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The Tþ
cc exotic meson, discovered by the LHCb Collaboration in 2021, can be interpreted as a molecular

state of Dð�Þ0 and Dð�Þþ mesons. We compute next-to-leading-order (NLO) contributions to the strong
decay of Tþ

cc in an effective field theory for D mesons and pions, considering contributions from one-pion
exchange and final-state rescattering. Corrections to the total width, as well as the differential distribution in
the invariant mass of the final-stateD-meson pair are computed. The results remain in good agreement with
LHCb experimental results when the NLO contributions are added. The leading uncertainties in the
calculation come from terms which depend on the scattering length and effective range in D-meson
scattering.
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I. INTRODUCTION

The LHCb Collaboration has observed a narrow reso-
nance, the exotic tetraquark Tþ

cc, in the final state
D0D0πþ [1–5]. The resonance is close to both the
D�0Dþ and D�þD0 thresholds. When using a unitarized
Breit-Wigner profile appropriate for a coupled-channel
problem, LHCb finds the difference between the resonance
mass and theD�þD0 threshold, δm, and the decay width, Γ,
to be [5]

δm ¼ −360� 40þ4
−0 keV;

Γ ¼ 48� 2þ0
−14 keV: ð1Þ

TheD�0Dþ threshold is 1.7 MeVabove the resonance. The
closeness of the resonance to the two thresholds suggests
the possibility that Tþ

cc has a molecular nature.
After the announcement of the discovery of Tþ

cc, many
theory papers attempted to understand various aspects of the
exotic meson [6–26]. Several papers tried to predict its
decay width and differential decay width, with considerable
success [6,7,10,13,14,20,21]. In one of these papers [6], we
wrote down an effective field theory for Tþ

cc, considering it a

molecular state of two D mesons treated nonrelativistically,
and computed leading-order strong and electromagnetic
decays. Special attention was paid to the coupled-channel
nature of the problem. We found a decay width of 52 keV
when the tetraquark is in an isospin-0 state, using a value of
δm ¼ −273 keV, which arises from using a relativistic
P-wave two-body Breit-Wigner function with a Blatt-
Weisskopf form factor. This was in good agreement with
the LHCb experiment. The predicted differential spectra as a
function of the invariant mass of the final-state charmmeson
pair were also in good agreement with the binned exper-
imental data. In this paper, we investigate how these
conclusions are affected by next-to-leading-order (NLO)
strong decays.
The effective theory we use is similar to the effec-

tive field theory for the χc1ð3872Þ (XEFT) [27–41].
References [27,42,43] have considered NLO XEFT dia-
grams for χc1ð3872Þ decays. One-pion exchange was found
to have a negligible contribution to the decay width [27,43],
while final-state rescattering leads to uncertainty in the decay
rate of þ50%

−30% when the binding energy of the χc1ð3872Þ is
0.2 MeV [43]. The differential spectrum dΓ½χc1ð3872Þ →
D0D̄0π0�=dEπ was found to have a curve whose peak
location and overall shape are insensitive to NLO correc-
tions; only the normalization is affected [43]. The sharply
peaked nature of the differential spectrum can inform about
themolecular nature of the χc1ð3872Þ: since it is a function of
the virtual D�0 propagator ðp2

D þ γ2Þ−1, where γ is the
binding momentum, as the binding energy goes to zero,
the distribution becomes sharply peaked as pD → 0.
By analogy with this earlier work on χc1ð3872Þ, in this

paper we compute NLO contributions to the decay of Tþ
cc to

find the uncertainties due to one-loop, one-pion exchange
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and final-state rescattering diagrams. We calculate the
uncertainty in the decay width, as well as in the shape,
peak location, and normalization of differential spectra.
The calculation is complicated by the presence of a
coupled channel, which is not present for χc1ð3872Þ. We
find the decay width including NLO corrections to be
47þ53%

−25% keV, which is consistent with XEFT [43]. We also
discuss the physical significance of several of the param-
eters in the effective theory, and their effect on the
decay width.
In Sec. II, we write down the effective Lagrangian to

NLO. The required Feynman diagrams and their ampli-
tudes, along with the explicit formulas for the partial widths
are shown in Sec. III. Plots of the differential distribution
are shown in Sec. IV, followed by concluding remarks
in Sec. V.

II. EFFECTIVE LAGRANGIAN

The leading-order effective Lagrangian for strong decays
of Tþ

cc is [6]

LLO¼H�i†
�
i∂0þ ∇2

2mH�
−δ�

�
H�iþH†

�
i∂0þ ∇2

2mH
−δ

�
H

þ g
fπ

H†
∂
iπH�iþH:c:

−Cð0Þ
0 ðH�Tτ2HÞ†ðH�Tτ2HÞ

−Cð1Þ
0 ðH�Tτ2τaHÞ†ðH�Tτ2τaHÞ: ð2Þ

Here, H and H� are isodoublets of the pseudoscalar and
vector charm meson fields, respectively, and π is the usual
matrix of pion fields. The diagonal matrices δ and δ�
contain the residual masses, which are the difference
between the mass of the charm meson Dð�Þi, where
i ¼ 0;þ, and that of the D0. The coupling g ¼ 0.54 is
the heavy hadron chiral perturbation theory (HHχPT) axial
coupling [44–46], and fπ ¼ 130 MeV is the pion decay
constant. The terms on the last two lines are contact

interactions mediatingD�D scattering, whereCðnÞ
0 mediates

S-wave scattering in the isospin-n channel, and τa’s are
Pauli matrices acting in isospin space.
Several new classes of terms appear at NLO in the

effective theory. There are new contact interactions involv-
ing two derivatives:

LC2
¼ Cð0Þ

2

4
ðH�Tτ2HÞ†ðH�Tτ2∇

↔2

HÞ

þ Cð1Þ
2

4
ðH�Tτ2τaHÞ†ðH�Tτ2τa∇

↔2

HÞ
þ H:c: ð3Þ

These interactions occur in XEFT and are proportional to
the effective range [27]. We can also write down Dπ

interaction terms by constructing isospin invariants out of
the fields:

LCπ
¼ Cð1=2Þ

π ðπHÞ†ðπHÞ

þ Cð3=2Þ
π

�
vaH −

1

3
τaπH

�†�
vaH −

1

3
τaπH

�
: ð4Þ

Here, v ¼ ðπ1 π2 π0ÞT= ffiffiffi
2

p
is a vector of pion fields, with

π� ≡ ðπ1 ∓ iπ2Þ= ffiffiffi
2

p
, such that vaτa ¼ π.Cð1=2Þ

π andCð3=2Þ
π

mediate scattering in the isospin-1=2 and isospin-3=2
channels, respectively. The interactions which are relevant
to our calculation are

LCπ
→ Cð1Þ

π D0†π0†Dþπ− − Cð1Þ
π Dþ†π0†D0πþ þ H:c:

þ Cð2Þ
π D0†π0†D0π0 þ Cð2Þ

π Dþ†π0†Dþπ0

þ Cð3Þ
π D0†πþ†D0πþ; ð5Þ

where the couplingsCð1Þ
π ,Cð2Þ

π , andCð3Þ
π are particular linear

combinations of Cð1=2Þ
π and Cð3=2Þ

π as governed by Eq. (4).
These interactions can be matched onto the chiral
Lagrangian [47]. The values we use for these Cπ couplings
are computed from lattice data; see Appendix C for details.
We can write down D�D → DDπ interactions by using

the same strategy of constructing isospin invariants out of
the fields. That would lead to

LB1
¼ BðI¼0Þ

1 εαβðH�
αHβÞ†ðHτ2τiH∇viÞ

þ BðI¼1Þ
1 ðH�τ2τkHÞ†ðεijkHτ2τiH∇vjÞ

þ H:c: ð6Þ

However, we need isospin-breaking terms in order to fully
renormalize the theory at NLO, so ultimately we have four
unique B1 couplings, one for each possible channel.
Written in terms of the charm meson fields, the interactions
become

LB1
→ Bð1Þ

1 ðDþD�0Þ†ðDþD0∇π0Þ
þ Bð2Þ

1 ðD0D�þÞ†ðDþD0∇π0Þ

þ Bð3Þ
1

2
ðD0D�þÞ†ðD0D0∇πþÞ

þ Bð4Þ
1

2
ðDþD�0Þ†ðD0D0∇πþÞ

þ H:c: ð7Þ

Relations between the BðiÞ
1 ’s implied by Eq. (6) are given

in Appendix C. We can construct DD contact terms out of
the isospin invariants. There are only interactions in the
isospin-1 channel,
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LC0D
¼ Cð1Þ

0DðHτ2τaHÞ†ðHτ2τaHÞ

→
Cð1Þ
0D

2
ðD0D0Þ†ðD0D0Þ

þ Cð1Þ
0DðDþD0Þ†ðDþD0Þ; ð8Þ

where in the second line we have restricted our focus to
terms that are relevant to our calculation. The authors in

Ref. [43] chose to vary their Cð1Þ
0D coupling, which described

DD̄ scattering as opposed to DD, over a range of
½−1; 1� fm2. We test several different values for it within
that range. Lastly, we need a kinetic term for the pions; in
contrast to XEFT, we treat them relativistically:

Lπ ¼ trð∂μπ†∂μπ −m2
ππ

†πÞ: ð9Þ

The full NLO Lagrangian is then LNLO ¼ LC2
þ LCπ

þ
LB1

þ LC0D
þ Lπ .

III. FORMULAS FOR DECAY WIDTHS

Writing down the decay width for the Tþ
cc at NLO

requires care due to the coupled-channel nature of the
problem. We define a two-point correlation function matrix
Ĝ as

Ĝ ¼
Z

d4x e−iEth0jT½XðxÞXTð0Þ�j0i

¼ iΣð1þ CΣÞ−1; ð10Þ

where the interpolating field is

X ¼
�
D0D�þ

DþD�0

�
: ð11Þ

The right-hand side of Eq. (10) arises from expressing Ĝ to
all orders as an infinite sum of the C0-irreducible two-point
function Σ, in a manner similar to that in Appendix A of
Ref. [48], but here C0 and Σ are matrices due to the
presence of a coupled channel. −iΣ is given by the sum of
D�D self-energy diagrams in Fig. 1. Its diagonal elements
correspond to those two-point diagrams which do not swap
channels, and the off-diagonal elements to those which do
swap channels. We can then project out the isospin-0 and
isospin-1 channels, and tune the parameters of the two-
point correlators so that there is a pole corresponding to the
location of the Tþ

cc bound state. Near the vicinity of the
pole, the Green’s function can be written as

G0=1 ¼
�

1

∓1

�T

Ĝ
�

1

∓1

�
≈
1

2

iZ0=1

Eþ ET þ iΓ0=1

2

; ð12Þ

where Γ0=1 is the decay width, and the residue Z0=1 is the
wave function renormalization. We find for the decay width
in the isospin-0 channel

ΓNLO
0 ≈ −ΓLO ReΣ0NLO

0 ð−ETÞ
Re trΣ0LOð−ETÞ

þ 2ImΣNLO
0 ð−ETÞ

Re trΣ0LOð−ETÞ
; ð13Þ

where Σ0 ≡ Σ11 þ Σ22 − Σ12 − Σ21 is a particular combi-
nation of the elements of the Σ matrix appropriate for
isospin 0. The first term of Eq. (13) is a correction to the LO
decay width from NLO D�D self-energy corrections—i.e.,

