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We investigate blow-up manifolds of 7?/Zy(N = 2,3, 4, 6) orbifolds with magnetic flux. First, we
construct the blow-up manifolds and zero-mode wave functions on them more precisely. In particular,
through an appropriate singular gauge transformation, winding numbers of wave functions on T?/Zy
can be replaced with localized curvature and localized flux at orbifold fixed points. In addition, since the
blow-up manifolds have no singularities, we apply the Atiyah-Singer index theorem to them; the chiral
zero-mode number is given by the total magnetic flux. It can be also applied for 72/Z, orbifolds through
the blow-up process, and then we find that it is consistent with the zero-mode counting formula in
M. Sakamoto et al. [Zero-mode counting formula and zeros in orbifold compactifications, Phys. Rev. D
102, 025008 (2020).]. Furthermore, the Atiyah-Singer index theorem shows that an additional degree of
freedom of localized flux gives new chiral zero modes. We study their wave functions and then we find that
they correspond to localized modes at the orbifold singular points. We also calculate their Yukawa
couplings.
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I. INTRODUCTION the quarks and leptons and the fermion mass hierarchy, and
also to naturally explain their flavor structure. String theory
and higher-dimensional theory are strong candidates
beyond the Standard Model. Many proposals have been

N made to solve the generation problem, but known mech-
Ind(ip) =n, —n (1.1) anisms to produce degenerate chiral zero modes are very
limited. It is known to obtain the chiral spectra as magnetic-
flux compactifications in type-I and II string theory [7—13]
and heterotic string theory [14-17]. These models have
provided semirealistic models of string phenomenology,
e.g., three generation models [18,19], fermion mass hier-

In particular, we are interested in counting the number of archy [20], and flavor structure [21-27].

chiral zero modes appearing in the four-dimensional (4D) . The .Atiyah—Singer (AS) indF:x theorzem . for a tW(,)'
effective field theories. The Standard Model has a lot of dimensional (2D) compact manifold M* with magnetic

mysteries unanswered, including the generation problem of ~ 1UX is known as [28,29]

The Atiyah-Singer index theorem [1] states that the
index of a Dirac operator P

is a topological invariant. Here, n.. are the numbers of +
chiral zero modes for the Dirac operator. The index theorem
has been applied to many areas in physics, such as the
chiral anomaly in gauge theory [2,3], the Witten index [4],
and anomaly inflow [5,6].

1
__271' M2

*kobayashi@particle‘sci.hokudai.ac.jp ny F, (1.2)

Totsuka.hajime @phys.kyushu-u.ac.jp

& .
"dragon @kobe-u.ac.jp . ) .
819151075 @stu.kobe-u.ac.jp where F is a 2-form field strength of the flux. We should

I L . here stress that the index n, — n_ is determined only by the
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h-uchida@particle.sci.hokudai.ac.jp flux but not the curvature of the 2D manifold M=. A simple
application of the index theorem (1.2) is to take M? to be a
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where M is an integer and corresponds to a magnetic-flux
quantization number.

The application of the index theorem to 72/Zy(N =
2,3,4,6) magnetized orbifolds will be phenomenologi-
cally and mathematically interesting because the index
n, —n_ gives the generation number in 4D effective field
theories and it turns out to complicatedly depend on the
flux quanta M, the Z, eigenvalues under the Z, trans-
formation, the Scherk-Schwarz (SS) twist phases (a;, a,)
and N (see the last columns in Tables I-V of the Appendix)
[30-35]. In Ref. [30], a complete list of the index has been
shown to satisfy the zero-mode counting formula'

MV,

= 1, 1.4
N N T (1.4)

I’l+—n_

where V is the sum of the winding numbers at the fixed
points of 72/Z, orbifolds.

The first term on the right-hand side of Eq. (1.4) could be
understood from Eq. (1.3) because the area of the 7°/Z)
orbifolds reduces to 1/N of that of the torus T2. The
origin of the second and third terms on the right-hand
side of Eq. (1.4) is, however, unclear, and those terms
seem not to be related to any flux on the 72/Z,, orbifolds.
In fact, Eq. (1.4) has not been derived as the AS
index theorem in Ref. [30] and the relation (1.4) has
been verified by computing the values of n, —n_ and
M/N -V, /N + 1, separately and then by simply compar-
ing them.

Our main purposes of this paper are to understand the
formula (1.4) as the AS index theorem and clarify physical
and geometrical meanings of the formula. There is, how-
ever, a problem. The T?/Z, orbifolds have singularities,
and the AS index theorem cannot directly be applied to
singular “manifolds”. Our strategy to overcome the prob-
lem is to construct smooth blow-up manifolds of the 72/ Z,,
orbifolds by removing cones around the singularities of the
T?/Zy orbifolds and replacing them with parts of the 2D
sphere S [37,38]. Then, we can apply the AS index
theorem directly to the blow-up manifolds. From the
blow-up procedure, we can confirm the formula (1.4) as
the AS index theorem and clarify the physical and
geometrical meanings of the second and the third terms
on the right-hand side of Eq. (1.4).

In addition, according to the AS index theorem, the
additional degree of freedom of localized fluxes at the
singular points of orbifolds [39—41]* shows that there exist
new chiral zero modes. We examine the profile of such
chiral zero-mode wave functions in more detail. Then, we
can find that they correspond to localized modes at the

'By use of the trace formula, Eq. (1.4) has been derived for
M = 0 in Ref. [35] and for arbitrary M with N = 2 in Ref. [36].

*Even if localized fluxes vanish at the tree level, they may be
induced by loop effects [39-42].

orbifold singular point of 72/Z, orbifolds. We also study
their Yukawa couplings.

This paper is organized as follows: In Sec. II, we briefly
review zero modes on the 72/Z (N = 2,3, 4, 6) orbifolds
with magnetic fluxes. In Sec. III, we construct the blow-up
manifolds and compute zero-mode wave functions on them
with magnetic fluxes in more detail, where Z, invariant
modes which have no winding numbers have been ana-
lyzed in Ref. [37]. By using the results, we derive the AS
index theorem on the blow-up manifolds and reinterpret
the zero-mode counting formula in Sec. IV. In particular,
the AS index theorem shows that localized fluxes induce
new zero modes. Then, we study wave functions of the new
zero modes, which correspond to localized zero modes on
T?/Z, orbifolds in Sec. V. We also discuss their Yukawa
couplings in Sec. VI. We conclude this study in Sec. VII. In
Appendix A, we show the detailed results of Sec. IV. In
Appendix B, we show the detailed calculation of the
normalization of bulk zero modes. In Appendix C, we
show the detailed calculation of the normalization of
localized zero modes.

II. MAGNETIZED T?/Zy ORBIFOLD

A. Magnetized T?

We review the U(1) gauge theory on a 2D torus with
homogeneous magnetic flux [20]. First of all, let us
consider the six-dimensional (6D) spacetime, which con-
tains 4D Minkowski space-time M* and an extra 2D torus
T? with magnetic flux. The Lagrangian of a 6D Weyl
fermion in magnetic flux background is given by

Lep = iPTYD,, P, Y=Y, (2.1)
where M(=0,1,2,3,5,6) is the 6D spacetime index and
Dy, = 0y — iqA,, is the covariant derivative. TV is 6D
gamma matrix and I'; denotes the 6D chirality operator.

By the Kaluza-Klein mode expansion, the 6D Weyl
fermion ¥(x,z) can be decomposed into 4D Weyl left/

right-handed fermions 1//(L4/)R (x) as

P2 = ") @y ()

n,j

" () @ w@mi(z)), (2.2)

where x* (1 =0, 1,2, 3) denotes the 4D Minkowski coor-
dinate and z is the complex coordinate on 72. The 2D Weyl

fermions l//g?"’j

W<+z>n.j(z):<wi’;(2)>7 "’(‘z)n'j(z):<wﬁ-(f)(z)>’ (2.3)

(z) are expressed as the form

where n and j label the Landau level and the degeneracy of
mode functions on each level, respectively.
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Here, 77 is constructed by dividing a complex plane C
into a 2D lattice A, i.e., T?> ~C /A. We define the complex
coordinate of T2, z = y; + 75, such that the identifications
are z~z+ 1 ~z+ 17, where y;(0 <y, <1) with i =1,2
denotes the real coordinate along one lattice vector e; and
T=e¢,/e; € C(Imr > 0) denotes the complex structure
modulus of 72. The area of T? becomes Imz. We note
that the curvature of 72 is zero.

The nonzero magnetic flux f on the torus can be
obtained as f = [;» F with the field strength

F(z) = dz A dz.

2I o (2.4)

For F = dA, the (1-form) vector potential is

A(z:0) = %Im((z +8)dz) = A,(z:{)dz + Az (z: ) dz,
(2.5)
and A.(z; ), As(z;¢) are explicitly given by
M . M
AGD =120 1D, Al =2T (e +0)
(2.6)
where { = + 78, (£, € R) denotes the Wilson line.
Then, we obtain
Az + 1;{) = A(z; C)+d<%lm(z+g“)>
= A(z:0) +dA (2 + ), (2.7)
Alz+1:¢) = A(z; C)—l—d(%lm( (Z+§))>
= A(z:0) + dAy(z +0), (2.8)

where A;(z 4+ ¢) and A,(z 4 {) are gauge parameters. It
follows from Egs. (2.7) and (2.8) that the torus lattice shifts
can be reinterpreted as gauge transformations.

