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We investigate blow-up manifolds of T2=ZNðN ¼ 2; 3; 4; 6Þ orbifolds with magnetic flux. First, we
construct the blow-up manifolds and zero-mode wave functions on them more precisely. In particular,
through an appropriate singular gauge transformation, winding numbers of wave functions on T2=ZN

can be replaced with localized curvature and localized flux at orbifold fixed points. In addition, since the
blow-up manifolds have no singularities, we apply the Atiyah-Singer index theorem to them; the chiral
zero-mode number is given by the total magnetic flux. It can be also applied for T2=ZN orbifolds through
the blow-up process, and then we find that it is consistent with the zero-mode counting formula in
M. Sakamoto et al. [Zero-mode counting formula and zeros in orbifold compactifications, Phys. Rev. D
102, 025008 (2020).]. Furthermore, the Atiyah-Singer index theorem shows that an additional degree of
freedom of localized flux gives new chiral zero modes. We study their wave functions and then we find that
they correspond to localized modes at the orbifold singular points. We also calculate their Yukawa
couplings.
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I. INTRODUCTION

The Atiyah-Singer index theorem [1] states that the
index of a Dirac operator =D

Indði=DÞ≡ nþ − n− ð1:1Þ

is a topological invariant. Here, n� are the numbers of �
chiral zero modes for the Dirac operator. The index theorem
has been applied to many areas in physics, such as the
chiral anomaly in gauge theory [2,3], the Witten index [4],
and anomaly inflow [5,6].
In particular, we are interested in counting the number of

chiral zero modes appearing in the four-dimensional (4D)
effective field theories. The Standard Model has a lot of
mysteries unanswered, including the generation problem of

the quarks and leptons and the fermion mass hierarchy, and
also to naturally explain their flavor structure. String theory
and higher-dimensional theory are strong candidates
beyond the Standard Model. Many proposals have been
made to solve the generation problem, but known mech-
anisms to produce degenerate chiral zero modes are very
limited. It is known to obtain the chiral spectra as magnetic-
flux compactifications in type-I and II string theory [7–13]
and heterotic string theory [14–17]. These models have
provided semirealistic models of string phenomenology,
e.g., three generation models [18,19], fermion mass hier-
archy [20], and flavor structure [21–27].
The Atiyah-Singer (AS) index theorem for a two-

dimensional (2D) compact manifold M2 with magnetic
flux is known as [28,29]

nþ − n− ¼ 1

2π

Z
M2

F; ð1:2Þ

where F is a 2-form field strength of the flux. We should
here stress that the index nþ − n− is determined only by the
flux but not the curvature of the 2D manifoldM2. A simple
application of the index theorem (1.2) is to takeM2 to be a
2D torus T2,

nþ − n− ¼ 1

2π

Z
T2

F ¼ M; ð1:3Þ
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where M is an integer and corresponds to a magnetic-flux
quantization number.
The application of the index theorem to T2=ZNðN ¼

2; 3; 4; 6Þ magnetized orbifolds will be phenomenologi-
cally and mathematically interesting because the index
nþ − n− gives the generation number in 4D effective field
theories and it turns out to complicatedly depend on the
flux quanta M, the ZN eigenvalues under the ZN trans-
formation, the Scherk-Schwarz (SS) twist phases ðα1;α2Þ
and N (see the last columns in Tables I–Vof the Appendix)
[30–35]. In Ref. [30], a complete list of the index has been
shown to satisfy the zero-mode counting formula1

nþ − n− ¼ M
N

−
Vþ
N

þ 1; ð1:4Þ

where Vþ is the sum of the winding numbers at the fixed
points of T2=ZN orbifolds.
The first term on the right-hand side of Eq. (1.4) could be

understood from Eq. (1.3) because the area of the T2=ZN

orbifolds reduces to 1=N of that of the torus T2. The
origin of the second and third terms on the right-hand
side of Eq. (1.4) is, however, unclear, and those terms
seem not to be related to any flux on the T2=ZN orbifolds.
In fact, Eq. (1.4) has not been derived as the AS
index theorem in Ref. [30] and the relation (1.4) has
been verified by computing the values of nþ − n− and
M=N − Vþ=N þ 1, separately and then by simply compar-
ing them.
Our main purposes of this paper are to understand the

formula (1.4) as the AS index theorem and clarify physical
and geometrical meanings of the formula. There is, how-
ever, a problem. The T2=ZN orbifolds have singularities,
and the AS index theorem cannot directly be applied to
singular “manifolds”. Our strategy to overcome the prob-
lem is to construct smooth blow-up manifolds of the T2=ZN
orbifolds by removing cones around the singularities of the
T2=ZN orbifolds and replacing them with parts of the 2D
sphere S2 [37,38]. Then, we can apply the AS index
theorem directly to the blow-up manifolds. From the
blow-up procedure, we can confirm the formula (1.4) as
the AS index theorem and clarify the physical and
geometrical meanings of the second and the third terms
on the right-hand side of Eq. (1.4).
In addition, according to the AS index theorem, the

additional degree of freedom of localized fluxes at the
singular points of orbifolds [39–41]2 shows that there exist
new chiral zero modes. We examine the profile of such
chiral zero-mode wave functions in more detail. Then, we
can find that they correspond to localized modes at the

orbifold singular point of T2=ZN orbifolds. We also study
their Yukawa couplings.
This paper is organized as follows: In Sec. II, we briefly

review zero modes on the T2=ZNðN ¼ 2; 3; 4; 6Þ orbifolds
with magnetic fluxes. In Sec. III, we construct the blow-up
manifolds and compute zero-mode wave functions on them
with magnetic fluxes in more detail, where ZN invariant
modes which have no winding numbers have been ana-
lyzed in Ref. [37]. By using the results, we derive the AS
index theorem on the blow-up manifolds and reinterpret
the zero-mode counting formula in Sec. IV. In particular,
the AS index theorem shows that localized fluxes induce
new zero modes. Then, we study wave functions of the new
zero modes, which correspond to localized zero modes on
T2=ZN orbifolds in Sec. V. We also discuss their Yukawa
couplings in Sec. VI. We conclude this study in Sec. VII. In
Appendix A, we show the detailed results of Sec. IV. In
Appendix B, we show the detailed calculation of the
normalization of bulk zero modes. In Appendix C, we
show the detailed calculation of the normalization of
localized zero modes.

II. MAGNETIZED T2=ZN ORBIFOLD

A. Magnetized T2

We review the Uð1Þ gauge theory on a 2D torus with
homogeneous magnetic flux [20]. First of all, let us
consider the six-dimensional (6D) spacetime, which con-
tains 4D Minkowski space-time M4 and an extra 2D torus
T2 with magnetic flux. The Lagrangian of a 6D Weyl
fermion in magnetic flux background is given by

L6D ¼ iΨ̄ΓMDMΨ; Γ7Ψ ¼ Ψ; ð2:1Þ

where Mð¼ 0; 1; 2; 3; 5; 6Þ is the 6D spacetime index and
DM ¼ ∂M − iqAM is the covariant derivative. ΓM is 6D
gamma matrix and Γ7 denotes the 6D chirality operator.
By the Kaluza-Klein mode expansion, the 6D Weyl

fermion Ψðx; zÞ can be decomposed into 4D Weyl left/

right-handed fermions ψ ð4Þ
L=RðxÞ as

Ψðx; zÞ ¼
X
n;j

ðψ ð4Þn;j
R ðxÞ ⊗ ψ ð2Þn;j

þ ðzÞ

þ ψ ð4Þn;j
L ðxÞ ⊗ ψ ð2Þn;j

− ðzÞÞ; ð2:2Þ

where xμ (μ ¼ 0; 1; 2; 3) denotes the 4D Minkowski coor-
dinate and z is the complex coordinate on T2. The 2DWeyl

fermions ψ ð2Þn;j
� ðzÞ are expressed as the form

ψ ð2Þn;j
þ ðzÞ¼

�
ψn;j
þ ðzÞ
0

�
; ψ ð2Þn;j

− ðzÞ¼
�

0

ψn;j
− ðzÞ

�
; ð2:3Þ

where n and j label the Landau level and the degeneracy of
mode functions on each level, respectively.

1By use of the trace formula, Eq. (1.4) has been derived for
M ¼ 0 in Ref. [35] and for arbitrary M with N ¼ 2 in Ref. [36].

2Even if localized fluxes vanish at the tree level, they may be
induced by loop effects [39–42].
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Here, T2 is constructed by dividing a complex plane C
into a 2D lattice Λ, i.e., T2 ≃ C=Λ. We define the complex
coordinate of T2, z≡ y1 þ τy2, such that the identifications
are z ∼ zþ 1 ∼ zþ τ, where yið0 ≤ yi < 1Þ with i ¼ 1; 2
denotes the real coordinate along one lattice vector ei and
τ≡ e2=e1 ∈ CðImτ > 0Þ denotes the complex structure
modulus of T2. The area of T2 becomes Imτ. We note
that the curvature of T2 is zero.
The nonzero magnetic flux f on the torus can be

obtained as f ¼ RT2 F with the field strength

FðzÞ ¼ if
2Imτ

dz ∧ dz̄: ð2:4Þ

For F ¼ dA, the (1-form) vector potential is

Aðz; ζÞ ¼ f
2Imτ

Imððz̄þ ζ̄ÞdzÞ≡ Azðz; ζÞdzþ Az̄ðz; ζÞdz̄;
ð2:5Þ

and Azðz; ζÞ, Az̄ðz; ζÞ are explicitly given by

Azðz; ζÞ ¼ −
i
2

πM
Imτ

ðz̄þ ζ̄Þ; Az̄ðz; ζÞ ¼
i
2

πM
Imτ

ðzþ ζÞ;
ð2:6Þ

where ζ ≡ ζ1 þ τζ2 (ζ1; ζ2 ∈ R) denotes the Wilson line.
Then, we obtain

Aðzþ 1; ζÞ ¼ Aðz; ζÞ þ d

�
f

2Imτ
Imðzþ ζÞ

�
≡ Aðz; ζÞ þ dΛ1ðzþ ζÞ; ð2:7Þ

Aðzþ τ; ζÞ ¼ Aðz; ζÞ þ d

�
f

2Imτ
Imðτ̄ðzþ ζÞÞ

�
≡ Aðz; ζÞ þ dΛ2ðzþ ζÞ; ð2:8Þ

where Λ1ðzþ ζÞ and Λ2ðzþ ζÞ are gauge parameters. It
follows from Eqs. (2.7) and (2.8) that the torus lattice shifts
can be reinterpreted as gauge transformations.
The 2D Weyl fermions are required to satisfy the

pseudoperiodic boundary conditions (BCs)

ψn;j
� ðzþ 1; ζÞ ¼ U1ðzÞψn;j

� ðz; ζÞ;
ψn;j
� ðzþ τ; ζÞ ¼ U2ðzÞψn;j

� ðz; ζÞ; ð2:9Þ

with

UiðzÞ ¼ eiΛiðzþζÞe2πiαi ði ¼ 1; 2Þ; ð2:10Þ

where αi (i ¼ 1; 2) are called Scherk-Schwarz (SS) twist
phases which are allowed to be any real numbers. The
consistency condition with the contractible loop,

z → zþ 1 → zþ 1þ τ → zþ τ → z, leads to the mag-
netic-flux quantization condition

f
2π

≡M ∈ Z: ð2:11Þ

The 2D Weyl fermions satisfy the equations

−2Dzψ
n;j
− ðz; ζÞ ¼ −2ð∂z − iAzðz; ζÞÞψn;j

− ðz; ζÞ
¼ mnψ

n;j
þ ðz; ζÞ; ð2:12Þ

2Dz̄ψ
n;j
þ ðz; ζÞ ¼ 2ð∂z̄ − iAz̄ðz; ζÞÞψn;j

þ ðz; ζÞ ¼mnψ
n;j
− ðz; ζÞ:

ð2:13Þ

We focus on zero modes with mn ¼ 0. From Eqs. (2.12)
and (2.13), zero modes satisfy

�
∂z −

πM
2Imτ

ðz̄þ ζ̄Þ
�
ψ0;j
− ðz; ζÞ ¼ 0;�

∂z̄ þ
πM
2Imτ

ðzþ ζÞ
�
ψ0;j
þ ðz; ζÞ ¼ 0: ð2:14Þ

In the case of M > 0, only ψ0;j
þ has the normalizable

solutions that satisfy the pseudoperiodic BCs (2.9) and they
are given as

ψ0;ðjþα1;α2Þ;M
T2;þ ðz; ζÞ ¼ e−

πM
2Imτjzþζj2gðjþα1;α2Þ;Mðz; ζÞ

ðj ¼ 0; 1;…;M − 1Þ; ð2:15Þ

gðjþα1;α2Þ;Mðz; ζÞ ¼ N 0;j
T2 e

πM
2ImτðzþζÞ2e2πi

jþα1
M ðα2−Mζ1Þϑ� jþα1

M

−α2

�
ðMðzþ ζÞ;MτÞ; ð2:16Þ

where, j ¼ 0; 1;…; jMj − 1 stand for the degeneracy of
zero-mode solutions. Here, N 0;j