FIG. 1. Some of theD�D self-energy diagrams contributing to −iΣ. Bold solid lines representD� mesons, regular solid lines represent
Dmesons, and dashed lines represent pions. The first row is LO, the second row is NLO, and the third and fourth rows are NNLO. There
are also other NNLO diagrams not shown which are C0-reducible combinations of the NLO diagrams.
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diagrams on the second row of Fig. 1. The second term of
Eq. (13) consists of NLO decay diagrams, from various
cuts of diagrams on the third and fourth rows of Fig. 1. Note
that ImΣNLO is from Σ diagrams of 1 higher order than in
ReΣNLO because the LO self-energy graph has no imagi-
nary part below threshold. The derivatives of Σ are with
respect to E and evaluated at E ¼ −ET . For a more detailed
derivation of Eq. (13), refer to Appendix A.
Three diagrams in Fig. 1 contribute to ReΣ to NLO. They

are the LO self-energy diagram (−iΣ1), the one-pion
exchange diagram (−iΣ2), and the C2 contact diagram
(−iΣ3). They are evaluated in the power divergence
subtraction (PDS) scheme [49]. This scheme corresponds

to using MS to handle logarithmic divergences as well as
subtracting poles in d ¼ 3 to keep track of linear diver-
gences. A 1=ϵ pole appears in Σ2, but the dependence on
the renormalization scale drops out when the derivative
with respect to E is taken. We neglect terms in the
propagators that go as p4=m2

H or ðδmÞp2=mH, where δm
is of the order of the pion mass, compared to p2. In Σ2 and
Σ3, we use a Fourier transform to evaluate the integrals over
three-momentum, using a procedure outlined in Ref. [50].
We define a reduced mass μðm1; m2Þ≡m1m2=ðm1 þm2Þ,
and the binding momenta are defined to be γ2ðm1; m2Þ ¼
2μðm1; m2Þðm1 þm2 −mTÞ. The expressions for the self-
energy diagrams are

−iΣ1ðm;m�Þ ¼ −
iμðm;m�Þ

2π
½ΛPDS − γðm;m�Þ�; ð14Þ

−iΣ2ðm1; m�
1; m2; m�

2; mπ; g1; g2Þ ¼ −
4ig1g2

3
μðm1; m�

1Þμðm2; m�
2Þ
�

1

16π2
½ΛPDS − γðm1; m�

1Þ�½ΛPDS − γðm2; m�
2Þ�

þ ðm�
2 −m1Þ2 −m2

π

ð8πÞ2
�
1

ϵ
þ 2 − 4 log

�
γðm1; m�

1Þ þ γðm2; m�
2Þ

− iðm�
2 −m1Þ2 þ im2

π

�
− 4 log μ

��
; ð15Þ

−iΣ3ðm1; m�
1; m2; m�

2; C2Þ ¼ −
i

4π2
C2½γ2ðm1; m�

1Þ þ γ2ðm2; m�
2Þ�μðm1; m�

1Þ
× μðm2; m�

2Þ½ΛPDS − γðm1; m�
1Þ�½ΛPDS − γðm2; m�

2Þ�: ð16Þ

To be consistent with the implementation of the PDS
scheme in the decay diagrams (see Appendix B), for the
double integral in Σ2 we have used rotational symmetry to
replace the tensor structure in the numerator with δij=3 and
not δij=ðd − 1Þ. This choice does not affect the derivative of
Σ2, as it only changes the constant terms which drop out
upon differentiation with respect to E.
The decay diagrams that contribute to 2ImΣNLO

0 ð−ETÞ
are shown in Fig. 2. By the optical theorem, the square of
these diagrams is given by the sum over the cuts of the
NNLO diagrams in Fig. 1. If there is only one pion/charm

meson vertex in a diagram, its coupling is labeled gπ . If
there is more than one such vertex, the couplings are
numbered gi. Depending on the type of pion and charm
meson, these couplings will be either g=fπ or �g=ð ffiffiffi

2
p

fπÞ.
The expressions are written in terms of the basis integrals
given in Appendix B. These basis integrals depend on the
parameters b, c1, and c2; the definitions for c1 and c2 are
provided where appropriate, with b ¼ 1 unless otherwise
specified; and the momentum arguments for the integrals
are p unless otherwise specified.

iA2ðaÞðp; m;m�; gπÞ ¼
2igπϵT · pπμðm;m�Þ
p2 þ γ2ðm;m�Þ : ð17Þ

iA2ðbÞðp; m;mext; mπ; m�
1; m

�
2; g1; g2; g3Þ ¼

4iμðm;m�
1Þμðmext; m�

2Þg1g2g3
p2 þ γ2ðmext; m�

2Þ
½ϵT · ppπ · pðIð2Þ0 − 2Ið1Þ þ IÞ þ ϵT · pπp2Ið2Þ1 �;

c1 ¼ γ2ðm;m�
1Þ;

c2 ¼ p2 − ðmT −m −mextÞ2 þm2
π: ð18Þ

iA2ðcÞðm;mext; mπ; m�; gπ; CπÞ ¼ 2iμðm;m�ÞgπCπϵT · p½Ið1Þ − I�;
c1 ¼ γ2ðm;m�Þ;
c2 ¼ p2 − ðmT −m −mextÞ2 þm2

π: ð19Þ
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iA2ðdÞðm;mext; m�
1; m

�
2; gπ; C2Þ ¼

1

π
iC2gπϵT · pπμðm;m�

1Þμðmext; m�
2Þ

p2 − γ2ðm;m�
1Þ

p2 þ γ2ðmext; m�
2Þ
½γðm;m�

1Þ − ΛPDS�: ð20Þ

iA2ðeÞðm;m�; B1Þ ¼ −
iB1

2π
ϵT · pπμðm;m�Þ½γðm;m�Þ − ΛPDS�: ð21Þ

iA2ðfÞðm1; m2; m�; p0
π; gπ; C0DÞ ¼ 4iμðm1; m2Þμðm2; m�ÞgπC0DϵT · pπIðpπÞ;

c1 ¼ γ2ðm2; m�Þ;

c2 ¼ −2μðm1; m2Þ
�
mT −m1 −m2 − p0

π −
p2
π

2m1

�
;

b ¼ μðm1; m2Þ
m1

: ð22Þ

Following Eq. (13) and using the amplitudes defined above, the decay widths for the two strong decays of Tþ
cc are