The 2D Weyl fermions are required to satisfy the
pseudoperiodic boundary conditions (BCs)

v (2 +1;0) = U (2wl (z:0),

w2+ 1:0) = Us (2wt (z:0), (2.9)
with

U(z) = eNlete2ria (i =1,2), (2.10)

where «; (i = 1,2) are called Scherk-Schwarz (SS) twist
phases which are allowed to be any real numbers. The
consistency condition with the contractible loop,

z=>z+1->z4+14+7—>2+4+7-> 2 leads to the mag-
netic-flux quantization condition

f
—=MEe/Z. 2.11
2n < ( )
The 2D Weyl fermions satisfy the equations
_ZDZWZJ (z:8) = _2(61 — A, (z C))WZJ (z:0)
= my'y(z:0), (2.12)
2Dy} (236) = 2(0: = iA ()W (53€) = myw™ (230).
(2.13)

We focus on zero modes with m, = 0. From Egs. (2.12)
and (2.13), zero modes satisfy

(az M s z)>w91(z;c> o0,

2Imz

(2.14)

(004 oo (c 4.0 )z 0) =0,

In the case of M > 0, only wg’j has the normalizable
solutions that satisfy the pseudoperiodic BCs (2.9) and they
are given as

Oy(j‘f’a] ,az)

PR (Z C) = e 71m,|2+é’| g(}+a] ), (Z é’)
(j=0,1,....M-1), (2.15)
g(]+al 22)- ( ()= NO Pz +0)? Q”Z”a' (-ME1) g
It
{ M ](M(Zv%'),MT), (2.16)
—a,
where, j =0,1,.. — 1 stand for the degeneracy of

zero-mode solutlons Here, ./\/ J denotes a normalization
constant determined by

/dZdZ(l//Tz(HﬁI )M)*w;,z(f:ral,af),M _ 5]‘,](7 (217)
and the Jacobi J-function is defined by
a o0
9 T) = eimlatl)t 2mi(a+l)(z+b) 2.18
HEEESY) 2.18)

Note that the Wilson line { = {| + 7{, can be pushed on
the SS phases as

ay = a) =a + M, a >y =a,— M, (2.19)

by the U(1) local and gauge transformation,
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wn.(j+a1.a2),M<Z; C) N VE](Z>Wn.(j+al,a2),M(Z; C)

T2+ T2+
G, e
A(z:0) = A(z:0) +iVZ(2)dVi(z) = A(z:0). (2.21)
with
Vgl(z) = oM -miME G (2.22)

as shown in Ref. [32]. Hence, hereafter, we set { = 0. On
the other hand, in the case of M < 0, only y_; has the
normalizable solutions, and they are given in a similar way.

The above results are consistent with the AS index
theorem on the torus with magnetic flux, i.e.,

1

=— | F=M.
2 T2

(2.23)

ng—n_

The index theorem (2.23) shows that the number of the
independent chiral zero modes is decided by the magnetic
flux quantization number M on the magnetized torus and
further that the generation number of this model is given by
M. We emphasize that the index n, — n_ depends only on
the flux.

B. Magnetized T?/Zy

In this subsection, we review the U(1) gauge theory on
twisted orbifolds 77 /Z, with magnetic flux [32,33]. It has
been known that there are only four kinds of the 7%/Z
orbifolds with N =2,3,4,6. The T?/Zy orbifolds are
defined by the torus identification and the additional Zy
one

z~pz (p=eM/N(N =2,3,4,6)). (2.24)
For N = 2, there is no restriction on 7 except for Imz > 0.
On the other hand, for N = 3,4, 6, t should be fixed at
7 = p due to the analysis of crystallography.

An important feature of the T?/Z, orbifolds is the
existence of the fixed points zt,p defined by

zﬁp = pzfp +u+wvr for Fu,vez. (2.25)

The Z, fixed points on the 7°/Z, orbifolds are given by

0,5.5. 5% onT?/7,,
2+t 1427
) 035 EE on T?/Z;, 56
21 1+7 2 ( ’ )
0, 4% on T%/Z,,
0 on T?/Z,,

and the respective values of (u,v) in Eq. (2.25) are

(0,0),(1,0), (0, 1), (1, 1) on 7%/,

(u.0) = (0,0), (1,0), (1, 1) on T?/Z, (2.27)
(0,0), (1,0) on T?/Z,,
(0,0) on T?/Z;.

Note that there are additional fixed points for N = 4,6,
since the Z4(Z¢) group includes Z, (Z, and Z3) as its
subgroup. They are not invariant under the Z4(Zs) trans-
formation, but invariant under the Z, (Z, and Z;) trans-
formation up to the torus shifts. The additional fixed points
are found as

1
Z, fixed points: zP = 5,% on72/Z,,  (2.28)
1 242
Z4 fixed points: zﬁp = ;_T, 4:; ! on 7%/ 7Zs,
(2.29)
: 1 1
Z, fixed points: 7}’ = E’%’ —;T on T?/Zs. (2.30)

We should emphasize that the fixed points are singular
points on the 72/Zy orbifolds.

For the orbifold identification, the Scherk-Schwarz
phases (a;,a,) must be quantized such as

(a1,a2)=(0.0),(1/2,0).(0,1/2).(1/2,1/2) onT?/Z,,
(2.31)
G—a —ay— {0,1/3,2/3 (M =even) onT/Z,.
1/6,3/6,5/6 (M =odd)
(2.32)
a=a =a,=0,1/25 onT?/7,, (2.33)
I (M = even) )
a—al—az—{l/z (M = odd) on T¢/Zs.
(2.34)

Let us discuss Z, eigenfunctions on the T2/Zy orbi-
folds with magnetic flux. They should obey the boundary
conditions (2.9) and the orbifold boundary conditions

(7 )M e n(j )M

Wy oM (02) = M (2). (2.35)
n,(j+ay,a).M n,(j+a,,ay) M

VT M (p2) = ety M) (2.36)

,N —1) in Eq. (2.35) denotes the

n,(j+ay.a).M :
72201 (z) is

where p"(m =0,1, ...
Zy eigenvalue. If the Z) eigenvalue of y

075032-4



INDEX THEOREM ON MAGNETIZED BLOW-UP MANIFOLD OF ...

PHYS. REV. D 107, 075032 (2023)

Tz(j;f'_aZ) (z) has to be p™*!. The

difference in eigenvalues comes from a rotation matrix
acting on 2D spinors, and it can also be understood from the
relations (2.12) and (2.13). Then, the Z, eigenfunctions
can be constructed by the following linear combinations of
the wave functions on the torus

p™, then that of

+ - j+
TZ(/jZ'f] o ( N;!/Z A+ Zp kaT /+0{1 i (p'2),
(2.37)
(j+a. M j+
e @ =N, ZP ey k),
(2.38)
where N7/ are normalization constants determined by

Tz/z +

(2.39)

o) My n(k+aya).M
/dZdZ(l//Tz;Zgli( o) ) W;Z/Z};]l_li( = 5j,k

Especially, zero modes with the Z, eigenvalue p™ are
given by

0 (]+(ll (lz (Z) = e 21n11

pEy Mz h(JJrfl] @), M(Z),

(2.40)

h(jJra].az),M(

Lo TZ/Z n Zp—km (j+ar,a), (/)kZ).

(2.41)

Here, 1/ () denotes the holomorphic function of z.

Let us investigate the Z, eigenfunctions l//;z(;;:l ). M(z)
around the fixed points 2 r= =y i+ 1y2, by mod1fy1ng
Eq. (2.35). Their property will become important later.
First, we define the coordinate Z such that Z = 0 at the
fixed point zﬁp ,ie,Z=z- zﬁp. Next, we rewrite z by Z as
2= (z—2") + 2P = Z + 2. This means that the second
term, zﬁp, can be regarded as the Wilson line { = zﬁp

(¢ =P, ¢ = yP) from the viewpoint of the coordinate
Z. (See the previous subsection.) Then, the Wilson line can
be pushed on SS phases by the U(1) local and gauge
transformation,

e @) = WM 2 4 2)
= Va2 M z). (242)
where (3, 3,) are defined by
(B1.B>) = (ay + MyF.ar = MyY))  (mod 1). (2.43)

On the other hand, the left-hand side of Eq. (2.35) can be
written by Z as

A7 o ).M ]
wiz(g;ff M (pz) = sz(/]ZZ vM 7 4+ palP)
= WTZ(/]2131 )M (pZ + Zﬁp —u-— UT)
= Uy"(pZ + zf — u)UT"(pZ + 2’)

n,(j+p1.p2).M

xV /P (pZ)l//TZ/Zm (pZ), (244)

where we use Eq. (2.25). Thus,

(j+B1.B2)
Y2 /z]';er

the mode functions

(Z) transform under Zy twist around z" as

n,(j+p1.p2).M (pZ) =

WTZ/Z'" pJ(HWTZ;;fI ﬁ2) (2)7 (245)

with

M
Xl = N{ual + vay +E(uv+uy£‘} - vyff})} +m

(mod N), e
where we use the result,
VZ—?} (/)Z)VZ?,(Z) _ e_me
= Ur*(pZ)Uy* (pZ)e2mituantva) | (2.47)

Note that Eq. (2.45) with zl;p = 0 corresponds to Eq. (2.35).
Hence, we get the winding numbers y,; of the Zy mode
n,(j+ay.a).M
2 70+

We are interested in the numbers of chiral zero modes on
the T?/Z,, orbifolds with magnetic flux. Although the AS
index theorem on 72 is known as (2.23), the AS index
theorem cannot, however, be applied to orbifolds directly
because they have singular points. On the other hand, in the
previous paper [30], the following zero-mode counting
formula on the T?/Z, orbifolds with magnetic flux has
been obtained:

functions (z) around the fixed points z,’.

M Vv
n+—n_:———+—|—1,

NN (2.48)

where V is the sum of the winding numbers at the fixed
points of the 7%/ Z orbifolds. It should be emphasized that
the equality between the left-hand side and the right-hand
side of Eq. (2.48) has been verified in each case in
Ref. [30], but the formula (2.48) has not been established
as an index theorem. The first term on the right-hand side of
Eq. (2.48) can be understood as the contribution of the flux
and the factor 1/N comes from the fact that the area of the
T?/Z, orbifoldis 1/N of that of the torus 72. On the other
hand, physical roles of the second and the third terms of

075032-5
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J N\

FIG. 1. The left figure shows T?/Z, orbifold and the red points
represent the fixed points of 72/Z, orbifold. By cutting around
the fixed points and embedding the part of S? as caps, we can
construct the blow-up manifold as shown in the right figure.