T2 denotes a normalization
constant determined byZ

dzdz̄ðψn;ðjþα1;ατÞ;M
T2;þ Þ�ψn;ðkþα1;ατÞ;M

T2;þ ¼ δj;k; ð2:17Þ

and the Jacobi ϑ-function is defined by

ϑ

�
a

b

�
ðz; τÞ ¼

X∞
l¼−∞

eiπðaþlÞ2τe2πiðaþlÞðzþbÞ: ð2:18Þ

Note that the Wilson line ζ ¼ ζ1 þ τζ2 can be pushed on
the SS phases as

α1 → α01 ¼ α1 þMζ2; α2 → α02 ¼ α2 −Mζ1; ð2:19Þ

by the Uð1Þ local and gauge transformation,
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ψn;ðjþα1;α2Þ;M
T2;þ ðz; ζÞ → V−1

ζ ðzÞψn;ðjþα1;α2Þ;M
T2;þ ðz; ζÞ

¼ ψ
n;ðjþα0

1
;α0

2
Þ;M

T2;þ ðz; 0Þ; ð2:20Þ

Aðz; ζÞ → Aðz; ζÞ þ iV−1
ζ ðzÞdVζðzÞ ¼ Aðz; 0Þ; ð2:21Þ

with

V−1
ζ ðzÞ≡ e−πiM

Imðζ̄zÞ
Imτ −πiMζ1ζ2 ; ð2:22Þ

as shown in Ref. [32]. Hence, hereafter, we set ζ ¼ 0. On
the other hand, in the case of M < 0, only ψ−;0;j has the
normalizable solutions, and they are given in a similar way.
The above results are consistent with the AS index

theorem on the torus with magnetic flux, i.e.,

nþ − n− ¼ 1

2π

Z
T2

F ¼ M: ð2:23Þ

The index theorem (2.23) shows that the number of the
independent chiral zero modes is decided by the magnetic
flux quantization number M on the magnetized torus and
further that the generation number of this model is given by
M. We emphasize that the index nþ − n− depends only on
the flux.

B. Magnetized T2=ZN

In this subsection, we review the Uð1Þ gauge theory on
twisted orbifolds T2=ZN with magnetic flux [32,33]. It has
been known that there are only four kinds of the T2=ZN

orbifolds with N ¼ 2; 3; 4; 6. The T2=ZN orbifolds are
defined by the torus identification and the additional ZN
one

z ∼ ρz ðρ ¼ e2πi=NðN ¼ 2; 3; 4; 6ÞÞ: ð2:24Þ

For N ¼ 2, there is no restriction on τ except for Imτ > 0.
On the other hand, for N ¼ 3; 4; 6, τ should be fixed at
τ ¼ ρ due to the analysis of crystallography.
An important feature of the T2=ZN orbifolds is the

existence of the fixed points zfpI defined by

zfpI ¼ ρzfpI þ uþ vτ for ∃u; v ∈ Z: ð2:25Þ

The ZN fixed points on the T2=ZN orbifolds are given by

zfpI ¼

8>>>>><
>>>>>:

0; 1
2
; τ
2
; 1þτ

2
on T2=Z2;

0; 2þτ
3
; 1þ2τ

3
on T2=Z3;

0; 1þτ
2

on T2=Z4;

0 on T2=Z6;

ð2:26Þ

and the respective values of ðu; vÞ in Eq. (2.25) are

ðu; vÞ ¼

8>>>>><
>>>>>:

ð0; 0Þ; ð1; 0Þ; ð0; 1Þ; ð1; 1Þ on T2=Z2;

ð0; 0Þ; ð1; 0Þ; ð1; 1Þ on T2=Z3;

ð0; 0Þ; ð1; 0Þ on T2=Z4;

ð0; 0Þ on T2=Z6:

ð2:27Þ

Note that there are additional fixed points for N ¼ 4; 6,
since the Z4ðZ6Þ group includes Z2 (Z2 and Z3) as its
subgroup. They are not invariant under the Z4ðZ6Þ trans-
formation, but invariant under the Z2 (Z2 and Z3) trans-
formation up to the torus shifts. The additional fixed points
are found as

Z2 fixed points∶ zfpI ¼ 1

2
;
τ

2
on T2=Z4; ð2:28Þ

Z3 fixed points∶ zfpI ¼ 1þ τ

3
;
2þ 2τ

3
on T2=Z6;

ð2:29Þ

Z2 fixed points∶ zfpI ¼ 1

2
;
τ

2
;
1þ τ

2
on T2=Z6: ð2:30Þ

We should emphasize that the fixed points are singular
points on the T2=ZN orbifolds.
For the orbifold identification, the Scherk-Schwarz

phases ðα1; α2Þ must be quantized such as

ðα1;α2Þ¼ð0;0Þ;ð1=2;0Þ;ð0;1=2Þ;ð1=2;1=2Þ onT2=Z2;

ð2:31Þ

α¼ α1¼ α2¼
�
0;1=3;2=3 ðM¼ evenÞ
1=6;3=6;5=6 ðM¼ oddÞ on T2=Z3;

ð2:32Þ

α ¼ α1 ¼ α2 ¼ 0; 1=25 on T2=Z4; ð2:33Þ

α ¼ α1 ¼ α2 ¼
�
0 ðM ¼ evenÞ
1=2 ðM ¼ oddÞ on T2=Z6:

ð2:34Þ

Let us discuss ZN eigenfunctions on the T2=ZN orbi-
folds with magnetic flux. They should obey the boundary
conditions (2.9) and the orbifold boundary conditions

ψn;ðjþα1;α2Þ;M
T2=Zm

N;þ
ðρzÞ ¼ ρmψn;ðjþα1;α2Þ;M

T2=Zm
N;þ

ðzÞ; ð2:35Þ

ψn;ðjþα1;α2Þ;M
T2=Zm

N;−
ðρzÞ ¼ ρmþ1ψn;ðjþα1;α2Þ;M

T2=Zm
N;−

ðzÞ; ð2:36Þ

where ρmðm ¼ 0; 1;…; N − 1Þ in Eq. (2.35) denotes the

ZN eigenvalue. If the ZN eigenvalue of ψn;ðjþα1;α2Þ;M
T2=Zm

N;þ
ðzÞ is
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ρm, then that of ψn;ðjþα1;α2Þ;M
T2=Zm

N;−
ðzÞ has to be ρmþ1. The

difference in eigenvalues comes from a rotation matrix
acting on 2D spinors, and it can also be understood from the
relations (2.12) and (2.13). Then, the ZN eigenfunctions
can be constructed by the following linear combinations of
the wave functions on the torus

ψn;ðjþα1;α2Þ;M
T2=Zm

N;þ
ðzÞ ¼ N n;j

T2=ZN;þ
XN−1

k¼0

ρ−kmψn;ðjþα1;α2Þ;M
T2;þ ðρkzÞ;

ð2:37Þ

ψn;ðjþα1;α2Þ;M
T2=Zm

N;−
ðzÞ¼N n;j

T2=ZN;−

XN−1

k¼0

ρ−kðmþ1Þψn;ðjþα1;α2Þ;M
T2;− ðρkzÞ;

ð2:38Þ

whereN n;j
T2=ZN;� are normalization constants determined by

Z
dzdz̄ðψn;ðjþα1;ατÞ;M

T2=Zm
N;�

Þ�ψn;ðkþα1;ατÞ;M
T2=Zm

N;�
¼ δj;k: ð2:39Þ

Especially, zero modes with the ZN eigenvalue ρm are
given by

ψ0;ðjþα1;α2Þ;M
T2=Zm

N;þ
ðzÞ ¼ e−

πM
2Imτjzj2hðjþα1;α2Þ;Mþ;m ðzÞ; ð2:40Þ

hðjþα1;α2Þ;Mþ;m ðzÞ ¼ N 0;j
T2=ZN;þ

XN−1

k¼0

ρ−kmgðjþα1;α2Þ;MðρkzÞ:

ð2:41Þ

Here, hðjþα1;α2Þ;Mþ;m ðzÞ denotes the holomorphic function of z.
Let us investigate the ZN eigenfunctions ψn;ðjþα1;α2Þ;M

T2=Zm
N;þ

ðzÞ
around the fixed points zfpI ≡ yfp1I þ τyfp2I by modifying
Eq. (2.35). Their property will become important later.
First, we define the coordinate Z such that Z ¼ 0 at the
fixed point zfpI , i.e., Z≡ z − zfpI . Next, we rewrite z by Z as
z ¼ ðz − zfpI Þ þ zfpI ¼ Z þ zfpI . This means that the second
term, zfpI , can be regarded as the Wilson line ζ ¼ zfpI
(ζ1 ¼ yfp1I , ζ2 ¼ yfp2I) from the viewpoint of the coordinate
Z. (See the previous subsection.) Then, the Wilson line can
be pushed on SS phases by the Uð1Þ local and gauge
transformation,

ψn;ðjþα1;α2Þ;M
T2=Zm

N;þ
ðzÞ ¼ ψn;ðjþα1;α2Þ;M

T2=Zm
N;þ

ðZ þ zfpI Þ

¼ VzfpI
ðZÞψn;ðjþβ1;β2Þ;M

T2=Zm
N;þ

ðZÞ; ð2:42Þ

where ðβ1; β2Þ are defined by

ðβ1; β2Þ≡ ðα1 þMyfp2I; α2 −Myfp1IÞ ðmod 1Þ: ð2:43Þ

On the other hand, the left-hand side of Eq. (2.35) can be
written by Z as

ψn;ðjþα1;α2Þ;M
T2=Zm

N;þ
ðρzÞ ¼ ψn;ðjþα1;α2Þ;M

T2=Zm
N;þ

ðρZ þ ρzfpI Þ

¼ ψn;ðjþα1;α2Þ;M
T2=Zm

N;þ
ðρZ þ zfpI − u − vτÞ

¼ U−v
2 ðρZ þ zfpI − uÞU−u

1 ðρZ þ zfpI Þ
× VzfpI

ðρZÞψn;ðjþβ1;β2Þ;M
T2=Zm

N;þ
ðρZÞ; ð2:44Þ

where we use Eq. (2.25). Thus, the mode functions

ψ ðjþβ1;β2Þ
T2=Zm

N;þ
ðZÞ transform under ZN twist around zfpI as

ψn;ðjþβ1;β2Þ;M
T2=Zm

N;þ
ðρZÞ ¼ ρχþlψn;ðjþβ1;β2Þ;M

T2=Zm
N;þ

ðZÞ; ð2:45Þ

with

χþI ¼ N

�
uα1 þ vα2 þ

M
2
ðuvþ uyfp2I − vyfp1IÞ

�
þm

ðmod NÞ; ð2:46Þ

where we use the result,

V−1
zfpI
ðρZÞVzfpI

ðZÞ ¼ e−πiM
Imððz̄fp

I
−ρ̄z̄fp

I
ÞρZÞ

Imτ

¼ U−u
1 ðρZÞU−v

2 ðρZÞe2πiðuα1þvα2Þ: ð2:47Þ

Note that Eq. (2.45) with zfpI ¼ 0 corresponds to Eq. (2.35).
Hence, we get the winding numbers χþI of the ZN mode

functions ψn;ðjþα1;α2Þ;M
T2=Zm

N;þ
ðzÞ around the fixed points zfpI .