dΓNLO
0 ðTþ

cc → DþD0π0Þ
dp2

0dp
2þ

¼ 2

Re trΣ0LOð−ETÞ
Re

h
A2ðaÞðpþ; mþ; m�

0;−g=
ffiffiffi
2

p
fπÞ

×
	
A2ðbÞðp0; mþ; m0; mπ0 ; m

�
0; m

�þ;−g=
ffiffiffi
2

p
fπ; g=

ffiffiffi
2

p
fπ; g=

ffiffiffi
2

p
fπÞ

þA2ðbÞðpþ; mþ; mþ; mπ− ; m�
0; m

�
0; g=fπ; g=fπ;−g=

ffiffiffi
2

p
fπÞ

−A2ðbÞðp0; m0; m0; mπþ ; m�þ; m�þ; g=fπ; g=fπ; g=
ffiffiffi
2

p
fπÞ

−A2ðbÞðpþ; m0; mþ; mπ0 ; m
�þ; m�

0; g=
ffiffiffi
2

p
fπ;−g=

ffiffiffi
2

p
fπ;−g=

ffiffiffi
2

p
fπÞ

þA2ðcÞðp0; mþ; m0; mπ0 ; m
�
0;−g=

ffiffiffi
2

p
fπ; C

ð2Þ
π Þ

−A2ðcÞðp0; m0; m0; mπþ ; m�þ; g=fπ; C
ð1Þ
π Þ þA2ðfÞðm0; mþ; m�

0;−g=
ffiffiffi
2

p
fπ; C

ð1Þ
0DÞ

−A2ðfÞðmþ; m0; m�þ; g=
ffiffiffi
2

p
fπ; C

ð1Þ
0DÞ


� þ ðD0 ↔ Dþ; πþ ↔ π−Þ
i

(a)

(d)

(b) (c)

(e) (f)

FIG. 2. Feynman diagrams at LO and NLO contributing to the decay of Tþ
cc. We label the vertices and lines whose naming might be

ambiguous. These diagrams arise from cuts of the diagrams on the third and fourth lines of Fig. 1.
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−
1

Re trΣ0LOð−ETÞ
h
½β1ðp2þ þ γ2þÞ þ β2�ðjA2ðaÞðpþ; mþ; m�

0;−g=
ffiffiffi
2

p
fπÞj2

−A2ðaÞðp0; m0; m�þ; g=
ffiffiffi
2

p
fπÞA�

2ðaÞðpþ; mþ; m�
0;−g=

ffiffiffi
2

p
fπÞÞ

þ ½β3ðp2
0 þ γ20Þ þ β4�ðjA2ðaÞðp0; m0; m�þ; g=

ffiffiffi
2

p
fπÞj2

−A2ðaÞðpþ; mþ; m�
0;−g=

ffiffiffi
2

p
fπÞA�

2ðaÞðp0; m0; m�þ; g=
ffiffiffi
2

p
fπÞÞ

i

−
dΓLO

0 ðTþ
cc → DþD0π0Þ
dp2

0dp
2þ

ReΣ0NLO
0

Re trΣ0LO

����
C2→0;E¼−ET

; ð23Þ

dΓNLO
0 ðTþ

cc → D0D0πþÞ
dp2

1dp
2
2

¼ 1

Re trΣ0LOð−ETÞ
Re

�
A2ðaÞðp2; m0; m�þ; g=fπÞ

×
	
A2ðbÞðp1; m0; m0; mπþ ; m�þ; m�þ; g=fπ; g=fπ; g=fπÞ

þA2ðbÞðp2; m0; m0; mπþ ; m�þ; m�þ; g=fπ; g=fπ; g=fπÞ
−A2ðbÞðp1; mþ; m0; mπ0 ; m

�
0; m

�þ;−g=
ffiffiffi
2

p
fπ; g=

ffiffiffi
2

p
fπ; g=fπÞ

−A2ðbÞðp2; mþ; m0; mπ0 ; m
�
0; m

�þ;−g=
ffiffiffi
2

p
fπ; g=

ffiffiffi
2

p
fπ; g=fπÞ

þA2ðcÞðp1; m0; m0; mπþ ; m�þ; g=fπ; C
ð3Þ
π Þ −A2ðcÞðp1; mþ; m0; mπ0 ; m

�
0;−g=

ffiffiffi
2

p
fπ; C

ð1Þ
π Þ

þA2ðfÞðm0; m0; m�þ; g=fπ; C
ð1Þ
0D=2Þ


� þ ðp1 ↔ p2Þ −
�
2gμ0
fπ

�
2 p2

π

3
β5

�
1

p2
1 þ γ20

þ 1

p2
2 þ γ20

��

−
dΓLO

0 ðTþ
cc → D0D0πþÞ
dp2

1dp
2
2

�
β4 þ

ReΣ0NLO
0

Re trΣ0LO

����
C2→0;E¼−ET

�
: ð24Þ

In the previous formulas, we have used subscripts on μ and γ to indicate which charm meson is a pseudoscalar in that
particular channel—e.g., μ0 ¼ μðm0; m�þÞ. The combinations of self-energy diagrams that we need are Re trΣ0LOð−ETÞ and
ReΣ0NLO

0 ð−ET; C2 → 0Þ. In terms of the functions defined above, these are given by

Re trΣ0LO ¼ ReΣ0
1ðm0; m�þÞ þ ReΣ0

1ðmþ; m�
0Þ;

ReΣ0NLO
0 jC2→0 ¼ Re

h
Σ0
2ðmþ; m�

0; mþ; m�
0; mπþ ; g=fπ; g=fπÞ þ Σ0

2ðm0; m�þ; m0; m�þ; mπþ ; g=fπ; g=fπÞ

þ Σ0
2ðmþ; m�

0; m0; m�þ; mπ0 ;−g=
ffiffiffi
2

p
fπ; g=

ffiffiffi
2

p
fπÞ þ Σ0

2ðm0; m�þ; mþ; m�
0; mπ0 ; g=

ffiffiffi
2

p
fπ;−g=

ffiffiffi
2

p
fπÞ

i
: ð25Þ

The expressions for βi are given in Appendix C. The
terms dependent onAð2bÞ and ReΣ0

2 have linear divergences
that must cancel against each other. They cancel exactly in
the limit μ0 ¼ μþ. We make that approximation in those
terms only to ensure the cancellation; it is a reasonable
approximation as μ0=μþ ≈ 0.99948. See Appendix B for
more discussion of these linear divergences.

