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In this work, we explore the proposed mechanism in which the gravitational θ anomaly generates
neutrino masses. We highlight that the leading renormalizable interactions of the neutrino condensate
forbid the possibility of generating hierarchical masses consistent with observation. This conclusion still
holds when Standard Model loop corrections are accounted for. We show that higher-dimensional operators
can alleviate this problem. The higher-dimensional operators could be generated from the gravitational
anomaly itself, but there is no clear way to know without a deeper understanding of the low-energy
description of this mechanism. Because of that, we explore the possibility of new particles generating
neutrino mass splittings. We show that both new particles that alter the scalar potential of the condensate or
new particles in loops for the neutrino self-energy can solve this problem.
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I. INTRODUCTION

The underlying mechanism that generates neutrino
masses is still an open question in physics since the
measurement of neutrino oscillations [1,2]. Most scenarios
proposed to generate neutrino masses include new physics
at high energies [3]. Another direction which is promising is
the condensation of neutrinos [4–9]. Usually, the conden-
sation mechanism occurs at high energies and needs new
fields. An alternative approach was proposed in [10] and
reformulated in [11], in which low-energy physics generates
neutrino masses.
This low energy generation of neutrino masses requires

that, in pure gravity, we have a nonzero topological vacuum
susceptibility at zero momentum. This condition is analo-
gous to requiring the QCD θ-term to be physical [12–14]
such that the anomaly explicitly breaks the axial symmetry
and gives mass to the η0 meson. Depending on whether there
is a right-handed neutrino, the mechanism can generate a
Dirac or Majorana mass for the neutrinos from the anomaly
on the gravitational θ-term. Phenomenological bounds
give the scale of the condensate to be around the meV
range [10].
Naively, gravitational interactions would generate a

universal mass for the three neutrinos. Of course, that is

not what is observed in nature, with the mass squared
splittings measured to be [15,16]

Δm2
21 ¼ 7.55þ0.20

−0.16 × 10−5 eV2 ð1:1Þ

Δm2
32 ¼ ð2.423� 0.03Þ × 10−3 eV2: ð1:2Þ

In [10] it was observed that a potential that respects the
flavor symmetry could in principle give a hierarchical
vacuum and thus hierarchical masses for the neutrinos, but
they did not study the dynamics. In this work, we highlight
that the leading renormalizable contribution for the neu-
trino condensate cannot generate such a breaking pattern.
The vacuum configuration of the condensate is constrained
by the flavor symmetry (assumed to be respected by the
anomaly) in both Dirac and Majorana cases. The leading
contribution at low energies comes from the renormaliz-
able potential, which is the same for both Dirac and
Majorana neutrinos, although the two possibilities may be
distinguished using astrophysical neutrinos [17] or soft
topological defects [18]. Considering the renormalizable
potential, there are only two possible symmetry-breaking
patterns [19,20]. The first one is where all the neutrinos
acquire the same vacuum and thus the same mass, and
the second one is where only one neutrino acquires a
nonzero vacuum expectation value and the other two
remain massless.
The interaction between the condensate and the gravita-

tional instantons, which generates the low energy potential,
could generate higher-dimensional operators which are
expected to be subleading at low energies. If the effects
of these operators at low energy are not negligible, then the
inclusion of higher-dimensional operators could allow
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hierarchical breaking to occur. Without a deeper under-
standing of the low energy description of these interactions,
it is not clear that gravity could generate the splittings by
itself. We therefore also explore the possibility of new
physics that contributes to the splitting of the different
flavors of neutrinos.
If the new physics generates a mass contribution for the

neutrinos in the UV, this breaks the anomalous symmetry
explicitly in the low energy and can spoil the mechanism.
The UV contribution could be small, and then the hard mass
at low energy behaves similarly to the up and down quark
masses in QCD. In this work, we explore the scenario where
the anomaly at low energies generates a hierarchical
solution, and the contributions from new physics only
affect the splittings and do not generate a universal con-
tribution. This scenario is also motivated in order to have a
novel cosmological evolution [11] since the phase transition
occurs at very late times, and the neutrinos are truly
massless in the early universe. Depending on the time at
which the phase transition occurs, we can either have no
information about the neutrino mass from cosmology, or the
bounds only apply only to the lightest neutrino species.1

We consider two different scenarios where the new
physics could appear. The first one is where new physics
contributes to neutrino masses in loop processes. We can
imagine a scenario where the condensate is universal and the
degeneracy is broken by loop contributions of a heavy
sector. We show that the Standard Model (SM) W-boson
generically does generate a splitting, but the splitting is too
small to accommodate observed neutrino masses. We
discuss how difficult it is to create a predictable contribution
for the splitting at the loop level in general UV extensions.
Another possibility for new physics is with new scalars

that interact with the condensate and change the scalar
potential. We consider two possibilities: the first is for
Majorana neutrinos masses where we introduce a 3 of the
flavor SUð3Þ, and the second is for Dirac neutrinos where
we introduce (1; 3) and (3; 1) of the SUð3ÞL × SUð3ÞR
flavor symmetry. If these new scalars are heavy, they can be
integrated out and described by an effective field theory
(EFT). This EFT description should also exhibit a hierar-
chical breaking pattern. We show that the separation of
scales is difficult to engineer, which can be understood as
the vacuum structure needing to be qualitatively changed by
the new physics.
The remainder of this paper is organized as follows. In

Sec. II, we briefly review the description of the phase
transition in terms of the condensate. In Sec. III we construct
the interactions of the condensate with the SM particles and
calculate the one-loop mass contributions to the neutrinos.
In Sec. IV we discuss the problems of model building a

predictable loop-level contribution for the neutrino mass
splittings. In Sec. V we explore one specific UV completion
which introduces new interactions to the neutrino conden-
sate. In Sec. VI we explore the EFT description and how the
EFT operators can alleviate the restriction for a hierarchical
vacuum. We conclude in Sec. VII.

