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The Gildener-Weinberg two-Higgs doublet model provides a naturally light and aligned Higgs boson,
H ¼ Hð125Þ. It has been studied in the one-loop approximation of its effective potential, V1. An important
consequence is that the masses of the model’s beyond the Standard Model (BSM) Higgs bosons
(H0; A; H�) are bounded by the sum rule ðM4

H0 þM4
A þ 2M4

H�Þ1=4 ¼ 540 GeV. Although they are well
within reach of the LHC, searches for them have been stymied by large QCD backgrounds. Another
consequence is that H is highly aligned, i.e., H–H0 mixing is small and H has only Standard Model
couplings. A corollary of this alignment is that commonly pursued discovery modes such as H0,
A ↔ WþW−, ZZ, HZ, and H� ↔ W�Z;W�H are beyond the reach of LHC experiments. To assess the
accuracy of the sum rule and Higgs alignment, we study this model in two loops. This calculation is
complicated by having many new contributions. We present two formulations of it to calculate the H–H0

mass matrix, its eigenvectors H1, H2, and the mass MH2
while fixing MH1

¼ 125 GeV. They give similar
results and are in accord with the one-loop results. Requiring MA ¼ MH� , we find 180 GeV ≲MA;H� ≲
380–425 GeV and 550–700 GeV ≳MH2

≳ 125 GeV, with MH2
decreasing as MA;H� increase. The

corrections to H alignment are below Oð1%Þ. So, the BSM searches above will remain fruitless. Finding
the BSM Higgses requires improved sensitivity to their low masses. We discuss three possible searches
for this.

DOI: 10.1103/PhysRevD.107.075038

I. REVIEW AND OVERVIEW

In the Gildener-Weinberg (GW) scheme of electroweak
symmetry breaking in multi-Higgs multiplet models, the
scalar potential V0ðΦiÞ of the tree-level Lagrangian con-
sists of only quartic interaction terms [1]. Therefore, so
long as all particle masses arise from the vacuum expect-
ation values (VEVs) hϕii of Φi, the theory is classically
scale invariant. This happens if the linear combination ofΦi
that is the Higgs boson, H, is also a Goldstone boson of
spontaneous breaking of this scale invariance, the dilaton of
a flat minimum of V0 along a ray 0 < ϕ < ∞ in field space.
Because it is such a Goldstone boson,H is the same form

of linear combination of scalars as the Goldstone bosons
eaten by W� and Z; that is, in an N-multiplet model,

H ¼
XN
i¼1

ðhϕii=ϕÞϕi ð1Þ

where
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ihϕii2
p

¼ ϕ. This is important: this Higgs boson
is perfectly aligned, that is, it has exactly the same
couplings to gauge bosons and fermions as the Standard
Model (SM) Higgs [2–6]. While it is massless at tree level,
the Higgs gets a mass at the one-loop level of the Coleman-
Weinberg effective potential, V1 [7]. The renormalization
scale in V1 explicitly breaks the scale symmetry of V0,
inducing a minimum of V0 þ V1 that picks out a specific
value v of ϕ. This v is identified as the weak scale,
246 GeV, and it sets the scale of all masses in the theory.1

As we review in this section, the one-loop corrections to
perfect alignment are very small, typically ≲Oð1%Þ in
amplitude. Thus, the approximate scale symmetry of GW
models makes the Higgs naturally light and aligned [8].
This naturalness requires no symmetry other than scale

invariance. Therefore, in GW models there are no partners,
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1For economy of narrative, we are ignoring here the sponta-
neous breaking of the light quarks’ chiral symmetry that sets the
mass scale of the light hadrons.
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scalar or fermionic, of the top quark, of the weak bosons,
nor of any other particles except for the additional scalars
occurring in multi-Higgs multiplet models. Nor are there
the vectorial fermions requiring tree-level bare masses.
The GW scheme is the only one we know in which the
same agent, the Higgs VEV v, is responsible for electro-
weak symmetry breaking and for explicit scale symmetry
breaking. Hence, the “dilaton scale” f is equal to v [9]. The
one sure way to test these models is to search for the
additional Higgs scalars [10,11]. They are exceptionally
light, with masses below about 400–550 GeV in one-loop
order. We review this calculation below in a two-Higgs-
doublet model. This model has three beyond-Standard-
Model Higgs (BSM) bosons, a CP-even H0, a CP-odd A,
and a singly charged H� (see the standard Ref. [12] for
details).
To evaluate the robustness of the one-loop predictions,

we extend their calculation to the two-loop effective
potential [13]. This is considerably more complicated than
in one loop. Therefore, in Secs. II and III we present two
methods of calculating the two-loop contributions to the
CP-even mass-squared matrix,M2

0þ , as a function of BSM
Higgs massesMA ¼ MH� andMH0 .2 The two methods give
qualitatively similar results and, so, support the low bound
on the masses of the new Higgs scalars and our earlier
conclusion on the degree of the 125-GeV Higgs boson’s
alignment. To our knowledge, two-loop calculations of
Gildener-Weinberg multi-Higgs models have not been
carried out in this depth. The experimental consequences
of our calculations, including the impact of ATLAS and
CMS searches relevant to the model’s BSM Higgs bosons,
are presented in Sec. IV. Readers interested mainly in these
consequences can skip to Sec. IV.
The simplest model employing the GW mechanism is

the two-Higgs doublet model (2HDM) proposed by Lee
and Pilaftsis in 2012 [16]. The tree-level potential of the
two doublets is

V0ðΦ1;Φ2Þ ¼ λ1ðΦ†
1Φ1Þ2 þ λ2ðΦ†

2Φ2Þ2
þ λ3ðΦ†

1Φ1ÞðΦ†
2Φ2Þ þ λ4ðΦ†

1Φ2ÞðΦ†
2Φ1Þ

þ 1

2
λ5ððΦ†

1Φ2Þ2 þ ðΦ†
2Φ1Þ2Þ; ð2Þ

where the doublets are

Φi ¼
1ffiffiffi
2

p
� ffiffiffi

2
p

ϕþ
i

ρi þ iai

�
; i ¼ 1; 2; ð3Þ

and ρi and ai are neutral CP-even and CP-odd fields.
The five quartic couplings λi in Eq. (2) are real and V0 is

CP invariant.3 Positivity of V0 requires that λ1, λ2 > 0,
This potential is consistent with a Z2 symmetry that
prevents tree-level flavor-changing interactions among
fermions, ψ , induced by neutral scalar exchange [17].
We define this Z2 to be

Φ1 → −Φ1; Φ2 → Φ2; ψL → −ψL;

ψuR → ψuR; ψdR → ψdR: ð4Þ

This is the usual type-I 2HDM [12], but with Φ1 and Φ2

interchanged. The net effect of this is that the experimental
upper limit on tan β ¼ v2=v1 found for this theoretical
model [8] is to be compared to experimental upper limits
on cot β for this and the other three types of 2HDM’s
with natural flavor conservation.4 We refer to this model
as the GW-2HDM. This type-I coupling was imposed on
the model in 2018 to make it consistent with precision
electroweak measurements at LEP, searches for t → Hþb at
the Tevatron [18], and the then-current LHC data. The most
stringent constraints came from CMS [19] and ATLAS [20]
searches for charged Higgs decay into tb̄. Consistency
with these searches required tan β ≲ 0.50 for 180 GeV <
MH� ≲ 500 GeV. This limit on tan β was affirmed in
Refs. [10,11].
The trivial minimum of V0 occurs atΦ1 ¼ Φ2 ¼ 0. But a

nontrivial flat minimum of V0 can occur on the ray
0 < ϕ < ∞:

Φ1β ¼
1ffiffiffi
2

p
�

0

ϕcβ

�
; Φ2β ¼

1ffiffiffi
2

p
�

0

ϕsβ

�
; ð5Þ

where cβ ¼ cos β and sβ ¼ sin β and β ≠ 0, π=2 is a
fixed angle. The tree-level extremal conditions for this
ray are

∂V0

∂ρ1

����
hρii

¼ ϕ3cβ

�
λ1c2β þ

1

2
λ345s2β

�
¼ 0;

∂V0

∂ρ2

����
hρii

¼ ϕ3sβ

�
λ2s2β þ

1

2
λ345c2β

�
¼ 0; ð6Þ

where λ345 ¼ λ3 þ λ4 þ λ5. It can be proved that
V0ðΦiβÞ ¼ 0 and, in fact, that any such purely quartic
potential as well as its first derivative vanish at any
extremum [10]. These conditions on the quartic couplings,

λ1 ¼ −
1

2
λ345 tan2 β; λ2 ¼ −

1

2
λ345 cot2 β; ð7Þ

2The constraint MA ¼ MH� is motivated by the fact that it
makes the contribution to the T parameter from the BSM scalars
vanish [14–16].

3Of course, there is CP violation in the CKM matrix, but that
has negligible effect on our study and we ignore it.

4Strictly speaking, in this 2HDM, the VEVs v1 and v2 of Φ1

and Φ2 have meaning only after scale invariance is explicitly
broken and ϕ in Eq. (5) has a specific value.
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remain true and in force in all orders of the loop expansion
for the effective potential [1]. This will be important in our
subsequent development.
The eigenvectors and eigenvalues of the scalars’ squared

“mass” matrices in tree approximation are given by
�
z

A

�
¼
�

cβ sβ
−sβ cβ

��
a1
a2

�
; M2

z ¼0; M2
A¼−λ5ϕ2;

�
w�

H�

�
¼
�

cβ sβ
−sβ cβ

��
ϕ�
1

ϕ�
2

�
; M2

w� ¼0; M2
H� ¼−

1

2
λ45ϕ

2;

�
H

H0

�
¼
�

cβ sβ
−sβ cβ

��
ρ1

ρ2

�
; M2

H¼0; M2
H0 ¼−λ345ϕ2:

ð8Þ
It is important to note that the extremal conditions (6)
are equivalent to the vanishing of the Goldstone boson
masses,Mz andMw� . The ray (5) is a (flat) minimum, with
V0 ¼ 0, so long as the M2 are non-negative, i.e., that λ5,
λ45 ¼ λ4 þ λ5, and λ345 are negative. The CP-even scalarH
is the dilaton and, as discussed above, it is the same linear
combination of fields as z and w� are; i.e., H is aligned.