Eq. (2.48) are unclear, because they are not related to any
flux on the orbifolds. In particular, it is curious why the
factor +1 is needed on the right-hand side of the
formula (2.48).

In order to apply the AS index theorem to the orbifold
models, we consider removing the singular points from the
orbifolds. To this end, we replace the T2/ Z, orbifolds with
smooth manifolds without singularities by cutting out the
singularities of the magnetized T2/Z, orbifolds and
attaching smooth manifolds (parts of S?) to them, as shown
in Fig. 1. The smooth manifolds without singularities are
called blow-up manifolds of the 7%/ Z orbifolds. Then, we
can apply the AS index theorem to the blow-up manifolds
directly.

I1I. BLOW-UP MANIFOLD OF MAGNETIZED
T2/Zy ORBIFOLD

In this section, we construct the blow-up manifolds of the
magnetized T2/Zy orbifolds by replacing orbifold singu-
larities with parts of S?. Then, we compute wave functions
on the blow-up manifolds by connecting those on the
orbifolds with those on parts of $? smoothly without losing
the orbifold information. In the blow-up process, in
particular, we obtain two remarkable features; one is that
winding numbers of wave functions on the 72/Z, orbi-
folds are related to localized flux and localized curvature on
the blow-up manifolds, and the other is that not only
curvature but also magnetic flux are not modified under the
blow-up process.

A. Magnetized S>

First of all, we review zero-mode functions on S? with
magnetic flux [43]. Let 7’ be the complex coordinate on
§? ~ CP! defined by projecting a point of S? into the
complex plane passing through the center of S? from the
north pole of S, as shown in Fig. 2. The radius of $? is
taken to be R.

The magnetic flux on S? is quantized as

1

— | F=M,
2w S2?

(3.1)

0
(Rtan 2\cose, Rtan 3 sing, 0)

Z’

|2/] = Rtan s
Z | = an2

(Rsinfcosg, Rsinfsing, —Rcosf)

FIG. 2. The cross section of S? with the radius R is shown.
We project a point of S$* with the 3D coordinate,
(Rsinfcos ¢, Rsin@sin@p, —R cos @), from the north pole of
S?, into the point on the complex plane passing through the
center of S? whose 3D coordinate is (R tan%cos @,
R tangsin ¢,0), where (R, 0, ) are spherical coordinate param-
eters. We define the complex coordinate of the complex plane
CP!, 2/, such that 7/ = |'[e’” = RtanZ¢' at the point with the
3D coordinate (R tan$cos @, Rtandsing.0). Then, we denote
the coordinate of a point on S? as the complex coordinate of the

projected point on CP!, 7'.

where M’ is an integer. The field strength is

F' i RM
—=—————=d7 Nd7. 3.2
2 2 (R + [P (3.2)
The gauge potentials on S? are given by
i M i M
CTarrpps Mo amepes Y

The mode functions on the magnetized S obey the Dirac
equations

! Aq!

R? + 17 2 ) 1 ) Lo
#l az, + =Wy — lAZ; wgz’ﬁ (Z/) = mn/l//;i’ﬂ_l (ZI),

R 2
(3.4)
R2 + Z,|2 . 1 . n M n .M
Tll az/ — ZEQ)Z/ — lAZ/ l//sz.’]t:[ (Z/) = mn,l//sz'ﬁ (ZI),
(3.5)
with
P2 P2
R S =L 2 2 (36
s 2R2+|Z/|22 w, 2R2—|—|Z/|2Z ( )

Here, w- and w_ are the spin connections that come from
the nonvanishing curvature on S2,

R = (%) =2. (3.7)

2w S2?

075032-6



INDEX THEOREM ON MAGNETIZED BLOW-UP MANIFOLD OF ...

PHYS. REV. D 107, 075032 (2023)

Here, R’ is the curvature on S?> and y is the Euler
characteristic. Note that the spin connections (3.6) can
be obtained by replacing the flux M’ in the gauge potentials
(3.3) by the Euler characteristic y(S?) = 2.

The positive chirality zero mode solutions of Eq. (3.4)
with m, = 0 are given by

)

oM (1
yo (&) = ————, (3.8)
" (R + [ P)*s
where f'(z') is a holomorphic function of z’. These

solutions are normalizable and well-defined on S? only
if M'>0 and fY(7/) is expressed as a (M’ — 1)th-
order polynomial, which means that the number of the
independent solutions is M’. On the other hand, normal-
izable and well-defined negative-chirality zero modes on S?
are obtained in a similar way only if M’ <0, and an
antiholomorphic function f¥'(7) is expressed as a
(|M'| = 1)th-order polynomial.

The above results are consistent with the AS index
theorem on the magnetized S2 e,

1 ! /
n,—n_= F M.

o (3.9)

The number of the chiral zero modes turns out to be given
by the flux quantization number M’, as it should be. It is
important to emphasize that although the flux and the
curvature exist in the magnetized S> model, only the flux
contributes to the AS index theorem, as mentioned in the
introduction.

B. Construction of blow-up manifold of 72 /7y, orbifold

In this subsection, we review the construction of blow-up
manifolds of 72/Z, orbifolds [37]. Since the T?/Zy
orbifolds have singularities at the fixed points and around
the fixed points become cones, we replace the cones with
parts of S? to remove the singularities, as shown in Fig. 3.
Figure 3 shows the case that the deficit angle around a fixed
point is 2z(N — 1)/N, and we replace the cone whose slant
height is r with (N —1)/2N part of S*> whose radius is

R = r/V/N? — 1. The left figure shows the development of
the cone, and the right figure shows the cross section of the

cone and S? with the radius R = r/V N> — 1. Here, the
curvature around the singularity is (N — 1)/N which comes
from the deficit angle. On the other hand, since the
curvature of S? is y(5?) = 2, the curvature of the embedded
region is (N — 1)/N. That is, this blow-up process does not
change the topological invariant number. Similarly, we can
apply this procedure for the other fixed points of the
orbifolds.

We denote the coordinates of 72/Z, and S? as z
and 7/, respectively. They are related at the connection

47 z
|z ONY
w
7 ant =
r e
r |w cosfy = N
FIG. 3. The left figure shows the development of the cone

around a fixed point of 72/Z, orbifold. The slant height and the
radius of the base of the cone are r (called the blow-up radius) and
r/ N, respectively. The right figure shows the cross section of the
cone and the §? with radius R = rcoté, = r/VN? — 1. The
blow-up manifold of 72/Z is constructed by replacing the cone
with (N —1)/2N-part of $?, where sin(6,/2) = (N —1)/2N.
Here, z and 7' denote the coordinates of T2/Z, and S°,
respectively, and they are related at the connection points through
the coordinate w, i.e., 7 N

eV > W = mgteit

points through the coordinate w, i.e.

N+1 7 o
< |z’=N+le’4”'

> Z|Z:,ei<p/N <o W=

Next, we discuss zero-mode wave functions on magnet-
ized blow-up manifolds, which can be obtained by
smoothly connecting wave functions on the magnetized
T?/Z orbifold in Eq. (2.40) with those on the magnetized
§? in Eq. (3.8) at the connection line. However, there is an
obstacle. If zero modes on the T2/Z, orbifold have
nonzero winding numbers, they cannot be connected to

zero modes on S” because the boundary conditions for
0,(j+ay.a),M

iy (z) around the fixed point are different from

those of wg%(z’). l//Tz(;;l .

condition (2.45). On the other hand, ‘/’(s)%

phase. In the next subsection, we resolve this obstacle by
using singular gauge transformation.

(z) obey the boundary

(Z') have no

C. Singular gauge transformation

In order to connect wave functions on 7% /Z, to those on
S2, we remove nonzero winding numbers from wave
functions on T?/Zy by the following singular gauge

transformation’ ‘/’TZ(/jZ:,] )M (7) ~;z/j;1 M2y such
that 1/7';2(/’;5 ‘fz) ’M(z) has no winding number:
n,
n.(j+ai.a).M ( ) n.(j+a.@). M( ) St (j+ai.a).M ( )
WTZ/Zm pZ p WTZ/ZM l//TZ/Zm pZ

— 7 ”~(/+a1qaz),M(Z).

o (3.10)

3See Refs. [39-41,44] and also Ref. [45] for magnetized 52
with vortices.
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Here, we have considered the case where the fixed
point is zﬁp = 0. Note that the following analysis can be
applied even for the other fixed points by the following
replacement:

z—>Z,
(a1, @) = (B1. o).
m-—y.. (3.11)
The singular gauge transformation is defined by
A= A(z) = A(z) + 6A(2), (3.12)
g th
with
(4.1 T ;
V@ N i) \F
Ve =\ pan o) T \wer
i (@)
(1) <
0 2
~ ( 9 ( >Z*) , (3.14)
(91°(0)2)

where we use

0,39),1 0.(4).1 s
TZ(;Z}VJr(Z) = WTz(_Zj) (Z) = e mmll a1 (Z)

1

= 4001 _ A2 A 2
g1(z) =gb! = en 16'9{ 1}(@1), (3.15)

2

and g§k>(z)zdkgz',fz). The

Egs. (3.13) and (3.14) are approximate expressions near
z = 0. Under the singular gauge transformation, the field
strength is modified as

rightmost-hand  sides of

F F __F OF

%—)§=ﬂ+g, (3.16)
oF
Py i£76(2)8(z)dz A dz. (3.17)

Here, from Eq. (3.16), & /N can be regarded as a localized
flux at the fixed point z = 0.

