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Using the external-field method, i.e., evaluating the effective action Veff for an arbitrarily strong constant
and homogeneous field, we explore nonperturbative properties of QED allowing arbitrary gyromagnetic
ratio g. We find a cusp at g ¼ 2 in (a) The QED b0-renormalization group coefficient, and in the infinite-

wavelength limit in (b) a subclass containing the pseudoscalar P2n ¼ ðE⃗ · B⃗Þ2n of light-light scattering
coefficients. Properties of b0 imply for certain domains of g asymptotic freedom in an Abelian theory.

DOI: 10.1103/PhysRevD.107.076002

I. INTRODUCTION

No known particle has exactly the Dirac value gD ≡ 2
of the gyromagnetic ratio g. Determination of the higher-
order vacuum fluctuation correction to gD provides the
most precise test of perturbative QED (pQED) [1].
However, should g ¼ gD be a singular point, a pQED
perturbative expansion is not appropriate considering that
the pointlike electron (or muon or tauon) to start with have
g ≠ 2 due to modifications introduced by electromagnetic
interactions with particles outside of the QED framework—
these, for example, are EM interactions with quark fluc-
tuations in the vacuum.
The aims of this work are to recognize, using the method

of second-order fermions, a singularity at g ¼ gD; to study
the nature of this singularity; and to lay the foundation for a
theoretical framework allowing exploration of the jgj > gD
domain. We furthermore compare our results with the first-
order formulation and describe nonrenormalizable aspects
of this approach. This work develops the insights presented
in Ref. [2].
As we discuss in Sec. II in more detail there are two

different approaches to study of g ≠ gD ¼ 2. Aside from the
popular first-order formulation there is a long established but
less well-known method involving second-order fermions
[3–5]. Fock first studied such an equation for the case of
particles with g ¼ 2 [6], as a second-order (squared) Dirac
equation. Feynman, Gell-Mann, and Brown subsequently
used it to study weak interactions [7,8]. More recently,
Veltman studied the case of particles with g ≠ 2 [9], and

showed that this path produces a renormalizable field theory,
confirming a possible framework for studying particles with
anomalous moments arising from nonperturbative inter-
actions, such as would be expected for a lepton from outside
of the QED domain. Even more recently, this work has been
continued by Araujo, Napsuciale, and Martinez [10,11],
evaluating the g-dependent beta function and self-energy.
To achieve our goals we consider in this work the exten-

sion to g ≠ 2 based on the renormalizable dimension-4
action [10,11]. We study the vacuum properties in the
presence of external constant and homogeneous electromag-
netic fields, integrating out fluctuations of spin-1=2 particles
with g ≠ gD. The resulting effective potential Veff is a
generalization of the Heisenberg-Euler-Schwinger (HES)
effective action [12–16] to arbitrary value of g. The result is
regular for all jgj ≤ gD [17].
For jgj > gD the HES proper-time effective action

becomes non-integrable. Using the Weisskopf [13]
Landau-level summation method, we obtain an extension
of the effective action Veff to all values jgj > gD, which
shows that g ¼ gD (and other periodic recurrent values) is a
cusp point as a function of g. This extension resolves the
known difficulties in the theoretical framework of g ≠ gD
theories [9]. Moreover, considering the beta-function coef-
ficients, we demonstrate the domains for which asymptotic
freedom arises as a function of g.
In our approach the self-adjointness requirement helps to

select the physical (periodic) Landau eigenenergy spec-
trum. A confirmation of this analytic extension as proposed
here was developed applying ideas seen in the work of
Nikishov [18] and Kim [19] on Bogoliubov coefficient
summation, to obtain Veff with g ≠ gD in Refs. [20,21].
In Sec. III we present the periodic in g Landau-level

summation, using the second-order fermion formulation.
We show how this extends the prior results for effective
action, limited to jgj ≤ gD, Sec. IV, to jgj > gD in Sec. V.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 107, 076002 (2023)

2470-0010=2023=107(7)=076002(12) 076002-1 Published by the American Physical Society

https://orcid.org/0000-0001-8217-1484
https://orcid.org/0000-0001-5884-5047
https://orcid.org/0000-0002-1478-5254
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.107.076002&domain=pdf&date_stamp=2023-04-04
https://doi.org/10.1103/PhysRevD.107.076002
https://doi.org/10.1103/PhysRevD.107.076002
https://doi.org/10.1103/PhysRevD.107.076002
https://doi.org/10.1103/PhysRevD.107.076002
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


We show the cusp arising in the g-dependent β function
in Sec. VI, and the light-light scattering contribution to
effective action in Sec. VII.We compare the second-order to
the first-order fermion formulation of effective action in
Sec. VIII. While the latter is nonrenormalizable, we extract
the g-dependent properties following the regularization
schemes of Dittrich [22] and Ferrer et al. [23]. In summary
we discuss further work to address g − 2 action in localized
fields, and possible observable phenomena stemming from
nonperturbative g − 2 behavior in magnetar field-strength
environments.

II. VARIABLE MAGNETIC MOMENT jgj ≠ gD

A frequently explored way to account for jgj ≠ gD is via a
first-order formulation: to complement the Dirac action with
an incremental Pauli interaction term δμðσ⃗ · B⃗þ iα⃗ · E⃗Þ ¼
δμσαβFαβ=2. E⃗; B⃗ are the electromagnetic fields, Fαβ the
electromagnetic field-strength tensor, σαβ ¼ ði=2Þ½γα; γβ�
with γα the usual Dirac matrices, and σ⃗, and α⃗ ¼ γ5σ⃗
are the Pauli-Dirac matrices. However, such an incremental
Pauli interaction is a dimension-5 operator, ½ψ̄σαβFαβψ �¼
L−5. The coefficient δμ consequently has dimension length,
which in the case of a composite particle such as the proton,
is naturally related to the particle size. Therefore this Dirac-
Pauli (DP) modification of the Dirac equation has been a
popular tool to describe to the lowest order the magnetic-
moment dynamics of a composite particle of finite size, for
example a proton.
As noted, another approach uses second-order fermions

adding the full Pauli spin-interaction term to the Klein-
Gordon action:

L ¼ ψ̄

�
Π2 −m2 −

g
2

eσαβFαβ

2

�
ψ ; ð1Þ

where Πα ¼ i∂α þ eAα. Note that the dimension of the ψ
field is ½ψ � ¼ L−1 and consequently the Pauli interaction is
dimension 4.We refer to the study ofQEDbased onEq. (1) as
g-QED, and the dynamical equation following from Eq. (1)
as the Klein-Gordon-Pauli (KGP) equation. g-QED is the
s ¼ 1=2 case in the study of particles of all spins in the
Poincaré group framework initiated byRarita and Schwinger
[24,25]. For related developments, see references in the
introduction to Ref. [10]. For a first discussion of spectro-
scopic experiments capable of distinguishing between KGP
and DP approaches in the near future, see Ref. [26].
Since there are at least two distinct paths to introducing

g ≠ 2 corrections into relativistic particle dynamics, the
questions are, in what sense these could be equivalent, and
if not, which of the two forms is appropriate for the study of
particle dynamics and/or vacuum structure and under what
conditions:
(1) The DP approach, involving a dimension-5 operator,

requires new counterterms in each order, rendering it

nonrenormalizable [9]. This, in our opinion, limits
the DP approach to situations in which the physical
particle properties are known and vacuum fluctua-
tions need not be considered. Even so, we see in
literature the DP method applied to both vacuum
fluctuation and the effective action evaluation in
QED; see for example Refs. [22,23,27,28].