IV. DIFFERENTIAL DECAY DISTRIBUTIONS
AND PARTIAL WIDTHS

Once we have formulas for the Tþ
cc → DDπ partial

widths, we can numerically integrate over part of the

three-body phase space in Mathematica and plot the
differential distribution dΓ=dmDD. It is insightful to com-
pare our predicted curves to the LHCb experimental data
for the total yield. This will inform us about the effect and
importance of the different interactions in the effective
theory. We normalize our distributions by performing a
least-squares fit of the LO distribution to the data, and using
the same normalization factor for the NLO distributions.
The Cπ decay diagrams, individually and as a whole,
contribute negligibly to the distributions. The parameters
β1, β3, and β5 also have a small impact on the distributions
over the range in which we vary them. We therefore do not
show plots varying these parameters individually.
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The contributions from the non-C2-dependent NLO self-
energy corrections (i.e., the first diagram on the second line
of Fig. 1), as well as the contributions from Fig. 2(b), serve
to increase the partial widths by a small but noticeable
amount (Fig. 3). The effect of the C0D, β2, and β4 terms on
the distributions can be significant. In the following, we

will investigate their impact by setting all other contribu-
tions to dΓNLO=dmDD to zero and varying them
individually.
The C0D interaction has a sizeable contribution to the

partial widths, as evidenced in Fig. 4, where we plot the
differential distributions and vary this coupling in two

3730 3732 3734 3736 3738
0

20

40

60

80

100

FIG. 3. A plot of the differential decay width as a function of the invariant mass of the final-state D-meson pair. Solid lines represent
the LO calculation; the dashed lines represent the addition of nonanalytic and NLO self-energy corrections. Overlaid are the binned
experimental data from LHCb, with the background subtracted.

FIG. 4. A plot of the differential decay width as a function of the invariant mass of the final-state D-meson pair. Solid lines represent
the LO calculation; the dashed and dotted lines represent two different ranges for C0D. Overlaid are the binned experimental data from
LHCb, with the background subtracted.
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possible ranges: C0D∈ ½−1;1� fm2 and ∈ ½−0.25;0.25� fm2.
Its effect on the neutral pion decay is twice as large as on the
charged pion decay, because the coupling of charged pions to
Dmesons is bigger by a factor of

ffiffiffi
2

p
. Clearly, the differential

distributions are sensitive to the coupling’smagnitude. IfC0D

is þ1 fm2, the peak of the DþD0 mass distribution is too
high, and if it is −1 fm2, then three higher data points are

underpredicted. It would be interesting to perform a more
careful analysis of the constraints these data put on C0D, but
that is beyond the scope of this paper. C0D is directly
proportional to the I ¼ 1 D-meson scattering length, so
more precise knowledge of C0D from lattice simulations or
experiments would allow us to sharpen our predictions
for Tþ

cc.

FIG. 5. A plot of the differential decay width as a function of the invariant mass of the final-state D-meson pair. Solid lines represent
the LO calculation. The dashed and dotted lines represent two different values of β2 and β4. Overlaid are the binned experimental data
from LHCb, with the background subtracted.

FIG. 6. A plot of the differential decay width as a function of the invariant mass of the final-state D-meson pair. Solid lines represent
LO calculation; the dashed lines represent the lower and upper bounds of the NLO corrections. Here, we vary −1 fm2 ≤ C0D ≤
0.25 fm2 and −0.26 ≤ β2=4 ≤ 0. Overlaid are the binned experimental data from LHCb, with the background subtracted.
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We can glean the significance of β2 and β4 by taking the
isospin limit m0 ¼ mþ. In Appendix C, we see that in this
limit,

β2 ¼ β4 ¼ −γr0; ð26Þ

where γ is the binding momentum and r0 is the effective
range in the I ¼ 0 channel. The effective range is positive,
and we expect γr0 < 1. In Fig. 5, we plot the distribution
with all other NLO interactions turned off, and for two
values of β2 ¼ β4 ≡ β: −0.1 and −0.59, along with the LO
curve (β ¼ 0). We get γr0 ¼ 0.59 if we use the largest
binding momentum ðγþÞ and r0 ¼ 1=ð100 MeVÞ. For
nucleons, r0 ≈ 1=ð100 MeVÞ; since charm mesons are
considerably more compact objects, one might expect
the effective range for charm mesons to be smaller. We
can see that the distribution is highly sensitive to the choice
of β. A β of −0.59 greatly increases the differential
distribution and is in much poorer agreement with the
experimental data. This suggests that the effective range for
Tþ
cc is smaller than for nucleons.
Clearly, the partial widths and their differential distribu-

tions can vary substantially depending on the choice of

parameters in the effective field theory. However, the avail-
ability of experimental data for the decays presents the
possibility of performing fits of the distributions to the data to
obtain estimates for these parameters. This could improve the
predictive power of the effective theory. We save such a
careful statistical analysis for a future publication.
We can use these plots that show the effect of a subset

of the NLO contributions to inform which ranges for the
parameters to use when estimating the total NLO contri-
bution to the differential distribution (Fig. 6). The upper
and lower bounds in the figure reflect varying C0D from
−1 fm2 to 0.25 fm2. The parameters β1, β3, and β5 are
varied from −1=ð100 MeVÞ2 to þ1=ð100 MeVÞ2. The
parameters β2 and β4, which reduce to −γr0 in the isospin
limit, are varied between 0 and −0.26. The latter value
corresponds to a binding momentum for the D�þD0

channel, γ0, and r0 ¼ 1=ð100 MeVÞ. While the uncertainty
in the total width of the Tþ

cc can be significant depending on
the values of the NLO couplings, the qualitative aspects of
the plots of the differential decay widths in Fig. 6 are
consistent between LO and NLO. The overall shape and
location of the peaks are unchanged by pion exchange and
final-state rescattering.
When integrating over the full phase space to get the

partial widths, we use the same ranges for the parameters as
in Fig. 6. The partial widths are given in Table I. Note that
the LO numbers differ from those in our original paper [6]
because here we use the binding energy from the unitarized
Breit-Wigner fit, whereas in Ref. [6] we used the value
from the P-wave two-body Breit-Wigner fit with a Blatt-
Weisskopf form factor. This has the effect of slightly
increasing the prediction for the width compared to the
initial paper, bringing it closer to the experimental value.
When adding the LO electromagnetic decay width of

TABLE I. Partial and total widths in units of keV at LO
and NLO.