We further need to consider a singular gauge trans-
formation for the spin connection in a way similar to the
gauge potentials to remove winding numbers both of

;‘;;Z;‘f” (z) and wrz/j;"_% (). It is defined by

®w—>d=w+dw =, (w=0), (3.18)

Z 0 fR §R

6w = iUgdU S Egdz—i-l?—d" (3.19)
with
0.(3:3).1 =
v, )\
Uee@) = | —5apr
(V/Tz/z;]# (2))
R &
(91(2))" (g\"(0)2)*

Similarly, €% /N can be regarded as a localized curvature at
the fixed point, where it corresponds to (N — 1)/N in the
case of the deficient angle 2z(N — 1)/N.

From Eqgs. (3.14) and (3.20), the wave functions are
transformed under the singular gauge transformation as

n,(j+a ,az).M(Z) - n,(j+a .az),M(Z)

/2% + /2% ,+
1/2 a,a,),M
=Upr (U @y ™ (2). (3.21)
n,(j+oy o) M - n,(j+a.a).M
T,z(.//%r’;;’_ 2) (z) > WTZ(;Z’]G.—Z) (z)
1/2 n,(j+ay.0p) M
= Ugr () U (@ M (2). (3.22)
Then, Eqgs. (2.35) and (2.36) are modified as
- n,(j+a.o r_eR m~1(j+ay.o) .M
WTZ(jZm +2> (ﬂZ) = pé 7t WTZ(/]Z%’IJ’, 2) (Z)’ (323)
~ n,(j+ay,o).M m n,(j+o,a) M
sz(j‘Z*ﬁ}_ DM (pz) = i+t “wﬁ(j;‘_” (z).  (324)

Note that the contributions of the localized curvature £F act
with opposite signs to the chirality positive and negative
wave functions. In addition, Eq. (2.9) and equivalently
Eq. (2.10) are also modified by replacing M and a; with
M+ EF F ER/2 and a; + EF /2 F ER /4, respectively.

We arrive at the conditions to obtain wave functions with
vanishing winding numbers as

N-1
' =——-m+¢N for "2 e Z,

5 (3.25)

where we used &8 = N — 1 for the Z fixed point. It is
interesting to point out that a new degree of freedom 7
appears. It comes from mod N property of Egs. (3.23) and
(3.24). In Sec. V, we discuss the physical meaning of the
new degree of freedom of the localized flux in detail. Zero-
mode wave functions in Eq. (2.41), in particular, can be
expressed as
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~ 0,(j+a.a;)
) =

~ |Z|m—fN
R (@) = A

~ J N

|gl (Z) |m_fNe 2lmz

e 21mz-|z|2 |g(11) (O) |m—fN]3$jnal ’a‘z')ﬁM(Z)

(gUtena).M)(m) ()

T JZ‘HIl vaz')-M(Z)

’

N-1

7z, (91(2)) TNy 7 primglit e M (phz)

k=0

(951) (O))_m"'szfN,

TZ/ZN,+

where we also show the approximation near z =0
at the lowest order. Hereafter, we denote the coefficient
shortly as

i+a,a m 1 —m+¢oN

_ o (g im(o) <g§ ’<o>) o
2 .
o m! 19"(0)]

(3.27)

Similarly, the same argument can be applied for zﬁp #0
by the replacement (3.11). Especially, we obtain the
following relationship:

&= 52’ — ¥+ €N for V¢, €Z.

(3.28)
It means that the winding number y; can be rewritten in
terms of the localized flux & and the localized curvature
tff . In other words, what we have done with the singular
gauge transformations (3.21) and (3.22) is to replace the
information of the winding number on the orbifolds with
the localized flux and localized curvature at the fixed points
of T?/Zy. This operation is expected to connect wave
functions on 72/Z, with those on S? without losing
the orbifold information. In the next subsection, let us
see zero-mode wave functions on the blow-up manifolds of
magnetized T2/Z,.

|

9

" 0z
eNdz = e ’N d| | + _"—d

g (3.26)

D. Wave functions on blow-up manifold
of magnetized T2/Zy

Now, we can explore zero-mode wave functions on the
blow-up manifolds of magnetized 72/Z,. Wave functions
on the blow-up regions (parts of S? regions) are those on §?
in Eq. (3.8), l//g’zlf/i
region (remaining region of 72/Z, by cutting out regions
around fixed points) are those on T2/Zy in Eq. (3.26),
_0.(j+ay.m),

T2/7% +
on bulk regions and those on the blow-up regions smoothly
at the junction points. Note that the renewed point from
Ref. [37] is using Eq. (3.26) instead of Eq. (2.41). Thus, we
can treat wave functions with Z, charge m more precisely.

The junction conditions are given by

(z'), while wave functions on the bulk

(z) Then, we should connect wave functions

- 0,(j+ay.a;) .M

T?/Z7 + (Z)|z re'?/N WSZ ( l)| :N’Iei“”
_0,(j+ay.a;) .M /
1 dv Tz/zm] (2) 1 dWOM( )
e_i’% dz z=re /N N+1 e dz ZI:Nile"‘/’,
(3.29)

where the derivatives of their coordinates can be written as

() =t ().

dlz| (%)
N+1 _. N+1 _. N+1 _. 07 N +
——ed7 = e d ! % —d —d —d 3.30
€ z N a‘ /| | | N — ¢ 0(ﬂ (p |Z | + l §0 ( )
Indeed, we find that the following relations:
N+1 N+ 19|7 N+1 R N 1 R
Ly =N 2] g N+ + 46 = Rd6 = d.
N N 20 N 20052% N 1+ cos 90
@ r
d|— | =—dg, 3.31
ra(%) = v (331)

are satisfied at the connecting points, as seen in Fig. 3.

First, from nonholomorphic parts of wave functions in Eqs. (3.26) and (3.8), the junction conditions in Eq. (3.29) provide
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r N—-1 m

M _
NImz + 2N N

N-1

£{=—M.
* 2N

(3.32)

By using the relation (3.25), it can be rewritten as

: P N-1
n'rMcf__

=——M.
Nlmr * N 2N

(3.33)

The flux condition is generalized from that in Ref. [37]; the
left-hand side shows the cut out flux from 7?/Z,, orbifold,
which is the flux including the localized flux on the cone of
T?/Z, orbifold, while the right-hand side shows the
embedded flux, which is the flux on the part of S?. Thus,
it means that the magnetic flux is not modified under the
blow-up process. This is important in deriving the AS index
theorem, as we will see in the next section. In particular, in
the orbifold limit » — 0, Eq. (3.40) is expressed as

& N-1
N 2N

M| . (3.34)
r=0

which shows that the flux on the embedded area of S? [right-
hand side of Eq. (3.34)] corresponds to the localized flux on
the orbifold fixed point [left-hand side of Eq. (3.34)].

On the other hand, from holomorphic parts, the holo-
morphic function on the part of S? region fjs‘g/(z’ ) can be
determined as

f[_lg/ (Z/> _ C/jZ"’ﬁ,

Note that the holomorphicity of bulk modes with positive
flux M requires £ > 0; otherwise, they will diverge at
7/ = 0. The divergence induced by the negative localized
flux £ would be removed by introducing vortices analyzed
in Ref. [45], which is beyond the scope of this paper. In the
following analysis, we focus on the £ > 0 case.

Therefore, (bulk) zero-mode wave functions on magnet-
ized blow-up manifolds can be written as

C/jz/f
(k41T
— M2 7 (] a;).M
191 ()N el E RN () (r<]e])

. M (2
zC]N|Z|m—fNe—mlz\ 7N

(171 <55)

0.j _
Wblow—up -

(3.36)

To determine the normalization, we first calculate the
following inner product,

- 0,i 0.j
Gi/ :/ . dZdZ |dEt(g)‘(Wblé)w—up)*l//blf)w—up
blow—up manifold

" ¥ i\ (N2 | | 2m ,—EL| 7|
—oy= [l [Fap(cy onelepret

_r_ o 4R4 C'HxCli 7 20
+/N+1 dlZ’||Z,|/ d(p . —— (2 ) ,2| A,|1/_1
0 o (RHZF) (R +(P)

O — Cingme-r (YT (N ~6;;+ (C)* Cln(r)" 1B, (3.37)
N+1 2N
(3:35)  with
|
¢ C(M'+1) M — _
B N—%M_f)”l— Fﬁmqmmﬁﬂ%%wfﬂ%ﬁ+ Cm 1)
“\ 2N T (Nl M-¢ (N=1y¢ N '
T(M—/+1)T(7+1) \ 2N 2N
We next perform the unitary transformation for flavor index j,
0./ 0.j
l//bl{)W—up = Uj/]‘l//bli)w—up
U= H(UJ(J+1))diag(e—iarg(cf))
J
1
cos 1)y —sinbyyyy) S |CIP
JI+1) — 2 _ 2=l
oI = sinfyy41)  €osO ’ tand; 1) = |CHR (3.38)
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Then, the inner product (G);, can be rewritten as

1
G . (3.39)
1+ |C/Pr(r?)"+'B
J
Thus, by redefining the normalization factor for
g O-j:nax — Ovjénax
the last mode j' = jl. as N/TZ/ZN,+ —./\/TZ/ZN’Jr

(14 0((r*)™+1))71/2, all of the above modes can be
expressed by orthonormal basis. The detailed calculation
of Eq. (3.37) is shown in Appendix B.

Similarly, the same argument can be applied for 4. 7 #0
by the replacement (3.11). Especially, we obtain the
following flux condition:

nry M f_,:N lM’
Nlmz N

—_— 3.40
T (3.40)
This result becomes important for deriving the AS index
theorem on the 72/Z, orbifold in the next section.

IV. INDEX THEOREM ON THE BLOW-UP
MANIFOLD

This section is the main section of this paper. Our
purpose is to establish the AS index theorem on the
T?/Zy orbifolds with magnetic flux background. Due to
the existence of singularities on the orbifolds, the AS index
theorem cannot be applied directly to the orbifold models.
Our strategy is to replace the T?/Z, orbifolds with the
blow-up manifolds without singularities and to apply the
AS index theorem to them.