We are interested in the numbers of chiral zero modes on
the T2=ZN orbifolds with magnetic flux. Although the AS
index theorem on T2 is known as (2.23), the AS index
theorem cannot, however, be applied to orbifolds directly
because they have singular points. On the other hand, in the
previous paper [30], the following zero-mode counting
formula on the T2=ZN orbifolds with magnetic flux has
been obtained:

nþ − n− ¼ M
N

−
Vþ
N

þ 1; ð2:48Þ

where Vþ is the sum of the winding numbers at the fixed
points of the T2=ZN orbifolds. It should be emphasized that
the equality between the left-hand side and the right-hand
side of Eq. (2.48) has been verified in each case in
Ref. [30], but the formula (2.48) has not been established
as an index theorem. The first term on the right-hand side of
Eq. (2.48) can be understood as the contribution of the flux
and the factor 1=N comes from the fact that the area of the
T2=ZN orbifold is 1=N of that of the torus T2. On the other
hand, physical roles of the second and the third terms of
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Eq. (2.48) are unclear, because they are not related to any
flux on the orbifolds. In particular, it is curious why the
factor þ1 is needed on the right-hand side of the
formula (2.48).
In order to apply the AS index theorem to the orbifold

models, we consider removing the singular points from the
orbifolds. To this end, we replace the T2=ZN orbifolds with
smooth manifolds without singularities by cutting out the
singularities of the magnetized T2=ZN orbifolds and
attaching smooth manifolds (parts of S2) to them, as shown
in Fig. 1. The smooth manifolds without singularities are
called blow-up manifolds of the T2=ZN orbifolds. Then, we
can apply the AS index theorem to the blow-up manifolds
directly.

III. BLOW-UP MANIFOLD OF MAGNETIZED
T2=ZN ORBIFOLD

In this section, we construct the blow-up manifolds of the
magnetized T2=ZN orbifolds by replacing orbifold singu-
larities with parts of S2. Then, we compute wave functions
on the blow-up manifolds by connecting those on the
orbifolds with those on parts of S2 smoothly without losing
the orbifold information. In the blow-up process, in
particular, we obtain two remarkable features; one is that
winding numbers of wave functions on the T2=ZN orbi-
folds are related to localized flux and localized curvature on
the blow-up manifolds, and the other is that not only
curvature but also magnetic flux are not modified under the
blow-up process.

A. Magnetized S2

First of all, we review zero-mode functions on S2 with
magnetic flux [43]. Let z0 be the complex coordinate on
S2 ≃ CP1 defined by projecting a point of S2 into the
complex plane passing through the center of S2 from the
north pole of S2, as shown in Fig. 2. The radius of S2 is
taken to be R.
The magnetic flux on S2 is quantized as

1

2π

Z
S2
F0 ¼ M0; ð3:1Þ

where M0 is an integer. The field strength is

F0

2π
¼ i

2π

R2M0

ðR2 þ jz0j2Þ2 dz
0 ∧ dz̄0: ð3:2Þ

The gauge potentials on S2 are given by

Az̄0 ¼
i
2

M0

R2 þ jz0j2 z
0; Az0 ¼ −

i
2

M0

R2 þ jz0j2 z̄
0: ð3:3Þ

The mode functions on the magnetized S2 obey the Dirac
equations

R2 þ jz0j2
R

i

�
∂z̄0 þ i

1

2
ωz̄0 − iAz̄0

�
ψn0;M0
S2;þ ðz0Þ ¼ mn0ψ

n0;M0
S2;− ðz0Þ;

ð3:4Þ

R2 þ jz0j2
R

i

�
∂z0 − i

1

2
ωz0 − iAz0

�
ψn0;M0
S2;− ðz0Þ ¼ mn0ψ

n0;M0
S2;þ ðz0Þ;

ð3:5Þ

with

ωz̄0 ¼
i
2

2

R2 þ jz0j2 z
0; ωz0 ¼ −

i
2

2

R2 þ jz0j2 z̄
0: ð3:6Þ

Here, ωz̄0 and ωz0 are the spin connections that come from
the nonvanishing curvature on S2,

1

2π

Z
S2
R0 ¼ χðS2Þ ¼ 2: ð3:7Þ

FIG. 1. The left figure shows T2=Z2 orbifold and the red points
represent the fixed points of T2=Z2 orbifold. By cutting around
the fixed points and embedding the part of S2 as caps, we can
construct the blow-up manifold as shown in the right figure.

FIG. 2. The cross section of S2 with the radius R is shown.
We project a point of S2 with the 3D coordinate,
ðR sin θ cosφ; R sin θ sinφ;−R cos θÞ, from the north pole of
S2, into the point on the complex plane passing through the
center of S2 whose 3D coordinate is ðR tan θ

2
cosφ;

R tan θ
2
sinφ; 0Þ, where ðR; θ;φÞ are spherical coordinate param-

eters. We define the complex coordinate of the complex plane
CP1, z0, such that z0 ¼ jz0jeiφ ¼ R tan θ

2
eiφ at the point with the

3D coordinate ðR tan θ
2
cosφ; R tan θ

2
sinφ; 0Þ. Then, we denote

the coordinate of a point on S2 as the complex coordinate of the
projected point on CP1, z0.
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Here, R0 is the curvature on S2 and χ is the Euler
characteristic. Note that the spin connections (3.6) can
be obtained by replacing the fluxM0 in the gauge potentials
(3.3) by the Euler characteristic χðS2Þ ¼ 2.
The positive chirality zero mode solutions of Eq. (3.4)

with mn ¼ 0 are given by

ψ0;M0
S2;þðz0Þ ¼

fM
0

þ ðz0Þ
ðR2 þ jz0j2ÞM0−1

2

; ð3:8Þ

where fM
0

þ ðz0Þ is a holomorphic function of z0. These
solutions are normalizable and well-defined on S2 only
if M0 > 0 and fM

0
þ ðz0Þ is expressed as a ðM0 − 1Þth-

order polynomial, which means that the number of the
independent solutions is M0. On the other hand, normal-
izable and well-defined negative-chirality zero modes on S2

are obtained in a similar way only if M0 < 0, and an
antiholomorphic function fM

0
− ðz̄0Þ is expressed as a

ðjM0j − 1Þth-order polynomial.
The above results are consistent with the AS index

theorem on the magnetized S2, i.e.,

nþ − n− ¼ 1

2π

Z
S2
F0 ¼ M0: ð3:9Þ

The number of the chiral zero modes turns out to be given
by the flux quantization number M0, as it should be. It is
important to emphasize that although the flux and the
curvature exist in the magnetized S2 model, only the flux
contributes to the AS index theorem, as mentioned in the
introduction.

B. Construction of blow-up manifold of T2=ZN orbifold

In this subsection, we review the construction of blow-up
manifolds of T2=ZN orbifolds [37]. Since the T2=ZN
orbifolds have singularities at the fixed points and around
the fixed points become cones, we replace the cones with
parts of S2 to remove the singularities, as shown in Fig. 3.
Figure 3 shows the case that the deficit angle around a fixed
point is 2πðN − 1Þ=N, and we replace the cone whose slant
height is r with ðN − 1Þ=2N part of S2 whose radius is
R ¼ r=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 − 1

p
. The left figure shows the development of

the cone, and the right figure shows the cross section of the
cone and S2 with the radius R ¼ r=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 − 1

p
. Here, the

curvature around the singularity is ðN − 1Þ=N which comes
from the deficit angle. On the other hand, since the
curvature of S2 is χðS2Þ ¼ 2, the curvature of the embedded
region is ðN − 1Þ=N. That is, this blow-up process does not
change the topological invariant number. Similarly, we can
apply this procedure for the other fixed points of the
orbifolds.
We denote the coordinates of T2=ZN and S2 as z

and z0, respectively. They are related at the connection

points through the coordinate w, i.e., zjz¼reiφ=N ↔ w ¼
Nþ1
N z0jz0¼ r

Nþ1
eiφ .

Next, we discuss zero-mode wave functions on magnet-
ized blow-up manifolds, which can be obtained by
smoothly connecting wave functions on the magnetized
T2=ZN orbifold in Eq. (2.40) with those on the magnetized
S2 in Eq. (3.8) at the connection line. However, there is an
obstacle. If zero modes on the T2=ZN orbifold have
nonzero winding numbers, they cannot be connected to
zero modes on S2 because the boundary conditions for

ψ0;ðjþα1;α2Þ;M
T2=Zm

N;þ
ðzÞ around the fixed point are different from

those of ψ0;M0
S2;þðz0Þ. ψ0;ðjþα1;α2Þ;M

T2=Zm
N;þ

ðzÞ obey the boundary

condition (2.45). On the other hand, ψ0;M0
S2;þðz0Þ have no

phase. In the next subsection, we resolve this obstacle by
using singular gauge transformation.

C. Singular gauge transformation

In order to connect wave functions on T2=ZN to those on
S2, we remove nonzero winding numbers from wave
functions on T2=ZN by the following singular gauge

transformation3 ψn;ðjþα1;α2Þ;M
T2=Zm

N;þ
ðzÞ → ψ̃n;ðjþα1;α2Þ;M

T2=Zm
N;þ

ðzÞ such

that ψ̃n;ðjþα1;α2Þ;M
T2=Zm

N;þ
ðzÞ has no winding number:

ψn;ðjþα1;α2Þ;M
T2=Zm

N;þ
ðρzÞ ¼ ρmψn;ðjþα1;α2Þ;M

T2=Zm
N;þ

ðzÞ→ ψ̃n;ðjþα1;α2Þ;M
T2=Zm

N;þ
ðρzÞ

¼ ψ̃n;ðjþα1;α2Þ;M
T2=Zm

N;þ
ðzÞ: ð3:10Þ

FIG. 3. The left figure shows the development of the cone
around a fixed point of T2=ZN orbifold. The slant height and the
radius of the base of the cone are r (called the blow-up radius) and
r=N, respectively. The right figure shows the cross section of the
cone and the S2 with radius R ¼ r cot θ0 ¼ r=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 − 1

p
. The

blow-up manifold of T2=ZN is constructed by replacing the cone
with ðN − 1Þ=2N-part of S2, where sinðθ0=2Þ ¼ ðN − 1Þ=2N.
Here, z and z0 denote the coordinates of T2=ZN and S2,
respectively, and they are related at the connection points through
the coordinate w, i.e., zjz¼reiφ=N ↔ w ¼ Nþ1

N z0jz0¼ r
Nþ1

eiφ .

3See Refs. [39–41,44] and also Ref. [45] for magnetized S2
with vortices.
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Here, we have considered the case where the fixed
point is zfpI ¼ 0. Note that the following analysis can be
applied even for the other fixed points by the following
replacement:

z → Z;

ðα1; α2Þ → ðβ1; β2Þ;
m → χþI: ð3:11Þ

The singular gauge transformation is defined by

A → ÃðzÞ≡ AðzÞ þ δAðzÞ; ð3:12Þ

δAðzÞ ¼ iUξFdU
−1
ξF

≃ −i
ξF

2

1

z
dzþ i

ξF

2

1

z̄
dz̄; ð3:13Þ

with

UξFðzÞ ¼
� ψ

0;ð1
2
;1
2
Þ;1

T2=Z1
N;þ

ðzÞ
ðψ0;ð1

2
;1
2
Þ;1

T2=Z1
N;þ

ðzÞÞ�
�ξF

2

¼
�

g1ðzÞ
ðg1ðzÞÞ�

�ξF

2

≃
�

gð1Þ1 ð0Þz
ðgð1Þ1 ð0ÞzÞ�

�ξF

2

; ð3:14Þ

where we use

ψ
0;ð1

2
;1
2
Þ;1

T2=Z1
N;þ

ðzÞ ¼ ψ
0;ð1

2
;1
2
Þ;1

T2;þ ðzÞ ¼ e−
π

2Imτjzj2g1ðzÞ

g1ðzÞ≡ gð12;12Þ;1 ¼ e
π

2Imτz
2

e
πi
2ϑ

� 1
2

− 1
2

�
ðz; τÞ; ð3:15Þ

and gðkÞ1 ðzÞ≡ dkg1ðzÞ
dzk . The rightmost-hand sides of

Eqs. (3.13) and (3.14) are approximate expressions near
z ¼ 0. Under the singular gauge transformation, the field
strength is modified as

F
2π

→
F̃
2π

≡ F
2π

þ δF
2π

; ð3:16Þ

δF
2π

¼ iξFδðzÞδðz̄Þdz ∧ dz̄: ð3:17Þ

Here, from Eq. (3.16), ξF=N can be regarded as a localized
flux at the fixed point z ¼ 0.
We further need to consider a singular gauge trans-

formation for the spin connection in a way similar to the
gauge potentials to remove winding numbers both of