LO
result

NLO lower
bound

NLO upper
bound

Γ½Tþ
cc → D0D0πþ� 28 21 44

Γ½Tþ
cc → DþD0π0� 13 7.8 21

Γstrong½Tþ
cc� 41 29 66

Γstrong½Tþ
cc� þ ΓLO

EM½Tþ
cc� 47 35 72

FIG. 7. Comparing our LO differential decay width to one where the D� propagators are taken to be constant. The curves are fixed to
have the same normalization. Note the lack of a sharp peak in the constant propagator curves.
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6.1 keV (which is only slightly affected by the different
binding energy), the total LO width predicted by our
effective theory is 47 keV, which is already in excellent
agreement with the LHCb experimental value of 48 keV.
Adding in the NLO contribution to the strong decay widths,
the total width of the Tþ

cc can range from 35 keV to 72 keV.
Therefore, we can establish an uncertainty in the width due
to NLO strong decays of Γ½Tþ

cc� ¼ 47þ53%
−25% keV. This is

comparable to the uncertainty from similar operators
contributing to the decay of χc1ð3872Þ in XEFT [43].
We did not consider NLO corrections to the electromag-

netic decay, because the LO electromagnetic decay was
already a small contribution to the total width. In particular,
the differential distribution for the electromagnetic decay
was negligible compared to the strong decays’ distributions.
To illustrate why these differential decay width plots are

good tests of the molecular nature of the Tþ
cc, in Fig. 7 we

can compare the LO differential curves to those which
would arise if we replaced the virtualD� propagators with a
constant. The latter do not have sharp peaks and thus would
be in poor agreement with the experimental data.

V. CONCLUSIONS

In this paper, we have determined the effects of NLO
strong decays on the total width and differential decay
width of the exotic meson Tþ

cc. We considered pion
exchange and final-state rescattering diagrams from similar
operators to those in XEFT for the χc1ð3872Þ [43]. We
arrived at similar conclusions to Ref. [43]. The differential
decay width plots have shapes and peaks that are relatively
unchanged by the NLO effects, but the total width has
significant uncertainty: Γ½Tþ

cc� ¼ 47þ53%
−25% keV. The central

value (the LO result) is in good agreement with data.
We varied the parameters in the NLO calculation to get a

sense of the uncertainty in the predictions and determine
which parameters in the NLO calculation give the biggest
corrections. Nonanalytic corrections for pion loops are not
important. The parameter C0D, which is proportional to the
I ¼ 1 D-meson scattering length, and β2 and β4, which in
the isospin limit are equal and proportional to the I ¼ 0
D-meson effective ranges, significantly affect the decay
width and normalization of the differential distribution. It
would be interesting to fit the NLO differential curves to the
experimental data and obtain bounds on the undetermined
couplings, thereby learning more about these physical
quantities. Alternatively, one might hope to get information
about these parameters from lattice simulations or other
experiments. Any improvement in our understanding of
these parameters in D-meson scattering would increase the
predictive power of the effective field theory.
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APPENDIX A: COUPLED-CHANNEL
DECAY WIDTH

The full expression for the isospin-0 two-point
correlator is

−iG0 ¼
− 1

2
Σ0 − 2Cð1Þ

0 detΣ

1þ Cð0Þ
0 Σ0 þ Cð1Þ

0 Σ1 þ 4Cð0Þ
0 Cð1Þ

0 detΣ
; ðA1Þ

where Σ0=1 ≡ Σ11 þ Σ22 ∓ Σ12 ∓ Σ21 are the isospin-0 and
isopsin-1 combinations of the elements of Σ. Since we

expect Tþ
cc to be an isospin-0 state, we treat Cð1Þ

0 perturba-

tively and expand to NLO in Cð1Þ
0 :

−iG0 ≈
1

2

−Σ0

1þ Cð0Þ
0 Σ0

þ 1

2

Cð1Þ
0 ðΣLO

11 − ΣLO
22 Þ2

ð1þ Cð0Þ
0 Σ0Þ2

: ðA2Þ

We see that the real numerator of theCð1Þ
0 term is the residue

of a double pole at 1þ Cð0Þ
0 Σ0 ¼ 0. That can be interpreted

physically as a small shift in the location of the bound state,
which can be seen from expanding the right-hand side of
Eq. (12) about ENLO

T ¼ ET − ELO
T . But since we are already

tuningET to be the location of theTþ
cc bound state, we can set

Cð1Þ
0 to zero to remove the double pole from the amplitude:

−iG0 →
1

2

−Σ0

1þ Cð0Þ
0 Σ0

: ðA3Þ

At this stage, the problem is identical to the single-channel
problem in XEFT [27], with the single-channel two-point
function replaced by our isospin-0 combination of coupled-
channel two-point functions. The wave function renormal-
ization and decay width are therefore

Z0 ¼
1

ðCð0Þ
0 Þ2ReΣ0

0ð−ETÞ
;

Γ0 ¼
2ImΣ0ð−ETÞ
ReΣ0

0ð−ETÞ
: ðA4Þ

Σ0 has LO contributions from the diagonal elements, and
NLO contributions from all elements. After expanding in the
NLO terms, we find our corrections to the LO decay width:

Γ0≈ΓLO

�
1−

ReΣ0NLO
0 ð−ETÞ

RetrΣ0LOð−ETÞ
�
þ2ImΣNLO

0 ð−ETÞ
RetrΣ0LOð−ETÞ

: ðA5Þ
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APPENDIX B: BASIS INTEGRALS
AND THE PDS SCHEME

The most basic integral that arises when evaluating the
one-loop diagrams in the PDS scheme is