A. Index theorem on the blow-up manifold

The AS index theorem on the blow-up manifolds can be
obtained as

F
ny—n_= P 4.1
" Alow—up manifold 2n ( )
S 2D o) I 42)
727 bulk 27f Mol s 2
M nr? N -1
= _—— M M/
<N ZNImT > * Z oy Mitr)
(4.3)
_ K_Z arf Z f
N Nimz " - NImT N
(4.4)

(4.5)

M &r
:NJFZ:NI'

There are several comments for the above equations. For
Eq. (4.1), we emphasize that the index n, —n_ on the
blow-up manifolds does not depend on the curvature but
only on the flux. It comes from the fact that the AS index
theorem on a 2D compact manifold has only the contri-
bution of the flux on the manifold, in general. For the first
term of Eq. (4.2) [and Eq. (4.3)], the T?/Z, bulk refers to
the region of the 7%/Z, orbifold from which the areas near
the fixed points are removed. For the second term of
Eq. (4.2) [and Eq. (4.3)], it represents each amount of the
magnetic flux on the embedded area of S? replacing the
fixed point. The sum over [ is taken for the fixed points
of the T?/Zy orbifolds. For Eq. (4.4), we used the
relation (3.40).

For the final result (4.5), it should be emphasized that the
AS index theorem on the blow-up manifolds does not
depend on the blow-up radius r;, as it should be. In other
words, the result of the AS index theorem holds even in the
orbifold limit r; — O,

_ &
n+ n-= LZ/Z 2]'[ Z :

Here, F is defined in Eq. (3.16) and this term comes from
the limit of the right-hand side of Eq. (4.2) as follows: in the
r; = 0 (R — 0) limit, the second term of Eq. (4.2) with the
field strength (3.2) can be expressed as

(4.6)

/ iM5(2)8(Z)de A d7, (4.7)
Nl s?

(see Appendix A in Ref. [46]), and it corresponds to
Eq. (3.17) by considering Eq. (3.34). Thus, the first term of
the rightmost-hand side of Eq. (4.6) represents the con-
tribution of the homogeneous magnetic flux on the 7%/Z
orbifolds, which comes from the first term of (3.16), while
the second term represents the sum of localized fluxes at
each fixed point, which comes from the second term of
(3.16). Therefore, Eq. (4.6) becomes the AS index theorem
on the T?/Z, orbifold, and the index can be determined by
only the contribution of the flux.

From Eq. (3.28), the localized flux & is decided by the
localized curvature £X and the winding number y . ; at the
fixed points, where the winding numbers at the fixed points
are investigated in [30]. We can verify that the number of
chiral zero modes, which are computed by the zero-mode
counting formula in Ref. [30], are completely consistent
with the relation (4.6). The results are summarized in
Tables I-V of the Appendix. Although it was not clear
whether the zero mode counting formula was the AS index
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theorem, the present results using the blow-up manifolds
indicate that it is indeed the case.

B. Reinterpretation of the zero-mode counting formula

We can now reinterpret the zero-mode counting for-
mula (2.48). Using the relation (3.28), the AS index
theorem (4.5) can be rewritten in terms of the winding
numbers y; as

M-V
— L1144 (4.8)
7
Here, we have used the relation
I~ &F
-y =1, 4.9
> (49

at the last equality. It can be verified as follows:

ER 1 f 1 7 1+7
T2/Z,: » L=4x—-=1 P =055, :
/22 234 3 KAl AR

(4.10)
ER 2 <f 247 1427
T?2/75: Y L =3x-=1 72/ =0, , ;
26 =3 33
(4.11)
S p— 301 1
TZ/Z4:Z 824 5 Zz 2X§+§X2X1_1
Iz, 7,
147 1z
fp fp -z
<1h_0’2 2P fz) (4.12)
R R R
T?/Zs: Zé’zwl fy 1§~ 5 2 1
L2 24476 3444 1276 4
Zg z3 Z
fp fp 71"—’[ 2+2T fp 71 E 1+T
Z]Z ) 123_ 3 ’ 3 ’ 122_2’27 2
(4.13)

Note that Z, and Z¢ have subgroups and must include the
contributions of their fixed points.

Thus, the zero-mode counting formula (2.48) can be
derived from Eq. (4.8) by taking ¢; = 0. The physical
meaning of 41 in Eq. (2.48), which had been a mystery, is
now clear. The factor +1 is the contribution of the sum of
the localized curvatures at fixed points. When we try to
write the index theorem with the winding numbers, +1 is

needed to remove the contribution of the localized curva-
ture from them, since the winding numbers include the
contributions of both localized flux and the localized
curvature [see Eq. (3.28)]. This analysis reveals that the
zero-mode counting formula includes only the contribution
of the flux.

An interesting observation in our analysis is the exist-
ence of a new degree of freedom #;. The AS index theorem
says that additional zero modes can appear. In the next
section, we study the new zero modes in detail.

V. LOCALIZED ZERO-MODE WAVE FUNCTIONS

As shown in the previous section, the degree of freedom
of localized flux means that there exist additional zero
modes. In this section, we study wave functions of the new
zero modes.

The bulk zero-mode wave functions, in Sec. III, on the
bulk region near the fixed point z =0 and the blow-up
region are proportional to z/V and 7', respectively. It
indicates that the new zero-mode wave functions on the
bulk region near z =0 and the blow-up region will be
proportional to z¢¥ and 7/¢ for a = 0,...,¢ — 1, respec-
tively. Here, the factor z”V comes from the fact that the
holomorphic function of the following wave function,

) o 0(tha N 0.(Lh).1 N
W @ = @) = e @)Y, )

is proportional to zV near the fixed point though it is Z
invariant, because it is made of the wave function with Z
charge m = 1. Note that its boundary condition is the same
as that of wave functions with M =N, (aj,a,)=

. 0,(j+3-B15-B).N
BBy - ). and m=0. ie. yy T,

and then the wave function in Eq. (5.1) can be expanded
by these wave functions, where [x] denotes the floor

function. Thus, if the other wave function 1//(}21\/’ 0 (2), which
N

(+5-51.5-B]).N .
e PN ) s
constructed from m = 0 mode, we can obtain the new wave
function whose holomorphic function is proportional

has the same boundary condition of y

to z*N near z =0 by replacing (W(#\//Zk’ L (2))77¢ with

(y/(}'zl\/’ZoN , +(z))’f ~“  Indeed, the zero-mode number of
0.G+5-B15-BD.N
T2/7% +

the other zero-mode which is different from Eq. (5.1) and

0.G+5-KB15-

T%/25 .+

(z) is just two, indicating that there exists

can be expanded by y ) 'N(z). Then, we can

N

obtain U/(J)JZ/Z}V’+(Z) as
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(2)=e Y (2)
(W () = ()"
= (WTz/Zo (Z)) (WTyz’gf)'l(Z))N (N=3) ,

0,(0,0),2 0,(0,0),2 N/2
Wyt Oy ()" (N=6)

0N
Yz +
(N:2,4)

(5.2)

with

V3+1 e~i/Sy, 0 00
Tz/ZO 2

(2)

7[1/8

l//Tz(l 0), 2(2)‘

Therefore, the £ number of new zero-mode wave functions
can be expressed as

0N ‘—a
g}OéLZ’ = J\[O;} (:vlgi647%,+(z):> ~02(a|,£l,) (Z)
T°/Zy.+ T°/Zy,+ sz/zl +(Z) T2/7% +
~ CON|z|"=?N e~ Fineldl’ zaN (5.3)
where the coefficient C* is given by
hN (0) >f—a )
Cc*=N¢ (0 Cl. (5.4)
re o) 2

C/azlll
M-1
(R*+|ZP)2

g1 (2) "N e N

,a —
l//blow—up -

_ 2
EC”N|Z|m £N o= 2Imle\ aN

where the coefficient C'* is given by

~(£=a)N ,—fiLy? ro \M-l-a N_—l —¥-1
1 2N

N +
(5.6)

C = CNr"

Furthermore, since these wave functions are suppressed as
they go away from the orbifold singular point, it has little
effect on the result of the inner product that we use an
approximation form in the whole of the bulk region and
also expand the integral region to |z| — co. Under this

T2/Zy.+ ((gl @)

1000

FIG. 4. Probability density of unnormalized zero-mode wave

—ay=to-1
function |77 P ol

Note that the nonholomorphic part of Eq. (5.3) does not
change from that of Eq. (3.26). These new zero-modes
diverge at the singular point z = 0, while they are sup-
pressed as they go away from the singular point, as shown
in Fig. 4.

That is, these new zero modes correspond to localized
modes around the singular point (z = 0). Although these
localized modes diverge at z = 0, they can be regularized
by replacing the cone around z = 0 with the part of S%. In
other words, to calculate their normalization, we consider
their wave functions on the magnetized blow-up manifold.
As in Sec. III, through the junction condition in Eq. (3.29),
the wave functions on the magnetized blow-up manifold,
which correspond to localized modes on the orbifold, can
be written as

h (2)

approximation, it turns out that the £ number of new zero
modes are orthogonal to each other and also orthogonal to
all of the bulk zero modes by using the following results:

/%V_”darg(z)zk’v =0, / darg(7)7* =0, (k#0).
0 0
(5.7)

Thus, the normalization of localized modes can be deter-
mined in the following way:
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1 = / dzdz \/m? |l//b10w—up
blow—up manifold

|C/a|2|zl|2a

[l [F aplcepweipecmet o [Fag) [ ap
= 2z (p Z T e Ier / 7|z / ¢ _
r . 0 0 (R? + |Z|%)? (R? + |Z/)))M'-!

(m+1)

—a)N—(m _ M 2\(f—a)N—
©Copa( L) [ R
e (£ —a)N -

with

E, ﬂ,ﬂ
(m+1)]! Imz

>+L],

N-1 =30 o
L~ ( (M/ _ a)) M/!( P)'p

where E; denotes the exponential integral. The detailed
calculation of Eq. (5.8) is shown in Appendix C. Therefore,
we obtained normalizable zero-mode wave functions in
Eq. (5.5), and they correspond to localized modes under the
orbifold limit » — 0. Similarly, the above analysis is valid
for localized modes around the other orbifold singular
points by just replacement in Eq. (3.11).