ψn;ðjþα1;α2Þ;M
T2=Zm

N;þ
ðzÞ and ψn;ðjþα1;α2Þ;M

T2=Zm
N;−

ðzÞ. It is defined by

ω → ω̃ ¼ ωþ δω ¼ δω; ðω ¼ 0Þ; ð3:18Þ

δω ¼ iUξRdU
−1
ξR

≃z≃0 − i
ξR

2

1

z
dzþ i

ξR

2

1

z̄
dz̄; ð3:19Þ

with

UξRðzÞ ¼

0
B@ ψ

0;ð1
2
;1
2
Þ;1

T2=Z1
N;þ

ðzÞ
ðψ0;ð1

2
;1
2
Þ;1

T2=Z1
N;þ

ðzÞÞ�

1
CA

ξR

2

¼
�

g1ðzÞ
ðg1ðzÞÞ�

�ξR

2

≃z≃0
 

gð1Þ1 ð0Þz
ðgð1Þ1 ð0ÞzÞ�

!ξR

2

: ð3:20Þ

Similarly, ξR=N can be regarded as a localized curvature at
the fixed point, where it corresponds to ðN − 1Þ=N in the
case of the deficient angle 2πðN − 1Þ=N.
From Eqs. (3.14) and (3.20), the wave functions are

transformed under the singular gauge transformation as

ψn;ðjþα1;α2Þ;M
T2=Zm

N;þ
ðzÞ→ ψ̃n;ðjþα1;α2Þ;M

T2=Zm
N;þ

ðzÞ

¼UξFðzÞU−1=2
ξR

ðzÞψn;ðjþα1;α2Þ;M
T2=Zm

N;þ
ðzÞ; ð3:21Þ

ψn;ðjþα1;α2Þ;M
T2=Zm

N;−
ðzÞ → ψ̃n;ðjþα1;α2Þ;M

T2=Zm
N;−

ðzÞ

¼ UξFðzÞU1=2
ξR

ðzÞψn;ðjþα1;α2Þ;M
T2=Zm

N;−
ðzÞ: ð3:22Þ

Then, Eqs. (2.35) and (2.36) are modified as

ψ̃n;ðjþα1;α2Þ;M
T2=Zm

N;þ
ðρzÞ ¼ ρξ

F−ξR

2
þmψ̃n;ðjþα1;α2Þ;M

T2=Zm
N;þ

ðzÞ; ð3:23Þ

ψ̃n;ðjþα1;α2Þ;M
T2=Zm

N;−
ðρzÞ ¼ ρξ

FþξR

2
þmþ1ψ̃n;ðjþα1;α2Þ;M

T2=Zm
N;−

ðzÞ: ð3:24Þ

Note that the contributions of the localized curvature ξR act
with opposite signs to the chirality positive and negative
wave functions. In addition, Eq. (2.9) and equivalently
Eq. (2.10) are also modified by replacing M and αi with
M þ ξF ∓ ξR=2 and αi þ ξF=2 ∓ ξR=4, respectively.
We arrive at the conditions to obtain wave functions with

vanishing winding numbers as

ξF ¼ N − 1

2
−mþ lN for ∀l ∈ Z; ð3:25Þ

where we used ξR ¼ N − 1 for the ZN fixed point. It is
interesting to point out that a new degree of freedom l
appears. It comes from mod N property of Eqs. (3.23) and
(3.24). In Sec. V, we discuss the physical meaning of the
new degree of freedom of the localized flux in detail. Zero-
mode wave functions in Eq. (2.41), in particular, can be
expressed as
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ψ̃0;ðjþα1;ατÞ;M
T2=Zm

N;þ
ðzÞ ¼ jg1ðzÞjm−lNe−

πM
2Imτjzj2 h̃ðjþα1;ατÞ;Mþ;m ðzÞ

≃ jzjm−lNe−
πM
2Imτjzj2 jgð1Þ1 ð0Þjm−lNh̃ðjþα1;ατÞ;Mþ;m ðzÞ;

h̃ðjþα1;ατÞ;Mþ;m ðzÞ ¼ N 0;j
T2=ZN;þðg1ðzÞÞ

−mþlN
XN−1

k¼0

ρ−kmgðjþα1;ατÞ;MðρkzÞ

≃N 0;j
T2=ZN;þN

ðgðjþα1;ατÞ;MÞðmÞð0Þ
m!

ðgð1Þ1 ð0ÞÞ−mþlNzlN; ð3:26Þ

where we also show the approximation near z ¼ 0
at the lowest order. Hereafter, we denote the coefficient
shortly as

Cj ≡N 0;j
T2=ZN;þ

ðgðjþα1;ατÞ;MÞðmÞð0Þ
m!

�
gð1Þ1 ð0Þ
jgð1Þ1 ð0Þj

�−mþl0N

:

ð3:27Þ

Similarly, the same argument can be applied for zfpI ≠ 0
by the replacement (3.11). Especially, we obtain the
following relationship:

ξFI ¼ ξRI
2
− χþI þ lIN for ∀lI ∈ Z: ð3:28Þ

It means that the winding number χþI can be rewritten in
terms of the localized flux ξFI and the localized curvature
ξRI . In other words, what we have done with the singular
gauge transformations (3.21) and (3.22) is to replace the
information of the winding number on the orbifolds with
the localized flux and localized curvature at the fixed points
of T2=ZN . This operation is expected to connect wave
functions on T2=ZN with those on S2 without losing
the orbifold information. In the next subsection, let us
see zero-mode wave functions on the blow-up manifolds of
magnetized T2=ZN .

D. Wave functions on blow-up manifold
of magnetized T2=ZN

Now, we can explore zero-mode wave functions on the
blow-up manifolds of magnetized T2=ZN . Wave functions
on the blow-up regions (parts of S2 regions) are those on S2

in Eq. (3.8), ψ0;M0
S2;þðz0Þ, while wave functions on the bulk

region (remaining region of T2=ZN by cutting out regions
around fixed points) are those on T2=ZN in Eq. (3.26),

ψ̃0;ðjþα1;α2Þ;M
T2=Zm

N;þ
ðzÞ. Then, we should connect wave functions

on bulk regions and those on the blow-up regions smoothly
at the junction points. Note that the renewed point from
Ref. [37] is using Eq. (3.26) instead of Eq. (2.41). Thus, we
can treat wave functions with ZN charge m more precisely.
The junction conditions are given by

ψ̃0;ðjþα1;ατÞ;M
T2=Zm

N;þ
ðzÞjz¼reiφ=N ¼ψ0;M0

S2;þðz0Þjz0¼ r
Nþ1

eiφ ;

1

e−i
φ
N

dψ̃0;ðjþα1;ατÞ;M
T2=Zm

N;þ
ðzÞ

dz

				
z¼reiφ=N

¼ 1
Nþ1
N e−iφ

dψ0;M0
S2;þðz0Þ
dz0

				
z0¼ r

Nþ1
eiφ
;

ð3:29Þ

where the derivatives of their coordinates can be written as

e−i
φ
Ndz ¼ e−i

φ
N
∂z
∂jzj djzj þ e−i

φ
N

∂z
∂ðφNÞ

d

�
φ

N

�
¼ djzj þ ird

�
φ

N

�
;

N þ 1

N
e−iφdz0 ¼ N þ 1

N
e−iφ

∂z0

∂jz0j djz
0j þ N þ 1

N
e−iφ

∂z0

∂φ
dφ ¼ N þ 1

N
djz0j þ i

r
N
dφ: ð3:30Þ

Indeed, we find that the following relations:

N þ 1

N
djz0j ¼ N þ 1

N
∂jz0j
∂θ

dθ ¼ N þ 1

N
R

2cos2 θ0
2

dθ ¼ N þ 1

N
R

1þ cos θ0
dθ ¼ Rdθ ¼ djzj;

rd

�
φ

N

�
¼ r

N
dφ; ð3:31Þ

are satisfied at the connecting points, as seen in Fig. 3.
First, from nonholomorphic parts of wave functions in Eqs. (3.26) and (3.8), the junction conditions in Eq. (3.29) provide
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πr2

NImτ
M þ N − 1

2N
−
m
N
þ l ¼ N − 1

2N
M0: ð3:32Þ

By using the relation (3.25), it can be rewritten as

πr2

NImτ
M þ ξF

N
¼ N − 1

2N
M0: ð3:33Þ

The flux condition is generalized from that in Ref. [37]; the
left-hand side shows the cut out flux from T2=ZN orbifold,
which is the flux including the localized flux on the cone of
T2=ZN orbifold, while the right-hand side shows the
embedded flux, which is the flux on the part of S2. Thus,
it means that the magnetic flux is not modified under the
blow-up process. This is important in deriving the AS index
theorem, as we will see in the next section. In particular, in
the orbifold limit r → 0, Eq. (3.40) is expressed as

ξF

N
¼ N − 1

2N
M0
				
r¼0

; ð3:34Þ

which shows that the flux on the embedded area of S2 [right-
hand side of Eq. (3.34)] corresponds to the localized flux on
the orbifold fixed point [left-hand side of Eq. (3.34)].
On the other hand, from holomorphic parts, the holo-

morphic function on the part of S2 region fM
0

S2 ðz0Þ can be
determined as

fM
0

þ ðz0Þ ¼ C0jz0l;

C0j ¼ CjNrme−
πM
2Imτr

2

�
r

N þ 1

�
M0−1−l

�
N − 1

2N

�
−M0−1

2

:

ð3:35Þ

Note that the holomorphicity of bulk modes with positive
flux M requires l ≥ 0; otherwise, they will diverge at
z0 ¼ 0. The divergence induced by the negative localized
flux l would be removed by introducing vortices analyzed
in Ref. [45], which is beyond the scope of this paper. In the
following analysis, we focus on the l ≥ 0 case.
Therefore, (bulk) zero-mode wave functions on magnet-

ized blow-up manifolds can be written as

ψ0;j
blow−up¼

8>>><
>>>:

C0jz0l

ðR2þjz0j2ÞM
0−1
2

ðjz0j≤ r
Nþ1

Þ

jg1ðzÞjm−lNe−
πM
2Imτjzj2 h̃ðjþα1;ατÞ;Mþ;m ðzÞ ðr≤ jzjÞ

≃CjNjzjm−lNe−
πM
2Imτjzj2zlN

:

ð3:36Þ

To determine the normalization, we first calculate the
following inner product,

Gij ¼
Z
blow−upmanifold

dzdz̄
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jdetðgÞj

p
ðψ0;i

blow−upÞ�ψ0;j
blow−up

¼ δi;j −
Z

r

0

djzjjzj
Z

2π
N

0

dφðCiÞ�CjN2jzj2me−πM
Imτjzj2

þ
Z r

Nþ1

0

djz0jjz0j
Z

2π

0

dφ
4R4

ðR2 þ jz0j2Þ2
ðC0iÞ�C0jjz0j2l
ðR2 þ jz0j2ÞM0−1

≃ δi;j þ ðCiÞ�Cjπðr2Þmþ1B; ð3:37Þ

with

B ≃
�
N − 1

2N
ðM0 − lÞ

�
−1 1 −

Pl
p¼0

ΓðM0þ1Þ
ΓðM0−pþ1ÞΓðpþ1Þ ðNþ1

2N ÞM0−pðN−1
2N Þp

ΓðM0þ1Þ
ΓðM0−lþ1ÞΓðlþ1Þ ðNþ1

2N ÞM0−lðN−1
2N Þl

þ
�
−
mþ 1

N

�
−1
:

We next perform the unitary transformation for flavor index j,

ψ0;j0
blow−up ¼ Uj0jψ

0;j
blow−up

U ¼
Y
J

ðUJðJþ1ÞÞdiagðe−i argðCjÞÞ

UJðJþ1Þ ¼

0
BBBBBBBBBB@

1

. .
.

cos θJðJþ1Þ − sin θJðJþ1Þ
sin θJðJþ1Þ cos θJðJþ1Þ

. .
.

1

1
CCCCCCCCCCA
; tan2θJðJþ1Þ ¼

P
J
I¼1 jCIj2
jCJþ1j2 : ð3:38Þ
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Then, the inner product ðGÞi0j0 can be rewritten as

G ≃

0
BBB@

1

. .
.

1þP
j
jCjj2πðr2Þmþ1B

1
CCCA: ð3:39Þ

Thus, by redefining the normalization factor for
the last mode j0 ¼ j0max as N 00;j0max

T2=ZN;þ ¼ N 0;j0max

T2=ZN;þ
ð1þOððr2Þmþ1ÞÞ−1=2, all of the above modes can be
expressed by orthonormal basis. The detailed calculation
of Eq. (3.37) is shown in Appendix B.
Similarly, the same argument can be applied for zfpI ≠ 0

by the replacement (3.11). Especially, we obtain the
following flux condition:

πr2I
NImτ

M þ ξFI
N

¼ N − 1

2N
M0

I: ð3:40Þ

This result becomes important for deriving the AS index
theorem on the T2=ZN orbifold in the next section.