�
ΛPDS

2

�
4−d Z dd−1l

ð2πÞd−1
1

l2 þ c− iϵ
¼ 1

4π
ðΛPDS −

ffiffiffiffiffiffiffiffiffiffiffiffi
c− iϵ

p Þ:

ðB1Þ

This result is obtained by subtracting the pole in d ¼ 3
with a counterterm, then evaluating the result in d ¼ 4,
yielding a linear divergence in ΛPDS.
The scalar integral IðpÞ is finite in d ¼ 3 and d ¼ 4, so

no PDS counterterm is needed:

IðpÞ ¼
Z

dd−1l
ð2πÞd−1

1

l2 þ c1 − iϵ
1

l2 − 2bl · pþ c2 − iϵ

¼ 1

8π

1ffiffiffiffiffiffiffiffiffiffi
b2p2

p
�
tan−1

�
c2 − c1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2p2c1

p
�

þ tan−1
�

2b2p2 þ c1 − c2
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2p2ðc2 − b2p2Þ

p
��

: ðB2Þ

The linear tensor integral Ið1ÞðpÞ can be solved using
algebraic manipulation of the numerator, which yields two
integrals of the form of Eq. (B1) that have opposite signs
for the divergence, and so Ið1ÞðpÞ is UV-finite:

piIð1ÞðpÞ¼
Z

dd−1l
ð2πÞd−1 l

i 1

l2þc1− iϵ
1

l2−2bl ·pþc2− iϵ
;

→p2Ið1ÞðpÞ¼ 1

2b

�
1

4π

ffiffiffiffiffiffiffiffiffiffiffiffiffi
c1− iϵ

p
−

1

4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2−b2p2− iϵ

q

þðc2−c1ÞIðpÞ
�
: ðB3Þ

The quadratic tensor integrals Ið2Þ require care when
implementing the PDS scheme. The linear divergences
which arise in the decay width can only cancel if the
subtraction scheme is implemented correctly. After using
Feynman parameters to combine the propagators and
obtain an integrand like liljfðl2Þ, the correct procedure
is to replace lilj → δij=3 immediately, and not with
δij=ðd − 1Þ. The latter would cancel the factor of d − 1
that arises when evaluating the loop momentum integral,
and this results in the incorrect coefficient for the PDS
subtraction scale ΛPDS. Additionally, algebraic manipula-
tion of the numerator of Ið2Þ to reduce it to integrals of the
form of Ið1Þ and I leads to yet another incorrect coefficient.
This is the method used to obtain the expressions in the
Appendix of Ref. [43]; as such, the formulas for the decay
width in that paper are only correct if ΛPDS ¼ 0 and d ¼ 4.

Using the correct procedure for the basis integrals gives
the following results:

pipjIð2Þ0 ðpÞ þ δijp2Ið2Þ1 ðpÞ

¼
Z

dd−1l
ð2πÞd−1 l

ilj
1

l2 þ c1 − iϵ
1

l2 − 2bl · pþ c2 − iϵ
;

Ið2Þ0 ðpÞ ¼ b2

8π

Z
1

0

dx
x2ffiffiffiffiffiffiffiffiffiffi
ΔðxÞp ;

→ p2Ið2Þ1 ðpÞ ¼ 1

8π

�
2

3
ΛPDS −

Z
1

0

dx
ffiffiffiffiffiffiffiffiffiffi
ΔðxÞ

p �
; ðB4Þ

for ΔðxÞ ¼ −b2p2x2 þ ðc2 − c1Þxþ c1 − iϵ. One can be
reassured that this implementation of the PDS scheme is
correct because the same relative weight of the ΛPDS andR
1
0 dx

ffiffiffiffiffiffiffiffiffiffi
ΔðxÞp

terms is obtained when using a hard cutoff.
That does not occur when using lilj → δij=ðd − 1Þ or
algebraic manipulation of the numerator. Furthermore,
unless the relative weight of the cutoff-dependent terms

in Ið2Þ1 and ReΣ0
2 is 2=3, the linear divergences that appear in

ΓNLO
0 as Að2bÞ and ReΣ0

2 do not cancel in the isospin limit,
as they do in XEFT. For the Tþ

cc, they cancel when μ0 ¼ μþ,
an approximation we make in the cutoff-dependent terms to
ensure cancellation.
With algebraic manipulation of the integrand in Ið2Þ0 and

integration by parts in Ið2Þ1 , we can rewrite these expressions
in terms of I and Ið1Þ:

p2Ið2Þ0 ¼ −
1

16π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 − b2p2 − iϵ

q
þ c1

2
IðpÞ

þ 3

4

c2 − c1
b

Ið1ÞðpÞ;

p2Ið2Þ1 ¼ ΛPDS

12π
−

1

16π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 − b2p2 − iϵ

q

−
c1
2
IðpÞ − 1

4

c2 − c1
b

Ið1ÞðpÞ: ðB5Þ

APPENDIX C: Cπ COUPLINGS
AND βi EXPRESSIONS

In the isospin jI; mIi basis, we use the phase convention

jπþi ¼ −j1; 1i; jπ0i ¼ j1; 0i;

jDþi ¼
���� 12 ;

1

2

�
; jD0i ¼

���� 12 ;−
1

2

�
: ðC1Þ

Then, the Clebsch-Gordan decomposition of theDπ pairs is
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jD0π0i ¼
ffiffiffi
2

3

r ���� 32 ;−
1

2

�
þ 1ffiffiffi

3
p

���� 12 ;−
1

2

�
;

jDþπ0i ¼
ffiffiffi
2

3

r ���� 32 ;
1

2

�
þ 1ffiffiffi

3
p

���� 12 ;
1

2

�
;

jD0πþi ¼ −
ffiffiffi
2

3

r ���� 12 ;
1

2

�
−

1ffiffiffi
3

p
���� 32 ;