II. DESCRIPTION OF THE PHASE TRANSITION

Given the SM particle content minimally coupled to
gravity, the only assumption necessary for the generation of
neutrino masses is that, in pure gravity, we have a nonzero
topological vacuum susceptibility at zero momentum,

hRR̃; RR̃iq→0 ¼ const ≠ 0: ð2:1Þ

Here R is the Riemann tensor, and R̃ is its dual. This is
equivalent to the statement that the gravitational θ angle is
physical. Similar to the massless quark solution of the QCD
strong CP problem [12], if neutrinos are massless in the
absence of gravity, then they will screen the gravitational
electric field EG ¼ RR̃ and hence make the gravitational
θ-term vanish. If this condition is satisfied,2 then it was
shown that the massless fermions f generates a condensate
[10,11] and the spectrum becomes gapped:

ΛG ¼ hRR̃; RR̃i1=8q→0 ∼ jhf̄fij1=3 ∼mf: ð2:2Þ

This generates neutrino masses through a Higgs-like
composite field. The description of the phase transition
at low energy changes depending on the existence of right-
handed neutrinos. If there are no right-handed neutrinos,
then the flavor symmetry is SUð3Þ, the neutrino mass is of
the Majorana type, and the vacuum is described by:

ϕij ¼ ν̄cLiνLj; ð2:3Þ

where νcL is the charge conjugation state defined as
νcL ¼ Cν̄TL. ϕ transforms as a 6 under the flavor symmetry.
If there are right-handed partners of the neutrino, then the
flavor symmetry is expanded to SUð3Þ × SUð3Þ,3 and the
neutrino mass is Dirac. The vacuum is described by:

Σij ¼ ν̄iνj: ð2:4Þ

where Σ transforms as a bifundamental ð3; 3̄Þ under the
flavor symmetry.
The low energy description of the most general potential

for both cases is highly similar, so we highlight them

1If there is a partial contribution from the new physics in the
UV, then the cosmological mass limits [21–26] of

P
ν mν <½0.28; 0.14� eV can be applied to the generated mass.

2At this point we could also have a small hard mass for the
neutrinos and the mechanism would still work, similarly to the η0
in QCD.

3In principle there do not need to be three right-handed
neutrinos, but we assume that is the case for simplicity.
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simultaneously to understand the possible vacuum con-
figurations. The possible phenomenological signals to
probe both cases are studied in [17,18]. The study of a
bifundamental of SUð3Þ × SUð3Þ is done in [19,20] and we
highlight some of the important results here. The most
general renormalizable potential for ϕ consistent with the
flavor symmetry is given by:

VðϕÞ ¼ −
μ2ϕ
2
Trðϕ†ϕÞ þM1ðdetϕþ detϕ†Þ

þ λ1
4
Trðϕ†ϕÞ2 þ λ2

4
Trðϕ†ϕϕ†ϕÞ; ð2:5Þ

where we can choose M1 to be real by using an overall
phase redefinition. The potential for the Dirac case is
exactly the same given the identification ϕij → Σij.
Since this potential has only 4 free parameters, it is

possible to study all possible minima of the potential.
In [19] it is shown that the breaking of a bifundamental
representation of SUð3ÞL × SUð3ÞR can only have two
distinct patterns. The case of the symmetric representation
of SUð3Þ is the same because the potential is the same.
Thus two possible vacua are

Σij ¼ diagðv; v; vÞ; ð2:6Þ

or the vacuum expectation value (vev) configuration where
only one diagonal element gets a nonzero value:

Σij ¼ diagðv; 0; 0Þ: ð2:7Þ

This means that neither the bifundamental (Σij) for the
Dirac mass nor the symmetric representation (ϕij) for the
Majorana mass can generate hierarchical neutrino masses
consistent with current experimental data. The explicit
calculation that shows the absence of a hierarchical vacuum
for the renormalizable potential is done in Appendix A.
Since the renormalizable potential cannot generate the
desired masses for the neutrinos, let us explore how loop
corrections to the neutrino mass can change this story.

III. LOW ENERGY INTERACTIONS
FOR THE SUð3Þ → SOð3Þ BREAKING

In this section, we investigate the possibility that
neutrino interactions generate mass splitting when we start
from the configuration where all the vevs are equal.4 We
focus on the Majorana mass generation, but in the Dirac
case, the calculations are similar. The interaction between
the neutrino and the condensate excitation field can be
described by the following Lagrangian [10]:

Lϕν ¼ gϕνðϕ†
ijν̄

c
LiνLj þ ϕijν̄Liν

c
LjÞ ð3:1Þ

Below the anomaly scale, the field ϕij gets a vev generating
the neutrino mass, which we assume to be universal:

ϕij ¼ vϕI3×3: ð3:2Þ

The Goldstone modes πâ, and the radial modes ϕi and ηi
can be described after the symmetry breaking using the
following Lagrangian5:

Lπν ¼
1

8fϕ
ν̄Miγ

μγ5νMj∂μπâλ
â
ij þOð∂2Þ: ð3:3Þ

Lϕν ¼
�
gϕνvϕ þ

gϕνffiffiffi
2

p ϕi

�
ν̄cMiνMi þ

igϕνffiffiffi
2

p ηiν̄
c
Miγ5νMi: ð3:4Þ

We write the neutrinos as Majorana states, νM ¼ νL þ νcL,
and â runs over broken generators. After the breaking all
neutrinos obtain the same mass:

mνi ¼ m0 ¼ 2gϕνvϕ: ð3:5Þ

The mass basis that we are working in is not necessarily
equal to the charge basis of the Standard Model, we can
define the unitary rotation between them as:

νLα ¼
X
i

UαiνLi; ð3:6Þ

where α runs over the charge basis e, μ, τ. Then we can
write the neutrino interactions from the SM in the mass
basis as:

LSMν ¼ −
g

4cθw
ν̄M i=Zγ5νM i þ

gffiffiffi
2

p ðU†
iαν̄M i=WþPLlα

þUαil̄αPR=W−νM iÞ: ð3:7Þ

Now let us study the one-loop contribution for the mass to
generate the expected splittings.

One-loop mass generation from Standard Model

We investigate the one-loop self-energy of the neutrino to
see if the Standard Model can account for the small mass
splittings between the neutrinos. Because the Goldstone
boson (πâ) and the radial modes (ϕi, ηi), in the absence of
extended symmetries, cannot break the symmetry further at
loop level [27–29], they contribute equally to the mass and
can be ignored. This can be understood from the Lagrangian
in Eq. (3.4) being diagonal in the mass basis and with a

4We do not explore the possibility where the initial configu-
ration has two massless neutrinos since it is impossible to lift the
degeneracy without generating a hard mass in the UV as we
expand further in section IV.

5Notice that the Majorana fermion, νM ¼ νL þ νcL, violates the
initial SUð3Þ since we are mixing 3 and 3̄ representations.
However, we can use this description after the symmetry breaking
since the remaining symmetry is SOð3Þ.
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universal coupling. This is also the case for the Z boson
since the interaction ends up being diagonal in the mass
basis as well. Since the initial mass value is already a free
parameter, these shifts can be reabsorbed in the definition of
the initial mass. The only nontrivial contribution comes
from theW-boson interaction. We compute theW exchange
self-energy as:

iΣW
ij ðp2Þ ¼ −

g2

2

X
α

U†
iαUαj

×
Z

d4k
ð2πÞ4

γμPLðð=p − =kÞ þmlαÞγμPL

ððp − kÞ2 −m2
lα
Þðk2 −m2

WÞ
; ð3:8Þ

where only the transverse modes couple to the Majorana
states. This integration is straightforward and gives:

ΣW
ij ðp2Þ ¼ =pPL

g2

16π2
X
α

U†
iαUαjðBðp2;mW;mlαÞ

þ B1ðp2;mW;mlαÞÞ: ð3:9Þ

Where the B functions are the Passarino-Veltman coef-
ficients [30]. The term proportional to PR of the self-
energy has the same coefficient because of the Majorana
condition. It can be obtained by computing the process
with the antiparticle.
The divergence of this self-energy is diagonal and

renormalizes the wave function of the neutrinos. Because
the contribution is divergent, the actual value for each mass
is not a prediction from the theory. However, since the
divergence is universal, differences between the masses are
finite and thus a prediction of the theory. For simplicity, we
use the MS renormalization scheme. We can then write the
contribution for the mass as:

mνi ¼ m0
ν þm0

ν
g2

16π2
X
α

U†
iαUαi

�
1

4
−

m2
lα

2m2
W
þ m02

ν

6m2
W

− log
mW

m0
ν
þOð1=m4

WÞ
�
: ð3:10Þ

The mass splitting between two different mass states is then
given as:

m2
νi −m2

νj ≈ −
�
m0

ν

mW

�
2 g2

16π2
X
α

ðU†
iαUαi − U†

jαUαjÞm2
lα
:

ð3:11Þ

Using the fact that m0 ≲ 1 eV and that the unitary matrix
elements are bounded jUiαj ≤ 1, we can put an upper bound
on the splitting

jm2
νi −m2

νjj≲ 7 × 10−7 eV2; ð3:12Þ

which is far too small to accommodate either measured
splitting. The question now is can we introduce new particles
to make the splitting consistent with observations?

IV. MODEL BUILDING THE NEUTRINO
SPLITTINGS AND UV SENSITIVITY

Generating neutrino mass splittings at the loop level is a
delicate endeavor. The complication arises because we do
not want to generate any new universal mass contribution
for the neutrinos. Since we do not have chiral symmetry in
the Majorana case, it is difficult to avoid such masses.
Additionally, we need the mass difference to be finite to
predict it in the model, which can be challenging to
construct. This is a bigger problem if we try to lift the
vacuum with two massless neutrinos. Usually, the split-
tings are proportional to the difference in the couplings for
different flavors, which also contributes to the diver-
gent piece.
One way to have finite splittings is to mimic the SM W

interaction, in which the splittings come from the diago-
nalization matrix. This, however, does not work for a simple
W0 extension, since the contribution from W is already
orders of magnitude smaller than the experimental value.
Another possibility is to include additional generations,
which are heavily constrained and the contribution will be
suppressed by the mixing matrix.
If we try to generalize this approach, the diagonalization

matrix needs to appear in the interaction universally. We
need a new set of fermions that interact with the neutrinos.
The mediator, in principle, can be a scalar of a vector.
However, because of the chirality flip nature of the scalar
interaction, there is always a term proportional to the
identity in the self-energy. This term is proportional to
the fermion mass and thus gives a nonzero contribution to
the mass in the neutrino chiral limit. The mass splitting
could be UV sensitive and, once the new physics is known,
we would be able to resolve this arbitrariness.
One example of a simple model that generates neutrino

splittings in a nonpredictable way is a Z0 extension of the
SM. At low energies we have the following interaction:

LZ0 ¼ −
gαβ
2

ν̄Lα=Z0PLνLβ: ð4:1Þ

We can assume for simplicity that the coupling is
diagonal in the SM gauge basis and lepton specific:
gαβ ¼ diagðge; gμ; gτÞ. The same couplings are present
in the charged lepton sector where most of the constraints
are derived. The UV completion of such a model is
responsible for the generation of the Z0 mass. In a UV
complete model, there will be finite contributions to the
neutrino mass. The neutrino mass will then run as a
divergent quantity up to the new physics scale and then
stop at some finite value. The Z0 interaction can be written
on the mass basis using Majorana states:
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LZ0 ¼ −
gαβ
2

U†
iαUβjν̄Mi=Z0γ5νMj ¼ −

gUij
2
ν̄Mi=Z0γ5νMj; ð4:2Þ

where we define gUij ¼ gαβU
†
iαUβj. The neutrino self-

energy in the mass basis can be written as:

iΣZ0
ij ðp2Þ ¼−

X
k

gU†
ik g

U
kj

Z
d4k
ð2πÞ4

γμγ5ðð=p−=kÞþmνkÞγνγ5
ððp− kÞ2−m2

νkÞðk2−m2
Z0 Þ

×

�
−ημνþ kμkν

m2
Z0

�
; ð4:3Þ

We can perform the integral and introduce a cutoff Λ
where new physics contributes to the neutrino mass. The
most important contribution can be written as:

ΣZ0
ii ðm2

0Þ ¼
m0

16π2
X
k

gU†
ik gUki

�
4

3
þ 9 log

Λ2

m2
Z0

�
: ð4:4Þ

We can then calculate the squared mass difference between
two mass eigenstates:

m2
νi −m2

νj ≈
m0

8π2
X
k

�
4

3
þ 9 log

Λ2

m2
Z0

�
ðgU†

ik gUki − gU†
jk g

U
kjÞ

ð4:5Þ

which is in fact divergent, thus rendering the mass splitting
not a prediction of the theory. This same analysis of the

unpredictability of the splitting can be done with the
vacuum where we start with two massless neutrinos.
This calculation highlights that there are not many

results that we can draw from these UV completions in
this description if the physics at the cutoff is not known.
A more detailed model which has a finite contribution
could still exist, and we leave this possibility for further
investigation.

V. HIERARCHICAL VACUUM FROM NEW
NEUTRINO CONDENSATE INTERACTIONS

In this section, we explore how new physics can modify
the condensate interactions such that we have hierarchical
vevs. We first assume that the leading description of
the condensate comes from the renormalizable couplings
to new fields. In Sec. VI, we also explore the possibility
of significant contributions from nonrenormalizable
interactions.
One example of a model which can generate hierarchical

vevs is presented for the Dirac case in [20]. In this model,
we add two fields transforming under the SUð3ÞL ×
SUð3ÞR flavor group as:

ZL ∈ ð3; 1Þ; ZR ∈ ð1; 3Þ: ð5:1Þ

Using the fact that Σ transforms as a ð3; 3̄Þ, the most general
renormalizable potential can be written as:

VDiracðΣ; ZL; ZRÞ ¼ V0ðΣÞ þ μ2LZ
†
LZL þ μ2RZ

†
RZR þ λLLðZ†

LZLÞ2 þ λRRðZ†
RZRÞ2 þ λLRðZ†

LZLÞðZ†
RZRÞ

þ λTLLTrðΣ†ΣÞZ†
LZL þ λTRRTrðΣ†ΣÞZ†

RZR þ λLΣΣLZ
†
LΣΣ†ZL þ λRΣΣRZ

†
RΣ†ΣZR

þ ðALΣRZ
†
LΣZR þ H:c:Þ þ ðλϵϵijkϵabcΣiaΣjbZk

LZ
c†
R þ H:c:Þ; ð5:2Þ

where V0 is given in Eq. (2.5) with ϕ → Σ. The potential
VDirac has one additional invariant operator that was not
included in [20]. However, the overall analysis done in the
work remains qualitatively similar and is only slightly
modified when λϵ is nonzero.
The Majorana case is similar. The flavor group is

SUð3Þ, the condensate field ϕ is a 6, and we add just
one fundamental field:

ZM ∈ 3: ð5:3Þ

The potential is then

VMajoranaðϕ; ZMÞ ¼ V0ðϕÞ þ μMZ
†
MZM þ λMMðZ†

MZMÞ2
þ λTMMT Z†

MZM þ λMϕϕMZ
†
Mϕ

†ϕZM

þ ðAMϕMZT
MϕZM þ H:c:Þ

þ ðλϵϵijkϵabcϕiaϕjbZk
MZ

c
M þ H:c:Þ:

ð5:4Þ

Because these potentials are much more complicated
than the version without additional fields, obtaining ana-
lytical results becomes difficult. We, therefore, explore
these models numerically to verify that such potentials can
indeed generate hierarchical configurations consistent with
observation. We analyze the Majorana case in-depth
because it has fewer free parameters, but the overall
behavior of the Dirac potential should be similar.
Additionally, from the scans, we obtain that both models
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can generate the normal and inverted hierarchy. We
generated solutions where the lightest neutrino is both
massive and massless.
To apply the experimental constraints of the neutrino

masses we need to set a scale vϕ and choose a coupling
gϕν [see Eqs. (3.1) and (3.2)]. We choose gϕν ¼ 1=2 for
simplicity such that each neutrino mass can be identified
directly as the vev value from Eq. (3.5). Because there are
different mass parameters in the theory we rescale every-
thing such that we have the largest possible neutrino mass
which satisfies current experimental bounds [15,16,31]:

mν ≤ 0.8 eV; ð5:5Þ

Δm2
21 ¼ 7.55þ0.20

−0.16 × 10−5 eV2 ð5:6Þ

Δm2
32 ¼ ð2.423� 0.03Þ × 10−3 eV2: ð5:7Þ

We can now explore whether we have any allowed points
where the new fields Z are parametrically heavier than the
ϕ fields in order to explore a possible EFT description. We
implement different separations of scales for the scans in

order to populate the parameter space in the important
regions where we want these new particles to decouple
while having hierarchical neutrino masses. In the new
sector, we have two massive couplings that control the
possible separation of scales from the neutrino condensate.
It is expected that when μM and AMϕM are large compared
with M1 and μϕ that we can get some separation between
the sectors. In Fig. 1 we compare the dimensionful
Lagrangian parameters of the new sector to those of the
ϕ for points that satisfy all experimental observations. We
see that for many of the points the scales are comparable,
but there are also points with large separations.
The story is slightly different if we look at the spectrum of

states rather than Lagrangian parameters. We can say that
the separation of scales works if we can separate the massive
ϕ fields from the massive ZM fields. In Fig. 2 we show the
relation between the heaviest ϕ state and the lightest (top)
or heaviest (bottom) ZM state. We can see that there is a
correlation between them. When the mass of the ZM grows,
the ϕ mass generically does as well, making it difficult to
have a large separation of scales, even if the massive

FIG. 1. Numerical scans for the Majorana model with ZM. All
points agree with current neutrino mass observations. We explore
different regions of relations between the scale of ϕ controlled by
μϕ and the scale of the new sector μM and AMϕM. The dashed red
line is where the two mass parameters are equal.

FIG. 2. Numerical scans for the mass of lightest (top) and
heaviest (bottom) new sector particle ZML

=ZMH
vs. the mass of

the heaviest condensate particlemϕH
for the Majorana model with

ZM. All points satisfy current neutrino mass observations. The
dashed red line is where the two masses are equal.
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couplings themselves can have significant separations. Note
that all the new states are light enough that they are
kinematically accessible to collider experiments, but we
leave the exploration of its phenomenology to future work.
We do have some points where there is a significant

separation of scales both in the Lagrangian and the
spectrum, but as we will see in the next section, the
description using effective field theory does not work even
for those extreme points. This is to be expected in any
model where new physics modifies the vacuum structure
and at the same time attempts to decouple from the low
energy.

Cosmological constraints

When considering the additional light fields ZM or ZL=R
there is the possibility of modifying the evolution of our
universe such that the model is inconsistent with observa-
tions. This can even be a problem for the condensate ϕ
if the transition happens before T ∼ 256 meV. Above
these temperatures, Majoron-like couplings are strongly
restricted [32–34]. We are here assuming that the transition
occurs below this temperature, and thus for these cosmo-
logical bounds, the condensate ϕ does not exist and there
are only free neutrinos. This is not the case for any
additional sector which we include, these fields will be
present in the early universe and have a portal to the SM
through the neutrinos. We can expect, from Eqs. (5.2)
and (5.4) that before the phase transition there is a non-
renormalizable interaction between the neutrinos and these
new fields of the form:

LM
int ¼

AMϕM

f2ϕ
Z†
Mν̄

c
LνLZM;

LD
int ¼

ALΣR

f2ϕ
Z†
Lν̄νZR; ð5:8Þ

for the Majorana and Dirac cases, respectively. There are
also terms with more neutrino fields suppressed by higher
powers of f. We can then check if these particles are in
thermal equilibrium with the neutrinos when the neutrinos
have a temperature T ≫ mν. If we want this new sector to
not be in thermal equilibrium we need to satisfy the
following condition:

nνσνν→ZZvν ≲ T2

MP
; ð5:9Þ

where MP is the Planck mass. The neutrinos are in thermal
equilibrium and relativistic so we have that vν ∼ 1 and
nν ∼ T3. We can rewrite the condition as:

σνν→ZZ ≲ 1

TMP
: ð5:10Þ

The process νν → ZZ is mediated at tree level by the
operators in Eqs. (5.8). The cross section at leading order is
constant,6 and we can write for both cases as:

σνν→ZZ ∼
A2

f4ϕ
: ð5:11Þ

We can go one step beyond and use the fact that the trilinear
constant A is around the same scale as the mass of the new
fields because of stability. This fact is also evident from the
right panel of Fig. 1. We can therefore write the condition
for both cases as:

m2
ZM=L=R

f4ϕ
≲ 1

TMP
: ð5:12Þ

This relation is just for order of magnitude estimates, and
since we have the unknown nonperturbative coefficient fϕ
this is the best that we can do.
From Eq. (5.12), we see that the bound is most stringent

at the highest temperature that the neutrinos achieve in the
early universe. We can take a relatively low reheating
temperature of TRH ∼ GeV and find the following limit on
the mass and fϕ parameters:

mZM=L=R

f2ϕ
≲ 10−19

1

eV

�
1 GeV
TRH

�
: ð5:13Þ

We can now speculate what is the size of fϕ in order to have
a estimate for the bound on the masses. Since this is an
anomaly driven process, we can expect that this interaction
only takes place close to the condensate formation, and
since this is gravity driven we can expect that fϕ ∼MP. If
this is the case, then we have a suppressed interaction with
the neutrinos and a trivial bound on the mass:

mZM=L=R
≲ 1037 eV

�
1 GeV
TRH

�
: ð5:14Þ

If, on the other hand, we assume that the condensate constant
is around the condensate scale, fϕ ∼ eV, then we can find a
very strong bound on the mass of these new states:

mZM=L=R
≲ 10−16 eV

�
1 GeV
TRH

�
: ð5:15Þ

In this case, because the scale is so low, other higher
dimensional operators suppressed by higher powers of fϕ
will also contribute on equal footing, making the effective
field theory expansion not converge. This problem appears
also when we integrate out this new sector trying to separate

6A similar cross section occurs for the dimension 5 Weinberg
operator in the SM [35].
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from ϕ, as we show in the next section. For both estimations
of fϕ it is possible to still generate the correct neutrino mass
hierarchies. In the case where fϕ is close to the condensate
scale, there is significant fine-tuning involved.
Another possibility is that rather than rarely or never

producing these new fields in the early universe, is that they
are sufficiently heavy so as to not be relativistic at the time
of big bang nucleosynthesis. In this case they would
contribute to dark matter, and one must also ensure that
they do not overclose the universe. Further, for them to not
be too warm, they would need to have a mass above
6.5 keV [36] if they saturate the dark matter relic density.
This would also require fine-tuning to get the right neutrino
mass scale, and further exploration of this possibility is
outside our scope.
Additional model-independent cosmological bounds for

late-time neutrino generation can be found in [37–40].
Overall, it is challenging to determine how restrictive late-
cosmology bounds are for these models without a more
profound understanding of the condensation mechanism
and how to estimate fϕ.

VI. EFFECTIVE FIELD THEORY DESCRIPTION
OF THE CONDENSATE

In this section, we study the possibility of deforming the
renormalizable potential with higher-dimensional operators
to generate a hierarchical vacuum. These higher-dimensional
operators could come from the gravitational instanton
interactions. We also explore if the UV complete model
in the previous section can have a low energy description in
the EFT language.
The description of the potential is the same for both

Majorana and Dirac neutrinos, given the identification
ϕij → Σij. The analysis for the Dirac case is similar to
the work [20], where they study the hierarchical pattern for
the quark sector. In exploring higher dimensional operators,
it is more convenient to use the following flavor invariant
operators:

T ¼ Trðϕ†ϕÞ; A¼ TrðAdjðϕ†ϕÞÞ; D2 ¼ detðϕ†ϕÞ:
ð6:1Þ

The adjugate of a matrix is defined as AdjðMÞ ¼
detðMÞM−1. In addition, because of the special7 nature
of the symmetry group, we have also that D ¼ detϕ is
invariant. Every operator that is invariant under the sym-
metry group can be written as powers of these three
operators [20]. We can then describe any hierarchical
configuration ðv1; v2; v3Þ in terms of the invariants
ðT ;A;DÞ.
Now that we can describe the vacuum in terms of the

invariants, we can try to generate a configuration which

generates a hierarchical solution. We can write the full list
of higher-dimensional operators up to dimension 8:

V5 ¼
c5
Λ
T D; ð6:2Þ

V6 ¼
cð1Þ6

Λ2
T 3 þ cð2Þ6

Λ2
AT þ cð3Þ6

Λ2
D2; ð6:3Þ

V7 ¼
cð1Þ7

Λ3
T 2Dþ cð2Þ7

Λ3
AD; ð6:4Þ

V8 ¼
cð1Þ8

Λ4
T 4 þ cð2Þ8

Λ4
T 2Aþ cð3Þ8

Λ4
A2 þ cð4Þ8

Λ4
T D2: ð6:5Þ

As a simple exercise, we begin by turning on only the
following two operators:

V ¼ V0 þ
cð3Þ6

Λ2
D2 þ cð3Þ8

Λ4
A2; ð6:6Þ

V0 ¼ −
μ2ϕ
2
T þ λTT 2 þ λAA − 2M1D; ð6:7Þ

where V0 is the potential from Eq. (2.5), and we identify
λT ¼ λ1þλ2

4
and λA ¼ − λ2

2
. The minimization condition in

the ðT ;A;DÞ field basis for the potential is

∂V
∂T

¼ −
μ2ϕ
2
þ 2λTT ¼ 0 ð6:8Þ

∂V
∂A

¼ λA þ 2
cð3Þ8

Λ4
A ¼ 0; ð6:9Þ

∂V
∂D

¼ −2M1 þ 2
cð3Þ6

Λ2
D ¼ 0: ð6:10Þ

The second derivative matrix in the ðT ;A;DÞ basis can
also be written to investigate if the solution is a minimum:

M2 ¼

0
BBB@

2λT 0 0

0 2
cð3Þ
8

Λ4 0

0 0 2
cð3Þ
6

Λ2

1
CCCA: ð6:11Þ

This indicates that the two Wilson coefficients need to be
positive. In this simple example, we can dial the tree-level
parameters to generate any arbitrary vacuum parametrized
by ðT 0;A0;D0Þ:

μ2ϕ ¼ 4λTT 0; λA ¼−2
cð3Þ8

Λ4
A0; M1¼ 2

cð3Þ6

Λ2
D0: ð6:12Þ7Namely the symmetry group is SUð3Þ, not Uð3Þ.
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In order for the EFT to be valid, we need the dimensionful
Lagrangian parameters M1 and μ and also the vevs T 1=2,
D1=3, and A1=4, to all be parametrically smaller than Λ.
Further assuming that the Wilson coefficients are not
unnaturally large jcj≲ 1, then tunings are required to
satisfy Eq. (6.12), λA ≪ 1 and M1 ≪ D1=3. This suggests
that if the anomaly induces higher dimensional operators, it
is necessary to tune the parameters to generate a hierar-
chical solution. Note also that the vacuum is controlled by
operators of different mass dimensions, indicating poor
convergence of the EFT expansion.
If the EFT descends from a particular UV completion,

therewill in general be correlations between differentWilson
coefficients. We now explore the EFT that descends from the
UV complete models described in Sec. V. The leading one-
loop matching coefficients up to dimension 8 are written in
Appendix B for the Majorana model, and we have also
computed the matching in the Dirac case. There are some
interesting results from the matching. First, there is a clear
way to differentiate the models: the Dirac case does not
generate the dimension 5 or dimension 7 operators at one
loop while the Majorana model does. We can also see the
role of having the dimensionful coupling AMϕM (or ALΣR in
the Dirac case), where it gives a positive contribution to the
coefficient of theA2 operator, while the leading contribution
is negative. In the Majorana case this can be seen in:

cð3Þ8

Λ4
¼þðAMϕMÞ2ðλMϕϕMÞ3

12π2ðmZM
Þ6 −

2jλϵj4
3π2ðmZM

Þ4 −
ðλMϕϕMÞ4

192π2ðmZM
Þ4 ;

ð6:13Þ

Having this coefficient positive makes it easier to
generate a stable global minimum in the A direction. It
is also possible to see a potential danger when AMϕM is of
the same order as the mass of the new states. This would
break the convergence of the EFT series in 1=m and
highlight again the nondecoupling effect of the two sectors.
From the EFT matching, we can also see that some
couplings are more important than others to guarantee that
we have both D2 and A2 operators at low energy. We can
set λϵ ¼ λTMM ¼ 0 and have all the couplings real and still
be able to generate both the hierarchical minima and these
two operators at low energy.
Finally, we examined some of the specific parameter

points of the UV complete model that have a significant
separation between the new states and those of the con-
densate. Performing the one-loop matching up to dimen-
sion 8 and then minimizing the EFT potential does not give
the same vacuum as the full theory and is unable to generate
neutrino masses consistent with observation. This further
signals the breakdown of EFT convergence.
A further in-depth investigation of these models is only

truly motivated in the event that this mechanism shows to
be the one that generates the neutrino masses. There are

questions on the matching, and having to flow from the UV
to IR with the parameters of the models. The phenom-
enology of this model can also be interesting in the same
context since there are new states that could be accessible to
various experiments. The leading particles that would
contribute would still be the ϕ and the Goldstone bosons
since we are creating a hierarchy of scales, which means
that the search for this mechanism can be somewhat model
independent.

VII. CONCLUSION

In this work, we explore the possibility that the neutrino
mass is generated at low energies from the anomaly on the
gravitational θ term. This low energy phase transition
could be used in conjunction with [41] to move the
cosmological constant from negative to the small positive
value we see today.
The description of the phase transition in terms of the

neutrino condensate constrains the possible breaking pat-
terns that we can observe. In the initial proposal for this
mechanism, it was assumed that the condensate acquires the
hierarchical pattern. We show that such a pattern is not
possible with the leading renormalizable potential. We also
compute the SM loop contributions to the neutrino mass
splitting. The only nonzero contribution to the splitting is
from the loop of a W and charged lepton, but that
contribution is proportional to m2

l =m
2
W [see Eq. (3.11)]

and too small to accommodate the observed values.
We then analyze the scenario where the gravitational

anomaly generates a universal neutrino mass and new
physics generates the splittings. The new physics could
appear in two different descriptions. It could enter as new
scalars interacting with the condensate field, or it could
enter as new neutrino interactions in the self-energy process.
We show, however, that new interactions that generate finite
splittings are difficult to construct. We highlight one simple
model which has a divergent contribution to the splitting,
meaning that neither the mass nor the mass differences are a
prediction of the low energy theory.
We also explore how new interactions of the condensate

can generate a hierarchical vacuum solution. We investigate
a specific model that introduces a minimal content of new
particles that can generate the experimentally measured
neutrino splittings. We explore the parameter space of this
model and calculate cosmological limits considering the
impact of the new fields on late-cosmology observables.
However, we have found that without a more comprehen-
sive understanding of the condensate mechanism, it is not
possible to draw any conclusions regarding the exclusion of
this matter content. We then show that the separation of
scales is difficult to construct in this specific model and
discuss that this is expected to be a general feature since we
are trying to generate low-energy effects from high-energy
physics. We then examine the EFT description of the
condensate where higher dimensional operators can be
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from the specific UV completion or possibly from the
gravitational instantons. We show that in the EFT language
it is necessary to have cancellations between different orders
of the expansion signaling the same problem that we face
in the UV complete model. This means that, if this specific
UV complete model is the one that generates the neutrino
mass splittings in our universe, then we should expect new
particles in reach of the current colliders.
The proposed solutions that we create do not exhaust all

the possible UV completions or different ways that new
physics can contribute to the splittings given that a low
energy phase transition generates universal masses. Further
investigation into this problem could clarify what signals to
look for to test this proposed neutrino mass mechanism.
Additionally, further investigation on the specific low
energy description of the gravitational instanton interaction
with the condensate could shed some light on what is the
exact symmetry breaking which occurs, and if we are
required to add new physics to describe the neutrino
phenomenology.
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APPENDIX A: ABSENCE OF HIERARCHICAL
VACUUM FOR THE RENORMALIZABLE