IV. INDEX THEOREM ON THE BLOW-UP
MANIFOLD

This section is the main section of this paper. Our
purpose is to establish the AS index theorem on the
T2=ZN orbifolds with magnetic flux background. Due to
the existence of singularities on the orbifolds, the AS index
theorem cannot be applied directly to the orbifold models.
Our strategy is to replace the T2=ZN orbifolds with the
blow-up manifolds without singularities and to apply the
AS index theorem to them.

A. Index theorem on the blow-up manifold

The AS index theorem on the blow-up manifolds can be
obtained as

nþ − n− ¼
Z
blow−upmanifold

F
2π

ð4:1Þ

¼
Z
T2=ZN bulk

F
2π

þ
X
I

Z
N−1
2N ×S2

F0

2π
ð4:2Þ

¼
�
M
N

−
X
I

πr2I
NImτ

M

�
þ
X
I

N − 1

2N
M0

IðrIÞ

ð4:3Þ

¼
�
M
N

−
X
I

πr2I
NImτ

M

�
þ
X
I

�
πr2I
NImτ

M þ ξFI
N

�

ð4:4Þ

¼ M
N

þ
X
I

ξFI
N

: ð4:5Þ

There are several comments for the above equations. For
Eq. (4.1), we emphasize that the index nþ − n− on the
blow-up manifolds does not depend on the curvature but
only on the flux. It comes from the fact that the AS index
theorem on a 2D compact manifold has only the contri-
bution of the flux on the manifold, in general. For the first
term of Eq. (4.2) [and Eq. (4.3)], the T2=ZN bulk refers to
the region of the T2=ZN orbifold from which the areas near
the fixed points are removed. For the second term of
Eq. (4.2) [and Eq. (4.3)], it represents each amount of the
magnetic flux on the embedded area of S2 replacing the
fixed point. The sum over I is taken for the fixed points
of the T2=ZN orbifolds. For Eq. (4.4), we used the
relation (3.40).
For the final result (4.5), it should be emphasized that the

AS index theorem on the blow-up manifolds does not
depend on the blow-up radius rI , as it should be. In other
words, the result of the AS index theorem holds even in the
orbifold limit rI → 0,

nþ − n− ¼
Z
T2=ZN

F̃
2π

¼ M
N

þ
X
I

ξFI
N

: ð4:6Þ

Here, F̃ is defined in Eq. (3.16) and this term comes from
the limit of the right-hand side of Eq. (4.2) as follows: in the
rI → 0 (R → 0) limit, the second term of Eq. (4.2) with the
field strength (3.2) can be expressed as

Z
N−1
2N ×S2

iM0
Iδðz0Þδðz̄0Þdz0 ∧ dz̄0; ð4:7Þ

(see Appendix A in Ref. [46]), and it corresponds to
Eq. (3.17) by considering Eq. (3.34). Thus, the first term of
the rightmost-hand side of Eq. (4.6) represents the con-
tribution of the homogeneous magnetic flux on the T2=ZN
orbifolds, which comes from the first term of (3.16), while
the second term represents the sum of localized fluxes at
each fixed point, which comes from the second term of
(3.16). Therefore, Eq. (4.6) becomes the AS index theorem
on the T2=ZN orbifold, and the index can be determined by
only the contribution of the flux.
From Eq. (3.28), the localized flux ξFI is decided by the

localized curvature ξRI and the winding number χþI at the
fixed points, where the winding numbers at the fixed points
are investigated in [30]. We can verify that the number of
chiral zero modes, which are computed by the zero-mode
counting formula in Ref. [30], are completely consistent
with the relation (4.6). The results are summarized in
Tables I–V of the Appendix. Although it was not clear
whether the zero mode counting formula was the AS index
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theorem, the present results using the blow-up manifolds
indicate that it is indeed the case.

B. Reinterpretation of the zero-mode counting formula

We can now reinterpret the zero-mode counting for-
mula (2.48). Using the relation (3.28), the AS index
theorem (4.5) can be rewritten in terms of the winding
numbers χþI as

nþ − n− ¼ M
N

þ
X
I

�
−χþI

N
þ 1

2

ξR

N
þ lI

�

¼ M − Vþ
N

þ 1þ
X
I

lI: ð4:8Þ

Here, we have used the relation

1

2

X
I

ξRI
N

¼ 1; ð4:9Þ

at the last equality. It can be verified as follows:

T2=Z2∶
X
I

ξRI
4

¼ 4 ×
1

4
¼ 1

�
zfpI ¼ 0;

1

2
;
τ

2
;
1þ τ

2

�
;

ð4:10Þ

T2=Z3∶
X
I

ξRI
6
¼ 3×

2

6
¼ 1

�
zfpI ¼ 0;

2þ τ

3
;
1þ 2τ

3

�
;

ð4:11Þ

T2=Z4∶
X
IZ4

ξRIZ4
8

þ 1

2

X
IZ2

ξRIZ2
4

¼ 2 ×
3

8
þ 1

2
× 2 ×

1

4
¼ 1

�
zfpIZ4

¼ 0;
1þ τ

2
; zfpIZ2

¼ 1

2
;
τ

2

�
; ð4:12Þ

T2=Z6∶
X
IZ6

ξRIZ6
12

þ 1

2

X
IZ3

ξRIZ3
6

þ 1

3

X
IZ2

ξRIZ2
4

¼ 5

12
þ 2

6
þ 1

4
¼ 1

�
zfpIZ6

¼ 0; zfpIZ3
¼ 1þ τ

3
;
2þ 2τ

3
; zfpIZ2

¼ 1

2
;
τ

2
;
1þ τ

2

�
:

ð4:13Þ

Note that Z4 and Z6 have subgroups and must include the
contributions of their fixed points.
Thus, the zero-mode counting formula (2.48) can be

derived from Eq. (4.8) by taking lI ¼ 0. The physical
meaning of þ1 in Eq. (2.48), which had been a mystery, is
now clear. The factor þ1 is the contribution of the sum of
the localized curvatures at fixed points. When we try to
write the index theorem with the winding numbers, þ1 is

needed to remove the contribution of the localized curva-
ture from them, since the winding numbers include the
contributions of both localized flux and the localized
curvature [see Eq. (3.28)]. This analysis reveals that the
zero-mode counting formula includes only the contribution
of the flux.
An interesting observation in our analysis is the exist-

ence of a new degree of freedom lI. The AS index theorem
says that additional zero modes can appear. In the next
section, we study the new zero modes in detail.

V. LOCALIZED ZERO-MODE WAVE FUNCTIONS

As shown in the previous section, the degree of freedom
of localized flux means that there exist additional zero
modes. In this section, we study wave functions of the new
zero modes.
The bulk zero-mode wave functions, in Sec. III, on the

bulk region near the fixed point z ¼ 0 and the blow-up
region are proportional to zlN and z0l, respectively. It
indicates that the new zero-mode wave functions on the
bulk region near z ¼ 0 and the blow-up region will be
proportional to zaN and z0a for a ¼ 0;…;l − 1, respec-
tively. Here, the factor zlN comes from the fact that the
holomorphic function of the following wave function,

ψ0;N
T2=Z1

N;þ
ðzÞ≡ ðψ0;ð1

2
;1
2
Þ;1

T2=Z1
N;þ

ðzÞÞN ¼ ðψ0;ð1
2
;1
2
Þ;1

T2;þ ðzÞÞN; ð5:1Þ

is proportional to zN near the fixed point though it is ZN
invariant, because it is made of the wave function with ZN
charge m ¼ 1. Note that its boundary condition is the same
as that of wave functions with M ¼ N, ðα1; ατÞ≡
ðN
2
− ½N

2
�; N

2
− ½N

2
�Þ, and m ¼ 0, i.e., ψ

0;ðjþN
2
−½N

2
�;N
2
−½N

2
�Þ;N

T2=Z0
N;þ

ðzÞ,
and then the wave function in Eq. (5.1) can be expanded
by these wave functions, where [x] denotes the floor
function. Thus, if the other wave function ψ0;N

T2=Z0
N
ðzÞ, which

has the same boundary condition of ψ
ðjþN

2
−½N

2
�;N
2
−½N

2
�Þ;N

T2=Z0
N

ðzÞ, is
constructed fromm ¼ 0mode, we can obtain the new wave
function whose holomorphic function is proportional
to zaN near z ¼ 0 by replacing ðψ0;N

T2=Z1
N;þ

ðzÞÞl−a with

ðψ0;N
T2=Z0

N;þ
ðzÞÞl−a. Indeed, the zero-mode number of

ψ
0;ðjþN

2
−½N

2
�;N
2
−½N

2
�Þ;N

T2=Z0
N;þ

ðzÞ is just two, indicating that there exists

the other zero-mode which is different from Eq. (5.1) and

can be expanded by ψ
0;ðjþN

2
−½N

2
�;N
2
−½N

2
�Þ;N

T2=Z0
N;þ

ðzÞ. Then, we can

obtain ψ0;N
T2=Z1

N;þ
ðzÞ as
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ψ0;N
T2=Z0

N;þ
ðzÞ≡e−

πN
2Imτjzj2hN0 ðzÞ

≡

8>>>>><
>>>>>:

ðψ0;ð0;0Þ;1
T2=Z0

N;þ
ðzÞÞN¼ðψ0;ð0;0Þ;1

T2;þ ðzÞÞN ðN¼2;4Þ

ðψ0;ð1
6
;1
6
Þ;1

T2=Z0
N;þ

ðzÞÞN¼ðψ0;ð1
6
;1
6
Þ;1

T2;þ ðzÞÞN ðN¼3Þ

ðψ0;ð0;0Þ;2
T2=Z0

N;þ
ð0Þψ0;ð0;0Þ;2

T2=Z0
N;þ

ðzÞÞN=2 ðN¼6Þ

;

ð5:2Þ

with

ψ0;ð0;0Þ;2
T2=Z0

N;þ
ðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

p þ 1

2
ffiffiffi
3

p
s

e−πi=8ψ0;ð0;0Þ;2
T;þ2 ðzÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

p
− 1

2
ffiffiffi
3

p
s

eπi=8ψ0;ð1;0Þ;2
T2;þ ðzÞ:

Therefore, the l number of new zero-mode wave functions
can be expressed as

ψ̃0;a;l
T2=ZN;þ ≡N 0;a

T2=ZN;þ

�ψ0;N
T2=Z0

N;þ
ðzÞ

ψ0;N
T2=Z1

N;þ
ðzÞ

�l−a

ψ̃0;ðα1;ατÞ
T2=Zm

N;þ
ðzÞ

≃ CaNjzjm−lNe−
πM
2Imτjzj2zaN; ð5:3Þ

where the coefficient Ca is given by

Ca ≡N a
T2=ZN

�
hN0 ð0Þ

ðgð1Þ1 ð0ÞÞN
�

l−aX
j

Cj: ð5:4Þ

Note that the nonholomorphic part of Eq. (5.3) does not
change from that of Eq. (3.26). These new zero-modes
diverge at the singular point z ¼ 0, while they are sup-
pressed as they go away from the singular point, as shown
in Fig. 4.
That is, these new zero modes correspond to localized

modes around the singular point (z ¼ 0). Although these
localized modes diverge at z ¼ 0, they can be regularized
by replacing the cone around z ¼ 0 with the part of S2. In
other words, to calculate their normalization, we consider
their wave functions on the magnetized blow-up manifold.
As in Sec. III, through the junction condition in Eq. (3.29),
the wave functions on the magnetized blow-up manifold,
which correspond to localized modes on the orbifold, can
be written as

ψ0;a
blow−up ¼

8>>>>><
>>>>>:

C0az0a

ðR2þjz0j2ÞM
0−1
2



jz0j ≤ r

Nþ1

�
jg1ðzÞjm−lNe−

πM
2Imτjzj2N 0;a

T2=ZN;þ



hN
0
ðzÞ

ðg1ðzÞÞN
�
l−aP

j
h̃jðzÞ ðr ≤ jzjÞ

≃CaNjzjm−lNe−
πM
2Imτjzj2zaN

; ð5:5Þ

where the coefficient C0a is given by

C0a ¼ CaNrm−ðl−aÞNe− πM
2Imτr

2

�
r

N þ 1

�
M0−1−a

�
N − 1

2N

�
−M0−1

2

:

ð5:6Þ
Furthermore, since these wave functions are suppressed as
they go away from the orbifold singular point, it has little
effect on the result of the inner product that we use an
approximation form in the whole of the bulk region and
also expand the integral region to jzj → ∞. Under this

approximation, it turns out that the l number of new zero
modes are orthogonal to each other and also orthogonal to
all of the bulk zero modes by using the following results:

Z
2π
N

0

d argðzÞzkN ¼ 0;
Z

2π

0

d argðz0Þz0k ¼ 0; ðk ≠ 0Þ:

ð5:7Þ

Thus, the normalization of localized modes can be deter-
mined in the following way:

FIG. 4. Probability density of unnormalized zero-mode wave
function jψ̃a0¼l0−1

T2=Z4;þ;0
j2.
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1 ¼
Z
blow−upmanifold

dzdz̄
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jdetðgÞj

p
jψ0;a

blow−upj2

≃
Z

∞

r
djzjjzj

Z 2π
N

0

dφjCaj2N2jzj2ðm−ðl−aÞNÞe−πM
Imτjzj2 þ

Z r
Nþ1

0

djz0jjz0j
Z

2π

0

dφ
4R4

ðR2 þ jz0j2Þ2
jC0aj2jz0j2a

ðR2 þ jz0j2ÞM0−1

≃ jCaj2π
�
1

r2

�ðl−aÞN−ðmþ1Þ�
N

ð− πM
Imτ r

2Þðl−aÞN−ðmþ1Þ

½ðl − aÞN − ðmþ 1Þ�!E1

�
πM
Imτ

r2
�
þ L

�
; ð5:8Þ

with

L ≃
�
N − 1

2N
ðM0 − aÞ

�
−1 1 −

P
a
p¼0

M0!
ðM0−pÞ!p! ðNþ1

2N ÞM0−pðN−1
2N Þp

M0!
ðM0−aÞ!a! ðNþ1

2N ÞM0−aðN−1
2N Þa þ

�
ðl − aÞ −mþ 1

N

�
−1
;

where E1 denotes the exponential integral. The detailed
calculation of Eq. (5.8) is shown in Appendix C. Therefore,
we obtained normalizable zero-mode wave functions in
Eq. (5.5), and they correspond to localized modes under the
orbifold limit r → 0. Similarly, the above analysis is valid
for localized modes around the other orbifold singular
points by just replacement in Eq. (3.11).