VI. YUKAWA COUPLINGS ON MAGNETIZED
BLOW-UP MANIFOLDS OF T?/Z, ORBIFOLDS

Finally, we study Yukawa coupling of 4D effective
theory derived from the magnetized blow-up manifold.
Here, we only replace the cone around z = 0 with the part
of §2. Similarly, we can consider the following analysis
|

yik .0

N+1
(M'-a)!a! ( 2N

M)M’—p(ﬂ)p 1\ -1
N IN +<(f_a)_m;> 7

)M’—a(N_—l a

2N

|
even at the other orbifold singular points. First, we denote
bulk zero-modes and localized zero-modes shortly as B and
L, respectively. When we consider the Yukawa coupling
X;-X,-X3 (X =B,L) in which M1+M2 M, &+
52—53 (l/ﬁl‘i‘fz Lﬂg,ml‘sz—mg) and(a], )1—|—
(ar,a;), = (a1, a;);(mod 1) are satisfied, only three
patterns of couplings, (i) B;-B,-B3 coupling, (ii) L;-L,-L3
coupling, and (iii) B;-L,-L; coupling, are allowed by
considering Eq. (5.7). Thus, we have a specific
coupling selection rule in our theory. We can calculate
their Yukawa coupling by using the results of Eqs. (3.37)
and (5.8).

In case (i), the Yukawa coupling in the 4D effective
theory can be expressed as

* Ol

blow—up yBl—Bz—B3/ . dZdZ |det(g)|(wblow up) ll/blow upwblow up
blow—up manifold

r = . . p
=Y, =Y nn, / dlz|lz] / ¥ dp(CH) CICIN3| 2P et
- 0 0

(Clk)*C/iC/j|Z/‘2f3

_r o 4R4
(3) N+ "o
Yy d|7||z / d ,
YB,-B, BsA | || | o ¢(R2+|Z'|2)2 (R2+|Z/|2)M3—1

3 E¥alVall n
= Y?f/z +y§;1)—32—33(ck) C'C/Nz(r*)"*1 By,

where yg)

_p,-g, denotes the 3-point coupling in higher-dimensional theory, and ¥

(6.1)

ijk

/7, denotes the 4D Yukawa coupling in

the orbifold limit. Note that we use wave functions in Eq. (3.36). When we calculate it by orthonormal basis, only

;! ! k/ . . . . AN
yimeJmakna peceives the blow-up correction while the others remain Y./ X = y'J*

blow—up

blow—up ~

In case (ii), the Yukawa coupling on the magnetized blow-up manifold can be expressed as

*When my+my=my+Nand |+, =

¢3 + 1 are satisfied, correctlon terms in Eq. (6.1) are vanished, i.e., Y

while they give corrections for B,-L,(b = ¢, — 1)-B3 coupling, Y’ i(72-1

blow—up ’

_ yijk
blow —up YTZ/ZN

instead.
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abc _ 3 s/ 0,c % 0.a 0,b
Yblow—up - yLl—Lz—L3 . dzdz |det(g)|(l//blow—up) ll/blow—upl//blow—up
blow—up manifold

2r
3 © N C\* a nmsy— —C i 2
ﬁy(Ll)—Lz—Ls [/ d|Z||z|AN dg(CC)* CUCO N3z [Hma=(5=N) g~ ]

r

M3

4R4 (C/c)*clac/b|z/|2c‘

+ /_ di2||2 /2” do
0 0 (R?

3 cect
= yél)—Lz—L; 7 N(Saer,cv

where y(L3l>_L2_L3 denotes the 3-point coupling in higher-

dimensional theory.
The case (iii) is the same as the case (ii) by replacing a
and &, with i and 64, ., respectively, i.e.,

ib
Yibc ~ (3) cc NS
blow—up — yBl—Lz—L3 Ce ‘1+b.co

(6.3)

where yg)_LZ_L3 denotes the 3-point coupling in higher-

dimensional theory.

As a result, the Yukawa couplings among bulk modes
(i) receive the contributions of blow-up radius, which play
an important role in realizing the hierarchical structure of
fermion masses as well as mixing angles, as demonstrated
in Ref. [38]. By contrast, our results exhibit that Yukawa
couplings including localized zero modes are determined
by the normalization factor depending on the localized flux.
Similarly, we can compute higher-dimensional operators.
The overall coefficients such as yg " p _p yL31 _L,-1,> and

yg])_ 1,-1, depend on higher-dimensional theory. They may

be unified in supersymmetric Yang-Mills theory on a
smooth manifold. All of the couplings originate from the
gauge coupling in higher-dimensional supersymmetric
Yang-Mills theory, which is a low-energy effective field
theory of superstring theory. Obviously, there is no differ-
ence between bulk and localized modes in a smooth
manifold. It is interesting to understand the flavor structure
of localized modes as well as the origin of localized modes
from the viewpoint of the string theory, but we leave the
detailed study for future work.

VII. CONCLUSION

The main purpose of this paper is to establish the AS
index theorem on the T2/Zy(N = 2,3,4,6) orbifolds. In
our previous paper [30], we have got the zero-mode
counting formula which gives the numbers of the chiral
zero modes on T?/Z orbifolds with magnetic flux back-
ground. It is, however, unclear whether the formula
can be regarded as the index theorem, because the equality
between the left-hand side and the right-hand side of
Eq. (2.48) was merely verified in Ref. [30].
Furthermore, it is not obvious why the sum of the winding

+ |Z/|2)2 (Rz + |Z/|2)Mg—l

a+b,c

(6.2)

|
numbers V_ appears and what is the physical meaning of
the factor +1 in the formula (2.48). To confirm the zero-
mode counting formula (2.48) as the index theorem and
also to reveal the physical and geometrical meanings of the
right-hand side of the formula (2.48), we have considered
the blow-up manifolds of the magnetized 7%/Zy(N =
2,3,4,6) orbifolds, where we have constructed the blow-
up manifolds by cutting out around the singularities of the
T?/Z, orbifolds and attaching smooth manifolds (parts of
5?) to them.

In Sec. III, we have studied the blow-up manifolds of
T?/Z, with magnetic flux more precisely than the previous
work in Ref. [37]. The renewed point is introducing the
appropriate singular gauge transformation, by which the
winding number appeared in the Z, twisted boundary
condition of wave functions on the magnetized T2/Zy
orbifold can be replaced with the localized flux and
localized curvature at the fixed point of 72/Z, orbifold.
Then, we have obtained zero mode wave functions on the
blow-up manifolds of the magnetized T%/Z, orbifold by
connecting those on 72/Z, orbifold and those on S?
smoothly, even if those on T?/Z, orbifold have nonzero
winding numbers. In particular, we have found that not
only the total curvature but also the total magnetic flux
including localized flux are invariant under the blow-up
process. This result becomes important for deriving the AS
index theorem on the 72/Z, orbifolds. We have also
calculated the normalization of zero-mode wave functions
on the blow-up manifolds with any winding numbers.

In Sec. IV, we have applied the AS index theorem to the
blow-up manifolds of the 72/ Z,, orbifolds. The numbers of
chiral zero modes are given only by the magnetic flux on
the blow-up manifolds. Since the total magnetic flux is
invariant under the blow-up process, the result is not
changed even in the orbifold limit r; — 0, and the AS
index theorem on T?/Z, orbifolds with magnetic flux
background is expressed by Eq. (4.6). It shows that the
index is decided by the contribution of the homogeneous
magnetic flux M and the localized fluxes & at the fixed
points. We have verified that the number of chiral zero
modes obtained by the zero-mode counting formula (2.48)
in [30] is completely consistent with Eq. (4.6). The zero-
mode counting formula can be reinterpreted from the

075032-15



TATSUO KOBAYASHI et al.

PHYS. REV. D 107, 075032 (2023)

viewpoint of the blow-up manifolds. The factor +1 in the
formula (2.48) is found to be the contribution of the
localized curvature at the fixed points and is needed to
remove the contribution of the localized curvature from the
winding numbers because the winding numbers include the
contributions of both the localized flux and the localized
curvature. (Remember that the AS index theorem in two
dimensions needs only the information of fluxes.)
Interestingly, a new degree of freedom of localized flux
¢ in Eq. (4.8), which emerges from the indeterminacy of
mod N, suggests that there are new || number of chiral
zero modes.

In Sec. V, we have shown that the new zero modes given
by the additional degree of freedom of localized flux
correspond to localized zero modes at the orbifold singular
point of 7?/Z, orbifold. Although they diverge at the
singular point, we calculated their normalization on the
blow-up manifold to regularize them.

Moreover, in Sec. VI, we have calculated Yukawa
coupling among bulk zero modes (discussed in Sec. III)
and localized zero modes (discussed in Sec. V), and then it
turns out that only three patterns of Yukawa coupling are
allowed. We have a specific coupling selection rule. It
would be interesting to study phenomenological implica-
tions of such coupling selection rules including higher-
dimensional operators.

It is interesting to apply our analysis for more general
higher-dimensional toroidal orbifolds such as 7%/Z, and
T°/Z,.” 1t is also important to study the relation with string
theory. For example, localized modes, i.e., twisted modes
should appear massless in heterotic string theory on
toroidal-orbifold compactifications with generic gauge
background by stringy consistency. It would be important
to revisit this aspect from the viewpoint of our analysis of

|

localized gauge fluxes and localized modes. However, that
is beyond our scope and we would study them elsewhere.
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APPENDIX A: LOCALIZED FLUX AND INDEX

We compared the value of the index obtained from
Eq. (4.6) with the result obtained from the zero-mode
counting formula [30] and confirmed that these are con-
sistent in all cases. The results are summarized in
Tables 1I-V.