POTENTIAL

Let us write the most general vacuum configuration for
Majorana and Dirac cases, calling the field X. We can use
the flavor symmetry in both cases to get rid of the off-
diagonal components and two diagonal phases. The last
phase can be made global, and thus the most general
configuration vev is

X ¼ diagðv1; v2; v3Þeiα=3: ðA1Þ

The minimization condition for the potential in Eq. (2.5)
can be cast in the following form:

0 ¼ M1v1v2v3 sin α; ðA2Þ

0 ¼ ðv1 − v2Þðv23λ1 þ v1v2λ2 þ v21ðλ1 þ λ2Þ
þ v22ðλ1 þ λ2Þ − μ2ϕ þ 2M1v3 cos αÞ; ðA3Þ

0 ¼ ðv2 − v3Þðv21λ1 þ v2v3λ2 þ v22ðλ1 þ λ2Þ
þ v23ðλ1 þ λ2Þ − μ2ϕ þ 2M1v1 cos αÞ; ðA4Þ

0 ¼ ðv2 þ v3Þðv21λ1 − v2v3λ2 þ v22ðλ1 þ λ2Þ
þ v23ðλ1 þ λ2Þ − μ2ϕ − 2M1v1 cos αÞ: ðA5Þ

We will now show that there cannot be a vacuum with three
different nonzero values for the vi. From the first condition,
we can see that, given we are assuming that all vevs are
different and nonzero, we need to haveM1 ¼ 0 or sinα ¼ 0.
WhenM1 ¼ 0 the angle becomes a flat direction and we can
choose any value, while when M1 ≠ 0 the minimization
occurs for α ¼ 0. We can then set α ¼ 0 in general.8

Assuming that we have all vevs different, we can solve the
remaining equations. However, this ends up giving us a
contradiction, since the only solutions up to permutations are

v1 ¼ v3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2ϕλ

2
2 − 4M2

1ðλ1 þ λ2Þ
λ22ð2λ1 þ λ2Þ

s
; v2 ¼ 2

M1

λ2
; ðA6Þ

v1 ¼ v3 ¼ 0; v2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2ϕ

λ1 þ λ2

s
: ðA7Þ

We can see that we have at least two vevs equal or two vevs
equal to zero, which implies that we have no solution that
satisfies the condition where all vevs are different and thus
we prove by contradiction that we cannot have hierarchical
vevs for the renormalizable potential.

APPENDIX B: EFT MATCHING
FOR THE MAJORANA CASE

We perform the matching at one loop up to the leading
contribution in 1=mZM

. The coefficients are matched in the
basis of Eqs. (6.2)–(6.5):

c5
Λ

¼ λϵAMϕMðλMϕϕM þ 3λTMMÞ
4π2m2

ZM

; ðB1Þ

cð1Þ6

Λ2
¼ ðλMϕϕMÞ3 þ 3ðλMϕϕMÞ2λTMM þ 3λMϕϕMðλTMMÞ2 þ 3ðλTMMÞ3

96π2m2
ZM

; ðB2Þ

8We could also set α ¼ π and this would only change M1 to −M1 and all the results remain unchanged.
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cð2Þ6

Λ2
¼ −

ðλMϕϕMÞ3 þ 2ðλMϕϕMÞ2λTMM − 16jλϵj2λTMM

32π2m2
ZM

ðB3Þ

cð3Þ6

Λ2
¼ ðλMϕϕMÞ3 þ 48jλϵj2λMϕϕM

32π2m2
ZM

; ðB4Þ

cð1Þ7

Λ3
¼ −

λϵAMϕMððλMϕϕMÞ2 þ 2λMϕϕMλTMM þ 3ðλTMMÞ2Þ
8π2m4

ZM

; ðB5Þ

cð2Þ7

Λ3
¼ λϵAMϕMð3ðλMϕϕMÞ2 − 8jλϵj2Þ

12π2m4
ZM

; ðB6Þ

cð1Þ8

Λ4
¼ −

ðλMϕϕMÞ4 þ 4ðλMϕϕMÞ3λTMM þ 6ðλMϕϕMÞ2ðλTMMÞ2 þ 4λMϕϕMðλTMMÞ3 þ 3ðλTMMÞ4
384π2m4

ZM

; ðB7Þ

cð2Þ8

Λ4
¼ ðλMϕϕMÞ4 þ 3ðλMϕϕMÞ3λTMM þ 3ðλMϕϕMÞ2ðλTMMÞ2 − 24jλϵj2ðλTMMÞ2

96π2m4
ZM

; ðB8Þ

cð3Þ8

Λ4
¼ −

ðλMϕϕMÞ4 þ 128jλϵj4
192π2ðmZM

Þ4 ; ðB9Þ

cð4Þ8

Λ4
¼ −

ðλMϕϕMÞ3ðλMϕϕM þ 3λTMMÞ þ 24jλϵj2λMϕϕMðλMϕϕM þ 6λTMMÞ − 128jλϵj4
96π2m4

ZM

: ðB10Þ
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