(2) In g-QED the magnetic moment remains pointlike;
g ≠ gD does not require a higher-dimensioned oper-
ator. Therefore the quantum-field theory requires a
finite number of counterterms and is renormaliz-
able [10,11]; vacuum fluctuations can be considered
in any perturbative order.

(3) It should be remembered that in g-QED an expansion
around g ¼ 2 requires additional consideration since
the natural expansion occurs around g ¼ 0. Properties
of the KGP-originating nonperturbative effective
action were considered for general spin in Ref. [29].
However, this work did not recognize for spin-1=2 the
restricted to −2 ≤ g ≤ 2 validity domain of the per-
turbative approach, which arises due to convergence
properties of the proper-time Schwinger integral.

(4) Another study of quantum-field amplitudes with
an anomalous moment [30] also arrives at a
second-order effective theory, but for a reduced
two-component spinor. Given the derivation and
properties of their effective theory, we believe that
an exact relation between KGP and DP approaches
can at best arise in an infinite-order resummation in
some specific applications.

Veltman has considered reduction of the number of
dynamical components working in a two-component for-
mulation. However, there are unresolved challenges [9] in
particular related to self-adjointness of the resulting spec-
trum and thus conservation of probability in temporal
evolution. By individually characterizing states comprising
the physical KGP Landau eigenenergy spectrum, we will
present another resolution of this problem that works in the
presence of externally applied fields.
Considering that Eq. (1) is second order in time and has

four components, the number of dynamical degrees of
freedom present in Eq. (1) is 8. That is, there are twice
asmany degrees of freedomas in usualDirac theory. For the
case g ¼ 2, Eq. (1) can be presented as the square of the
operator γ5D;D¼γαði∂αþeAαÞ−m and γ5¼iγ0γ1γ2γ3;γ25¼
1 is the fifth Diracmatrix. Thismeans that for g ¼ 2, Eq. (1)
comprises exact duplication of the Dirac degrees of free-
dom, the second set with opposite sign of mass m, which
means with opposite association of the sign between
magnetic moment and electric charge; see paragraphs
below: for g ≠ 2 onemust search for a projection restricting
the full Hilbert space to the physical states.
Considering these features of the two formulations, for

the purpose of deriving a renormalizable g ≠ 2 extension of
the QED effective action, the second-order KGP expression
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is theoretically favored. We begin with the KGP formu-
lation and then present the DP case for comparison.

III. EIGENVALUE-SUM PERIODICITY
AS A FUNCTION OF g

We seek to identify the physics content of the 8 degrees
of freedom and to separate the Hilbert space into two equal-
size parts that each individually comprises a complete set of
states at a fixed given value of g. To do so, we consider the
Landau-orbit spectrum of the operator in brackets in Eq. (1)
in the presence of a constant magnetic field B⃗:

En ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

z þQjeB⃗j½ð2nþ 1Þ ∓ g=2�
q

;

Q ¼ �1; ð2Þ

where pz is the one-dimensional continuous momentum
eigenvalue and n is the Landau-orbit quantum number.
We have made explicit the presence of 8 eigenvalues for

each value of B⃗, corresponding to all different possible
choices of the three �-sign sets. There are the usual two
roots in Eq. (2), a known feature of relativistic dynamics
also seen in the Landau spectrum of the Dirac equation
where the negative-energy states become positive-energy
antiparticle “hole” states. There is a new spectrum dupli-
cation related to two possible values ofQ. This factor arises
from two possible particle-spin projections onto magnetic
field, corresponding to the spin degeneracy.
To see how Q can be restricted, let us consider Eq. (2) in

the form

K ¼ E2
n −m2 − p2

z

jeB⃗j ¼ Q½ð2nþ 1Þ ∓ g=2�; Q ¼ �1:

ð3Þ

The quantity K is shown in the top portion of Fig. 1 as a
function of g. We see that between −2 ≤ g ≤ 2, there is an
exact duplication of the spectrum corresponding to Q ¼ 1
and Q ¼ −1. These are two sectors of the Hilbert space
with the same physical content. The “squared” Dirac
operator produces two eigenstate-space copies which can
be separated in particular applications. Without restriction
of generality the Q ¼ −1 eigenvalues can be therefore
omitted. Thus for −2 ≤ g ≤ 2 the effective action is
obtained by the usual procedure, and the results have
already been presented [17].
For jgj > 2, new and nonperturbative physics content

arises for external fields of any strength, including arbitrar-
ily weak. First we note that taking Eq. (2) expression at face
value, naively some eigenstates could have E2 < m2, which
for strong magnetic fields jeB⃗j ≫ m2 acquire complex
eigenvalues. In a magnetic environment, such states cannot

be admitted in the spectrum. This situation differs from the
m2 þ p2

z → 0 limit, in which states having K < 0 signal
instabilities of the conventional vacuum state [31,32].
To compute the effective action we must define which

states contribute to the physical spectral sum. The first step
is to accomplish (like for the case jgj ≤ 2) separation of the
Hilbert space into two sectors. We divide the states
according to whether K ≥ 0 or K ≤ 0 and denote the
respective sectors K�. The limit K ¼ 0 where two states
coincide occurs at g ¼ 2, since the KGP operator can be
written as the exact square of the Dirac operator. This
situation recurs with the shift of g by 4k; k ∈ Z. There is no
change in the number of states in each of the Hilbert space
sectors K� as an equal number of single-particle states is
exchanged between both sectors.
The principle we use to determine which states enter the

spectral sum is that there should be no states with complex
eigenvalues in a constant magnetic field. In the notation just
introduced, we require K ≥ 0 and the Kþ sector be chosen
as representing the physical spectrum. This is an extension
from the regular case jgj ≤ 2, where the usual procedure
sums over the Q ¼ þ1 states and is equivalent to summing
over the Kþ- state space. As K ≥ 0 implies E2 ≥ m2, the
physics is a continuous extension of the case g ¼ 2, for
which it is proved that E2 ≥ m2 for arbitrary magnetic
fields, i.e., there are no bound states [33].
Looking far outside the principal domain −2 ≤ g ≤ 2,

we see that relativistic Landau eigenstates cross between
K� at each gk ¼ 2þ 4k; k ∈ Z. As the graphic represen-
tation top frame of Fig. 1 shows, for each of the Hilbert
space sectorsK� we have periodicity of the Landau levels a

FIG. 1. Top: Squared eigenvalues [Eq. (2)] of KGP in magnetic
field; the positive and negative-valued domains separated by the
solid line are for Q ¼ þ1 and Q ¼ −1, respectively. Bottom:
coefficient functions: f1;0ðgÞ as defined in Eq. (11) and f0;2 and
f2;0 as defined in Eq. (12b) and Eq. (12c). Two full periods are
shown. The asymptotically free domains of g where functions fi;j
change sign are shaded.

