restretching it in an oscillatory mode, the system prefers
to directly decay into high multiplicity of mesons and
glueballs. This similarity extends the connection between
the confined quarks and monopoles to the domain of
processes controlled by the short-distance physics.
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APPENDIX: FIELDS EQUATION

1. Field equations

The field equations can be written as

∂
2
tφ

a ¼ ∇2φa − gϵabc∂iϕbWc
i − gϵabcðDiφÞbWc

i

− λðφbφb − η2Þφa − gϵabcφbΓc − cψ†σaψ ; ðA1Þ

∂
2
tψ

α¼∇2ψα−
g2

4
Wa

i W
a
i ψ

α− i
g
2
ΓaðσaψÞα

− igWa
i ðσa∂iψÞα−cφaσaψα− λ̃ðψ†ψ −v2Þψα; ðA2Þ

∂tWa
0i¼∇2Wa

i þgϵabcWb
j∂jW

c
i −gϵabcWb

jW
c
ij−DiΓa

−gϵabcφbðDiφÞc−
1

2
g2ψ†ψWa

i − igψ†σa∂iψ ; ðA3Þ

∂tΓa ¼ ∂iWa
0i − g2p½∂iðWa

0iÞ þ gϵabcWb
i W

c
0i

þ gϵabcφbðDtφÞc þ igψ†σa∂tψ �; ðA4Þ

where we are using the temporal gauge, Wa
0 ¼ 0, Γa ¼

∂iWa
i are introduced as new variables, and g2p ¼ 1.5 is a

numerical parameter that we can choose to ensure numeri-
cal stability. The equations were evolved with a Cranck-
Nicolson leapfrog algorithm combined with absorbing
boundary conditions [43].
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