APPENDIX B: NORMALIZATION OF BULK
ZERO MODES

Here, we show the detailed calculation of Eq. (3.37). It
consists of three terms. The first term shows the calculation
in all regions of the original 7%/Z, orbifold. The second
term shows the calculation in the region of the cone around
z = 0 which is cut out from the 7?/Z, orbifold. The third
term shows the calculation in the region of the part of S?
which is embedded instead of the cone. In the following,
we show the detailed calculation of the second and third
terms.

The second term can be calculated as

M M
dl—1z)* | —
<Imr l ) (Imr

dtt(erl)—le—t

| Z|z>me—<%z2)

GE?E/ d|zllz| /Wd(p(ci)*cfzv2|z|2me—%z2
0 0
. . M\ —(m+1) %rz
= (C')*CIaN (”_> /I
Imz 0
. . M —(m+1) %’2
= (C")*C’'zN (—” > !
Imz 0

- ~(m+1)
= (C’)*CMTN(”M) y<m+ l,ﬂﬂ),

Imz

M
> Imz

where y(m + 1

Imz

r?) denotes the lower incomplete gamma function. It satisfies the following recurrence relation:

3See for the higher-dimensional orbifold models with bulk magnetic fluxes [47,48] as well as localized fluxes [49,50].
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TABLE 1. The values of localized fluxes at fixed points and index (Z; = 0) on T?/Z,.

Flux Parity Twist Localized flux Index (2.48)
M n (a1, a)) ot & o & My &
2m+ 1 +1 (0, 0) 1/4 1/4 1/4 —-1/4 (M+1)/2 (M+ )/2
(3.0 1/4 -1/4 1/4 1/4 (M+1)/2 (M+1)/2
(0,5) 1/4 1/4 -1/4 1/4 (M+1)/2 (M+1)/2
1.1 1/4 —-1/4 —-1/4 —-1/4 (M—-1)/2 (M-1)/2
-1 (0, 0) —-1/4 —-1/4 —1/4 1/4 (M—-1)/2 (M-1)/2
(£,0) —1/4 1/4 —-1/4 —-1/4 (M—-1)/2 (M—-1)/2
(0.1) —1/4 ~1/4 1/4 —1/4 (M— 1)/2 (M— 1)/2
10 _1/4 1/4 1/4 1/4 (M+1)/2 (M+1)/2
2m +2 +1 (0, 0) 1/4 1/4 1/4 1/4 M/2+1 M/2+1
(3.0) 1/4 —-1/4 1/4 —-1/4 M/2 M/2
(0.9) 1/4 1/4 —1/4 —-1/4 M/2 M/2
@.h 1/4 —-1/4 —1/4 1/4 M/2 M2
-1 (0, 0) —-1/4 —-1/4 —1/4 —-1/4 M/2-1 M/2-1
(1.0 —1/4 1/4 —1/4 1/4 M/2 M/2
(0.} —1/4 —1/4 1/4 1/4 M/2 M/2
11 ~1/4 1/4 1/4 —-1/4 M/2 M/2

TABLE II. The values of localized fluxes at fixed points and index (#; = 0) on T?/Z;.

Flux Parity Twist Localized flux Index (2.48)
M d “ * ¥ » RB YR,
6m + 1 1 1/6 1/3 0 1/3 (M+2)/3 (M+2)/3
1/2 1/3 -1/3 -1/3 (M-1)/3 (M-1)/3
5/6 1/3 1/3 0 (M+2)/3 (M+2)
w 1/6 0 -1/3 0 (M-1)/3 (M-1)/3
1/2 0 1/3 1/3 (M+2)/3 (M+2)
5/6 0 0 -1/3 1)/3 (M—-1)/3
w? 1/6 -1/3 1/3 -1/3 ( -1)/3 (M-1)/3
1/2 ~1/3 0 0 (M~-1)/3 (M-1)/3
5/6 -1/3 -1/3 1/3 (M-1)/3 (M-1)/3
6m + 2 1 0 1/3 0 0 (M+1)/3 (M+1)/3
1/3 1/3 -1/3 1/3 (M+ 1)/3 (M+ 1)/3
2/3 1/3 1/3 -1/3 )/3 +1)/3
w 0 0 -1/3 -1/3 ( 2)/3 ( 2)/3
1/3 0 1/3 0 (MJr 1)/3 (MJr 1)/3
2/3 0 0 1/3 (M+1)/3 (M+1)/3
? 0 -1/3 1/3 1/3 (M+ )/3 (M+ )/3
1/3 -1/3 0 -1/3 (M-2)/3 (M-2)/3
2/3 -1/3 -1/3 0 (M-2)/3 (M-2)/3
6m + 3 1 1/6 1/3 -1/3 0 M/3 M/3
1/2 1/3 1/3 1/3 M/3+1 M/3+1
5/6 1/3 0 -1/3 M/3 M/3
0] 1/6 0 1/3 -1/3 M/3 M/3
1/2 0 0 0 M/3 M/3
5/6 0 -1/3 1/3 M/3 M/3
w? 1/6 -1/3 0 1/3 M/3 M/3
1/2 -1/3 -1/3 -1/3 M/3 -1 M/3 -1
5/6 -1/3 1/3 0 M/3 M/3
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TABLE IIl.  The values of localized fluxes at fixed points and index (#; = 0) on T?/Z;.
Flux Parity Twist Localized flux Index (2.48)
6m + 4 0 1/3 -1/3 -1/3 (M-1)/3 (M-1)/3
1/3 1/3 1/3 0 (M+2)/3 (M +2)/3
2/3 1/3 0 1/3 (M+2)/3 (M+2)/3
o) 0 0 1/3 1/3 (M—|—2)/3 (M+2)/3
1/3 0 0 -1/3 1)/3 (M—-1)/3
2/3 0 -1/3 0 (M 1)/3 (M-1)/3
’ 0 -1/3 0 0 (M-1)/3 (M-1)/3
1/3 -1/3 -1/3 1/3 (M-1)/3 (M-1)/3
2/3 -1/3 1/3 -1/3 (M-1)/3 (M—-1)/3
6m+5 1 1/6 1/3 1/3 —-1/3 (M—|— 1)/3 (M+ 1)/3
1/2 1/3 0 0 +1)/3 +1)/3
5/6 1/3 -1/3 1/3 (M+ )/3 (M+ )/3
w 1/6 0 0 1/3 (M+ )/3 (M+ )/3
1/2 0 -1/3 -1/3 (M-2)/3 (M-2)/3
5/6 0 1/3 0 (M+ )/3 (M+ )/3
? 1/6 -1/3 -1/3 0 ( 2)/3 ( 2)/3
1/2 -1/3 1/3 1/3 +1)/3 +1)/3
5/6 -1/3 0 -1/3 (M 2)/3 (M 2)/3
6m + 6 1 0 1/3 1/3 1/3 M/3+1 M/3+1
1/3 1/3 0 -1/3 M/3 M/3
2/3 1/3 -1/3 0 M/3 M/3
® 0 0 0 0 M/3 M/3
1/3 0 -1/3 1/3 M/3 M/3
2/3 0 1/3 -1/3 M/3 M/3
w? 0 -1/3 -1/3 -1/3 M/3-1 M/3-1
1/3 -1/3 1/3 0 M/3 M/3
2/3 -1/3 0 1/3 M/3 M/3
M M M N\ o
4 m+1,ﬂ—r2 = my m,ﬂ—r2 — (22 e
Imz Imz Imz
7(1’ﬂr2) =1-er),
Imr
and then by solving this recurrence relation, y(m + 1, f’n’y r?) can be expressed as
M x M \?
14 m—f—l,ﬁ—r2 = mle i el,ﬁ“_ i
Imz = Op Imr
. e_%rz 1 M 2> m+1 zoo: m —+ 1 (ﬂ r2>p.
Imz = (m+1+ p)! \Imz
Thus, the second term ngz_) can be expressed as
(2): i\* ] 2\m+1 m+1 'S ' ﬂz P B1
Gy} = (C)y Cln(r?)" e ( Zm+1+p ) (B1)

By contrast, the third term can be calculated as

p:0
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TABLE IV. The values of localized fluxes at fixed points and index (£Z; = 0) on T?/Z,.

Flux Parity Twist Localized flux Index (2.48)
M " @ i T T T A
4m+ 1 1 0 3/8 1/8 1/8 1/8 (M—|—3)/4 (M+3)/4
1/2 3/8 -3/8 -1/8 -1/8 (M-1)/4 (M-1)/4
i 0 1/8 -1/8 -1/8 -1/8 (M—l) (M—-1)/4
1/2 1/8 3/8 1/8 1/8 (M—|—3) (M+3)/4
-1 0 -1/8 -3/8 1/8 1/8 1)/4 (M—-1)/4
1/2 -1/8 1/8 -1/8 -1/8 (M—l) (M-1)/4
—i 0 -3/8 3/8 -1/8 -1/8 (M—l) (M-1)/4
1/2 -3/8 -1/8 1/8 1/8 (M-1)/4 (M-1)/4
4dm + 2 1 0 3/8 -1/8 1/8 1/8 (M+2)/4 (M+2)/4
1/2 3/8 3/8 -1/8 -1/8 (M+2)/4 (M+2)/4
i 0 1/8 -3/8 -1/8 -1/8 (M-2)/4 (M-2)/4
1/2 1/8 1/8 1/8 1/8 (M+2)/4 (M+2)/4
-1 0 -1/8 3/8 1/8 1/8 (M+2)/4 (M+2)/4
1/2 -1/8 -1/8 -1/8 -1/8 (M-2)/4 (M-2)/4
—i 0 -3/8 1/8 -1/8 -1/8 (M-2)/4 (M-2)/4
1/2 -3/8 -3/8 1/8 1/8 (M-2)/4 (M—-2)/4
4m+3 1 0 3/8 -3/8 1/8 1/8 (M+1)/4 (M+1)/4
1/2 3/8 1/8 -1/8 -1/8 (M+1)/4 (M+1)/4
i 0 1/8 3/8 -1/8 -1/8 (M+1)/4 (M+1)/4
1/2 1/8 -1/8 1/8 1/8 (M+1)/4 (M+1)/4
-1 0 -1/8 1/8 1/8 1/8 (M+1)/4 (M+1)/4
1/2 -1/8 -3/8 -1/8 -1/8 (M-3)/4 (M-3)/4
—i 0 -3/8 -1/8 -1/8 -1/8 (M 3)/4 (M—S)/4
1/2 -3/8 3/8 1/8 1/8 (M+1)/4 (M+1)/4
4dm + 4 1 0 3/8 3/8 1/8 1/8 M/4+1 M/4+1
1/2 3/8 -1/8 -1/8 -1/8 M/4 M/4
i 0 1/8 1/8 -1/8 -1/8 M/4 M/4
1/2 1/8 -3/8 1/8 1/8 M/4 M/4
-1 0 -1/8 -1/8 1/8 1/8 M/4 M/4
1/2 -1/8 3/8 -1/8 -1/8 M/4 M/4
—i 0 -3/8 -3/8 -1/8 -1/8 M/4 -1 M/4 -1
1/2 -3/8 1/8 1/8 1/8 M/4 M/4

