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A multipole decomposition of a cross section is a useful tool to simplify the analysis of reactions due to
their symmetry properties. By using a new approach to decompose antisymmetric tensor-type interactions
within the multipole analysis, we introduce a general mathematical formalism for working with tensor
couplings. This allows us to present a general tensor nuclear response, which is particularly useful for
ongoing β-decay experiments looking for physics beyond the Standard Model (BSM), as well as other
exotic particle scatterings off nuclei, e.g., in dark matter direct detection experiments. Using this method,
BSM operators identify with the known Standard Model operators, eliminating the need for calculations of
additional matrix elements. We present in detail BSM expressions useful for β-decay experiments and give
an exemplary application for 6He β-decay, although the formalism is easily generalizable for calculating
other exotic scattering reactions.
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I. INTRODUCTION

Tensor interactions have been investigated over the years
with a focus on gravitational radiation, which introduces a
coupling between symmetric tensors—a space-time metric
and the stress-energy-momentum tensor (see, e.g., Ref. [1]
and references therein). Recently, there was a renewed
interest in tensor couplings, this time in the search for
beyond the Standard Model (BSM) interactions, involving
interactions with fermions, and therefore, introducing anti-
symmetric tensors (e.g., Ref. [2] and references therein).
A priori, when discussing the weak nuclear interaction of

quarks and leptons, the most general Lorentz-invariant form
of an interaction Hamiltonian can be written as a linear
combination of the five bilinear covariants with specific
symmetries, i.e., scalar (S), pseudoscalar (P), polar-vector
(V), axial-vector (A), and tensor (T) [3]. However, it was
shown experimentally, initially using β-decays, that the
weak interaction between quarks and leptons has a V − A
structure, i.e., a polar-vector current and an axial-vector
current, with the same amplitude and opposite signs [4].
In recent years, several experiments [5–11] have focused

on β-decays again, but this time to find deviations from the
V − A structure of the Standard Model (SM). In particular,
these experiments search for minute signatures of inter-
actions with scalar and tensor symmetries. To identify such
effects, it is necessary to determine the theoretical proper-
ties of transitions with these symmetries.

The theoretical interest in understanding the qualitative
behavior of transitions of esoteric character stems addi-
tionally from ongoing efforts to directly detect dark matter
[12]. The existence of this material is currently inferred
indirectly, as it provides an explanation for certain cosmo-
logical gravitational phenomena. Elucidating the nature of
dark matter is one of the most pressing challenges in
contemporary particle physics and astrophysics.
Among the candidates for dark matter are weakly

interacting massive particles (WIMPs), such as the neu-
tralino in supersymmetric extensions of the SM. This
paradigm has spurred the development of detectors on
Earth, searching for direct interactions of WIMPs from
outer space, by measuring the recoil energy of WIMP
scattering off nuclei on the detectors. The relevant momen-
tum transfer in such reaction is q ∼ 100 MeV [13], com-
pared to the typical momentum transfer of β-decays, just a
few MeV (1–4). These BSM particles might have many
different kinds of couplings to matter, so the overall
expression, including the tensor term, will be necessary
to interpret the data from these detectors.
In the low energy regime of the weak interaction, one can

assume the force-carrying exchange boson is heavy com-
pared to the momentum transfer. This is particularly a
reasonable assumption in β-decay where the momentum
transfer is usually around a few MeV. The weak interaction
Hamiltonian between nuclei and light particles is then
presumed to be a multiplication of a nuclear current and a
probe current of the same kind. Focusing on the tensor type,
the interaction Hamiltonian is expressed in the Schrödinger
picture as*doron.gazit@mail.huji.ac.il
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ĤT
w ¼

Z
d3rjμνðr⃗ÞJ μνðr⃗Þ; ð1Þ

whereas J μνðr⃗Þ corresponds to the tensor hadron current
and jμνðr⃗Þ to the tensor probe current.
As opposed to the vector and axial weak interactions,

which have been extensively studied within the SM, and to
the scalar and pseudoscalar symmetries, which also have
their own formalisms, both for the exotic weak interactions
[13–15], and for dark matter [16,17], a complete study of
cross sections of nuclei with tensor interactions has not
been performed.
Here we develop a method of decomposing the tensor

coupling within the multipole expansion. In the method we
present, we do not restrict ourselves to the weak interaction
between hadron and lepton currents, but only require a
tensor coupling between antisymmetric tensors (i.e., con-
sisting of fermions). This work can be viewed as comple-
mentary to previous works regarding symmetric tensor
couplings for the case of gravitational radiation [1]. We
then use this method to present a general mathematical
formalism for the tensor type of interactions with nuclei,
applicable to semileptonic interactions like β-decays, intro-
ducing a BSMcomplementary to the SMgeneral framework
introduced by Donnelly and Walecka in Refs. [18–23] for
treating semileptonic processes in nuclei.
We note that, particularly in the early days of β-decay