VI. YUKAWA COUPLINGS ON MAGNETIZED
BLOW-UP MANIFOLDS OF T2=ZN ORBIFOLDS

Finally, we study Yukawa coupling of 4D effective
theory derived from the magnetized blow-up manifold.
Here, we only replace the cone around z ¼ 0 with the part
of S2. Similarly, we can consider the following analysis

even at the other orbifold singular points. First, we denote
bulk zero-modes and localized zero-modes shortly as B and
L, respectively. When we consider the Yukawa coupling
X1-X2-X3 (X ¼ B;L) in which M1 þM2 ¼ M3, ξF1 þ
ξF2 ¼ ξF3 (l1 þ l2 ¼ l3, m1 þm2 ¼ m3),

4 and ðα1; ατÞ1 þ
ðα1;ατÞ2 ≡ ðα1; ατÞ3ðmod 1Þ are satisfied, only three
patterns of couplings, (i) B1-B2-B3 coupling, (ii) L1-L2-L3

coupling, and (iii) B1-L2-L3 coupling, are allowed by
considering Eq. (5.7). Thus, we have a specific
coupling selection rule in our theory. We can calculate
their Yukawa coupling by using the results of Eqs. (3.37)
and (5.8).
In case (i), the Yukawa coupling in the 4D effective

theory can be expressed as

Yijk
blow−up ¼ yð3ÞB1−B2−B3

Z
blow−upmanifold

dzdz̄
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jdetðgÞj

p
ðψ0;k

blow−upÞ�ψ0;i
blow−upψ

0;j
blow−up

¼ Yijk
T2=ZN

− yð3ÞB1−B2−B3

Z
r

0

djzjjzj
Z

2π
N

0

dφðCkÞ�CiCjN3jzj2m3e−
πM3
Imτ jzj2

þ yð3ÞB1−B2−B3

Z r
Nþ1

0

djz0jjz0j
Z

2π

0

dφ
4R4

ðR2 þ jz0j2Þ2
ðC0kÞ�C0iC0jjz0j2l3

ðR2 þ jz0j2ÞM0
3
−1

¼ Yijk
T2=ZN

þ yð3ÞB1−B2−B3
ðCkÞ�CiCjNπðr2Þm3þ1B3; ð6:1Þ

where yð3ÞB1−B2−B3
denotes the 3-point coupling in higher-dimensional theory, and Yijk

T2=ZN
denotes the 4DYukawa coupling in

the orbifold limit. Note that we use wave functions in Eq. (3.36). When we calculate it by orthonormal basis, only
Yi0maxj0maxk0max
blow−up receives the blow-up correction while the others remain Yi0j0k0

blow−up ¼ Yi0j0k0

T2=ZN
.

In case (ii), the Yukawa coupling on the magnetized blow-up manifold can be expressed as

4When m1 þm2 ¼ m3 þ N and l1 þ l2 ¼ l3 þ 1 are satisfied, correction terms in Eq. (6.1) are vanished, i.e., Yijk
blow−up ¼ Yijk

T2=ZN
,

while they give corrections for B1-L2ðb ¼ l2 − 1Þ-B3 coupling, Yiðl2−1Þk
blow−up , instead.
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Yabc
blow−up ¼ yð3ÞL1−L2−L3

Z
blow−upmanifold

dzdz̄
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jdetðgÞj

p
ðψ0;c

blow−upÞ�ψ0;a
blow−upψ

0;b
blow−up

≃ yð3ÞL1−L2−L3

�Z
∞

r
djzjjzj

Z
2π
N

0

dφðCcÞ�CaCbN3jzj2ðm3−ðl3−cÞNÞe−
πM3
Imτ jzj2

þ
Z r

Nþ1

0

djz0jjz0j
Z

2π

0

dφ
4R4

ðR2 þ jz0j2Þ2
ðC0cÞ�C0aC0bjz0j2c
ðR2 þ jz0j2ÞM0

3
−1

�
δaþb;c

≃ yð3ÞL1−L2−L3

CaCb

Cc Nδaþb;c; ð6:2Þ

where yð3ÞL1−L2−L3
denotes the 3-point coupling in higher-

dimensional theory.
The case (iii) is the same as the case (ii) by replacing a0

and δaþb;c with i and δl1þb¼c, respectively, i.e.,

Yibc
blow−up ≃ yð3ÞB1−L2−L3

CiCb

Cc Nδl1þb;c; ð6:3Þ

where yð3ÞB1−L2−L3
denotes the 3-point coupling in higher-

dimensional theory.
As a result, the Yukawa couplings among bulk modes

(i) receive the contributions of blow-up radius, which play
an important role in realizing the hierarchical structure of
fermion masses as well as mixing angles, as demonstrated
in Ref. [38]. By contrast, our results exhibit that Yukawa
couplings including localized zero modes are determined
by the normalization factor depending on the localized flux.
Similarly, we can compute higher-dimensional operators.
The overall coefficients such as yð3ÞB1−B2−B3

, yð3ÞL1−L2−L3
, and

yð3ÞB1−L2−L3
depend on higher-dimensional theory. They may

be unified in supersymmetric Yang-Mills theory on a
smooth manifold. All of the couplings originate from the
gauge coupling in higher-dimensional supersymmetric
Yang-Mills theory, which is a low-energy effective field
theory of superstring theory. Obviously, there is no differ-
ence between bulk and localized modes in a smooth
manifold. It is interesting to understand the flavor structure
of localized modes as well as the origin of localized modes
from the viewpoint of the string theory, but we leave the
detailed study for future work.

VII. CONCLUSION

The main purpose of this paper is to establish the AS
index theorem on the T2=ZNðN ¼ 2; 3; 4; 6Þ orbifolds. In
our previous paper [30], we have got the zero-mode
counting formula which gives the numbers of the chiral
zero modes on T2=ZN orbifolds with magnetic flux back-
ground. It is, however, unclear whether the formula
can be regarded as the index theorem, because the equality
between the left-hand side and the right-hand side of
Eq. (2.48) was merely verified in Ref. [30].
Furthermore, it is not obvious why the sum of the winding

numbers Vþ appears and what is the physical meaning of
the factor þ1 in the formula (2.48). To confirm the zero-
mode counting formula (2.48) as the index theorem and
also to reveal the physical and geometrical meanings of the
right-hand side of the formula (2.48), we have considered
the blow-up manifolds of the magnetized T2=ZNðN ¼
2; 3; 4; 6Þ orbifolds, where we have constructed the blow-
up manifolds by cutting out around the singularities of the
T2=ZN orbifolds and attaching smooth manifolds (parts of
S2) to them.
In Sec. III, we have studied the blow-up manifolds of

T2=ZN with magnetic flux more precisely than the previous
work in Ref. [37]. The renewed point is introducing the
appropriate singular gauge transformation, by which the
winding number appeared in the ZN twisted boundary
condition of wave functions on the magnetized T2=ZN
orbifold can be replaced with the localized flux and
localized curvature at the fixed point of T2=ZN orbifold.
Then, we have obtained zero mode wave functions on the
blow-up manifolds of the magnetized T2=ZN orbifold by
connecting those on T2=ZN orbifold and those on S2

smoothly, even if those on T2=ZN orbifold have nonzero
winding numbers. In particular, we have found that not
only the total curvature but also the total magnetic flux
including localized flux are invariant under the blow-up
process. This result becomes important for deriving the AS
index theorem on the T2=ZN orbifolds. We have also
calculated the normalization of zero-mode wave functions
on the blow-up manifolds with any winding numbers.
In Sec. IV, we have applied the AS index theorem to the

blow-up manifolds of the T2=ZN orbifolds. The numbers of
chiral zero modes are given only by the magnetic flux on
the blow-up manifolds. Since the total magnetic flux is
invariant under the blow-up process, the result is not
changed even in the orbifold limit rI → 0, and the AS
index theorem on T2=ZN orbifolds with magnetic flux
background is expressed by Eq. (4.6). It shows that the
index is decided by the contribution of the homogeneous
magnetic flux M and the localized fluxes ξFI at the fixed
points. We have verified that the number of chiral zero
modes obtained by the zero-mode counting formula (2.48)
in [30] is completely consistent with Eq. (4.6). The zero-
mode counting formula can be reinterpreted from the
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viewpoint of the blow-up manifolds. The factor þ1 in the
formula (2.48) is found to be the contribution of the
localized curvature at the fixed points and is needed to
remove the contribution of the localized curvature from the
winding numbers because the winding numbers include the
contributions of both the localized flux and the localized
curvature. (Remember that the AS index theorem in two
dimensions needs only the information of fluxes.)
Interestingly, a new degree of freedom of localized flux
l in Eq. (4.8), which emerges from the indeterminacy of
mod N, suggests that there are new jlj number of chiral
zero modes.
In Sec. V, we have shown that the new zero modes given

by the additional degree of freedom of localized flux
correspond to localized zero modes at the orbifold singular
point of T2=ZN orbifold. Although they diverge at the
singular point, we calculated their normalization on the
blow-up manifold to regularize them.
Moreover, in Sec. VI, we have calculated Yukawa

coupling among bulk zero modes (discussed in Sec. III)
and localized zero modes (discussed in Sec. V), and then it
turns out that only three patterns of Yukawa coupling are
allowed. We have a specific coupling selection rule. It
would be interesting to study phenomenological implica-
tions of such coupling selection rules including higher-
dimensional operators.
It is interesting to apply our analysis for more general

higher-dimensional toroidal orbifolds such as T4=ZN and
T6=ZN .

5 It is also important to study the relation with string
theory. For example, localized modes, i.e., twisted modes
should appear massless in heterotic string theory on
toroidal-orbifold compactifications with generic gauge
background by stringy consistency. It would be important
to revisit this aspect from the viewpoint of our analysis of

localized gauge fluxes and localized modes. However, that
is beyond our scope and we would study them elsewhere.
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APPENDIX A: LOCALIZED FLUX AND INDEX

We compared the value of the index obtained from
Eq. (4.6) with the result obtained from the zero-mode
counting formula [30] and confirmed that these are con-
sistent in all cases. The results are summarized in
Tables I–V.