4 /i 1j| 26
3) / / (c)ycilZ|
G d|7||z d 7
|2'[|Z'] @ Rz | IBE (R2+|Z| )M
‘ . R2 ¢ R2 M—£-1
= (C'HY*C4 RZ (M'-¢-1)
(CrCn® ), <R2+|z ) wi) (o)
CIVCIN? M2 —14 72 24-6-M'
— NcCIN —fer s
Cremeret (s ) ()" (i)
% (/ drtM=0)=1(1 = g)(e+1)-1 / du™=0)-1(1 - t)(f+1)—1)
0 0

— (Ci)*cjﬂ.( )m+1 —ﬂﬂ( 2N1>M/_ (2—N>L”+l(ﬁ(M/_f’f+ l)—ﬁ%(M/—f,f—F 1))’

N + N-1

where p(M' — £,¢ + 1) and P (M’ — ¢,¢ 4 1) denote the beta function and the incomplete beta function, respectively.
They satisfy the following recurrence relations:
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TABLE V. The values of localized fluxes at fixed points and index (Z; = 0) on T?/Z,.

Flux Parity Twist Localized flux Index (2.48)
M A SEN SENN SN SN SN S 50 N S i
6m + 1 1 1/2 5/12 -2/12 -2/12 -1/12 —1/12 —1/12 (M-1)/6 (M-1)/6
0] 1/2 3/12 2/12 2/12 1/12 1/12 1/12 (M +5)/6 (M +5)/6
w? 1/2 1/12 0 0 —1/12 —1/12 —1/12 (M-1)/6 (M—-1)/6
o 1/2 -1/12 -2/12 -2/12 1/12 1/12 1/12 (M-1)/6 (M-1)/6
o 1/2 -3/12 2/12 2/12 —1/12 —1/12 —1/12 (M-1)/6 (M-1)/6
@’ 1/2 =5/12 0 0 1/12 1/12 1/12 (M-1)/6 (M-1)/6
6m + 2 1 0 5/12 0 0 1/12 1/12 1/12 (M+4)/6 (M+4)/6
0] 0 3/12 -2/12 -2/12 —1/12 —1/12 —1/12 (M-2)/6 (M—-2)/6
o’ 0 1/12 2/12 2/12 1/12 1/12 1/12 (M+4)/6 (M+4)/6
o 0 -1/12 0 0 -1/12 -1/12 -1/12 (M-2)/6 (M-2)/6
o 0 -3/12 -2/12 -2/12 1/12 1/12 1/12 (M-2)/6 (M-2)/6
@ 0 =5/12 2/12 2/12 —1/12 —1/12 —1/12 (M-2)/6 (M-2)/6
6m+3 1 1/2 5/12 2/12 2/12 —1/12 —1/12 —1/12 (M +3)/6 (M+3)/6
0] 1/2 3/12 0 0 1/12 1/12 1/12 (M +3)/6 (M+3)/6
w? 1/2 1/12 -2/12 -2/12 -1/12 —1/12 —1/12 (M-3)/6 (M-3)/6
w’ 1/2 -1/12 2/12 2/12 1/12 1/12 1/12 (M +3)/6 (M+3)/6
o 1/2 -3/12 0 0 —1/12 —1/12 —1/12 (M-3)/6 (M-3)/6
o 1/2 =5/12 -2/12 -2/12 1/12 1/12 1/12 (M-3)/6 (M-3)/6
6m + 4 1 0 5/12 -2/12 -2/12 1/12 1/12 1/12 (M+2)/6 (M+2)/6
0] 0 3/12 2/12 2/12 —1/12 —1/12 —1/12 (M+2)/6 (M+2)/6
* 0 1/12 0 0 1/12 1/12 1/12 (M+2)/6 (M+2)/6
o’ 0 -1/12 -2/12 -2/12 —1/12 —1/12 —1/12 (M—-4)/6 (M—-4)/6
o 0 -3/12 2/12 2/12 1/12 1/12 1/12 (M+2)/6 (M+2)/6
o 0 -5/12 0 0 —1/12 —1/12 —1/12 (M—-4)/6 (M—-4)/6
6m +5 1 1/2 5/12 0 0 —1/12 —1/12 —1/12 (M+1)/6 (M+1)/6
w 1/2 3/12 -2/12 -2/12 1/12 1/12 1/12 (M+1)/6 (M+1)/6
* 1/2 1/12 2/12 2/12 —1/12 -1/12 -1/12 (M+1)/6 (M+1)/6
@3 1/2 —1/12 0 0 1/12 1/12 1/12 (M+1)/6 (M+1)/6
o 1/2 -3/12 -2/12 -2/12 -1/12 -1/12 -1/12 (M-5)/6 (M-5)/6
w’ 1/2 -5/12 2/12 2/12 1/12 1/12 1/12 (M+1)/6 (M+1)/6
6m + 6 1 0 5/12 2/12 2/12 1/12 1/12 1/12 M/6+1 M/6+1

0] 0 3/12 0 0 -1/12 -1/12 -1/12 M/6 M/6

©* 0 1/12 -2/12 -2/12 1/12 1/12 1/12 M/6 M/6

®° 0 —1/12 2/12 2/12 —1/12 —1/12 —1/12 M/6 M/6

o 0 -3/12 0 0 1/12 1/12 1/12 M/6 M/6
®’ 0 -5/12 -2/12 -2/12 —1/12 —1/12 —1/12 M/6 -1 M/6 -1

%o
PO = .6 1) = 0 (M = ¢ + 1.2)
1
(M’ 1) =
, 1 , N+ I\M~¢ (N —1\¢ , 1 /N+1\M
ﬂ%(M f,f—l—l)—M,_f(fﬂNJVl(M f—l—l,f)—l—(zN) <2N)> ﬁN;Nl(M,l)—M/(zN> ,

and then by solving these recurrence relations, they can be expressed as
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T(M' = £)0(¢ + 1)
F(M’ ¥ 1)

, 7F(M’ ‘ T(M' +1) N+ I\M=r (N -1\
Pra(M' —£.¢—1) = Zr )r<p+1>< 2N > (2N> ’

p=0

BM —£,.6—1) =

)

respectively. Here, I'(X) denotes the gamma function, which satisfies the recurrence relation

I(X + 1) = XT(X).

Thus, the third term GS) can be expressed as

) N-1 1= 0o rarprnrtern (e R

3 _ (ciyei m1 -2 [V~ _ p=0 T(M"—p+ )T (p+

Gij = (€ Clrymien ( 2N (v 5)> L) (Nl me N1y ' (B2)
T(M—+T)T(7+1) \ 2N N

By combining these results, we obtain Eq. (3.37).

APPENDIX C: NORMALIZATION OF LOCALIZED ZERO MODES

In this section, we show the detailed calculation of Eq. (5.8). The first term shows the calculation in the bulk region, while
the second term shows the calculation in the blow-up region. The first term can be calculated as

[ 2z
/ dlzlle] A ¥ | Co N2 o (=) e

(£—a)N—(m+1 m—(£—a)N
- |ca|2,,N<ﬂ> d(ﬁf' |2> (me| |2) o~ (BEzP)
72 T
IN=(

) [oo
Im [_M
Imz
)

T
£—a)N—(m+1 ©

=|CPzN (—ﬂM>( R / dfm=(¢=aN p=t
Imz a2

M (E=aN~(mt1) M
|c“|2nN<” ) r<1+m—(f—a)N ”—r2>
Imz Imz

where T'(1 +m — (£ — a)N, 24 r?) denotes the upper incomplete gamma function. We note that 1 +m — (£ —a)N < 0.

> Imz

Then, it satisfies the following recurrence relation:

aM 1 M M ltm—(¢-a)N
r(1 —(£=a)N,.—r*) = r(2 —(-a)N ) - (222 ()
< tm-(f-a) Imrr) 1+m—(f—a)N< < Fm= (@ =a)Ng 7r> <Im1r> .

M M
r(0,222) =g (222
Imz Imz

where E; (”M r?) denotes the exponential integral. Note that if %rz is sufficiently large, the exponential
integral obeys

By solving this recurrence relation, I'(1 + m — (£ — a)N, L r?) can be expressed as
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M (—1)(C=aN=m+) M o (7O aM )\~
r(1 —(¢—a)N,—7r* ) = E (222 ) — @) 1! 2222 _
( +m—(£-a) ’Irm’> (Z—aN—m+ 0l | \ime ) 7€ 0P\ e "

By contrast, the second term is the same as GS-)

results, we obtain Eq. (5.8).

Imz Imz

i
fe=}

in the previous section by replacing £ with a. Thus, by combining these
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