Alignment will be modified in higher orders, but only
slightly.
At this point and for our discussion of this model beyond

the tree approximation, it is convenient to use the “aligned
basis” of the Higgs fields because, in the GW-2HDM, H is
very nearly aligned and separated from the BSM Higgs
fields H0; A;H� through two-loop order in this basis.5 The
aligned basis is

Φ ¼ Φ1cβ þΦ2sβ ¼
1ffiffiffi
2

p
� ffiffiffi

2
p

wþ

H þ iz

�
;

Φ0 ¼ −Φ1sβ þΦ2cβ ¼
1ffiffiffi
2

p
� ffiffiffi

2
p

Hþ

H0 þ iA

�
: ð9Þ

On the ray Eq. (5) on which V0 has nontrivial extrema,
these fields are

Φβ ¼
1ffiffiffi
2

p
�
0

ϕ

�
; Φ0

β ¼
1ffiffiffi
2

p
�
0

0

�
; ð10Þ

The tree-level extremal conditions in this basis are

∂V0

∂H

����
hi
¼ ϕ3½λ1c4β þ λ2s4β þ λ345s2βc

2
β� ¼ 0;

∂V0

∂H0

����
hi
¼ 1

2
ϕ3½ð2λ2s2β þ λ345c2βÞ − ð2λ1c2β þ λ345s2βÞ�sβcβ ¼ 0; ð11Þ

where himeans that the derivatives are evaluated at hHi ¼ ϕwhile hH0i and all other VEVs equal zero. Using Eqs. (11), the
tree potential is6

V0 ¼ −2λ345
�
1

2
ðΦ†Φ0 þΦ0†ΦÞ þΦ0†Φ0 cot 2β

�
2

− λ45½ðΦ†ΦÞðΦ0†Φ0Þ − ðΦ†Φ0ÞðΦ0†ΦÞ� þ 1

2
λ5½Φ†Φ0 −Φ0†Φ�2 ð12Þ

¼ −
1

2
λ345½HH0 þ zAþ wþH− þHþw− þ ðH02 þ A2 þ 2HþH−Þ cot 2β�2

−
1

2
λ45½ðH2 þ z2ÞHþH− þ ðH02 þ A2Þwþw− − ðHH0 þ zAÞðwþH− þHþw−Þ

− iðHA − zH0ÞðwþH− −Hþw−Þ� − 1

2
λ5½HA − zH0 þ iðwþH− −Hþw−Þ�2: ð13Þ

The form of Eq. (13) will be used in Sec. II to define the mass-dependent scalar couplings that appear in the two-loop
calculations. The tree-level “mass” matrices of the Higgs bosons are7

M2
0− ¼

�
0 0

0 M2
A

�
with M2

A ¼ −λ5ϕ2; ð14Þ

5It is also called the Higgs basis; see Ref. [12] and references therein.
6Note that that there are no higher powers of H; z; w� than quadratic in Eq. (13).
7The quotes around “mass” are there because 0 < ϕ < ∞.
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M2
� ¼

�
0 0

0 M2
H�

�
with M2

H� ¼ −
1

2
λ45ϕ

2; ð15Þ

M2
0þ ¼

�
0 0

0 M2
H0

�
with M2

H0 ¼ −λ345ϕ2: ð16Þ

The Coleman-Weinberg effective potential in one-loop order is a sum over the heavy particles in the model [13,16,21]:

V1 ¼
1

64π2
X
n

αnM4
n

�
ln

M2
n

Λ2
GW

− kn

�
: ð17Þ

For n ¼ ðW�; Z; tL þ tcR; H
0; A;H�Þ, αn ¼ ð6; 3;−12; 1; 1; 2Þ counts the degrees of freedom of particle n and kn ¼ 5=6 for

the weak gauge bosons and 3=2 for the scalars and the top-quark Weyl fermions.8 The background-field dependent masses
M2

n in Eq. (17) are [16,21]

M2
n ¼

�
M2

nð2ðΦ†ΦþΦ0†Φ0Þ=ϕ2Þ ¼ M2
nððH2 þH02 þ � � �Þ=ϕ2Þ; n ≠ t; b

M2
t ð2Φ†

1Φ1=ðϕcβÞ2Þ ¼ M2
t ððH −H0 tan βÞ2 þ � � �Þ=ðϕÞ2 ; ð18Þ

where M2
n ∝ ϕ2 is the actual squared mass of particle n at

scale ϕ. We fix Mt ¼ 173 GeV and we put Mb ¼ 0 in
calculations. The form of M2

t is dictated by the type-I
coupling of fermions to the Φ1 doublet in Eq. (4).9 Finally,
ΛGW is a renormalization scale that will be fixed relative to
the Higgs VEV v ¼ 246 GeV in Eqs. (25) and (26) below.
Following GW [1], extremal conditions and masses are

obtained by evaluating derivatives of the effective potential
Veff ¼ V0 þ V1 þ V2 þ � � � at hiþ possible shifts δH and
δH0 in the VEVs ofH andH0.10 We assume that these shifts
have a loop expansion, e.g., δH0 ¼ δ1H0 þ δ2H0 þ � � �. The
extremal conditions at one-loop order are [1]

∂ðV0 þ V1Þ
∂H

����
hiþδ1Hþδ1H0

¼ 0; ð19Þ

∂ðV0 þ V1Þ
∂H0

����
hiþδ1Hþδ1H0

¼ 0: ð20Þ

Expanding Eqs. (19) and (20) toOðV1Þ and using Eq. (16),
these conditions become

∂V1

∂H

����
hHi¼v

¼ 1

16π2v

X
n

αnM4
n

�
ln

M2
n

Λ2
GW

þ 1

2
− kn

�
¼ 0;

ð21Þ

M2
H0δ1H0 −

αtM4
t tan β

16π2v

�
ln

M2
t

Λ2
GW

þ 1

2
− kt

�
¼ 0; ð22Þ

where the derivative with respect to H0 of the n ≠ t
terms in V1 vanishes because those terms are quadratic
in H0. Thus,

δ1H0 ¼ −
1

M2
H0

∂V1

∂H0

����
hi
¼ αtM4

t tan β
16π2M2

H0v

�
ln

M2
t

Λ2
GW

þ 1

2
− kt

�
;

ð23Þ

the typical tadpole result [22,23]. Also, because δ1H is not
determined in OðV1Þ, we are free to set it. We expect from
Eq. (34) below that δ1H ¼ Oðδ1H0 × δ1Þ ¼ OðV2Þ, where
δ1 is the one-loop-induced H–H0 mixing angle; therefore,
we set

δ1H ¼ 0: ð24Þ

A particular scale ϕ ¼ v appears in Eqs. (21) and (22)
because, for nontrivial extrema with β ≠ 0, π=2, a deeper
minimum than the vanishing zeroth-order ones can
appear there: ðV0þV1ÞhHi¼v < V0β ¼ V0ð0ÞþV1ð0Þ ¼ 0.
In that case, Eq. (21) is equivalent to a relation between the
renormalization scale ΛGW and the Higgs VEV v:

ln

�
Λ2
GW

v2

�
¼ A

B
þ 1

2
; ð25Þ

8V1 is calculated in the Landau gauge using the MS renorm-
alization scheme.

9To avoid the confusion of too much notation, we use the same
symbol, e.g. H, for the quantum field of particle H and for its
classical counterpart in the field-dependent masses. Context will
dictate which field is being used. However, for clarity in the field-
dependent cubic couplings introduced in Sec. II B, we denote the
classical counterpart of field H by Hc, etc.10The VEVs of the mass eigenstate Higgs bosons, called
H1 and H2 in Eq. (32), will be fixed to hH1i2 þ hH2i2 ¼
v2 ¼ ð246.2 GeVÞ2. Also see Eq. (47) and the accompanying
footnote.
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where

A ¼
X
n

αnM4
n

�
ln
M2

n

v2
− kn

�
; B ¼

X
n

αnM4
n: ð26Þ

At hi, M2
n ¼ M2

n, and the effective potential is

ðV0 þ V1Þjhi ¼
1

64π2

�
Aþ B ln

v2

Λ2
GW

�
¼ −

B
128π2

: ð27Þ

Thus, unless B > 0, this extremum cannot be a minimum
because otherwise it has no finite bottom for v → ∞ [1].

Despite the large negative top-quark term in B, the
contribution of the extra Higgs bosons can make it positive.
With the minimum occurring at the particular value ϕ ¼ v,
the scale invariance of the tree approximation is now
explicitly broken and the Higgs boson H gets a nonzero
mass. Note that allM2

n ∝ v2 so that the right side of Eq. (25)
is a function of only gauge, Higgs-boson, and the top-quark
Yukawa couplings. The VEVs of Φ1 and Φ2 are v1 ¼
v cos β and v2 ¼ v sin β, with tan β ¼ v2=v1 as usual in
a 2HDM.
The CP-even Higgs mass matrix toOðV1Þ in the aligned

basis is

M2
0þ ¼

� ð∂2V1=∂H2Þ ð∂2ðV0 þ V1Þ=∂H∂H0Þ
ð∂2ðV0 þ V1Þ=∂H∂H0Þ ð∂2ðV0 þ V1Þ=∂H02Þ

�
hiþδ1H0

; ð28Þ

where, again using Eq. (21),

M2
HH ¼ ∂

2V1

∂H2

����
hi
¼ 1

8π2v2
X
n

αnM4
n ≡ B

8π2v2
; ð29Þ

M2
HH0 ¼ ∂

3V0

∂H∂H02

����
hi
δ1H0 þ ∂

2V1

∂H∂H0

����
hi

¼ 2M2
H0δ1H0

v
−
3αtM4

t tan β
16π2v2

�
ln

M4
t

Λ2
GW

þ 7

6
− kt

�

¼ −
αtM4

t tan β
16π2v2

�
ln

M2
t

Λ2
GW

þ 5

2
− kt

�
; ð30Þ

M2
H0H0 ¼ ∂

2V0

∂H02

����
hi
þ ∂

3V0

∂H03

����
hi
δ1H0 þ ∂

2V1

∂H02

����
hi

¼ M2
H0 þ 6M2

H0 cot 2βδ1H0

v
þ αtM4

t ð3tan2β − 1Þ
16π2v2

�
ln

M2
t

Λ2
GW

þ 1

2
− kt

�
þ 2αtM4

t tan2β
16π2v2

¼ M2
H0 þ αtM4

t

8π2v2

�
ln

M2
t

Λ2
GW

þ 1

2
− kt þ tan2β

�
: ð31Þ

The eigenvectors H1, H2 and eigenvalues of M2
0þ , with M2

H1
< M2

H2
, are

H1 ¼ H cos δ1 −H0 sin δ1;

H2 ¼ H sin δ1 þH0 cos δ1; ð32Þ

M2
H1

¼ M2
HHcos

2δ1 þM2
H0H0sin2δ1 − 2M2

HH0 sin δ1 cos δ1;

M2
H2

¼ M2
HHsin

2δ1 þM2
H0H0cos2δ1 þ 2M2

HH0 sin δ1 cos δ1; ð33Þ

where δ1 is the H–H0 mixing angle δ in the one-loop approximation to

tan 2δ ¼ 2M2
HH0

M2
H0H0 −M2

HH
≅ −

αtM4
t tan β

8π2v2M2
H0

�
ln

M2
t

Λ2
GW

þ 5

2
− kt

�
þOðV2Þ: ð34Þ

These eigenmasses and the angle δ1 are displayed for the GW-2HDM in Figs. 1, 2 and will be discussed below.