APPENDIX B: NORMALIZATION OF BULK
ZERO MODES

Here, we show the detailed calculation of Eq. (3.37). It
consists of three terms. The first term shows the calculation
in all regions of the original T2=ZN orbifold. The second
term shows the calculation in the region of the cone around
z ¼ 0 which is cut out from the T2=ZN orbifold. The third
term shows the calculation in the region of the part of S2

which is embedded instead of the cone. In the following,
we show the detailed calculation of the second and third
terms.
The second term can be calculated as

Gð2Þ
ij ≡

Z
r

0

djzjjzj
Z 2π

N

0

dφðCiÞ�CjN2jzj2me−πM
Imτjzj2

¼ ðCiÞ�CjπN

�
πM
Imτ

�
−ðmþ1Þ Z πM

Imτr
2

0

d

�
πM
Imτ

jzj2
��

πM
Imτ

jzj2
�

m
e−ðπMImτjzj2Þ

¼ ðCiÞ�CjπN

�
πM
Imτ

�
−ðmþ1Þ Z πM

Imτr
2

0

dttðmþ1Þ−1e−t

¼ ðCiÞ�CjπN
�
πM
Imτ

�
−ðmþ1Þ

γ

�
mþ 1;

πM
Imτ

r2
�
;

where γðmþ 1; πMImτ r
2Þ denotes the lower incomplete gamma function. It satisfies the following recurrence relation:

5See for the higher-dimensional orbifold models with bulk magnetic fluxes [47,48] as well as localized fluxes [49,50].
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TABLE I. The values of localized fluxes at fixed points and index (lI ¼ 0) on T2=Z2.

Flux Parity Twist Localized flux Index (2.48)

M η ðα1; α2Þ ξF
1

N
ξF
2

N
ξF
3

N
ξF
4

N
M
N þP4

I¼1

ξFI
N

M−Vþ
N þ 1

2mþ 1 þ1 (0, 0) 1=4 1=4 1=4 −1=4 ðM þ 1Þ=2 ðM þ 1Þ=2
ð1
2
; 0Þ 1=4 −1=4 1=4 1=4 ðM þ 1Þ=2 ðM þ 1Þ=2

ð0; 1
2
Þ 1=4 1=4 −1=4 1=4 ðM þ 1Þ=2 ðM þ 1Þ=2

ð1
2
; 1
2
Þ 1=4 −1=4 −1=4 −1=4 ðM − 1Þ=2 ðM − 1Þ=2

−1 (0, 0) −1=4 −1=4 −1=4 1=4 ðM − 1Þ=2 ðM − 1Þ=2
ð1
2
; 0Þ −1=4 1=4 −1=4 −1=4 ðM − 1Þ=2 ðM − 1Þ=2

ð0; 1
2
Þ −1=4 −1=4 1=4 −1=4 ðM − 1Þ=2 ðM − 1Þ=2

ð1
2
; 1
2
Þ −1=4 1=4 1=4 1=4 ðM þ 1Þ=2 ðM þ 1Þ=2

2mþ 2 þ1 (0, 0) 1=4 1=4 1=4 1=4 M=2þ 1 M=2þ 1

ð1
2
; 0Þ 1=4 −1=4 1=4 −1=4 M=2 M=2

ð0; 1
2
Þ 1=4 1=4 −1=4 −1=4 M=2 M=2

ð1
2
; 1
2
Þ 1=4 −1=4 −1=4 1=4 M=2 M=2

−1 (0, 0) −1=4 −1=4 −1=4 −1=4 M=2 − 1 M=2 − 1

ð1
2
; 0Þ −1=4 1=4 −1=4 1=4 M=2 M=2

ð0; 1
2
Þ −1=4 −1=4 1=4 1=4 M=2 M=2

ð1
2
; 1
2
Þ −1=4 1=4 1=4 −1=4 M=2 M=2

TABLE II. The values of localized fluxes at fixed points and index (lI ¼ 0) on T2=Z3.

Flux Parity Twist Localized flux Index (2.48)

M η α
ξF
1

N
ξF
2

N
ξF
3

N
M
N þP3

I¼1

ξFI
N

M−Vþ
N þ 1

6mþ 1 1 1=6 1=3 0 1=3 ðM þ 2Þ=3 ðM þ 2Þ=3
1=2 1=3 −1=3 −1=3 ðM − 1Þ=3 ðM − 1Þ=3
5=6 1=3 1=3 0 ðM þ 2Þ=3 ðM þ 2Þ=3

ω 1=6 0 −1=3 0 ðM − 1Þ=3 ðM − 1Þ=3
1=2 0 1=3 1=3 ðM þ 2Þ=3 ðM þ 2Þ=3
5=6 0 0 −1=3 ðM − 1Þ=3 ðM − 1Þ=3

ω2 1=6 −1=3 1=3 −1=3 ðM − 1Þ=3 ðM − 1Þ=3
1=2 −1=3 0 0 ðM − 1Þ=3 ðM − 1Þ=3
5=6 −1=3 −1=3 1=3 ðM − 1Þ=3 ðM − 1Þ=3

6mþ 2 1 0 1=3 0 0 ðM þ 1Þ=3 ðM þ 1Þ=3
1=3 1=3 −1=3 1=3 ðM þ 1Þ=3 ðM þ 1Þ=3
2=3 1=3 1=3 −1=3 ðM þ 1Þ=3 ðM þ 1Þ=3

ω 0 0 −1=3 −1=3 ðM − 2Þ=3 ðM − 2Þ=3
1=3 0 1=3 0 ðM þ 1Þ=3 ðM þ 1Þ=3
2=3 0 0 1=3 ðM þ 1Þ=3 ðM þ 1Þ=3

ω2 0 −1=3 1=3 1=3 ðM þ 1Þ=3 ðM þ 1Þ=3
1=3 −1=3 0 −1=3 ðM − 2Þ=3 ðM − 2Þ=3
2=3 −1=3 −1=3 0 ðM − 2Þ=3 ðM − 2Þ=3

6mþ 3 1 1=6 1=3 −1=3 0 M=3 M=3
1=2 1=3 1=3 1=3 M=3þ 1 M=3þ 1
5=6 1=3 0 −1=3 M=3 M=3

ω 1=6 0 1=3 −1=3 M=3 M=3
1=2 0 0 0 M=3 M=3
5=6 0 −1=3 1=3 M=3 M=3

ω2 1=6 −1=3 0 1=3 M=3 M=3
1=2 −1=3 −1=3 −1=3 M=3 − 1 M=3 − 1
5=6 −1=3 1=3 0 M=3 M=3
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γ

�
mþ 1;

πM
Imτ

r2
�

¼ mγ

�
m;

πM
Imτ

r2
�
−
�
πM
Imτ

r2
�

m
e−ð

πM
Imτr

2Þ

γ

�
1;
πM
Imτ

r2
�

¼ 1 − e−ðπMImτr
2Þ;

and then by solving this recurrence relation, γðmþ 1; πMImτ r
2Þ can be expressed as

γ

�
mþ 1;

πM
Imτ

r2
�

¼ m!e−
πM
Imτr

2

�
e

πM
Imτr

2 −
Xm
p¼0

1

p!

�
πM
Imτ

r2
�

p
�

¼ e−
πM
Imτr

2 1

mþ 1

�
πM
Imτ

r2
�

mþ1X∞
p¼0

ðmþ 1Þ!
ðmþ 1þ pÞ!

�
πM
Imτ

r2
�

p
:

Thus, the second term Gð2Þ
ij can be expressed as

Gð2Þ
ij ¼ ðCiÞ�Cjπðr2Þmþ1e−

πM
Imτr

2

�
mþ 1

N

�
−1X∞

p¼0

ðmþ 1Þ!
ðmþ 1þ pÞ!

�
πM
Imτ

r2
�

p
: ðB1Þ

By contrast, the third term can be calculated as

TABLE III. The values of localized fluxes at fixed points and index (lI ¼ 0) on T2=Z3.

Flux Parity Twist Localized flux Index (2.48)

M η α
ξF
1

N
ξF
2

N
ξF
3

N
M
N þP3

I¼1

ξFI
N

M−Vþ
N þ 1

6mþ 4 1 0 1=3 −1=3 −1=3 ðM − 1Þ=3 ðM − 1Þ=3
1=3 1=3 1=3 0 ðM þ 2Þ=3 ðM þ 2Þ=3
2=3 1=3 0 1=3 ðM þ 2Þ=3 ðM þ 2Þ=3

ω 0 0 1=3 1=3 ðM þ 2Þ=3 ðM þ 2Þ=3
1=3 0 0 −1=3 ðM − 1Þ=3 ðM − 1Þ=3
2=3 0 −1=3 0 ðM − 1Þ=3 ðM − 1Þ=3

ω2 0 −1=3 0 0 ðM − 1Þ=3 ðM − 1Þ=3
1=3 −1=3 −1=3 1=3 ðM − 1Þ=3 ðM − 1Þ=3
2=3 −1=3 1=3 −1=3 ðM − 1Þ=3 ðM − 1Þ=3

6mþ 5 1 1=6 1=3 1=3 −1=3 ðM þ 1Þ=3 ðM þ 1Þ=3
1=2 1=3 0 0 ðM þ 1Þ=3 ðM þ 1Þ=3
5=6 1=3 −1=3 1=3 ðM þ 1Þ=3 ðM þ 1Þ=3

ω 1=6 0 0 1=3 ðM þ 1Þ=3 ðM þ 1Þ=3
1=2 0 −1=3 −1=3 ðM − 2Þ=3 ðM − 2Þ=3
5=6 0 1=3 0 ðM þ 1Þ=3 ðM þ 1Þ=3

ω2 1=6 −1=3 −1=3 0 ðM − 2Þ=3 ðM − 2Þ=3
1=2 −1=3 1=3 1=3 ðM þ 1Þ=3 ðM þ 1Þ=3
5=6 −1=3 0 −1=3 ðM − 2Þ=3 ðM − 2Þ=3

6mþ 6 1 0 1=3 1=3 1=3 M=3þ 1 M=3þ 1
1=3 1=3 0 −1=3 M=3 M=3
2=3 1=3 −1=3 0 M=3 M=3

ω 0 0 0 0 M=3 M=3
1=3 0 −1=3 1=3 M=3 M=3
2=3 0 1=3 −1=3 M=3 M=3

ω2 0 −1=3 −1=3 −1=3 M=3 − 1 M=3 − 1
1=3 −1=3 1=3 0 M=3 M=3
2=3 −1=3 0 1=3 M=3 M=3
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Gð3Þ
ij ≡

Z r
Nþ1

0

djz0jjz0j
Z

2π

0

dφ
4R4

ðR2 þ jz0j2Þ2
ðC0iÞ�C0jjz0j2l
ðR2 þ jz0j2ÞM0−1

¼ ðC0iÞ�C0j4πðR2Þ1−ðM0−l−1Þ
Z

1

Nþ1
2N

d

�
R2

R2 þ jz0j2
��

1 −
R2

R2 þ jz0j2
�

l
�

R2

R2 þ jz0j2
�

M0−l−1

¼ ðCiÞ�CjN2ðr2Þme−πM
Imτr

2

�
r2

ðN þ 1Þ2
�

M0−l−1� 2N
N − 1

�
M0−1

4π

�
r2

ðN − 1ÞðN þ 1Þ
�

2þl−M0

×

�Z
1

0

dttðM0−lÞ−1ð1 − tÞðlþ1Þ−1 −
Z Nþ1

2N

0

dttðM0−lÞ−1ð1 − tÞðlþ1Þ−1
�

¼ ðCiÞ�Cjπðr2Þmþ1e−
πM
Imτr

2

�
2N

N þ 1

�
M0−l

�
2N

N − 1

�
lþ1

ðβðM0 − l;lþ 1Þ − βNþ1
2N
ðM0 − l;lþ 1ÞÞ;

where βðM0 − l;lþ 1Þ and βNþ1
2N
ðM0 − l;lþ 1Þ denote the beta function and the incomplete beta function, respectively.

They satisfy the following recurrence relations:

TABLE IV. The values of localized fluxes at fixed points and index (lI ¼ 0) on T2=Z4.