STUDY OF QED SINGULAR PROPERTIES FOR VARIABLE … PHYS. REV. D 107, 076002 (2023)

076002-3



function of g. Therefore, the sum
P

n En overKþ leading to
the real part of VeffðB⃗2Þ is a periodic function of g, a result
we will find explicitly. This periodicity does not apply to
individual Landau eigenvalues as is seen in Eq. (2). In
computation of vacuum fluctuations the truncation of the
Landau eigenstate n sum to any finite value breaks the
periodicity as well.
The choice of Kþ as the physical-state space has clear

advantages and resolves the challenges encountered by
Veltman [9]: In addition to maintaining self-adjointness
of the KGP system, it makes the quantum-field theories
based on semispaces K� each individually unitary,
because the number of states is conserved in transiting
through the singular points, e.g., at jgj ¼ 2, and for jgj > 2

we omit the nonphysical solutions. Moreover, our pro-
posal resolves the spectrum and by extension its summa-
tion comprising the effective action Veff for all g including
the domain jgj > 2. Had we separated the sectors along the
sign ofQ, the contents of the theory would be different for
jgj > 2 and unitarity would be violated since the “wrong”
levels would be included in the physical half-space. An
independent confirmation of the choices made is accom-
plished via the Bogoliubov coefficient summation
method, a point we return to in Sec. V B.

IV. EFFECTIVE ACTION FOR jgj ≤ 2

We briefly summarize results for jgj ≤ 2 [17], as these
are needed to understand the novel case of jgj > 2. For
constant fields the effective action is manifestly covariant
and can be written as a function of the Lorentz-invariant
fieldlike quantities a; b:

b2 − a2 ¼ B⃗2 − E⃗2 ¼ 1

2
FαβFαβ ≡ 2S;

ðabÞ2 ¼ ðE⃗ · B⃗Þ2 ¼
�
1

8
FαβεαβκλFκλ

�
2 ≡ P2; ð4Þ

where �a are electric-fieldlike and �ib are the magnetic-
fieldlike eigenvalues of Fαβ. a is considered electric-like
because a → jE⃗j on taking the limit b → 0, and similarly
b → jB⃗j in the limit a → 0.
The Schwinger-Fock proper-time method [14] to evalu-

ate the effective action exploits properties of the “squared”
Dirac equation, and thus it can be used to study the arbitrary
value of g. The effective action can be written in the form

Veff ¼
1

8π2

Z
∞

0

du
u3

e−iðm2−iϵÞuF
�
eau; ebu;

g
2

�
: ð5Þ

For g ¼ 0, 2, the proper-time integrand Fðeau; ebu; gÞ was
reviewed in Ref. [16]. The generalization throughout
the interval jgj ≤ 2 is accomplished by inserting into
Schwinger’s Eq. (2.33) in the last term a cofactor g=2
leading to [17].

F
�
x;y;

g
2

�
¼ x coshðg

2
xÞ

sinh x

y cosðg
2
yÞ

sin y
− 1;

				g2
				≤ 1: ð6Þ

The subtraction−1 in Eq. (6) removes the field-independent
constant. The logarithmically divergent charge renormali-
zation term is isolated and discussed below. Note that
Eq. (5) would be divergent for jgj > 2 if Eq. (6) were to
be used in this domain.

V. EFFECTIVE ACTION FOR jgj > 2

A. Evaluation based on periodic Landau level spectrum

To extend Eq. (6) to jgj > 2, we consider in more detail
the eigenvalue summation method we introduced above,
following the work of Heisenberg and Euler [12] and
Weisskopf [13]. The mathematical tool used was the Euler
summation formula, leading to the Bernoulli functions
B2kðxÞ and Bernoulli numbers B2k ≡ B2kð0Þ. The sum of
the Landau energies [Eq. (2)] involves the formP

n fðxþ nÞ. Leonhard Euler developed the technique
for such sums, which manifest an integer shift symmetry
in the variable x → xþ n0 [34,35]. Due to this shift
symmetry, the Bernoulli functions B2kðxÞ that arise in
the context of Euler summation of Landau energies En,
Eq. (2), are periodic, given by the Fourier series [36]

B̃2kðtÞ ¼ ð−1Þk−1 ð2kÞ!
22k−1

X∞
n¼1

cosð2πntÞ
ðnπÞ2k ; ð7Þ

(here only needed for an even value of index, 2k). In the
unit interval, 0 ≤ t ≤ 1, the periodic Bernoulli functions
are equal to the Bernoulli polynomials, e.g., B̃2ðtÞ ¼
B2ðtÞ ¼ t2 − tþ 1=6; 0 ≤ t ≤ 1. Outside the unit interval,
the periodic Bernoulli functions [Eq. (7)] B̃2kðtÞ repeat the
polynomials’ behavior on 0 ≤ t ≤ 1 in each subsequent
period.
Dividing the Landau energies by 2jeB⃗j to make the

coefficient of n unity, we see that t → g=4þ 1=2 and hence
we recognize that the periodic Bernoulli functions with
argument t ¼ g=4þ 1=2 appear in the effective action,
arising from the summation of eigenvalues. The explicit
representation of the argument of Eq. (5) in terms of
Bernoulli functions is arrived at employing the analytic
transformation of the integrand of Eq. (5) [37,38]:
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F
�
x; y;

g
2

�
¼ ðx2 − y2Þ2

X∞
n¼1

cos nπðg
2
þ 1Þ

ðnπÞ2 þ 2
X∞
n¼1

ð−1Þn cosðg
2
nπÞ

n2π2

� y4

y2 − n2π2
−

x4

x2 þ n2π2

�

þ 4x2y2
X∞
n;l¼1

ð−1Þnþl cosðg
2
nπÞ cosðg

2
lπÞ

ðy2 − n2π2Þðx2 þ l2π2Þ : ð8Þ

In Eq. (8) to assure the necessary periodicity we have
introduced, in accordance with Eq. (7), a series of Bernoulli
functions with t ¼ g=4þ 1=2. Equation (8) agrees exactly
with the known expansion [38] in the domain of Eq. (6)
jgj ≤ 2 and provides an analytical continuation into the
domain jgj > 2 having the periodicity property of the
effective action identified in study of the full set of
eigenvalues. Even after the removal of the charge renorm-
alization subtraction term [first term on rhs of Eq. (8)] the
finite remainder of the effective action is manifestly
periodic in g.
Upon performing the proper-time integral [Eq. (5)], each

term in Eq. (8) produces a well-defined result for all g. The
form Eq. (8) is thus an analytic and convergent extension to
jgj > 2 developed using the Euler summation of the
eigenvalues [Eq. (2)]. We note that Eq. (8) extends the
pure magnetic action based on Weisskopf summation case
to arbitrary EM fields via analytical continuation. An
independent verification of this continuation was obtained
for pure electric fields [20], and is addressed for field
configurations with nonvanishing pseudoscalar ðE⃗ · B⃗Þ in
Ref. [21]. This then completes the proof that the here
proposed analytical continuation is unique.