GILDENER-WEINBERG TWO-HIGGS-DOUBLET MODEL AT TWO … PHYS. REV. D 107, 075038 (2023)

075038-5



The one-loop GW-2HDM formula for the Higgs boson’s
mass, MH ¼ 125 GeV, is

M2
H ¼ B

8π2v2
þOðV2Þ

¼ 1

8π2v2
ð6M4

W þ 3M4
Z þM4

H0 þM4
Aþ 2M4

H� − 12M4
t Þ:

ð35Þ

Thus, B is positive, as required so that ðV0 þ V1Þjhi < 0.
This constrains the BSM Higgs masses and implies a
simple and important sum rule on them:

ðM4
H0 þM4

A þ 2M4
H�Þ1=4 ¼ 540 GeV: ð36Þ

This sum rule holds in the one-loop approximation of any
GWmodel of electroweak symmetry breaking in which the
only weak bosons areW and Z and the only heavy fermion
is the top quark. Thus, the larger the Higgs sector, the
lighter will be the masses of at least some of the BSM
Higgs bosons expected in a GW model. Its importance is
that these models predict extra Higgs bosons at surprisingly
low masses. In the GW-2HDM, they have conventional
decay modes, discussed at length in Refs. [8,10,11].
Determining the sum rule’s reliability is a main motivation
for extending the calculation of M2

0þ to two loops.
Equations (23) and (29)–(34) establish a connection

between the top quark and Higgs alignment: If it were not
for the Glashow-Weinberg constraint on the Higgs cou-
plings to quarks [17] and the top quark’s large mass (hence

FIG. 1. Left: CP-even Higgs masses:MH ¼ 125 GeV in Eq. (35),MH0 from the sum rule Eq. (36), and the eigenvaluesMH1
andMH2

from Eq. (33) in the strict one-loop approximation. The masses are plotted vs MA ¼ M�
H from 180 to 410.5 GeV where MH0 is rapidly

approaching zero. Here, tan β ¼ 0.50 [8]; only small one-loop masses are sensitive to that choice. Right: closeup of the endpoint of the
tree-level and one-loop masses of the CP-even Higgs bosons.

FIG. 2. The magnitude of the one-loopH–H0 mixing angle δ1 (in radians) vsMA ¼ MH� at tan β ¼ 0.50. Note thatM2
HH0 ; δ1 ∝ tan β.

Left: full range fromMH�;A ¼ 180 GeV to the sum rule cutoff at 410.5 GeV. BelowMH�;A ¼ 315 GeV the numeratorM2
HH0 of tan 2δ1

is negative and so is δ1;M2
HH0 and δ1 change sign atMH�;A ¼ 315 GeV. Right: closeup of masses at the endpoint asMH0 → 0, showing

the level repulsion at MA ¼ 410.2 GeV between MH1
and MH2

. There, MH1
→ MH0 and MH2

→ MH ¼ 125 GeV. In this region
δ1 ≥ π=4 and the validity of the loop perturbation expansion has broken down.
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its appearance in V1), δ1H0 and δ1 would vanish and M2
0þ

would be diagonal [11]. This degree of Higgs alignment
means that standard techniques of searching for the BSM
Higgs bosons H0, A, and H� via their couplings toWþW−,
ZZ, and W�Z, both in fusion production and decay and in
H0; A → ZH and H� → HW�, will continue to come
up empty-handed11 and the electroweak couplings of
the GW-2HDM scalars in Sec. IV, Eq. (68). The rates
for these processes are proportional to δ21 ∼ ðδ1H0=vÞ2 ≲
10−3 [8,10]. An equivalent consequence of the top quark’s
connection to alignment is that it is responsible for the one-
loop VEV δ1H0 acquired by the other CP-even Higgs, H0.
The nearly diagonal nature of M2

0þ—that M2
H1

≡M2
H ≅

M2
HH and M2

H2
≅ M2

H0H0—is illustrated in Fig. 1 where the
mass pairs are plotted versus MA ¼ MH� . In the left panel,
where 180 GeV ≤ MH�;A < 410.5 GeV, the masses in
each pair appear to be on top of each other. As the sum
rule (36) forcesMH0 → 0 atMA ¼ MH� ¼ 410.5 GeV, the
difference in the H0 mass pairs due to the top-quark term in
M2

H0H0 is seen in the right panel.
Examples of how unimportant the top-quark terms are,

except for small MH0 , are displayed in Table I. Note how
sensitive MH0 and the eigenvalues MH2

are as the endpoint
of the sum rule (36) is approached.
Reference [16] demonstrated a level repulsion between

MH1
and MH2

as MH0 → 0. We can reproduce that here by
using the full Eq (33) with tan δ1 given by using all OðV1Þ
terms in the first equality of Eq. (34). This gives contributions
of OðV2Þ which become appreciable to the eigenmasses
whenMH0 → 0. We illustrate this in Fig. 2. In the left panel
the angle jδ1j is plotted vs MA. Below MA ≃ 380 GeV
the angle is very small, jδ1j≲ 10−3 and it changed sign
from negative to positive at MA ¼ 315 GeV. Above
MA ≃ 380 GeV, the sum rule starts to force MH0 → 0, the
denominator M2

H0H0 −M2
HH in tan δ1 decreases rapidly

above MH�;A ¼ 410 GeV, changing sign at 410.14 GeV.
Consequently, jδ1j rises rapidly from∼10−3, passing through
π=4 on itsway to π=2whenMH0 → 0. Here, this excursion of
the mixing angle is the signal of level repulsion, clearly seen
in the right panel. The magnitude of the angle δ1 and the
swapping of the two CP-even levels in this region signal
the breakdown of the validity of the loop perturbation
expansion.12

In Sec. II A we present a formalism for calculating the
extremal conditions and the CP-even masses of the two-
loop effective potential, Veff ¼ V0 þ V1 þ V2, of the GW-
2HDM model. This formalism is the straightforward
generalization to two loops of that in Ref. [1]. Still working

in the aligned basis, we expand derivatives of Veff about
their zeroth-order VEVs [Eq. (10)] allowing for shifts in the
VEV’s of H and H0 while keeping their rms equal to v [see
Eq. (47)]. In these calculations, we keep terms of at most
OðV2Þ, discarding those that are formally of higher order in
the loop expansion. We call this procedure the “perturbative
method.”
In Sec. II B we simplify our calculation considerably

by keeping only the all-Higgs-scalar terms in V2. This is
quite a good approximation for this method; see Fig. 3.
In this section we follow Martin [13] and define the
field-dependent triple-scalar couplings needed for these
calculations.
Even in this approximation, the two-loop generalization

of Eqs. (35) and (36) is intractable, so we must resort to a
purely numerical scheme to determine the BSM scalar
masses in terms of MH1

and MW , MZ, Mt. This is done in
Secs. II B and II C. The basis of this scheme is that, to
OðV2Þ, the CP-even mass-squared matrix M2

0þ has pos-
itive eigenvalues with M2

H1
close to ð125 GeVÞ2. For this,

the two-loop extremal conditions are used to determine the
corrections to ΛGW and the shifts δ2H, δ2H0 in the CP-even
Higgs VEVs. This procedure does not guarantee that

TABLE I. Examples of the approach to the breakdown
of the validity of the one-loop expansion as the endpoint
MA ¼ 410.5 GeV of the sum rule (36) is approached. Masses
are in GeV and tan β ¼ 0.50.

MA ¼ MH� MH0 δ1 δ1H0 MH2

375.0 400.6 0.76 × 10−3 1.55 404.9
409.8 147.6 0.31 × 10−2 12.3 160.0
410.21 108.7 0.603 × 10−1 22.9 125.2

FIG. 3. Ratios to the SSS cracked-egg contribution of the SS
figure-eight, SSV, FFS, FFV, VVS, VS figure-eight, and gauge
contributions to V2 for 180 GeV ≤ MA ¼ MH� ≲ 380 GeV, the
region of branch B1 in Fig. 5. The black curve is the sum of the
seven ratios. In addition to VSSS and VSS, these two-loop
potentials are taken from Martin [13].

11see https://twiki.cern.ch/twiki/bin/view/AtlasPublic and https:
//cms-results.web.cern.ch/cms-results/public-results/publications/
HIG/SUS.html

12The explanation for this phenomenon in Ref. [8] was
incorrect also, but for a different reason.

GILDENER-WEINBERG TWO-HIGGS-DOUBLET MODEL AT TWO … PHYS. REV. D 107, 075038 (2023)

075038-7

https://twiki.cern.ch/twiki/bin/view/AtlasPublic
https://twiki.cern.ch/twiki/bin/view/AtlasPublic
https://twiki.cern.ch/twiki/bin/view/AtlasPublic
https://cms-results.web.cern.ch/cms-results/public-results/publications/HIG/SUS.html
https://cms-results.web.cern.ch/cms-results/public-results/publications/HIG/SUS.html
https://cms-results.web.cern.ch/cms-results/public-results/publications/HIG/SUS.html


detðM2
0þÞ > 0 for the allowed range of MA ¼ MH� and

MH0 as it does in OðV1Þ. This determinant has terms of
OðV4Þ, coming from the square ofM2

HH0 , for example, and
they are not small. But it does not contain all fourth-order
terms; others will come from the three- and four-loop
effective potential.13

We find two “branches,” B1 and B2, of the H2 mass
for MH1

≅ 125 GeV and MA ¼ MH� ≥ 180 GeV. In the
lower-mass branch, B1, the plot of MH2

vs MA ¼ MH� is
reminiscent of the left panel in Fig. 1. This behavior is not
the result of a simple sum rule like Eq. (36), but the cause is
much the same: requiringMH1

¼ 125 GeV restrictsMH2
to

small values for large MA ¼ MH� . In this branch, which
extends over 180 ≤ MA ¼ MH� ≲ 380 GeV, MH2

starts
near 550 GeV, rises to 700 GeV and then drops rapidly
to near zero atM�

A ≅ 380 GeV. From there, branch B2 rises
rapidly and grows together indefinitely with the increasing
inputMH0 . For reasons we discuss in Sec. II C, we consider
only branch B1 to be physically meaningful.
As in perturbation theory in ordinary quantum mechan-

ics, determining the mass eigenvalues to OðV2Þ requires
that we know the eigenvectors H1 and H2 only to OðV1Þ.
To that extent, what we have already stated about the degree
of Higgs alignment—thatH1 very nearly has SM couplings
and that such processes as H0; A → WþW−, ZZ, and HZ
are greatly suppressed—is still correct. Furthermore, align-
ment remains strong if we use the OðV1Þ approximation to
just the numerator of Eq. (34) for tan 2δ [see Eq. (53)].
In Sec. III we follow a different approach to calculating

the eigenvalues of M2
0þ . It requires that the full two-loop

effective potential, V0 þ V1 þ V2, has a stable minimum.
The program Amoeba [24] is used to find the regions of Veff

for which M2
0þ is positive-definite. We vary MA ¼ MH�

and MH0 and require that MH1
or MH2

is equal 125 GeV.
Only the solutions with the lighter eigenmass MH1

¼
125 GeV are consistent with LEP and LHC Higgs boson
searches. We call this procedure the “amoeba method.” As
in Sec. II C, there are two regions of MA ¼ MH� for this
solution that we also call B1 and B2. Region B1 extends
from MA ≅ 290 to 425 GeV and B2 from 425 to about
600 GeV. Again, only region B1 is physically meaningful.
The behavior of the eigenvalue MH2

is quite similar in the
B1 region of both methods as are the transitions between
regions B1 and B2.
Finally, in Sec. IV we discuss the experimental impli-

cations of our two-loop studies, especially as they refer to
the LHC experiments ATLAS and CMS. They are in good
agreement with those in our previous papers [8,10,11]: The
BSMHiggs bosons are well within reach of the LHC today,
but their discovery requires much improvement in the

rejection of low-energy QCD backgrounds. We discuss
three new search modes that have low rates, but also much
lower backgrounds. Higgs alignment is respected with
experimental violations and the corresponding suppression
of many processes enjoyed by the SM Higgs belowOð1%Þ.