research, there have been several studies [3,24,25] that
aimed to calculate the antisymmetric tensor coupling,
during the mission to discover the symmetry nature of
the weak nuclear current [4,5]. These have focused on
Fermi and Gamow-Teller (allowed) decays and had explicit
low momentum transfer approximations. Furthermore, a
recent study, matching the quark-level effective field theory
(EFT) to the nucleon-level, using pionless EFT, extends the
expressions of the allowed β-decays to high order recoil
corrections [26]. In addition, there are some neutrino and
dark matter studies (e.g., Refs. [27–30]), which also deal
with some tensor interactions, but their focus is either
coherent scatterings or fully leptonic interactions, which do
not require a multipole decomposition. There is, however,
no general formula for nonvanishing momentum transfer of
the tensor coupling, suitable for any β-decay transition,
allowed and forbidden. In addition, the formalism we
present here aims to reach a form suitable and easy for
use for many-body nuclear calculations that separates
easily SM corrections and BSM signatures.
The paper is organized as follows. In Sec. II, we present

an approach for decomposing a generic coupling of
antisymmetric tensor currents within the multipole expan-
sion. This decomposition is suitable for any antisymmetric
tensor probe. In the current work, we concentrate on the
interaction of a tensor probe with a nucleus. Hence, in
Sec. III we focus on the tensor nuclear single-nucleon
current, construct it through our decomposition, and derive

from it tensor multipole operators, along with other BSM
multipole operators suitable for any semileptonic process (a
derivation of scalar and pseudoscalar multipole operators is
detailed in Appendix D). Then, in Sec. IV, we focus the
discussion on and present the β-decay formalism, writing a
general rate expression and reviewing how BSM signatures
appear in β-decay observables relevant to contemporary
experiments. Detailed expressions for the specific cases
of allowed and forbidden transitions are provided in
Appendix A. In Sec. V we give an exemplary application
for 6He β-decay, of current experimental interest. We
summarize our findings and provide an outlook for future
research in Sec. VI.

II. TENSOR MULTIPOLE DECOMPOSITION

Consider an interaction of a general tensor density
of a composite object, e.g., a nucleus, J μν with a CPT
invariant (Lorentz invariant) probe jμν, taking the formR
d3rjμνðr⃗ÞJ μνðr⃗Þ. Assuming the probe has a plane wave

character,1 its general matrix element between its initial and
final states can be written as hfjjμνðr⃗Þjii≡ lμνe−iq⃗·r⃗, where

q⃗≡ k⃗f − k⃗i is the momentum transfer between the final and
initial probe states, and lμν depends on all the other physical
properties of the probe (a detailed lμν for a lepton current
can be found in Appendix B).
Typically, the multipole expansion is expressed as a sum

of spherical harmonics. For the polar-vector and axial-
vector weak interactions in the SM, the traditional way to
perform the multipole expansion involves using vector
spherical harmonics [21], which are an extension of scalar
spherical harmonics. For a multipole expansion of a tensor
coupling, we naturally turn to the notion of tensor spherical
harmonics. The tensor spherical harmonics have been
constructed and used in several works on general relativity
problems [1]. Although they were defined in that field only
for symmetric representations of ranks 0 and 2 (antisym-
metric representations of rank 1 are of no relevance to
gravitational wave theory), their completeness for rank 1
stems easily.
However, since rank 1 tensors are actually vectors, we

suggest, instead, simplifying the tensor decomposition,
taking advantage of its vector nature. For that, we suggest
dismantling the antisymmetric tensors into vectorlike
objects as follows: first, we decompose lμν into a temporal
scalar l00, two mixed spatial-temporal 3-vectors l0i and li0,
and a Euclidean (spatial-only) 3 × 3 tensor lij, where
i; j ∈ f1; 2; 3g. Following its antisymmetric nature, we
get that l00 ¼ 0 and li0 ¼ −l0i. For convenience, we will

define a vector ⃗lT
0
such that

1If the probe does not have a plane wave character, one should
expand it in plane waves, as in the case of a muon capture from an
atomic orbital [21].
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lT
0

i ≡ ffiffiffi
2

p
l0i: ð2aÞ

Let us now focus on the remaining tensor, lij. It is a
Cartesian tensor of the second rank and therefore can be
decomposed into three irreducible spherical tensors of
ranks 0, 1, and 2. These will be a scalar, which is the
trace of the Cartesian tensor, a vector, which is the
antisymmetric part of the Cartesian tensor, and a quadru-
pole spherical trace-free tensor, which is the remaining
symmetric part of the Cartesian tensor. Using again
the fact that lμν is antisymmetric, it follows that the
symmetric scalar and quadrupole spherical tensors van-
ish, leaving us only with the reduced spherical tensor of
rank 1, the spherical vector projector ⃗lT ≡ ½lij�ð1Þ. This is a
vector that its Cartesian components i ∈ f1; 2; 3g are
defined by

lTi ≡ −
iffiffiffi
2

p ϵijkljk; ð2bÞ

where ϵijk is the 3-d Levi-Civita symbol (for the con-
ventions used in this paper see Appendix G).
The same procedure is done for J μν, which is also

antisymmetric, with the definitions of its spatial and spatial-
temporal parts as was done to lμν:

J T
i ≡ −

iffiffiffi
2

p ϵijkJ jk; ð2cÞ

J T 0
i ≡ ffiffiffi

2
p

J 0i: ð2dÞ

We finally conclude the tensor decomposition into vector-
like objects, and get to write the tensor product lμνJ μν

as a sum of vector products, a product of the spatial
vectorlike parts of the original tensors, and a product
of the spatial-temporal vectorlike parts of the original
tensors2:

lμνJ μνðr⃗Þ ¼ −½⃗lT · J⃗ Tðr⃗Þ þ ⃗lT
0
· J⃗ T 0 ðr⃗Þ�

¼ −
X1
λ¼−1

½lTλ êþλ · J⃗ Tðr⃗Þ þ lT
0

λ ê
þ
λ · J⃗ T 0 ðr⃗Þ�: ð3Þ

We use the multipole decomposition of the circular
polarization base unit vectors êλ, to present the tensor
product using the spherical harmonics, and get the multi-
pole expansion of the tensor interaction:

�
f

����
Z

d3rjμνðr⃗ÞJ μνðr⃗Þ
����i
�

¼ −
X∞
J¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πð2Jþ 1Þ

p
ð−iÞJ½lT3 hfjL̂T

J0jii þ lT
0

3 hfjL̂T 0
J0jii�

þ
X∞
J¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πð2Jþ 1Þ

p
ð−iÞJ

X
λ¼�1

½lTλ hfjÊT
J;−λ þ λM̂T

J;−λjii

þ lT
0

λ hfjÊT 0
J;−λ þ λM̂T 0

J;−λjii� ð4Þ

[for J μν a hadron current and jμν a lepton current, this is the
matrix element of the tensor part of the weak interaction
Hamiltonian described in Eq. (1), i.e., hfjĤT

wjii]. Note that
while the matrix element on the left side of Eq. (4) is
calculated between the initial and final states of the whole
interaction, the matrix elements on the right side are
calculated only between the initial and final states of the
composite object (e.g., a nucleus), not the probe. Here the
superscript T (T 0) denotes a multipole operator calculated
with the spatial (spatial-temporal) vectorlike part of the

original tensor, J⃗ T (J⃗ T 0
). The Coulomb, longitudinal,

electric, and magnetic multipole operators are defined by

ĈJMðqÞ≡
Z

d3rMJMðqr⃗ÞJ 0ðr⃗Þ; ð5aÞ

L̂JMðqÞ≡ i
q

Z
d3r∇⃗MJMðqr⃗Þ · J⃗ ðr⃗Þ; ð5bÞ

ÊJMðqÞ≡ 1

q

Z
d3r

�
∇⃗ × M⃗M

JJ1ðqr⃗Þ
�
· J⃗ ðr⃗Þ; ð5cÞ

M̂JMðqÞ≡
Z

d3rM⃗M
JJ1ðqr⃗Þ · J⃗ ðr⃗Þ; ð5dÞ

where

MJMðqr⃗Þ≡ jJðqrÞYJMðr̂Þ; ð6aÞ

M⃗M
JL1ðqr⃗Þ≡ jLðqrÞY⃗M

JL1ðr̂Þ; ð6bÞ

with jJ the spherical Bessel functions, and YJM (Y⃗M
JL1) the

spherical harmonics (vector spherical harmonics).
Unlike the vector multipole expansion (see, e.g.,

Ref. [21]), the tensor multipole expansion presented in
Eq. (4) does not contain the Coulomb multipole operator,
ĈJM, which depends on the temporal part J 0 (charge) of a
4-vector current J μ. It perfectly makes sense, since the
tensor is antisymmetric, and therefore, its pure temporal
part, J 00, vanishes. As will be presented in the following,
the Coulomb multipole operator appears in expressions
related to the scalar and pseudoscalar interactions (a
detailed discussion about the scalar and pseudoscalar
symmetries is presented in Appendix D).

2While the minus sign of ⃗lT
0
· J⃗ T 0

comes from the metric, as
the involved parts have only one spatial index, the minus sign
before ⃗lT · J⃗ T comes from the definitions of ⃗lT and J⃗ T .