B. Validation with Bogoliubov coefficient summation

We check validity of the Landau-level summation with
an alternate derivation method, based on the Bogoliubov
coefficient summation to compute the imaginary part of
effective action as a function of g, for a pure electric Sauter
potential step. We briefly summarize the result presented
in [20], which evaluates the sum of the tunneling proba-
bilities for electron-positron pairs to materialize.
Since the asymptotic states of the KGP wave equation in

a localized potential step are well defined, we can compute
the Bogoliubov coefficient as the ratio μ ¼ A=B between
the incident A and reflection coefficients B. Summing the
absolute value of the coefficients gives, integrating over
states capable of tunneling and summing spin projections,
the imaginary part of effective action,

Im½Veff � ¼ −
Z

dEdp2⊥
ð2πÞ3

X
�

ln jμj: ð9Þ

Since the summation Eq. (9) spans a finite range of
continuous states determined by the height of the Sauter

step, all the states comprise the physical spectrum. This
bypasses the need for identification of the physical spec-
trum as in Sec. III, where the infinitely spanning constant-
field idealization necessitates self-adjoint extension. The
summation Eq. (9) produces the same periodic spectrum
where the resulting effective action repeats with each shift
in g by 4k; k ∈ Z, Fig. 1 of [20]. The electric- and
magnetic-dominated cases can thus be transformed from
one to another via E ↔ iB.

VI. NONPERTURBATIVE IN g
RENORMALIZATION GROUP β FUNCTION

The first nonconstant term on the right hand side of
Eq. (8) proportional to a2 − b2 isolates the logarithmically
divergent one-loop OðαÞ Veff subtraction required for
charge renormalization. The coefficient of this term is
related to the β-function coefficient b0 as is discussed, e.g.,
in section V. 1 in Ref. [16].
We now evaluate the running of the coupling constant α

within the g-QED loop expansion of the β-renormalization
function:

β≡ μ
∂α

∂μ
; βðαÞ ¼ −

b0
2π

α2 þ b1
8π2

α3 þ…: ð10Þ

The first sum in Eq. (8), for g ¼ 2,
P∞

n¼1 1=ðπnÞ2 ¼ 1=6
and implies the value of b0 ¼ −4=3, where factor 4
indicates the 4 components of spin-1=2 particle. For
arbitrary g, b0ðgÞ is obtained using Eq. (7) to identify this
sum as B̃2ðg=4þ 1=2Þ. The character of this function is
manifested by reconnecting periodic domains of the famil-
iar Bernoulli polynomial B2ðtÞ ¼ t2 − tþ 1=6 and the
resulting b0ðgÞ coefficient is given in each domain
g ∈ ½gk−1; gk�:

b0 ¼ −
4

3
f1;0ðgÞ ¼ −

4

3

�
3

8
ðg − 4kÞ2 − 1

2

�
; ð11Þ

where f1;0ðgÞ is shown in the bottom frame of Fig. 1. The
subscripts of fi;j indicate the powers of the Lorentz
invariants in polynomial expansion fi;jSiPj in Eq. (8).
We see in Fig. 1 that as a function of g, the Dirac value
gD ¼ �2 is an upper-cusp point with f1;0ðgÞ ≤ f1;0ð2Þ ¼ 1.
For clarity, two periods are shown in Fig. 1.
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Note that our result arises in g-QED, applying a non-
perturbative method in g to one-loop expansion. This
approach is necessary in order to obtain the behavior of
the β function for jgj > 2. At g ¼ �2 we find the
unexpected cusp. This feature is missing in perturbative
consideration of βðgÞ at one-loop level which produces the
same functional dependence on g as seen in Eq. (11) setting
k ¼ 0. As our study shows, a perturbative expansion
around g ¼ 0 in g-QED has a finite convergence interval
jgj ≤ 2. This was also seen in the Schwinger proper-time
integral of the effective action.
The following properties of the renormalization group

coefficient b0ðgÞ shown in Fig. 1 are noteworthy:
(1) The pQED expands around g ¼ �2, which points

are identified as being nonanalytic at gD ¼ 2 in the
g-QED framework.

(2) For any value of g not at the cusp gD ¼ 2, the
magnitude jb0j compared to its value at g ¼ 2

decreases, and thus the speed of “running” de-
creases. Considering that the coefficient of the
magnetic spin term in Eq. (1) is dimensionless, no
new scale appears in association with g.

(3) The presence of the cusp in b0 implies that the
running coupling of g-QED comprises the cusp
as well.

(4) A cross-check and confirmation of our result for
b0ðgÞ is obtained in perturbative domain considering
the limit g → 0, where b0ðg → 0Þ differs as expected
in sign and the number of degrees of freedom from
the known behavior of scalar particle “QED.”

(5) In the principal domain jgj ≤ 2, the functional
dependence on g we find agrees with the result
Eqs. (53)–(57) seen in Ref. [11]. Specifically, the
leading term for large q2 of the vacuum polarization
function, evaluated within the framework of g-QED,
is −αb0ðgÞ=ð2πÞ lnð−q2=m2Þ, seen explicitly in
Eq. (55) of Ref. [11].

(6) As the above limit shows, for a range of appropriate
gyromagnetic moment values g (including g ¼ 0),
b0ðgÞ > 0 is possible. This produces asymptotic
freedom behavior for Abelian fermions. The switch
between the infrared stable and the asymptotically
free behavior occurs in the principal g domain twice,
at g ¼ �2=

ffiffiffi
3

p ¼ �1.155 and continues periodi-
cally, e.g., for g ¼ 4 − 2=

ffiffiffi
3

p ¼ 2.845. This mecha-
nism of asymptotic freedom generation by g-driven
sign reversal is implicit in Eq. (56) of Ref. [11] (valid
in principal domain jgj ≤ 2), but the new mechanism
allowing Abelian confinement has not been recog-
nized there. The values of g where the sign of the
functions fi;j changes is indicated in Fig. 1, up to
periodic recurrence, agreeing with the periodic result
based on Bogoliubov coefficient summation re-
ported in [20].

VII. LIGHT-LIGHT SCATTERING
AS FUNCTION OF g

We find that the cusp at jgj ¼ 2 reappears in the
Heisenberg-Euler action, in the light-by-light scattering.
For the general case of both electric and magnetic fields
present, using Eq. (8) we find up to fourth order in the
fields:

Veff ≃
α

2π

e2

45m4
ð4f2;0S2 þ 7f0;2P2Þ; ð12aÞ

f2;0ðgÞ ¼ −30B̃4ðg=4þ 1=2Þ

¼ −
15ðg − 4kÞ4

128
þ 15ðg − 4kÞ2

16
−
7

8
; ð12bÞ

f0;2ðgÞ ¼ −
60

7

�
B̃4

�
g
4
þ 1

2

�
− 3B̃2

2

�
g
4
þ 1

2

��

¼ 15ðg − 4kÞ4
224

−
1

14
; ð12cÞ

where both f2;0 and f0;2 are normalized to g ¼ 2 values and
presented in Fig. 1. f0;2 includes a product of two Bernoulli
functions with cusp and so has a steeper cusp. In general,
our finding is that all fi;jðgÞ for j > 0 have cusps at g ¼ 2,
whereas all fi;0ðgÞ; i > 1 are continuous and differentiable
at g ¼ 2, being proportional to higher-order > 2 Bernoulli
functions that have vanishing derivatives at g ¼ 2. Said in
plain English: only coefficients of terms involving powers
of the pseudoscalar field-invariant P2 ¼ ðE⃗ · B⃗Þ2 display
cusps at g ¼ 2.