II. THE GW-2HDM AT TWO LOOPS: THE
PERTURBATIVE METHOD

Gildener and Weinberg’s one-loop analysis [1] started
from Eqs. (19) and (20). Because their analysis was inten-
tionally model independent, its main result was the very
general, and very important, Eq. (29) for the Higgs boson’s
mass. In the specificGW-2HDM,we can domore and extract
other results. Themost important ones so far are the sum rule
(36) constraining the masses of the model’s BSM Higgs
bosons to be light and the degree to which Higgs alignment
and the related suppression of BSMcouplings toweak boson
pairs and to aweak boson plus the SMHiggsH. Determining
the degrees to which they hold when extended to two loops
motivate our present investigation.
We divide the discussion in this section into three parts:

(a) The formalism for the extremal conditions and the two-
loop contributions to the CP-even scalar masses. This
includes the generalization to two-loop order of Eq. (25)
relating the renormalization scale ΛGW to the electroweak
VEV v. (b) Calculations of ΛGW and M2

0þ in the approxi-
mation of keeping only the all-scalar terms in V2.
(c) Determining the allowed ranges of the BSM masses,
MA ¼ MH� and MH2

for MH1
¼ 125 GeV, and the degree

of Higgs alignment in the GW-2HDM. We refer to this
procedure as the “perturbative method” because we discard
terms that are formally of higher order than two loops.

A. The two-loop formalism

We extend the analysis in Ref. [1] to two-loop order here.
The key requirement of this is to retain only those terms
that are at most formally of second order in the loop
expansion. The aligned basis, Eq. (9), is still the most
suitable for this because, as we shall see, the strictly two-
loop corrections to Higgs alignment are small. In the CP-
conserving GW-2HDM, the only fields that can acquire a
VEVare theCP-evenH andH0. Therefore, throughOðV2Þ,
and using δ1H ¼ 0, the extremal conditions are obtained
from

∂ðV0 þ V1 þ V2Þ
∂H

����
hiþδ1H0þδ2H0þδ2H

¼ 0; ð37Þ

∂ðV0 þ V1 þ V2Þ
∂H0

����
hiþδ1H0þδ2H0þδ2H

¼ 0; ð38Þ

where, again, hi means the tree-level VEVs hHi ¼ v and
hH0i ¼ 0. Using the vanishing derivatives of V0 in Eqs. (11)
and (16) and ð∂3V0=∂H3Þhi ¼ ð∂4V0=∂H4Þhi ¼ 0, we get

13This seems to be a problem with no end unless successive
loop contributions become negligibly small. Another facet of this
will occur in Sec. III.
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0 ¼ ∂ðV0 þ V1 þ V2Þ
∂H

����
hiþδ1H0þδ2H0þδ2H

¼ ∂V1

∂H

����
hi
þ 1

2

∂
3V0

∂H∂H02

����
hi
ðδ1H0Þ2 þ ∂

2V1

∂H∂H0

����
hi
δ1H0 þ ∂V2

∂H

����
hi

¼ 1

16π2v

X
n

αnM4
n

�
ln

M2
n

Λ2
GW

þ 1

2
− kn

�

−
αtM4

t tanβδ1H0

8π2v2

�
ln

M2
t

Λ2
GW

þ 3

2
− kt

�
þ ∂V2

∂H

����
hi
; ð39Þ

0 ¼ ∂ðV0 þ V1 þ V2Þ
∂H0

����
hiþδ1H0þδ2H0þδ2H

¼ ∂
2V0

∂H02

����
hi
δ1H0 þ ∂V1

∂H0

����
hi
þ ∂

2V0

∂H02

����
hi
δ2H0 þ ∂

2V1

∂H02

����
hi
δ1H0

þ 1

2

∂
3V0

∂H03

����
hi
ðδ1H0Þ2 þ ∂V2

∂H0

����
hi

¼
�
αtM4

t ð1þ 3tan2βÞ
32π2v2

�
ln

M2
t

Λ2
GW

þ 1

2
− kt

�
þ αtM4

t tan2β
8π2v2

þ 1

16π2v

X
n

αnM4
n

�
ln

M2
n

Λ2
GW

þ 1

2
− kn

��
δ1H0

þM2
H0δ2H0 þ ∂V2

∂H0

����
hi
: ð40Þ

Here, we used Eq. (13) to calculate the derivatives of V0, the
definition of the OðV1Þ shift δ1H0 in the VEV of H0, in
Eq. (22), and the following:

∂V1

∂H

����
hi
¼ 1

16π2v

X
n

αnM4
n

�
ln

M2
n

Λ2
GW

þ 1

2
− kn

�
ð41Þ

∂
2V1

∂H∂H0

����
hi
¼ −

3αtM4
t tan β

16π2v2

�
ln

M2
t

Λ2
GW

þ 7

6
− kt

�
; ð42Þ

∂
2V1

∂H02

����
hi
¼ αtM4

t ð3tan2β − 1Þ
16π2v2

�
ln

M2
t

Λ2
GW

þ 1

2
− kt

�

þ 2αtM4
t tan2β

16π2v2
þ 1

16π2v2
X
n

αnM4
n

×

�
ln

M2
n

Λ2
GW

þ 1

2
− kn

�
: ð43Þ

Every term on the right side of Eqs. (39) and (40) is ofOðV2Þ
or, sometimes more explicitly, Oðκ2Þ, where

κ ¼ 1

16π2
: ð44Þ

This is because, as stated below Eq. (7), the extremal
conditions in each order of the loop expansion of Veff are
enforced in all orders of the loop expansion [1]. That means,
e.g., that the right side ofEq. (41) and the third term inEq. (43)
are OðV2Þ. This will provide an OðV2Þ correction to ΛGW.
The dominant Oðκ2Þ corrections to the extremal con-

ditions will come from the derivatives of V2 itself with
respect toH andH0. Equation (39) determines theOðV1Þ ¼
OðκÞ correction to ΛGW. From now on, we denote the
renormalization scale by ΛGW only in terms that are other-
wise of OðV1Þ. In those terms, the OðV1Þ part of ΛGW will
produce an Oðκ2Þ contribution. In terms that are already
OðV2Þ, we use the Oðκ0Þ scale Λ0 ¼ v expð1

2
ðA=Bþ 1

2
ÞÞ

from Eq. (25). We obtain the following expression for
ΛGW [in which we still use M2

H ¼ ð∂2V1=∂H2Þhi ¼P
n αnM

4
n=8π2v2]:

ΛGW ¼ Λ0 exp

�
2

M2
Hv

�
αtM4

t tan βδ1H0

8π2v2

�
log

M2
t

Λ2
0

þ 3

2
− kt

�
−
∂V2

∂H

����
hi

�	

≅ Λ0

�
1þ αtM4

t tan βδ1H0

4π2v3M2
H

�
log

M2
t

Λ2
0

þ 3

2
− kt

�
−

2

M2
Hv

∂V2

∂H

����
hi

�
: ð45Þ

This correction to Λ0 is OðκÞ because M2
H ¼ OðκÞ.

Equation (40) determines the Oðκ2Þ contribution δ2H0 to δH0:

δ2H0 ¼ −
1

M2
H0

�
1

2

∂
3V0

∂H03

����
hi
ðδ1H0Þ2 þ ∂

2V1

∂H02

����
hi
δ1H0 þ ∂V2

∂H0

����
hi

�

¼ −
1

M2
H0

��
αtM4

t ð1þ 3tan2βÞ
32π2v2

�
ln
M2

t

Λ2
0

þ 1

2
− kt

�
þ αtM4

t tan2β
8π2v2

�
δ1H0 þ ∂V2

∂H0

����
hi

�
: ð46Þ

The shift δ2H does not appear in Eqs. (39) and (40). It could do so to OðV2Þ only by multiplying ð∂2V0=∂H2Þhi ¼ 0 and
ð∂2V0=∂H∂H0Þhi ¼ 0 by δ2H. Since it is undetermined, we use it to keep v fixed. That is, we require14

14Equation (47) is correct through OðV2Þ.
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v2 ¼ ðvþ δ2HÞ2 þ ðδ1H0 þ δ2H0Þ2 ⇒ δ2H ¼ −ðδ1H0Þ2=2v: ð47Þ

Now we turn to the elements of the CP-even squared mass matrix in OðV2Þ. With an obvious notation, they are

ðM2
HiHj

Þ
2
¼ ∂

2ðV0 þ V1 þ V2Þ
∂Hi∂Hj

����
hiþδHþδH0

¼ ∂
2V0

∂Hi∂Hj

����
hi
þ ∂

3V0

∂Hi∂Hj∂Hk

����
hi
ðδ1Hk þ δ2HkÞ þ

1

2

∂
4V0

∂Hi∂Hj∂Hk∂Hl

����
hi
δ1Hkδ1Hl

þ ∂
2V1

∂Hi∂Hj

����
hi
þ ∂

3V1

∂Hi∂Hj∂Hk

����
hi
δ1Hk þ

∂
2V2

∂Hi∂Hj

����
hi
: ð48Þ

Then,

ðM2
HHÞ2 ¼ M2

H þM2
H0

�
δ1H0

v

�
2

−
3αtM4

t tan β
8π2v2

�
ln
M2

t

Λ2
0

þ 13

6
− kt

�
δ1H0

v
þ ∂

2V2

∂H2

����
hi

¼ M2
H −

5αtM4
t tan β

16π2v2

�
ln
M2

t

Λ2
0

þ 5

2
− kt

�
δ1H0

v
þ ∂

2V2

∂H2

����
hi
; ð49Þ

ðM2
HH0 Þ2 ¼ −

αtM4
t tan β

16π2v2

�
ln

M2
t

Λ2
GW

þ 5

2
− kt

�

þ
�
M2

H þ 3αtM4
t ðtan2β − 1Þ
32π2v2

�
ln
M2

t

Λ2
0

þ 1

2
− kt

�
þ αtM4

t ð3tan2β − 1Þ
8π2v2

�
δ1H0

v

−
2

v
∂V2

∂H0

����
hi
þ ∂

2V2

∂H∂H0

����
hi
; ð50Þ

ðM2
H0H0 Þ2 ¼ M2

H0 þ αtM4
t

8π2v2

�
ln

M2
t

Λ2
GW

þ 1

2
− kt þ tan2β

�

−
�
7αtM4

t tan β
16π2v2

�
ln
M2

t

Λ2
0

þ 1

2
− kt

�
þ αtM4

t tan βð3þ 2tan2βÞ
8π2v2

�
δ1H0

v

−
6 cot 2β

v
∂V2

∂H0

����
hi
þ ∂

2V2

∂H02

����
hi
: ð51Þ

Equation (47) for δ2H was used in calculating M2
H0H0 .