1

2

�
: ðC2Þ

From this, we can deduce

aD0π0 ¼ aDþπ0 ¼
2

3
a3=2Dπ

þ 1

3
a1=2Dπ ;

aD0πþ ¼ 1

3
a3=2Dπ þ 2

3
a1=2Dπ : ðC3Þ

These scattering lengths are calculated on the lattice in
Ref. [51] to be a1=2Dπ ¼ 0.37þ0.03

−0.02 fm and a3=2Dπ ¼ −ð0.100�

0.002Þ fm. The matching from tree-level scattering tells us

that, for the diagonal couplings Cð2Þ
π and Cð3Þ

π , we can use
Cπ ¼ 4πð1þmπ=mDÞaDπ, with the appropriate masses
and scattering lengths for each process. We can then use

those two values to solve for Cð1=2Þ
π and Cð3=2Þ

π and obtain

Cð1Þ
π . We get

Cð1Þ
π ¼ −3.0þ0.32

−0.40 fm;

Cð2Þ
π ¼ −0.76þ0.14

−0.09 fm;

Cð3Þ
π ¼ 2.9þ0.3

−0.2 fm: ðC4Þ

The expressions for the βi’s are given below. The subscripts
on the γ and μ variables indicate the pseudoscalar charm
meson is in that channel—e.g., γþ ¼ γðmþ; m�

0Þ is the
binding momentum in the channel with the Dþ meson.

β1 ¼ ðΛPDS − γþÞ
�

fπffiffiffi
2

p
πg

Bð1Þ
1 þ 1

π
CðþÞ
2 μþ −

1

π
Cð−Þ
2 μ0

ΛPDS − γ0
ΛPDS − γþ

�
; ðC5Þ

β2¼
�
1

π
CðþÞ
2 μþð−2γ2þÞðΛPDS− γþÞ−

1

π
Cð−Þ
2 μ0ð−γ20− γ2þÞðΛPDS− γ0Þ

þ2π

�
μ20
γ0

þμ2þ
γþ

�
−1
�
−
1

π2
CðþÞ
2 μ3þðγþ−ΛPDSÞð2γþ−ΛPDSÞ−

1

π2
CðþÞ
2 μ30ðγ0−ΛPDSÞð2γ0−ΛPDSÞ

−
Cð−Þ
2 ðγ2þþ γ20Þμþμ0

2π

�
μþ
γ0

ðΛPDS− γ0Þþ
μ0
γþ

ðΛPDS− γþÞ
�
þCð−Þ

2 μþμ0ðμþþμ0Þ
π2

ðΛPDS− γþÞðΛPDS− γ0Þ
��

; ðC6Þ

β3 ¼ ðΛPDS − γ0Þ
�
−

fπffiffiffi
2

p
πg

Bð2Þ
1 þ 1

π
CðþÞ
2 μ0 −

1

π
Cð−Þ
2 μþ

ΛPDS − γþ
ΛPDS − γ0

�
; ðC7Þ

β4¼
�
1

π
CðþÞ
2 μ0ð−2γ20ÞðΛPDS− γ0Þ−

1

π
Cð−Þ
2 μþð−γ20− γ2þÞðΛPDS− γþÞ

þ2π

�
μ20
γ0

þμ2þ
γþ

�
−1
�
−
1

π2
CðþÞ
2 μ3þðγþ−ΛPDSÞð2γþ−ΛPDSÞ−

1

π2
CðþÞ
2 μ30ðγ0−ΛPDSÞð2γ0−ΛPDSÞ

−
Cð−Þ
2 ðγ2þþ γ20Þμþμ0

2π

�
μþ
γ0

ðΛPDS− γ0Þþ
μ0
γþ

ðΛPDS− γþÞ
�
þCð−Þ

2 μþμ0ðμþþμ0Þ
π2

ðΛPDS− γþÞðΛPDS− γ0Þ
��

; ðC8Þ

β5 ¼
1

π
CðþÞ
2 μ0ðΛPDS − γ0Þ −

1

π
Cð−Þ
2 μþðΛPDS − γþÞ þ

Bð3Þ
1 fπ
4πg

ðγ0 − ΛPDSÞ −
Bð4Þ
1 fπ
4πg

ðγþ − ΛPDSÞ
μþ
μ0

: ðC9Þ

It is instructive to take the isospin limit of these β
expressions and compare to XEFT. Referring to Eq. (6), we
can write down the B1 couplings in this limit:

Bð1Þ
1 ¼ −Bð2Þ

1 ¼ −
ffiffiffi
2

p
BðI¼0Þ
1 ;

Bð3Þ
1 ¼ 2ðBðI¼1Þ

1 þ BðI¼0Þ
1 Þ;

Bð4Þ
1 ¼ 2ðBðI¼1Þ

1 − BðI¼0Þ
1 Þ: ðC10Þ

Then, taking μþ ¼ μ0 ¼ μ, γþ ¼ γ0 ¼ γ, we find

β1 ¼ β3 ¼ β5 ¼
1

π
ðγ − ΛPDSÞ

�
BðI¼0Þ
1 fπ
g

− 2Cð0Þ
2 μ

�
;

β2 ¼ β4 ¼ −
4Cð0Þ

2 μγ

π
ðγ − ΛPDSÞ2: ðC11Þ

DAI, FLEMING, HODGES, and MEHEN PHYS. REV. D 107, 076001 (2023)

076001-12



The isospin-1 couplings drop out, which is to be expected,
given that we have projected out the isospin-0 state and are
here dropping isospin-breaking interactions. These expres-
sions also match the dependence of the decay rate onC2 and
B1 in XEFT [27]. Using Eq. (24) of Ref. [27] (and adjusting
for a factor of 4 in the definition of C2 in that paper), we see

that β2 ¼ β4 ¼ −γr0 in the isospin limit. It is an important
check on our calculation that in the isospin limit, the theory
can be properly renormalized with isospin-respecting coun-
terterms. When isospin breaking in the masses and binding
momentum is included, isospin breaking in the B1 operators
needs to be included, as we have done in this paper.
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