VIII. COMPARING THE KLEIN-GORDON-PAULI
AND DIRAC-PAULI APPROACHES

Thus far we have discussed the effective action generated
in the KGP approach. We now briefly review the DP
expression and past efforts to use it to evaluate effective
action. The DP equation complements the Dirac equation
with the Pauli term describing the anomalous magnetic
moment interaction:

LDP ¼ ψ̄

�
γμΠμ −m −

�
g
2
− 1

�
e
2m

σμνFμν

2

�
ψ : ð13Þ

This form is only equal to the KGP expression [Eq. (1)]
when g ¼ 2. While solving Eq. (13) is significantly more
challenging than it is for the (g ¼ 2) Dirac equation, there
is a class of EM field configurations for which exact
DP solutions exist. Notable solutions include the case of
electrons in a constant magnetic field [39], and more
recently charge-neutral particles in a Sauter pulsed mag-
netic field [28].
Below we review and develop further prior efforts to

evaluate the effective action VDP
eff in the DP context showing
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the emergence of novel properties similar to those we found
in the KGP g ≠ 2 case. The main challenge is how to
handle the nonrenormalizability [9]:

(i) Dittrich derived the DP based VDP
eff action using the

Schwinger proper-time method [22]. This work
squares the DP equation and omits a certain cross
term, which reproduces the KGP equation but with a
modified mass term, and obtains a renormalizable
effective action.

(ii) Ferrer et. al. [23] several decades later derived the
DP VDP

eff action using the Weisskopf summation
method [13]. This work takes a different approach
using the exact DP wave equation, and truncating
the anomalous contributions in the Landau-level
sum to obtain a finite result for VDP

eff . To our
knowledge this is the only evaluation of the real
part of VDP

eff based on exact solutions to the DP wave
equation.

(iii) We extend the work of Ferrer to higher-order Landau
levels and show explicitly how the DP action is
linearly divergent when summing Landau-level
corrections to all orders. Despite this nonrenorma-
lizablility of fully summed DP-based action, the
truncation by Ferrer allows for a finite action result
which we study as a function of g.

A. Dittrich approach to the Dirac-Pauli action

Dittrich, using the Schwinger proper-time method,
derived the DP-based Veff action [22]. However, Dittrich
formed an incomplete square of the DP operator, by
omitting a cross term between the derivative and the
Pauli operators. Had this term been kept, it would not be
possible to formulate a renormalizable expression with the
DP proper-time evolution operator. Nonetheless this method
may still be a viable approximation allowing for regulari-
zation of the otherwise nonrenormalizable action.
We trace the steps of Dittrich’s work [22]: inserting the

negative mass counterpart,

ψ ¼
�
γμΠμ þmþ

�
g
2
− 1

�
e
2m

σμνFμν

2

�
Ψ; ð14Þ

gives the second-order equation

�
Π2 − m̃2 −

g
2

e
2
σμνFμν

þ
�
g
2
− 1

�
e
4m

ΠβFμν

h
γβ; σμν

i�
Ψ ¼ 0; ð15Þ

where the squared Pauli term σF modifies the mass as [22]

m̃2 ¼ m2 −
�
g
2
− 1

�
2 e2

4m2
ðE⃗2 − B⃗2Þ: ð16Þ

There is also the commutator in Eq. (15): Using the relation
½γβ; σμν� ¼ 2iðηβμγν − ηβνγμÞ, where the Minkowski metric
ημν ¼ diagð1;−1;−1;−1Þ, this term can be written as

ΠβFμν

h
γβ; σμν

i
¼ 4iFμνΠμγν; ð17Þ

responsible for mixing between the Landau quantum
numbers and continuum momentum dependence [26,39].
To evaluate the effective action, Dittrich omitted the

commutator term Eq. (17) from Eq. (15). A reason for
omitting this term was not given in [22]. However, the
outcome is a viable approximate form of the “squared” DP
wave equation:

ðHDP −m2ÞΨ ¼ 0; ð18Þ

where

HDP −m2 ¼ Π2 −
g
2

e
2
σμνFμν − m̃2: ð19Þ

By using Eq. (19), Dittrich was able to employ the proper-
time approach and obtain a renormalizable action.
Applying HDP from Eq. (19) as the proper-time evolu-

tion operator, the resulting effective action

VDP
eff ¼

i
2

Z
∞

0

du
u
e−im

2utr hxje−iHDPujxi

¼ 1

32π2

Z
∞

0

du
u3

e−im̃
2u e

2u2ab treiuðg=2ÞeσF=2

sinhðeauÞ sinðebuÞ ; ð20Þ

where VDP
eff denotes the DP approach to g-dependent action.

Carrying out the trace in Eq. (20) gives the renormalizable
expression

VDP
eff ¼

1

8π2

Z
∞

0

du
u3

e−iðm̃2−iϵÞuF
�
eau; ebu;

g
2

�
; ð21Þ

where Fðeau; ebu; g
2
Þ in Eq. (21) is the same as in the KGP

case [Eq. (6)]. While Dittrich originally evaluated the
action for pure magnetic fields, this proper-time approach
leading to Eq. (21) allows for both E and B fields to be
nonzero. Setting a → 0 (E → 0) we recover the pure
magnetic result, Eq. (2.9) of [22].
Akin to the KGP proper-time approach discussed in

Sec. IV, here Eq. (21) follows from application of g ≠ 2
directly into the second-order proper-time evolution oper-
ator as a correction to the Schwinger (g ¼ 2) proper-time
Hamiltonian. This approach is not guaranteed to be con-
sistent for all g, as we have seen in the KGP result in
Sec. IV, which is valid only for jgj ≤ 2.
Comparing Eq. (21) to the KGP-based action Eq. (5), the

only difference is that mass m̃2 is used here in place of m2

in the KGP case. Since this difference in mass [Eq. (16)]
is analytic in E, B, and g, the (nonanalytical) singular
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properties remain, and the Dittrich effective action inherits
the singular in g structure, with a cusp at g ¼ 2. Moreover,
setting jE⃗j ¼ jB⃗j, the mass m̃2 ¼ m2 according to Eq. (16),
and the effective action Eq. (21) is identical to Eq. (5), valid
in the domain jgj ≤ 2. Consequently our evaluation of
effective action for g > 2 in Sec. V via the periodic Landau
eigenenergy spectrum (or the independently obtained
Bogoliubov summation in [20]) resolves both the KGP
and Dittrich’s second-order DP action in the previously
inaccessible domain jgj > 2.