When determining the eigenmasses M2
H1;H2

in Eqs. (33)
to OðV2Þ, only the OðκÞ term in M2

HH0 should be kept
(using Λ0) and then multiplied by sin δ1 cos δ1 ¼ OðκÞ. For
the same reason, the term sin2 δ1M2

HH in M2
H2

should be
dropped. The eigenvalues of M2

0þ to OðV2Þ are then

M2
H1

¼ ðM2
HHÞ2cos2δ1 þ ðM2

H0H0 Þ0sin2δ1
− 2ðM2

HH0 Þ1 sin δ1 cos δ1;
M2

H2
¼ ðM2

H0H0 Þ2cos2δ1 þ 2ðM2
HH0 Þ1 sin δ1 cos δ1; ð52Þ

where only the OðV1Þ part of tan 2δ1 ≅ 2M2
HH0=M2

H0H0 in
Eq. (34)is used. The left side of Fig. 1 shows that these are
good approximations.

On the other hand, for the purpose of determining the
eigenvectorsH1 andH2 and their degree of alignment from
the OðV2Þ version of Eq. (32), we use δ2 defined by

tan 2δ2 ¼
ð2M2

HH0 Þ1
ðM2

H0H0 −M2
HHÞ2

ð53Þ

because this approximation is numerically closer to δ1 than
that which results from expanding tan 2δ to Oðκ2Þ.

B. The scalar approximation

There are five general types of contributions to the two-
loop potential V2 for the GW-2HDM and similar electro-
weak models; see Secs. 2 and 4 of Ref. [13] for details of
the interactions and the two-loop integrals.
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(1) Scalar graphs consisting of “cracked-egg” two-
vertex graphs with three scalars emanating from
one interaction vertex and propagating to the
other (SSS), and “figure-eight” graphs with two
separate one-loop graphs (each loop as in V1) stuck
together at a single vertex with the appropriate
quartic coupling (SS). These contributions arise
from the scalar potential V0 in Eq. (13), as described
below.

(2) Cracked-egg fermion loops, induced by Yukawa
interactions, with a scalar exchanged between the
two vertices (FFS); only the top and bottom quarks
contribute significantly to the loop integrals.

(3) From the electroweak gauge interactions of the
scalars there are cracked-egg scalar loops with an
electroweak gauge boson exchanged between the
two vertices (SSV) and figure-eight graphs with a
scalar loop and a gauge loop (VS). There are also
cracked-egg electroweak gauge loops with a scalar
exchanged between the vertices (VVS).

(4) Cracked-egg fermion loops with an electroweak
boson or QCD gluon exchanged between the two
vertices (FFV); again, only t and b quarks contribute
substantially.

(5) Pure gauge-boson (including ghosts) cracked-egg
and figure-eight loops (gauge).

Of these five types of contributions to V2, the scalar (SSS
and SS) graphs are by far the most important because the
BSM Higgs masses set their magnitudes.15,16 Therefore, we
approximate V2 by its scalar contributions. This approxi-
mation is good to about 2% over the entire range of branch
B1; see Fig. 3.
The SSS couplings descend from the quartic couplings in

V0 of Eq. (13) by shifting the scalar quantum fields by their
classical counterparts [21].17 Following Ref. [13], it is
convenient to use real scalar (and electroweak boson) fields
for this discussion:

R1¼H0; R2¼A; R3¼h1; R4¼h2;

R5¼H; R6¼ z; R7¼w1; R8¼w2;

A1
μ¼W1

μ; A2
μ¼W2

μ; A3
μ¼Zμ; A4

μ¼Aμ ðthephotonÞ:
ð54Þ

Here, H� ¼ ðh1 � ih2Þ=
ffiffiffi
2

p
, w� ¼ ðw1 � iw2Þ=

ffiffiffi
2

p
and

W�
μ ¼ ðA1

μ � iA2
μÞ=

ffiffiffi
2

p
. Because our interest in calculating

V2 is to see its effect onMH2
as we varyMA ¼ MH� [as the

sum rule (36) did in OðV1Þ] and on the H–H0 mixing
determining the departure from Higgs alignment, we shift
only the two scalar fields that can get aCP-conserving VEV,
H and H0 as follows18:

R5 ¼ H → R5 þHc; R1 ¼ H0 → R1 þH0
c: ð55Þ

The cubic-scalar interactions are those that are first order in
Hc orH0

c.
19We indicate these couplingswith anoverbar, λ̄ijk,

as we did for the field-dependent masses M2
n in Eq. (18).

The scalar interactions used in constructing V2 of the
GW-2HDM are then

VS ¼
1

6
λ̄ijkRiRjRk þ

1

24
λijklRiRjRkRl; ð56Þ

where repeated indices are summed over and the prefactors
of 1

6
and 1

24
are choices of convenience made in Ref. [13].

The triple-scalar couplings consistent with these normal-
izations are

λ̄111 ¼ 6M2
H0 cot 2βðHc þ 2H0

c cot 2βÞ=v2;
λ̄122 ¼ λ̄133 ¼ λ̄144 ¼ 2M2

H0 cot 2βðHc þ 2H0
c cot 2βÞ=v2;

λ̄115 ¼ 2M2
H0 ðHc þ 3H0

c cot 2βÞ=v2;
λ̄225 ¼ 2ðM2

H0H0
c cot 2β þM2

AHcÞ=v2;
λ̄335 ¼ λ̄445 ¼ 2ðM2

H0H0
c cot 2β þM2

H�HcÞ=v2;
λ̄155 ¼ 2M2

H0H0
c=v2; λ̄166 ¼ 2M2

AH
0
c=v2;

λ̄177 ¼ λ̄188 ¼ 2M2
H�H0

c=v2;

λ̄126 ¼ ðM2
H0 −M2

AÞHc=v2; λ̄256 ¼ ðM2
H0 −M2

AÞH0
c=v2;

λ̄137 ¼ λ̄148 ¼ ððM2
H0 −M2

H�ÞHc þ 2M2
H0H0

c cot 2βÞ=v2;
λ̄357 ¼ λ̄458 ¼ ðM2

H0 −M2
H�ÞH0

c=v2;

λ̄238 ¼ −λ̄247 ¼ ðM2
A −M2

H�ÞHc=v2;

λ̄467 ¼ −λ̄368 ¼ ðM2
A −M2

H�ÞH0
c=v2: ð57Þ

In Eq. (56), λ̄ijk appears six times, λ̄iij three times, and
λ̄iii once.
The λijkl in Eq. (56) are the quartic scalar couplings in

Eq. (13). Because of the figure-eight structure of the two-

loop graphs to which they contribute [Vð2Þ
SS in Eq. (61)

below], only terms with λiiii and λiijj with i ≠ j in VS are
used; λiiii contributes to one term in VS and λiijj (with i < j,
e.g.) contributes to six terms there. They are15As in V1, the tree-level masses are used for all the

scalars, gauge bosons, and fermions propagating in these loops.
16The cracked-egg scalar graphs are much larger than the

figure eights; see also Ref. [25].
17The only other cracked-egg graphs with field-dependent

couplings are VVS with V an electroweak boson. They descend
from the quartic electroweak interactions and are of order a
squared electroweak coupling times Hc or H0

c.

18Strictly speaking, the derivatives with respect to H and H0 in
Secs. I and II A were with respect to Hc and H0

c, but the results
there do not depend on this point; also see footnote 9.

19The terms quadratic in the classical fields gave rise to the
one-loop potential V1 [21].
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λ1122 ¼ λ1133 ¼ λ1144 ¼ 4M2
H0cot22β=v2;

λ2233 ¼ λ2244 ¼ λ3344 ¼ 4M2
H0cot22β=v2;

λ1111 ¼ λ2222 ¼ λ3333 ¼ λ4444 ¼ 12M2
H0cot22β=v2: ð58Þ

The two-loop effective potential in the scalar approxi-
mation is given by [13]

V2 ¼ κ2ðVð2Þ
SSS þ Vð2Þ

SS Þ; ð59Þ

where, in terms of the couplings and field-dependent
masses specified above:

Vð2Þ
SSS ¼ −

1

12
λ̄2ijkIðM2

i ;M
2
j ;M

2
kÞ; ð60Þ

Vð2Þ
SS ¼ 1

8
λiijjJðM2

i ;M
2
jÞ: ð61Þ

All indices on the right are summed over. The loop-integral
functions IðM2

i ;M
2
j ;M

2
kÞ and JðM2

i ;M
2
jÞ are defined in

Ref. [13]. They are symmetric under the interchange of
their arguments. Therefore, there are two equal terms in

Vð2Þ
SS with λiijj with i ≠ j. In using Martin’s formulas for the

I integral, and various massless limits of it, it is important to
note that the arguments are ordered as M2

i ≤ M2
j ≤ M2

k.
Martin included in the definition of these functions all
factors associated with the evaluation of Feynman dia-
grams, including fermion-loop minus signs.20

C. Numerical results for H0, A, H� masses

A glance at Eqs. (49)–(51) for the CP-even masses will
convince the reader that a simple, useful generalization to
OðV2Þ of the sum rule (36) is out of the question. This is so
even in the approximation of keeping only the all-scalar
graphs. To study the mass MH2

as a function of the other
scalar masses,MA ¼ MH� (see footnote 2),MH0 , andMH1

,
we use the following algorithm:
(1) IncrementMA ¼ MH� from 180 GeV to 1 TeV.21 We

use tan β ¼ 0.50 [8].
(2) For each value of MA, increment MH0 from 10 GeV

to 1 TeV.
(3) Calculate the OðκÞ renormalization scale ΛGW

[Eq. (45)] and the two-loop shifts in the VEVs of
H and H0.

(4) Calculate the OðV2Þ elements ðM2
HiHj

Þ2 consistent
with the extremal conditions solved for ΛGW and
δ2H0. Then diagonalize them toOðκ2Þ using Eq. (52)

with δ1 given by the OðV1Þ approximation to
Eq. (34). For comparison, we also calculated the
eigenvalues and eigenvectors of ðM2

HiHj
Þ2 using the

approximate two-loop H–H0 mixing angle δ2 in
Eq. (53). This made no discernible difference in the
masses and the degree of Higgs alignment.