Flux Parity Twist Localized flux Index (2.48)

M η α
ξF
1

N
ξF
2

N
ξF
3

N
ξF
4

N
M
N þP4

I¼1

ξFI
N

M−Vþ
N þ 1

4mþ 1 1 0 3=8 1=8 1=8 1=8 ðM þ 3Þ=4 ðM þ 3Þ=4
1=2 3=8 −3=8 −1=8 −1=8 ðM − 1Þ=4 ðM − 1Þ=4

i 0 1=8 −1=8 −1=8 −1=8 ðM − 1Þ=4 ðM − 1Þ=4
1=2 1=8 3=8 1=8 1=8 ðM þ 3Þ=4 ðM þ 3Þ=4

−1 0 −1=8 −3=8 1=8 1=8 ðM − 1Þ=4 ðM − 1Þ=4
1=2 −1=8 1=8 −1=8 −1=8 ðM − 1Þ=4 ðM − 1Þ=4

−i 0 −3=8 3=8 −1=8 −1=8 ðM − 1Þ=4 ðM − 1Þ=4
1=2 −3=8 −1=8 1=8 1=8 ðM − 1Þ=4 ðM − 1Þ=4

4mþ 2 1 0 3=8 −1=8 1=8 1=8 ðM þ 2Þ=4 ðM þ 2Þ=4
1=2 3=8 3=8 −1=8 −1=8 ðM þ 2Þ=4 ðM þ 2Þ=4

i 0 1=8 −3=8 −1=8 −1=8 ðM − 2Þ=4 ðM − 2Þ=4
1=2 1=8 1=8 1=8 1=8 ðM þ 2Þ=4 ðM þ 2Þ=4

−1 0 −1=8 3=8 1=8 1=8 ðM þ 2Þ=4 ðM þ 2Þ=4
1=2 −1=8 −1=8 −1=8 −1=8 ðM − 2Þ=4 ðM − 2Þ=4

−i 0 −3=8 1=8 −1=8 −1=8 ðM − 2Þ=4 ðM − 2Þ=4
1=2 −3=8 −3=8 1=8 1=8 ðM − 2Þ=4 ðM − 2Þ=4

4mþ 3 1 0 3=8 −3=8 1=8 1=8 ðM þ 1Þ=4 ðM þ 1Þ=4
1=2 3=8 1=8 −1=8 −1=8 ðM þ 1Þ=4 ðM þ 1Þ=4

i 0 1=8 3=8 −1=8 −1=8 ðM þ 1Þ=4 ðM þ 1Þ=4
1=2 1=8 −1=8 1=8 1=8 ðM þ 1Þ=4 ðM þ 1Þ=4

−1 0 −1=8 1=8 1=8 1=8 ðM þ 1Þ=4 ðM þ 1Þ=4
1=2 −1=8 −3=8 −1=8 −1=8 ðM − 3Þ=4 ðM − 3Þ=4

−i 0 −3=8 −1=8 −1=8 −1=8 ðM − 3Þ=4 ðM − 3Þ=4
1=2 −3=8 3=8 1=8 1=8 ðM þ 1Þ=4 ðM þ 1Þ=4

4mþ 4 1 0 3=8 3=8 1=8 1=8 M=4þ 1 M=4þ 1
1=2 3=8 −1=8 −1=8 −1=8 M=4 M=4

i 0 1=8 1=8 −1=8 −1=8 M=4 M=4
1=2 1=8 −3=8 1=8 1=8 M=4 M=4

−1 0 −1=8 −1=8 1=8 1=8 M=4 M=4
1=2 −1=8 3=8 −1=8 −1=8 M=4 M=4

−i 0 −3=8 −3=8 −1=8 −1=8 M=4 − 1 M=4 − 1
1=2 −3=8 1=8 1=8 1=8 M=4 M=4
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βðM0 − l;lþ 1Þ ¼ l0

M0 − l
βNþ1

2N
ðM0 − lþ 1;lÞ

βðM0; 1Þ ¼ 1

M0 ;

βNþ1
2N
ðM0 − l;lþ 1Þ ¼ 1

M0 − l

�
lβNþ1

2N
ðM0 − lþ 1;lÞ þ

�
N þ 1

2N

�
M0−l

�
N − 1

2N

�
l
�

βNþ1
2N
ðM0; 1Þ ¼ 1

M0

�
N þ 1

2N

�
M0

;

and then by solving these recurrence relations, they can be expressed as

TABLE V. The values of localized fluxes at fixed points and index (lI ¼ 0) on T2=Z6.

Flux Parity Twist Localized flux Index (2.48)

M η α
ξF
1

N
ξF
2

N
ξF
3

N
ξF
4

N
ξF
5

N
ξF
6

N
M
N þP6

I¼1

ξFI
N

M−Vþ
N þ 1

6mþ 1 1 1=2 5=12 −2=12 −2=12 −1=12 −1=12 −1=12 ðM − 1Þ=6 ðM − 1Þ=6
ω 1=2 3=12 2=12 2=12 1=12 1=12 1=12 ðM þ 5Þ=6 ðM þ 5Þ=6
ω2 1=2 1=12 0 0 −1=12 −1=12 −1=12 ðM − 1Þ=6 ðM − 1Þ=6
ω3 1=2 −1=12 −2=12 −2=12 1=12 1=12 1=12 ðM − 1Þ=6 ðM − 1Þ=6
ω4 1=2 −3=12 2=12 2=12 −1=12 −1=12 −1=12 ðM − 1Þ=6 ðM − 1Þ=6
ω5 1=2 −5=12 0 0 1=12 1=12 1=12 ðM − 1Þ=6 ðM − 1Þ=6

6mþ 2 1 0 5=12 0 0 1=12 1=12 1=12 ðM þ 4Þ=6 ðM þ 4Þ=6
ω 0 3=12 −2=12 −2=12 −1=12 −1=12 −1=12 ðM − 2Þ=6 ðM − 2Þ=6
ω2 0 1=12 2=12 2=12 1=12 1=12 1=12 ðM þ 4Þ=6 ðM þ 4Þ=6
ω3 0 −1=12 0 0 −1=12 −1=12 −1=12 ðM − 2Þ=6 ðM − 2Þ=6
ω4 0 −3=12 −2=12 −2=12 1=12 1=12 1=12 ðM − 2Þ=6 ðM − 2Þ=6
ω5 0 −5=12 2=12 2=12 −1=12 −1=12 −1=12 ðM − 2Þ=6 ðM − 2Þ=6

6mþ 3 1 1=2 5=12 2=12 2=12 −1=12 −1=12 −1=12 ðM þ 3Þ=6 ðM þ 3Þ=6
ω 1=2 3=12 0 0 1=12 1=12 1=12 ðM þ 3Þ=6 ðM þ 3Þ=6
ω2 1=2 1=12 −2=12 −2=12 −1=12 −1=12 −1=12 ðM − 3Þ=6 ðM − 3Þ=6
ω3 1=2 −1=12 2=12 2=12 1=12 1=12 1=12 ðM þ 3Þ=6 ðM þ 3Þ=6
ω4 1=2 −3=12 0 0 −1=12 −1=12 −1=12 ðM − 3Þ=6 ðM − 3Þ=6
ω5 1=2 −5=12 −2=12 −2=12 1=12 1=12 1=12 ðM − 3Þ=6 ðM − 3Þ=6

6mþ 4 1 0 5=12 −2=12 −2=12 1=12 1=12 1=12 ðM þ 2Þ=6 ðM þ 2Þ=6
ω 0 3=12 2=12 2=12 −1=12 −1=12 −1=12 ðM þ 2Þ=6 ðM þ 2Þ=6
ω2 0 1=12 0 0 1=12 1=12 1=12 ðM þ 2Þ=6 ðM þ 2Þ=6
ω3 0 −1=12 −2=12 −2=12 −1=12 −1=12 −1=12 ðM − 4Þ=6 ðM − 4Þ=6
ω4 0 −3=12 2=12 2=12 1=12 1=12 1=12 ðM þ 2Þ=6 ðM þ 2Þ=6
ω5 0 −5=12 0 0 −1=12 −1=12 −1=12 ðM − 4Þ=6 ðM − 4Þ=6

6mþ 5 1 1=2 5=12 0 0 −1=12 −1=12 −1=12 ðM þ 1Þ=6 ðM þ 1Þ=6
ω 1=2 3=12 −2=12 −2=12 1=12 1=12 1=12 ðM þ 1Þ=6 ðM þ 1Þ=6
ω2 1=2 1=12 2=12 2=12 −1=12 −1=12 −1=12 ðM þ 1Þ=6 ðM þ 1Þ=6
ω3 1=2 −1=12 0 0 1=12 1=12 1=12 ðM þ 1Þ=6 ðM þ 1Þ=6
ω4 1=2 −3=12 −2=12 −2=12 −1=12 −1=12 −1=12 ðM − 5Þ=6 ðM − 5Þ=6
ω5 1=2 −5=12 2=12 2=12 1=12 1=12 1=12 ðM þ 1Þ=6 ðM þ 1Þ=6

6mþ 6 1 0 5=12 2=12 2=12 1=12 1=12 1=12 M=6þ 1 M=6þ 1
ω 0 3=12 0 0 −1=12 −1=12 −1=12 M=6 M=6
ω2 0 1=12 −2=12 −2=12 1=12 1=12 1=12 M=6 M=6
ω3 0 −1=12 2=12 2=12 −1=12 −1=12 −1=12 M=6 M=6
ω4 0 −3=12 0 0 1=12 1=12 1=12 M=6 M=6
ω5 0 −5=12 −2=12 −2=12 −1=12 −1=12 −1=12 M=6 − 1 M=6 − 1
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βðM0 − l;l − 1Þ ¼ ΓðM0 − lÞΓðlþ 1Þ
ΓðM0 þ 1Þ ;

βNþ1
2N
ðM0 − l;l − 1Þ ¼ ΓðM0 − lÞΓðlþ 1Þ

ΓðM0 þ 1Þ
Xl
p¼0

ΓðM0 þ 1Þ
ΓðM0 − pþ 1ÞΓðpþ 1Þ

�
N þ 1

2N

�
M0−p

�
N − 1

2N

�
p
;

respectively. Here, ΓðXÞ denotes the gamma function, which satisfies the recurrence relation

ΓðX þ 1Þ ¼ XΓðXÞ:

Thus, the third term Gð3Þ
ij can be expressed as

Gð3Þ
ij ¼ ðCiÞ�Cjπðr2Þmþ1e−

πM
Imτr

2

�
N − 1

2N
ðM0 − lÞ

�
−1 1 −

Pl
p¼0

ΓðM0þ1Þ
ΓðM0−pþ1ÞΓðpþ1Þ ðNþ1

2N ÞM0−pðN−1
2N Þp

ΓðM0þ1Þ
ΓðM0−lþ1ÞΓðlþ1Þ ðNþ1

2N ÞM0−lðN−1
2N Þl

: ðB2Þ

By combining these results, we obtain Eq. (3.37).

APPENDIX C: NORMALIZATION OF LOCALIZED ZERO MODES

In this section, we show the detailed calculation of Eq. (5.8). The first term shows the calculation in the bulk region, while
the second term shows the calculation in the blow-up region. The first term can be calculated as

Z
∞

r
djzjjzj

Z
2π
N

0

dφjCaj2N2jzj2ðm−ðl−aÞNÞe−πM
Imτjzj2

¼ jCaj2πN
�
πM
Imτ

�ðl−aÞN−ðmþ1Þ Z ∞

πM
Imτr

2

d

�
πM
Imτ

jzj2
��

πM
Imτ

jzj2
�

m−ðl−aÞN
e−ðπMImτjzj2Þ

¼ jCaj2πN
�
πM
Imτ

�ðl−aÞN−ðmþ1Þ Z ∞

πM
Imτr

2

dttm−ðl−aÞNe−t

¼ jCaj2πN
�
πM
Imτ

�ðl−aÞN−ðmþ1Þ
Γ
�
1þm − ðl − aÞN;

πM
Imτ

r2
�
;

where Γð1þm − ðl − aÞN; πMImτ r
2Þ denotes the upper incomplete gamma function. We note that 1þm − ðl − aÞN < 0.

Then, it satisfies the following recurrence relation:

Γ
�
1þm − ðl − aÞN;

πM
Imτ

r2
�

¼ 1

1þm − ðl − aÞN
�
Γ
�
2þm − ðl − aÞN;

πM
Imτ

r2
�
−
�
πM
Imτ

r2
�

1þm−ðl−aÞN
e−ð

πM
Imτr

2Þ
�

Γ
�
0;
πM
Imτ

r2
�

¼ E1

�
πM
Imτ

r2
�
;

where E1ðπMImτ r
2Þ denotes the exponential integral. Note that if πM

Imτ r
2 is sufficiently large, the exponential

integral obeys

E1

�
πM
Imτ

r2
�
≃ e−ð

πM
Imτr

2ÞX
p¼0

ð−1Þpp!
�
πM
Imτ

r2
�

−ðpþ1Þ
:

By solving this recurrence relation, Γð1þm − ðl − aÞN; πMImτ r
2Þ can be expressed as
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Γ
�
1þm − ðl − aÞN;

πM
Imτ

r2
�

¼ ð−1Þðl−aÞN−ðmþ1Þ

½ðl − aÞN − ðmþ 1Þ�!
�
E1

�
πM
Imτ

r2
�
− e−ðπMImτr

2Þ Xðl−aÞN−ðmþ2Þ

p¼0

ð−1Þpp!
�
πM
Imτ

r2
�

−ðpþ1Þ�
:

By contrast, the second term is the same as Gð3Þ
ij in the previous section by replacing l with a. Thus, by combining these

results, we obtain Eq. (5.8).
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