B. Ferrer evaluation of the Dirac-Pauli action

We revisit here the DP action work by Ferrer et al. [23].
Their one-loop self-energy correction to the electron propa-
gator builds on the work of Ritus [40]. Two of their key
results are evaluation of the self-energy in the strong
magnetic-field limit, and implementation of field-dependent
g − 2 corrections into the DP-based Weisskopf Landau-
level summation as corrections to the HES action.
We recall the zero-field limit of the electron g factor to

one-loop order:

lim
jeB⃗j=m2→0

�
g
2
− 1

�
¼ α

2π
: ð22Þ

When strong magnetic fields are switched on, g becomes
dependent on both B and the Landau level n: g → gnðBÞ.
For the first Landau level (n ¼ 1) Eq. (15) of [23] reads

lim
jeB⃗j=m2→∞

�
g1
2
− 1

�
¼ α

2π

m2

2jeB⃗j ln
2

�
m2

2jeB⃗j

�
: ð23Þ

For n > 1 states see Eq. (16) of [23]. We note that Ferrer
et al. denote the anomaly using a symbol T such
that gnðBÞ=2 − 1≡ 2m

jeB⃗j T nðBÞ.
The anomalous moment correction is inserted in the DP

Landau-orbit spectrum according to Eq. (23) of [23]:

EDP
n ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jeB⃗jnþm2

q
� jeB⃗j

2m

�
gn
2
− 1

��
2

s
;

n ≥ 1; ð24Þ

compare to the KGP spectrum [Eq. (2)]. Equation (24),
derived in [39] (see also section 34 of [41]), is the exact
eigenenergy obtained by solving the DP wave equation.
Comparing the DP wave equation Eq. (2) of [39] to Eq. (19)
in Sec. VIII A, we see that the term omitted by Dittrich is
kept here in derivation of Eq. (24). Retaining this term leads
to the cross term in the parenthesis in Eq. (24), responsible
for further mixing between quantum number n and g − 2.
To evaluate the DP effective action, Ferrer et al. apply

the Weisskopf Landau-level summation to the spectrum

Eq. (24). The full summation over Landau levels n, and
�-spin projections defines the effective action

VDP
eff ¼

jeB⃗j
8π2

Z
∞

−∞
dpz

X
�

X∞
n¼0

jEDP
n j: ð25Þ

However, Ferrer et al. approach truncates the anomalous
magnetic moment-dependent contributions to the Landau
levels by introducing an upper limit as shown below:

VDP
eff ðnmaxÞ ¼

jeB⃗j
8π2

Z
∞

−∞
dpz


X
�

X∞
n¼0

jEDP
n jgn¼2

þ
X
�

Xnmax

n0¼1

ðjEDP
n0 j − jEDP

n0 jgn0¼2Þ
�
: ð26Þ

The motivation for this truncation is that when the field-
dependent self-energy corrections to the anomalous
gnðBÞ − 2 contributions are taken into account, the leading
Landau-level (nmax ¼ 1) contribution dominates, i.e.,
jg1ðBÞ − 2j ≫ jg2ðBÞ − 2j, Fig. 1 of [23].
To assess the leading nmax ¼ 1 contribution to VDP

eff ,
Ferrer et al. obtain a finite expression with the integration

Z
Λ

−Λ
dpz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ x2

q
¼ Λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þ x2

p
þ x2

2
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þ x2

p
þΛffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Λ2 þ x2
p

−Λ
;

ð27Þ

which one can expand for x=Λ → 0 to find

SgðΛÞ
Z

Λ

−Λ
dpz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ x2

q
¼ x2

2

�
1þ ln

m2

x2

�
þ Λ2

þ x2

2
ln

4Λ2

m2
: ð28Þ

We note that the cutoff Λ defines the usual quadratically
divergent zero-point energy that is removed by subtraction.
Furthermore, Λ regularizes the logarithmic divergence.
However, even if each individual anomalous moment
Landau-level correction in Eq. (26) is only logarithmically
divergent, there is no assurance that the lowest Landau-
level anomaly contributions render an accurate result, nor
that a worse divergence is hidden in the Landau-level
summation. An indication that such challenging contribu-
tions arise in the DP action lies in the weak-field expansion
of Eq. (26), which contains odd in B-field contributions.

C. Extending DP action of Ferrer et al.

Ferrer et al. performing theWeisskopf summation of DP-
Landau eigenenergies as a function of the g − 2 anomaly
present the DP-based effective action [Eq. (32)] where any
value of g and thus anomaly a ¼ g − 2 can be inserted. The
determination of the relevant value of a is another
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mathematically distinct procedure. Instead, we can explore
the form of effective action Eq. (32) by treating g as a
parameter.
A separation of higher-order corrections into those

associated with magnetic-moment anomaly dependence
of VDP

eff , and the value of the anomaly is not visible in
the two-loop HES proper-time approach of Ritus [42]. This
is so since the Landau-level structure is not visible in the
proper-time evolution operator, and thus the dominant
(Landau-level-dependent) anomalous moment correction
is not recognized.
In order to explore the renormalizability issues facing the

DP-based action as a function of parameter g, we next
compute the higher-order Landau-level corrections to the
nmax ¼ 1 result of Ferrer et al., evaluating as a function of g
the truncated in anomalous moment correction summation
[Eq. (26)]. Taking the finite part of Eq. (28) we evaluate
Eq. (26) for different nmax values, normalized to the g ¼ 2
HES result, i.e.,

RDPðg; nmaxÞ ¼
VDP
eff

VDP
eff jg¼2

¼ 1þ
R
dpz

P
�
Pnmax

n0¼1
ðjEDP

n0 j − jEDP
n0 jgn0¼2ÞR

dpz
P

�
P∞

n¼0 jEDP
n jgn¼2

:

ð29Þ

Considering above with g independent of Landau level
given and fixed to order α QED value

ge ¼ 2þ α

π
þOðα2Þ; ð30Þ

we evaluate

δRDPðg; nmaxÞ ¼
1 − RDPðg; nmaxÞ

α=2π
: ð31Þ

In Fig. 2 we plot δRDPðge; nmaxÞ, Eq. (31), as a function
of nmax, choosing a fixed field strength eB=m2 ¼ 100. The
key feature in Fig. 2 is that the relative strength of the
correction to effective action by δRDPðg; nmaxÞ increases
linearly as a function of nmax. Each successive increase in
nmax increases the anomalous contribution, diverging lin-
early with nmax → ∞, which superposes with the logarith-
mic divergence seen in Eq. (28).
With g fixed and independent of Landau level, an

assumption inherent to the form of the action, the linear
divergence recognized above suggests that the DP action is
nonrenormalizable. The escape condition is as follows:
Ferrer’s [23] evaluation in Ritus’ framework for strong-
field QED shows that the effective jg − 2j decreases with
Landau level. In the event that this decrease is found to be
faster than linear, the effective action so derived could still
be renormalizable.