(5) We select for plotting the CP-even eigenmasses
satisfying:
(a) the one-loop Higgs mass-squared M2

H ¼P
n αnM

4
n=8π2v2 > 0,

(b) ðM2
H0H0 Þ2 > 0, and

(c) jM2
H1

− ð125 GeVÞ2j ≤ 1250 GeV2.
These conditions always yield positiveM2

H1;H2
. For fixed

MA, the selections are usually multivalued, satisfied for
several values of MH0 . We plot the selection having
MH1

closest to 125 GeV. We also plot the renormalization
scales Λ0 and ΛGW. As noted earlier, this procedure does
not guarantee that detðM2

0þÞ > 0. In this analysis,
detðM2

0þÞ > 0 only for MA < 260 GeV.
Figure 4 shows MH0 vs MA on the left and the

renormalization scales Λ0 and ΛGW on the right. There
are two branches of each, B1 for MA < M�

Aðpert:Þ ≅
380 GeV and B2 for MA > M�

Aðpert:Þ. On the left, the
values of MH0 for which MH1

≅ 125 GeV in branch B1
start near 550 GeV and then rise approximately linearly
with MA to over 1 TeV. This branch ends abruptly at
M�

Aðpert:Þ. Branch B2 begins there near MH0 ¼ 0, rising
quickly and then growing linearly with MA up to MA ≃
750 GeV and MH0 ≃ 825 GeV where the data becomes
sparse because the algorithm conditions can no longer
be satisfied. In branch B1 of the right panel, the OðκÞ
scale ΛGW starts below Λ0 and grows linearly with MA,
becoming almost equal to Λ0 at MA ≅ 260 GeV for the
remainder of B1. In branch B2, both scales grow linearly
with MA over the range calculated, but with a greater slope
for ΛGW.
Figure 5 shows MH0 and the Oðκ2Þ CP-even eigen-

massesMH1;H2
fromMA ¼ 180 to 750 GeV in branches B1

and B2. While MH0 and MH2
start together near 550 GeV,

MH0 grows to above 1 TeV on branch B1, MH2
starts

at MH0 ≅ 550 GeV and grows to near 700 GeV at
MA ≅ 325 GeV. It then drops precipitously, falling below
MH1

to near zero at M�
Aðpert:Þ. At that point, the B2

branches of MH0 and MH2
emerge and grow rapidly

together from well below MH1
to about 500 GeV and,

then, linearly with and approximately equal to MA up to
about 750 GeV. There is no evidence for a Higgs-like boson
below 100 GeV.22 Also suspicious is the long linear growth
with MA of MH0 and MH2

in B2. For these reasons, we
regard branch B2 as unphysical.

20Only particles that become massive at tree level contribute
to the figure-eight loop function JðM̄2

i ; M̄
2
jÞ so that, e.g., we

omitted λ1155 in Eqs. (58).
21These are the approximate lower bound set by searches for

H� → τ�ντ, cb̄, and cs̄ at LEP and the LHC and well above the
upper bound of ≃500 GeV expected from the one-loop sum rule.

22For a more optimistic view, see Ref. [26] and references
therein.
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The behavior of MH2
in branch B1 is similar to its one-

loop approximation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

H0H0 Þ1
q

≅ M2
H0 in Fig. 1. That

behavior was caused by Eq. (35) for M2
H and its conse-

quence, the sum rule (36) for the BSM Higgs bosons’
masses. That sum rule forced MH0 and the OðV1Þ eigen-
mass MH2

to be large when MA;H� were near the exper-
imental lower bound of 180 GeV for MH� and, then, to
plunge to zero when ðM4

A þ 2M4
H�Þ−1=4 → 540 GeV.

A similar thing is happening here: setting MH1
≅

125 GeV is a strong constraint on the BSM Higgs masses,
although its mechanics are less obvious. First, ðM2

HHÞ2
in Eq. (49) is dominated by its first and third terms,
the one-loop Higgs mass, M2

H ¼ P
n αnM

4
n=8π2v2, and

ð∂V2=∂H2Þhi. The condition M2
H > 0 requires M4

H0þ
M4

A þ 2M4
H� > 12M4

t ≃ 1010 GeV4ð≫ 6M4
W þ 3M4

ZÞ. This
favors large BSM masses, and as MA;H� increases, so does
MH0 which is being forced to be large by the algorithm’s
conditions (5b,c). Thus, the MH1

constraint requires
ð∂V2=∂H2Þhi < 0 and increasing in magnitude.
The other feature of Fig. 5 in common with the one-loop

masses in Fig. 1 is MH2
falling from its maximum value to

near zero at the B1 − B2 transition at M�
Aðpert:Þ. The

dominant terms at large BSM masses in Eq. (51) are
M2

H0 > 0 and the last two, ð−6 cot 2β=vÞð∂V2=∂H0Þhi < 0

and ð∂2V2=∂H02Þhi > 0. All three terms are large and there
is a tug of war between the latter two which the negative

FIG. 5. Left: two-loop CP-even Higgs mass MH2
with MH1

fixed near 125 GeV as described in the text. The input MH0 is shown for
comparison with MH2

. The B1–B2 transition between the two branches ofMH2
vsMA occurs atM�

Aðpert:Þ ≅ 380 GeV. Right: closeup
of the B1–B2 transition region.

FIG. 4. Left: BSM Higgs massesMH0 vsMA ¼ M�
H with the two-loop Higgs boson massMH1

fixed near 125 GeVas described in the
text. Here and below, tan β ¼ 0.50. Right: renormalization scale Λ0 (red) calculated to zero-loop order from Eqs. (25) and (26) and
the one-loop scale ΛGW (green) from Eq. (45). The two branches, B1 and B2, ofMH0 and of the renormalization scales are discussed in
the text. The transition between them occurs at M�

Aðpert:Þ ≅ 380 GeV.
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term wins, drivingMH2
≅

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

H0H0 Þ2
q

below 125 GeV—a

level crossing between the two CP-even eigenvalues. This
is the same as its behavior in Figs. 1. Recall that, in that
figure and this one, the diagonalization ofM2

0þ was carried
out strictly to OðV1Þ and OðV2Þ, respectively, by omitting
or truncating the off-diagonal M2

HH0 term.23

The one- and two-loop H–H0 mixing angles are nega-
tive and nearly equal to each other, δ1 ≅ δ2 ≅ −0.001 for
180 GeV < MA ≲ 350 GeV. Above 350 GeV δ2 decreases
rapidly to −0.028 at MA ≅ MA� ¼ 380 GeV because the
denominator ðM2

H0H0 −M2
HHÞ2 ≅ M2

H2
−M2

H1
of tan 2δ2

is becoming smaller as the B1 − B2 transition is
approached; see Fig. 5.
The experimental consequences of the perturbative

method are presented in Sec. IV.

III. THE GW-2HDM MODEL AT TWO LOOPS:
THE AMOEBA METHOD

In this section we use a different method to calculate the
eigenmasses and eigenvectors of the CP-even scalars H
andH0. The results of this calculation and the one in Sec. II
are similar. The reasons for this and for their differences
will be explained. In this method, the potential Veff ¼
V0 þ V1 þ V2 for the GW-2HDM is a function of:
tan β ¼ v2=v1, the ratio of the VEVs of the CP-even
components of the complex Higgs doublets Φ2 and Φ1;
the BSM Higgs masses MA, MH� , and MH024; the classical
fieldsHc andH0

c corresponding to the VEVs of the aligned-
basis fields H and H0; and the renormalization scale ΛGW.
We fix tan β ¼ 0.50, the experimental upper limit from the

searches by CMS [19] and ATLAS [20] for gg → tb̄H− →
tt̄bb̄ for 180 GeV < MH� ≲ 500 GeV. We also adopt the
precision electroweak constraint MA ¼ MH� [14–16], and
we assume thatMH0;A;H� ≲Oð1 TeVÞ, a conservative upper
limit suggested by the analyses of Secs. I and II.
The program Amoeba [24] is used to minimize Veff with

respect to Hc and H0
c subject to the constraint

H2
c þH02

c ¼ v2 ¼ ð246.2 GeVÞ2; ð62Þ

and with respect to ΛGW.
25 This procedure is carried

out for BSM masses below 1 TeV. Its outputs are the

renormalization scale ΛGW, the VEV shift H0
c [with the

corresponding shift in Hc dictated by Eq. (62)], and the
eigenvaluesMH1;H2

and eigenvectorsH1,H2 of theCP-even
mass matrix. Minimization of Veff requires that M2

0þ is a
positive-definitematrix. This is not yet enough to realistically
fixMH1;H2

,H1,H2, andΛGW. That happenswhenwe require
that one of theCP-even eigenmasses isMH ¼ 125 GeV.We
refer to this procedure as the “amoeba method.”
The regions of stability of the one- and two-loop

effective potentials for BSM Higgs masses below 1 TeV
are shown in Fig. 6. Except for the small top-quark terms in
V1, the one-loop potential is a function of Hc and H0

c only
through H2

c þH02
c ¼ v2 and, so, it is nearly independent of

them. This accounts for its large region of stability below
1 TeV. The small hole near the origin of this plot occurs
because Eq. (35) cannot be satisfied for M2

H > 0 for that
region of BSM masses. The cubic and quartic couplings
that enter V2 constrain the region of stability of the full
two-loop potential to 300 GeV≲MA ¼ MH� ≲ 900 GeV
and 25 GeV≲MH0 ≲ 900 GeV. The mass scale of these
ranges is set by v ¼ 246 GeV, of course. From now on,
we require that one of the CP-even eigenmasses
MH1;H2

¼ MH ¼ 125 GeV. We will see that only the case
MH1

¼ 125 GeV is allowed experimentally.
Most notably, the amoeba method differs from the

perturbative one in that M2
0þ is required to be positive-

definite. Its determinant therefore contains terms of order
three and four loops [Oðκ3Þ and Oðκ4Þ]. Furthermore, its
eigenvectors and eigenmasses also contain terms of Oðκ3Þ
and Oðκ4Þ:

H1 ¼ H cos δ −H0 sin δ;

H2 ¼ H sin δþH0 cos δ; ð63Þ
M2

H1
¼ M2

HcHc
cos2δþM2

H0
cH0

c
sin2δ − 2M2

HcH0
c
sin δ cos δ;

M2
H2

¼ M2
HcHc

sin2δþM2
H0

cH0
c
cos2δþ 2M2

HcH0
c
sin δ cos δ;

ð64Þ
where, now, the H–H0 mixing angle δ is obtained from the
ratio of derivatives with respect toHc andH0

c of the full two-
loop Veff :

tan 2δ ¼ 2M2
HcH0

c

M2
H0

cH0
c
−M2

HcHc

: ð65Þ

Since Veff depends on the “tree-level” BSM Higgs masses,
MA ¼ MH� and MH0 in Eq. (8), this procedure also deter-
mines the allowed ranges of those masses.
As an application of the amoeba method, one that

highlights its difference from the perturbative method of
Secs. I and II, we apply it to the one-loop potential
V0 þ V1, requiring that the lighter eigenvalue of M2

0þ

equals 125 GeV. The square roots of the elements of
the one-loop M2

0þ are shown in the left panel of Fig. 7.

23In Sec. III, the same dive of MH2
occurs at the B1 − B2

transition, but a level repulsion, not a level crossing, occurs there
because the fullM2

HH0 is included in diagonalizingM2
0þ—as was

done in Fig. 2.
24Recall that the tree-approximation extremal conditions re-

main in force which, with tan β, reduce the number of indepen-
dent quartic couplings to three, namely, λ5, λ45, and λ345. We also
remind the reader that an upper limit on tan β in this model is a
lower limit on tan β in the usual 2HDM’s with natural flavor
conservation [12].

25Because of the constraint (62), this minimization involves
two independent parameters, as in the perturbative method.
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ForMA ¼ MH� ≲ 410 GeV, note how small the off-diago-

nal
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jM2

HcH0
c
j

q
is compared to the diagonal elements. This

is the hallmark of Higgs alignment in this approximation of

the GW-2HDM, in particular, that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

HcHc

q
≅ MH1

¼
125 GeV and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

H0
cH0

c

q
≅ MH2

> 125 GeV. Also, the

BSM masses satisfy the sum rule Eq. (36), which is
built into V1.