On the other hand this conflicts with a further necessary
condition to assure renormalizability: jg − 2j needs asymp-
totically to approach 0 in the large Landau-level limit.
Clearly this requirement cannot be met by most if not all
particles including the electron, since g ≠ 2 from the start
due to non-QED contributions, which give a fixed jg − 2j at
all Landau levels. We thus conclude that the first-order
formulation of QED with g ≠ 2 cannot be renormalized
considering that no QED particle can be exactly at g ¼ gD.
Setting aside this problematic behavior related to the full

summation of the Landau levels, the finite truncation by
Ferrer et al. allows us to further explore the g-dependent
properties of the action. We consider the leading nmax ¼ 1
result, Eq. (A.12) of [23], which we write explicitly as a
function of g:

VDP
eff ðnmax ¼ 1Þ ¼ αB2

6π



ln

�jeB⃗j
m2

�
−
3jeB⃗j
2m2

�
g1
2
− 1

�
2

×

�
ln

�
2jeB⃗j
m2

�
þ 2

��
: ð32Þ

The first term is the HES (g ¼ 2) expression, followed by
the anomalous magnetic-moment contribution: in [23] the
value of g1 given by Eq. (23) is applied, while we keep g1 as
a parameter. The relative minus sign between Eq. (32) and
Eq. (A.12) of [23] distinguishes vacuum energy from the
effective potential.
We display for three magnetic-field backgrounds in

Fig. 3 the DP action as presented by Ferrer et al. as a
function of g and normalized to g ¼ 2∶

RDPðg; nmax ¼ 1Þ ¼ 1 −
3jeB⃗j
2m2

�
g1
2
− 1

�
2
ln

�
2jeB⃗j
m2

�
þ 2

ln

�
jeB⃗j
m2

� :

ð33Þ

FIG. 2. DP-based anomalous contribution to the action
Eq. (31), plotted as a function of nmax, at fixed g ¼ ge
[Eq. (30)] and field strength eB=m2 ¼ 100.
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In this presentation Eq. (33) peaks at g ¼ 2, and becomes
more sharply peaked for stronger B fields. The behavior is
akin to our KGP evaluation (compare Fig. 1), where
Lorentz scalar contributions to effective action (coefficient
f20) exhibit a smooth peak at g ¼ 2.

IX. DISCUSSION, CONCLUSIONS, ANDOUTLOOK

Difficulties of pQED as a stand-alone theory have
been known for some time, beginning with the work of
Källén [43,44], and perturbative-pQED is believed by many
to be semiconvergent only. Exploration of g ≠ 2 in a
renormalizable theory requires the dimension-4 g-QED
based on the KGP equation. However, g-QED has to begin
with 8 degrees of freedom and appropriate division into two
half-Hilbert spaces is required. Restriction to the usual
Dirac-like 4 degrees of freedom is difficult, as a theory with
g ≠ 2 is in general not unitary [9].
We resolved this problem by proposing a new eigenstate

sorting based on the sign ofK [see Eq. (3) in Sec. III] leading
to a self-adjoint theory that retains Poincaré symmetry and
contains a complete set of particle-antiparticle states, and
thus preserves probability in time evolution and analyticity
as function of g, up to a countable set of singular points.
A consequence of this solution is that the Dirac value g ¼
gD ¼ 2 is a cusp point of the effective action Veff , Eq. (5),
evaluated in renormalizable g-QED approach. In Sec. V B
we described equivalence with the periodic in g Bogoliubov
coefficient summation method [20].
While Eq. (6) is an analytic function of g, the integral of

Eq. (6) with the proper-time weight [Eq. (5)] does not exist
for jgj > 2. Thus, a naive extension of HES effective action
to jgj > 2 is not possible. This parallels the observation that
the Klein-Gordon-Pauli operator [Eq. (1)] is not self-adjoint
for jgj > 2. We have shown how the eigenstate level
crossing can be recognized and states assigned to half-
spaces of the full Hilbert space, leading to a natural self-
adjoint extension and a valid theoretical g-QED framework
for jgj > 2. The cusp and related nonperturbative in g effects
arise considering the self-adjoint extension described. The
origin of the cusp singularity is in the periodic crossing

of eigenenergies in the spectrum of Landau eigenstates seen
in the upper section of Fig. 1 showing the quantity K;
see Eq. (3).
We have shown cusps at g ¼ gD for two physical

quantities computed for arbitrary g:
(i) The renormalization group coefficient b0 propor-

tional to function f1;0; see Fig. 1;
(ii) The light-by-light scattering in the long-wavelength

limit comprising a smooth function f2;0, and for the
term ðE⃗ · B⃗Þ2 the cusp function f0;2; see Fig. 1.

We have checked that these results can be arrived at directly
by the method of ζ-function regularization following
Weisskopf [13]. Our results agree with earlier perturbative
work in the fundamental domain −2 ≤ g ≤ 2: the func-
tional dependence on g is explicit and the same for the
vacuum polarization as had been obtained in Ref. [11] in
Eq. (56). We have shown by explicit computation that an
expansion around g ¼ 0 is valid for jgj ≤ 2 only.
We believe that our results imply that the pQED

expansion around g ¼ gD is incomplete at sufficiently high
order: Imagine that we partially resume g − 2 diagrams
with the Dyson-Schwinger method, finding an effective
electron with g > 2. In the next step we want to compute
the vacuum polarization inserts in other g − 2 diagrams.
Attempts in pQED framework will encounter new diver-
gences as the g − 2 correction is a dimension-5 operator.
On the other hand, we can accomplish this task in g-QED:
we use the nonperturbative in g renormalization group
coefficient b0 to characterize the vacuum polarization loop
insert and there are no new divergences. However, the result
contains the cusp, and thus is different from the finite-order
perturbative expansion of pQED.
We have shown in Sec. VIII A that the cusp in g

appears in the truncated Dirac-Pauli approach-based
studies [22,23]. Dittrich [22] omitted a term arising in
the squared DP wave equation [Eq. (17)]. There is so far no
argument known suggesting that this omission can be
considered as a valid approximation to the DP solution in
certain EM field configurations. However, it is notable that
the remainder leads to a similar g dependence of the
effective actions as in the KGP approach. The singular
cusp properties are the same, up to a field-dependent
g-anomaly proportional modification of particle mass.
In Sec. VIII B we explored the recent work of Ferrer

et al. [23], which evaluates the DP-based action for pure
magnetic fields, using the exact DP wave equation. In
Sec. VIII C we exploited the analytical properties of their
Landau-level summation procedure allowing for g to be
treated as a parameter. We demonstrated explicitly how the
DP renormalizability issues surface from the exact solution:
the summation is linearly divergent when a fixed anoma-
lous moment correction enters all Landau levels, Fig. 2.
Nonetheless, we believe that the truncation of Landau
levels with anomalous moment carried out by Ferrer et al.
offers an encouraging development, as each individual

FIG. 3. Normalized at g ¼ 2 DP action, given by Eq. (33).
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anomalous contribution is only logarithmically divergent.
The resulting g dependence of the leading Landau-level
correction to the action in Fig. 3 exhibits a peak in the
effective action at g ¼ 2, reminiscent in appearance to the
KGP result, Fig. 1.
The works of Dittrich and Ferrer et al. on DP-based

effective action are like our KGP approach—in disagree-
ment with a monotonically increasing analytical continu-
ation from jgj ≤ 2 to jgj > 2 as is usually presumed in
QED. The results following from these DP approaches
agree with the cusp at g ¼ 2 we described here. This
supports the possibility that this singularity has a more
general presence in QED, beyond the second-order fermion
KGP approach. Our findings are summarized in Table I.
There have been many discussions and challenges since

the cusp property has been recognized. However, we note
that the presence of the cusp should not be taken as a
dramatic development because its behavior is similar to that
of the essential singularity (e−πm

2=ejEj) in the imaginary part
of HES action. Both the essential singularity at zero electric
field, and the singular point at g ¼ 2 for a pure electric field
have been shown to be related to the constancy (infinite
character) of the field. Both singular points go away when
the finite extent of the external field is taken into
account [19,20].