26 Here, the important difference with
the perturbative method is the appearance of the small

contribution �2M2
HcH0

c
sin δ cos δ in Eqs. (64). This term

was excluded in Sec. I because it is Oðκ2Þ. It effects the
eigenvalues of M2

0þ only very near MA ¼ 410 GeV—
where the denominator of tan 2δ is vanishing. In Fig. 1,
the region MA > 410.5 GeV is unphysical because it
violates the sum rule, and the curves end there. In the

amoeba method, the
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

HcHc

q
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

H0
cH0

c

q
curves

cross at MA ¼ 410.5 GeV and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

HcHc

q
rises appro-

ximately linearly while
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

H0
cH0

c

q
¼ 125 GeV.27 As in

FIG. 7. The square roots of the elements of M2
0þ in the amoeba method for the one-loop effective potential (left) and the two-loop

effective potential (right). The lighter CP-even eigenvalue is required to be 125 GeV here.

FIG. 6. Left: region (shown in blue) of 0 < MA ¼ M�
H < 1450 GeV and 0 < MH0 < 1200 GeV for which the one-loop effective

potential V0 þ V1 has a minimum as described in the text. Right: Mr. Magoo region (in blue) for which the two-loop potential
V0 þ V1 þ V2 has a minimum for the same ranges of MA ¼ MH� and MH0 . The Higgs mass MH1

has not been fixed at 125 GeV
in these plots.

26This calculation covered MA;H� ¼ 0 to 600 GeV, endpoints
outside the range of the experimental lower bound on MH� and
the one-loop sum rule, but for which Veff has a stable minimum.

27This is not a level crossing. In fact, the eigenvalues repel each
other there as can be seen in Fig. 10 for the two-loop masses.
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the perturbative method, this region is unphysical; i.e.,
even in one loop of the amoeba method there are
two branches with the transition at the sum-rule cutoff
of 410.5 GeV.

Another difference between the two methods is that,
in the perturbative one, the two-loop effective potential
in B1 is very well approximated by its all-scalar terms
with the cracked-egg (SSS) contribution alone account-
ing for 98% of the total; see Fig. 3. That simplification
does not occur in the amoeba method. It appears to be
due to the different regimes of BSM Higgs masses MA
and MH0 that give acceptable solutions for MH1;H2

in the
two methods. In the perturbative method, MH0 increases
from 550 to 700 GeV and then falls to below 125 GeV
for 180 GeV < MA < M�

Aðpert:Þ ¼ 380 GeV. In the
amoeba method, the ranges are 550 GeV > MH0 >
125 GeV for 290 GeV<MA <M�

Aðamoe:Þ ¼ 425 GeV.
We shall see that the region of Veff stability in which
the lighter CP-even eigenvalue MH1

¼ 125 GeV will
divide into two branches, B1 and B2, with physically
acceptable results only in B1—as in the pertur-
bative method. In B1, the ratios to the cracked-egg
all-scalar contribution of several other contributions
to the two-loop potential are not very small. The sum
of the ratios of the other contributions to SSS is
typically 10%–50%, with the largest contributions after
SSS being SSV, FFV, and SS; see Fig. 8. Note that
none of these next-largest contributions have field-
dependent couplings; see Ref. [13] for details of these
potentials.

FIG. 8. Ratios to the SSS cracked-egg contribution of the SS
figure-eight, SSV, FFS, FFV, VVS, VS figure-eight, and gauge
contributions to V2 for 290 GeV ≲MA ¼ MH� ≲M�

Aðamoe:Þ ¼
425 GeV, the B1-branch region of the left panel of Fig. 10. The
black curve is the sum of the seven ratios.MH1

¼ 125 GeV is the
lighter CP-even eigenvalue here. In addition to VSSS and VSS,
these two-loop potentials are taken from Martin [13].

FIG. 9. Left: renormalization scale ΛGW in the one- and two-loop approximations of the amoeba method. They are plotted over
the ranges of the B1 and B2 branches in the left panel of Fig. 10. Note the slight discontinuity in their slopes at the transition between
the two branches at 425 GeV. Right: classical-field shiftsHc andH0

c at the minima of the two-loop Veff as a function ofMA ¼ MH� . The
smallness of H0

c, especially in branch B1, is a consequence of the requirement that M2
HcH0

c
is small enough that detM2

0þ > 0.
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The left panel of Fig. 9 shows the one- and two-loop
renormalization scale ΛGW over the ranges of theffiffiffiffiffiffiffiffiffiffi
M2

0þ

q
in Fig. 7; MH1

¼ 125 GeV is the lighter CP-

even eigenvalue in both curves. The magnitudes of these
renormalization scales are comparable to those of the
two-loop scales Λ0 and ΛGW in the perturbative method
(Fig. 4, right panel), their values again being set by
v ¼ 246 GeV. But, while the renormalization scales in
the perturbative method are discontinuous at the B1 −
B2 transition (as is MH0), the transitions in the amoeba
method are continuous (again, as is MH0 in the left panel
of Fig. 10), albeit with slight changes of slope.
The right panel of Fig. 9 is more interesting: Hc ≅

246 GeV in B1 ¼ 290–425 GeV and decreasing only
slightly in B2 ¼ 425–600 GeV; H0

c is negligibly small
in B1 (alignment again), but jumps to 20 GeV at the
transition and increases with MA from there up to
MA ¼ 600 GeV. Stable solutions of Veff are scarce beyond
this upper limit of B2.
Finally, we extract the CP-even masses and states. The

two possibilities for which eigenmass is 125 GeV are
shown in Fig. 10. The masses MH0 , MH1

, MH2
and the

complete two-loop H −H0 mixing angle δ are plotted vs
MA ¼ MH� for the regions in which Veff has a stable
minimum.28 Clearly, only the case that MH1

¼ 125 GeV is
consistent with light Higgs-boson searches from LEP
and LHC. In the left panel, MH2

and MH0 decrease
from 550 GeV to just above and below MH1

¼
125 GeV, and they are indistinguishable up to
MA ≅ M�

Aðamoe:Þ ¼ 425 GeV. As the right panel of
Fig. 7 and this figure illustrate, this is due to the smallness
of δ ≅ M2

HcH0
c
=ðM2

H0
cH0

c
−M2

HcHc
Þ for MA < M�

Aðamoe:Þ.

At M�
Aðamoe:Þ, where δ passes rapidly from near zero to

π=4, there is a level repulsion between MH2
and MH1

.29

Beyond that point, MH2
rises linearly with MA and MH0

crosses MH1
but remains nearly equal to it. Furthermore,

the large value of δ violates loop perturbation theory. As in
the perturbative method for the two-loop potential, there
are two branches of MH2

, the physical one B1 below
M�

Aðamoe:Þ and the unphysical one B2 above it.
It is interesting to compare the masses in the perturbative

method, Fig. 5, with those here in the amoeba method. The
behaviors ofMH0 in the two methods are radically different,
increasing rapidly in both branches with a jump disconti-
nuity at the transition in the first method, while decreasing
to MH1

¼ 125 GeV in the second. On the other hand, the
behaviors ofMH2

in the two methods are strikingly similar.
In B1, it starts near 550 GeV, its maximum value in the
second method, not far below its maximum of 700 GeV in
the first one. Then, in both methods, it dives to well below
or just belowMH1

¼ 125 GeV at the B1 − B2 transition. In
B2, MH2

grows linearly with MA ¼ MH� in both methods.
In the perturbative method calculation, MA runs over the
range 180–1100 GeV, but it is clear in Fig. 5 that the criteria
for generating MH1

and MH2
are difficult to meet above

MA ¼ 700 GeV. This is similar to the upper limit MA ¼
600–700 GeV in the region of stability of the two-loop
potential in Fig. 6.

IV. EXPERIMENTAL CONSEQUENCES
FOR THE GW-2HDM IN TWO LOOPS

We have stressed that the only feasible way of
testing the GW-2HDM (and similar GW models) in
the foreseeable future is to discover or exclude its

FIG. 10. Left: BSMHiggs masses for the case that the smallerCP-even eigenmass isMH1
¼ 125 GeV. Also shown (in magenta) is the

full two-loop H–H0 mixing angle (in degrees) obtained from Eq. (34). Right: BSM Higgs masses and two-loop H −H0 mixing angle
when the larger CP-even eigenmass is MH2

¼ 125 GeV.

28When MH2
¼ 125 GeV, it is difficult to obtain a stable

minimum of Veff above MA ≅ 400 GeV.

29This is the same behavior as the one-loop eigenmasses and
the H–H0 mixing angle in the right panel of Fig. 2.
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BSM Higgs bosons H2, A, H�.30 As in the one-loop
analysis, the overriding features of these bosons are
(1) their low masses, well below 1 TeV, and (2) the
high degree of alignment of the 125 GeV Higgs boson H
and the related strong suppression of the BSM bosons’
couplings to WþW−, ZZ, W�Z, and ZH, W�H.
Additional suppression in their production rates is due
to the appearance in their Yukawa couplings of tan β ≲
0.50 for MH� ≲ 500 GeV. This section summarizes the
BSM Higgs mass ranges found in our two-loop calcu-
lations, their couplings to electroweak gauge bosons and
to quarks and leptons, and the searches we believe are
likely to reveal, or exclude, the BSM Higgses.31

The BSM masses obtained in our two-loop study are
qualitatively similar to those found using the simple one-
loop sum rule in Eq. (36) and, as we have discussed, for
much the same reason, namely, the constraint on these
masses from the requirement that MH ¼ 125 GeV. As
explained in Sec. I, we require MH� ≥ 180 GeV and
MA ¼ MH� . Then, the physical (branch B1) BSM mass
ranges are (from Figs. 5 and 10)

180 GeV≲MA ¼ MH� ≲ 380 GeV;

700 GeV≳MH2
≳ 125 GeV ðperturbativemethodÞ;

ð66Þ

290 GeV≲MA ¼ MH� ≲ 425 GeV;

550 GeV≳MH2
≳ 125 GeV ðamoebamethodÞ: ð67Þ

These ranges are correlated, withMH2
decreasing asMA ¼

MH� increase. As in the one-loop analysis, MH2
decreases

to unrealistically small values as MA ¼ MH� increase to
their maximum allowed (M�

A) by the method used.
The degree of Higgs alignment is dramatically illustrated

in Fig. 11. These are the full Run 2 determinations of
the couplings of H to quarks, leptons, and weak bosons
from ATLAS [27] and CMS [28]. All the measurements
are within one standard deviation of the Standard Model
prediction. From a theoretical point of view, the 125 GeV
Higgs boson is either the lone “Higgs” of the Standard
Model [29–35] or Higgs alignment [2–4] is verified
experimentally.
The allowed and strongly suppressed couplings in the

GW-2HDM are in the interaction LEW of the Higgs bosons
with the electroweak gauge bosons [8]. Having found that
the H −H0 mixing angle δ≲Oð10−2Þ through two-loop
order, an excellent approximation to LEW is obtained by
putting sin δ ¼ 0, H ¼ H1, and H0 ¼ H2:

FIG. 11. Mass-dependent couplings of the 125 GeV Higgs boson H to quarks, leptons, and the W and Z determined by ATLAS [27]
and CMS [28] from their full LHC Run 2 datasets. The lower panel in each figure is the ratio of the measured couplings to the Standard
Model ones.