It is the remaining cusp in pseudoscalar ðE⃗ · B⃗Þ which is
more profound and needs to be further explored as it may
signal a novel singularity of the theory linked to a
symmetry-breaking term. To answer this question requires
exploring how ðE⃗ · B⃗Þ-dependent action behaves when
taking into account the finite extent of EM fields. We will
further explore the Bogoliubov summation method for
finite-spanning fields, using the solution by Kim, Lee,
and Yoon for a localized pseudoscalar profile: a Sauter-type
E field with a parallel constant B field [45].
Our work has already served in Ref. [21] in an in-depth

exploration of its implications, including consideration of
environments in which the nonperturbative cusp effect
produces a notable difference from the perturbative in
QED treatment of g − 2. This difference appears to be most
pronounced in magnetar environments of supercritical
magnetic and subcritical electric fields [23,46–48], where
radiative corrections and mass catalysis effects become
important [49]. For predictions of particle production in this
domain, perturbative expansion in orders of α breaks down.
In summary, this analysis shows how a complete theory

of a pointlike fermion with jgj > 2 can be constructed
within g-QED in order to allow dynamical description of
real-world spin-1=2 particles. We have obtained the HES
effective potential for an elementary particle with gyro-
magnetic ratio g ≠ 2 nonperturbatively in g; see Eq. (5) and
Eq. (8). We demonstrated a cusp singularity as a function of
g at the Dirac value g ¼ gD ¼ 2. We have shown how this
cusp enters the β function and ðE⃗ · B⃗Þ2n terms of light-light
scattering. An interesting theoretical consequence is the
possibility of asymptotic freedom in an Abelian theory with
anomalous magnetic moment originating in the reversal in
sign of the renormalization group coefficient b0 for g in
specific domains much different from g ¼ 2.
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Sci. St.-Pétersbourg 5, 45 (1815).

[35] T. M. Apostol, An elementary view of Euler’s summation
formula, Am. Math. Mon. 106, 409 (1999).

[36] Qiu-Ming Luo, Fourier expansions and integral representa-
tions for the Apostol-Bernoulli and Apostol-Euler polyno-
mials, Math. Comput. 78, 2193 (2009).

[37] B. Müller, W. Greiner, and J. Rafelski, Interpretation of
external fields as temperature, Phys. Lett. 63A, 181 (1977).

[38] Y. M. Cho and D. G. Pak, A Convergent Series for the QED
Effective Action, Phys. Rev. Lett. 86, 1947 (2001).

[39] W. Y. Tsai and A. Yildiz, Motion of charged particles in a
homogeneous magnetic field, Phys. Rev. D 4, 3643 (1971).

[40] V. I. Ritus, Radiative corrections in quantum electrodynam-
ics with intense field and their analytical properties, Ann.
Phys. (N.Y.) 69, 555 (1972).

[41] V. G. Bagrov and D. M. Gitman, Exact Solutions of Rela-
tivistic Wave Equations (Springer, Dordrecht, Netherlands
1990), p. 324.

[42] V. I. Ritus, The Lagrange function of an intensive electro-
magnetic field and quantum electrodynamics at small
distances, Sov. Phys. JETP 42, 774 (1975).

[43] G. Källén, Consistency problems in quantum electrody-
namics, CERN-Yellow Report No. CERN-57-43, 10.5170/
CERN-1957-043.

[44] G. Källén, Quantum Electrodynamics (Springer-Verlag,
New York, 1972), p 233, ISBN 0-387-05574-6.

[45] S. P. Kim, H. K. Lee, and Y. Yoon, Effective action of QED
in electric field backgrounds, Phys. Rev. D 78, 105013
(2008).

[46] M. Korwar and A. M. Thalapillil, Novel astrophysical
probes of light millicharged fermions through Schwinger
pair production, J. High Energy Phys. 04 (2019) 039.

[47] Chul Min Kim and Sang Pyo Kim, Magnetars as Labo-
ratories for Strong Field QED, Contribution to: 17th Italian-
Korean Symposium on Relativistic Astrophysics (2021),
arXiv:2112.02460.

[48] Chul Min Kim and Sang Pyo Kim, Vacuum birefringence in
a supercritical magnetic field and a subcritical electric field,
Eur. Phys. J. C 83, 104 (2023).

[49] V. A. Miransky and I. A. Shovkovy, Quantum field theory in
a magnetic field: From quantum chromodynamics to gra-
phene and Dirac semimetals, Phys. Rep. 576, 1 (2015).

RAFELSKI, EVANS, and LABUN PHYS. REV. D 107, 076002 (2023)

076002-12

https://doi.org/10.1103/PhysRevD.85.076004
https://doi.org/10.1103/PhysRevD.85.076004
https://doi.org/10.1007/BF01343663
https://doi.org/10.1103/PhysRev.82.664
https://doi.org/10.1006/aphy.1997.5716
https://doi.org/10.1103/PhysRevD.86.041701
https://doi.org/10.1016/0550-3213(70)90527-4
https://doi.org/10.1103/PhysRevD.82.025015
https://doi.org/10.1016/j.physletb.2022.137190
https://doi.org/10.1016/j.physletb.2022.137190
https://arXiv.org/abs/2207.04033
https://doi.org/10.1088/0305-4470/11/6/019
https://doi.org/10.1103/PhysRevD.91.085041
https://doi.org/10.1103/PhysRevD.91.085041
https://doi.org/10.1103/PhysRev.60.61
https://doi.org/10.1140/epja/i2005-10315-8
https://doi.org/10.1140/epja/i2005-10315-8
https://doi.org/10.1140/epja/i2019-12715-5
https://doi.org/10.1140/epja/i2019-12715-5
https://doi.org/10.1103/PhysRevC.99.065803
https://doi.org/10.1007/JHEP12(2021)046
https://doi.org/10.1006/aphy.2001.6186
https://doi.org/10.1006/aphy.2001.6186
https://doi.org/10.1103/PhysRevD.83.034012
https://doi.org/10.1103/PhysRevD.83.034012
https://doi.org/10.1016/0370-2693(77)90759-6
https://doi.org/10.1016/0370-2693(77)90759-6
https://doi.org/10.1016/0550-3213(78)90377-2
https://doi.org/10.1088/0305-4470/20/18/055
https://doi.org/10.1080/00029890.1999.12005063
https://doi.org/10.1090/S0025-5718-09-02230-3
https://doi.org/10.1016/0375-9601(77)90866-0
https://doi.org/10.1103/PhysRevLett.86.1947
https://doi.org/10.1103/PhysRevD.4.3643
https://doi.org/10.1016/0003-4916(72)90191-1
https://doi.org/10.1016/0003-4916(72)90191-1
https://doi.org/10.5170/CERN-1957-043
https://doi.org/10.5170/CERN-1957-043
https://doi.org/10.1103/PhysRevD.78.105013
https://doi.org/10.1103/PhysRevD.78.105013
https://doi.org/10.1007/JHEP04(2019)039
https://arXiv.org/abs/2112.02460
https://doi.org/10.1140/epjc/s10052-023-11243-1
https://doi.org/10.1016/j.physrep.2015.02.003