30In this section, we use H and H1 interchangeably because,
as we saw in the amoeba method, only the lightest CP-even
eigenvalue MH1

¼ 125 GeV is consistent with Higgs boson
searches near and below that mass. We do not use H0 and H2

interchangeably because of their very different dependence
on MA;H� in the perturbative method.

31Earlier discussions of the BSM Higgs searches for masses in
the one-loop approximation are in Refs. [8,10,11].
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LEW ¼ ieH−
∂

↔

μHþðAμ þ Zμ cot 2θWÞ þ
e

sin 2θW
ðH2 ∂

↔

μAÞZμ þ ig
2
ðHþ

∂

↔

μðH2 þ iAÞW−μ −H−
∂

↔

μðH2 − iAÞWþμÞ

þH1

�
gMWWþμW−

μ þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g02

q
MZZμZμ

�
þ ðH2

1 þH2
2 þ A2Þ

�
1

4
g2WþμW−

μ þ 1

8
ðg2 þ g02ÞZμZμ

�

þHþH−
�
e2ðAμ þ Zμ cot 2θWÞ2 þ

1

4
g2Wþ

μ W−μ
�
; ð68Þ

where tan θW ¼ g0=g and e ¼ gg0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g02

p
. The negative results of LHC searches for the 2HDMHiggs bosonsH2, A and

H� are entirely consistent with Eq. (68).32

Another, less dramatic but possibly important, suppression due to tan β ≲ 0.50 is in the fermions’ Yukawa inter-
action. Because of alignment and our choice in Eq. (4) of the type-I model for the GW-2HDM, all the BSM Higgs
couplings to quarks and leptons are proportional to tan β as follows33:

LY ¼
ffiffiffi
2

p
tan β
v

X3
k;l¼1

½HþðūkLVklmdldlR − ūkRmukVkldlL þmlk ν̄kLlkRδklÞ þ H:c:�

−
�
vþH1 −H2 tan β

v

�X3
k¼1

ðmukūkuk þmdkd̄kdk þmlk l̄klkÞ

−
iA tan β

v

X3
k¼1

ðmukūkγ5uk −mdkd̄kγ5dk −mlk l̄kγ5lkÞ; ð69Þ

where V ¼ U†
LDL is the CKM matrix. The cross sections

for gluon fusion (with tan2 β scaled out) and for Drell-Yan
production of the BSM bosons at the 13 TeV LHC are
shown in Figs. 12 and 13. Except at low MA ¼ MH� or
tan β ≲ 0.1, the gluon fusion rates are typically ≳100 times
larger than Drell-Yan ones.
Thus, the most common production processes of the

BSM scalars in the GW-2HDM are

FIG. 12. The gluon fusion cross sections for
ffiffiffi
s

p ¼ 13 TeV at
the LHC for single BSM Higgs production in the alignment
limit (δ → 0) of the GW-2HDM [8]. The dependence on
tan β has been scaled out; both charged Higgs states are included
in pp → tb̄H−.

FIG. 13. Drell-Yan cross sections for
ffiffiffi
s

p ¼ 13 TeV at the LHC
for production of Higgs pairs in the alignment limit (δ → 0) [8].
They are independent of tan β.MH� ¼ MA is assumed, withMH2

taken from Eq. (36). The sharp increase at largeMH� is due to the
rapid decrease of MH2

there.

32see https://twiki.cern.ch/twiki/bin/view/AtlasPublic and https:
//cms-results.web.cern.ch/cms-results/public-results/publications.

33Hence the upper limit tan β ≲ 0.50 from the LHC searches
for H�. In the conventional definition of the type-I 2HDM [12],
the analysis in Ref. [8] would have found cot β ≲ 0.50, in signi-
ficant contradiction, e.g., with the experimental limits [36,37]
discussed below.
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gg → bb̄ → tb̄H− þ c:c:; ð70Þ
gg → tt̄ → H2; A: ð71Þ

The process (71) may go through a top-quark loop or via
on-shell tops with four top quarks in the final state ifMH2

or
MA > 2mt; both possibilities are discussed below. The rate
for the common search mode gg → H2; A → γγ via a top
loop is suppressed by tan2 β as well as having the usual
small Oðα2Þ branching ratio.
For the two-loop mass ranges in Eqs. (66) and (67) the

major BSM decay modes are34

Hþ → tb̄; ð72Þ
A → bb̄; τþτ−; tt̄; ð73Þ

H2 → bb̄; τþτ−; tt̄ and ZA; W�H∓: ð74Þ
SinceMA ¼ MH� must be about 100 GeV greater thanMH2

to enable the decays H� → W�H2 and A → ZH2, they are
forbidden in the two-loop mass ranges found with the
perturbative method. In the amoeba method, these decays
are allowed only for MA;H� ¼ 410–425 GeV, with rates
much smaller than Hþ → tb̄ and A → t̄t.35

We focus on three types of BSM Higgs production
and decay:
(1) gg→H� t̄b→ tt̄bb̄ and gg→H2→W�H∓→W�t̄b:

There have been five searches for the first
process relevant to the mass range of the GW-
2HDM [19,20,38–40]. The first of these was a
CMS search at 8 TeV; the other four used 13 TeV
data. Reference [39] is an ATLAS search using its
full Run 2 dataset of 139 fb−1. Reference [40] is a
CMS search using 35.9 fb−1 of 13 TeV data taken in
2016; it is distinguished by having looked for the
t̄btb̄ final state in the all-jet mode.
The 8 TeV search by CMS [19] was used in

Ref. [8] to set the limit tan β ≲ 0.50 for 180 GeV <
MH� ≲ 500 GeV. The searches at 13 TeV have not
improved on this limit despite the larger data-
sets and, indeed, they have worse sensitivity at
MH� ¼ 200–500 GeV than the CMS 8 TeV result.
For example, the limit on tan β for MH� ¼
200–500 GeV extracted from the ATLAS 139 fb−1

data [39] is tan β < 1.10� 0.14 [11]. The reason for
this disappointing outcome is the large tt̄ back-
ground at low masses and the fact that it increases
with collider energy faster than the signal.
Given the payoff a significant improvement in the

limit on tan β at low MH� might have, we strongly

urge ATLAS and CMS to find a way to improve the
signal efficiency of this search. One possibility may
be to use

gg → H2 → W�H∓: ð75Þ
Since Hþ decays to tb̄, the final state in this mode,
WþW−bb̄, is the same as the near-threshold process
above. But, because it occurs at a higher invariant
mass, kinematic cuts taking advantage of that may
provide a better signal-to-background ratio. The H2

decay rate is proportional to p3
W and, therefore, is

sensitive to the available phase space. It quickly
becomes dominant when MH2

≳ 400 GeV and the
W is longitudinally polarized.36 In the perturbative
calculation of the two-loop BSM masses practically
the entire allowed range of MH� is covered—from
180 to 365 GeV, with MH2

ranging from 540 up
to 700 GeV and back down to 510 GeV. In the
amoeba method, the allowed region is restricted to
MH� ¼ 300–350 GeV, withMH2

¼ 525 GeV down
to 450 GeV.37

(2) gg → A=H2 → tt̄ and gg → tt̄ → tt̄A=H2 → tt̄tt̄:
A search by CMS with 35.9 fb−1 of data at

13 TeV for φ ¼ A=H2 → t̄t with low mass,
400 < MA=H2

< 750 GeV, is in Ref. [42]. Gluon
fusion production proceeds through a top loop, and
the principal background is gg → t̄t near threshold.
CMS presented model-independent constraints on
the “coupling strength” gφtt̄ ¼ λφtt̄=ðMt=vÞ and for
width-to-mass ratios Γφ=Mφ ¼ 0.5%–25%. In the
GW-2HDM, gφtt̄ ¼ tan β. For the CP-odd case,
φ ¼ A, with 400 GeV < MA < 500 GeV and all
ΓA=MA considered, the region tan β < 0.50 was
not excluded.38 This is possibly due to an excess
at 400 GeV that corresponds to a global (local)
significance of 1.9ð3.5� 0.3Þσ for ΓA=MA ≃ 4%.
The CMS paper noted that higher-order electroweak
corrections to SM gg → tt̄ threshold production may
account for the excess and that further improvement
in the theoretical description was needed.
To ameliorate the effects of interference of the

gg → A=H2 → tt̄ signal with SM tt̄ production,
CMS [36] and ATLAS [37] searched for gg → tt̄
with A=H2 radiated from one of the top quarks and
decaying to tt̄. Both experiments used their full Run
2 data sets, 137 fb−1 and 139 fb−1. For these data-
sets, the interference with SM four-top production

34The assumption MH� ¼ MA precludes A → W�H∓.
35In the one-loop approximation, these decays are allowed, but

only for 400 GeV ≲MA ¼ MH� ≲ 410 GeV and for MH2
≳

450 GeV [10,11]. The decays H2 → W�H∓ and ZA with
two-loop-masses are discussed below.

36Decays such as this one were discussed in the one-loop appro-
ximation of the GW-2HDM in Refs. [10,11,41].

37To our knowledge, this search has not been carried out; nor
has one forH2 → ZA → lþl−tt̄. This decay has a more restricted
allowed range; it is discussed below in item 3.

38The same appears to be true for φ ¼ H2 with
ΓH2

=MH2
≳ 1%.
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was stated to be negligible. In this approach the
experiments searched for a resonant tt̄ excess in the
four-top-quark data. They expressed 95% C.L. upper
limits on the signal cross section times BðA=H2→tt̄Þ
in terms of the type-II 2HDM of Ref. [12]. In that
model, the coupling of A and H2 is proportional
Mt cot β=v, and the experiments converted the σ · B
limits into lower limits on tan β. In the GW-2HDM,
these translate into upper limits on tan β.39 For
CMS they are tan β < 1.6ð0.7Þ assuming MA ¼
MH2

¼ 400 GeV (assuming only H2 with MH2
¼

600 GeV); for ATLAS, they are tan β < 1.7ð0.9Þ for
MA ¼ MH2

¼ 400 GeV (MH2
¼ 600 GeV). These

limits are much weaker than tan β < 0.50 from the
earlier CMS and ATLAS searches for gg → H�tb̄.
On the other hand, these four-top searches for a
relatively low-mass A or H2 may benefit substan-
tially from the High Luminosity LHC.

(3) gg → H2 → ZA:
There have been three published searches forH2 →

ZA with ZA → lþl−b̄b, where l ¼ e or μ: [43–45].
The latter ATLAS search updated the former onewith
the full Run 2 data set. As with gg → H2 → W�H∓,
these H2 decay rates are proportional to p3

Z. They

were discussed in the one-loop approximation and
two comparisons to theGW-2HDMwere presented in
Refs. [10,11]. Two examples were presented, one of
which (with MH2

¼500GeV, MA¼300GeV, and
tan β ¼ 0.50) was excluded at the 95% C.L. in the
newer ATLAS search.
Another approach, without the large bb̄ back-

ground, is to use A → tt̄. In the two-loop perturbative
method, the regionMA ¼ 350–365 GeV corresponds
to MH2

¼ 630 GeV down to 508 GeV and has
substantial (> 20%) branching ratios of H2 → ZA.
In the amoeba method, there is no MH2

> MA þ
100 TeV for which MA > 2Mt. It is worth a try;
nothing ventured, nothing gained.
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