MULTIPOLE DECOMPOSITION OF TENSOR INTERACTIONS OF … PHYS. REV. D 107, 075031 (2023)

075031-3



III. BSM NUCLEAR MULTIPOLE OPERATORS

For the weak interaction, the multipole expansion of the
matrix element of the tensor Hamiltonian [Eq. (1)],
described in Eq. (4), depends on the multipole operators
[Eq. (5)] calculated with the density of the tensor nuclear
current. In the traditional nuclear physics picture, the
nuclear current is constructed from the properties of free
nucleons. In the case of experimental BSM searches, BSM
signatures are most likely to be 10−3 at most [31]. Thus, we
will ignore two-body (and above) currents, leading to a
systematic additional uncertainty of ϵEFT ∼ 0.3 in the
nuclear model [32].
For dark matter searches, where the couplings to tensor

sources need not be smaller than other couplings, the
experiments aim at a discovery rather than measuring to
high precision a specific coupling. Thus, lower accuracy is
needed from the nuclear calculations, a fact that allows
neglecting two-body tensor currents at least in the initial
stage. Moreover, chiral perturbation theory with tensor
sources suggests that two-body tensor currents are expected
at higher order [33].
The general form of a single-nucleon matrix element of

the tensor part of the charge-changing weak current,
J μνðr⃗Þ ¼ 1

2
ϕ̄ðr⃗Þσμνϕ0ðr⃗Þ (here ϕð0Þ are fields of up or down

quarks), can be written as [34]

hp⃗0; σ0; ρ0jJ μνjp⃗; σ; ρi

¼ 1

Ω
ūðp⃗0; σ0Þηþρ0

1

2
½gTðq2Þσμν þ gð1ÞT ðq2Þðqμγν − qνγμÞ

þ gð2ÞT ðq2ÞðqμPν − qνPμÞ þ gð3ÞT ðq2Þðγμq γν − γνq γμÞ�
× τ�ηρuðp⃗; σÞ; ð7Þ

with Ω a normalization volume,3 uðp⃗; σÞ the Dirac spinor
for a free nucleon of massmN and momentum pμ, ηρ a two-
component Pauli isospinor, and τ� the isospin raising and
lowering operators (for conventions see Appendix G).
Here, Pμ ≡ pμ þ p0

μ, and qμ ≡ pμ − p0
μ is the momentum

transfer, as before.
Lattice QCD calculations suggest that the tensor nuclear

charge gT has a magnitude similar to the magnitude of the
SM axial-vector nuclear charge gA [35]. The other tensor

form factors gðiÞT ðq2Þ (i ∈ f1; 2; 3g) are smaller: in the
nomenclature of Ref. [31] that we will use in the following,
they are of the order of ϵrecoil ∼

q
mN

(≈0.002 for an endpoint

of ≈2 MeV) [34]. In addition, gð3ÞT is a second-class current
and therefore vanishes in the isospin [SUð2Þf] limit [36].
Although gT ∼ gA, the tensor expression is suppressed by a
coefficient of the effective theory, ϵT ∝ ðmW

Λ Þn, which comes
from the effective weak interaction Lagrangian, where mW

is the mass of the W boson, Λ represents the new physics
scale, and n ≥ 2. For the simplest BSM operator (n ¼ 2), a
TeV scale means ϵT ∼ 10−3. New experiments, looking for
BSM signatures, will have this 10−3 level of precision,
making them sensitive to new physics at the TeV scale.
To obtain the vectorlike tensor multipole operators used

in Eq. (4), we extract the tensor current density from
Eq. (7), and separate it into its spatial and spatial-temporal
vectorlike parts, respectively4:

J⃗ Tðr⃗Þ ¼ −
iffiffiffi
2

p
XA
j¼1

�
gT þ 2iE0g

ð3Þ
T

	
σ⃗jδ

ð3Þðr⃗ − r⃗jÞτ�j

þOðϵ2NRÞ; ð8aÞ

J⃗ T 0 ðr⃗Þ ¼ 1ffiffiffi
2

p
XA
j¼1


�
igð1ÞT −

gT
2mN

	
∇⃗δð3Þðr⃗ − r⃗jÞ

−
gT
2mN

σ⃗j × fp⃗j; δð3Þðr⃗ − r⃗jÞg

þ
�
2gð3ÞT −

E0

2mN
gð1ÞT

	
σ⃗j × ∇⃗δð3Þðr⃗ − r⃗jÞ

�
τ�j

þOðϵ2NRÞ; ð8bÞ

where A is the mass number of the nucleus, r⃗j ðτþj Þ is the
position vector (isospin-raising operator) of nucleon j, σ⃗j is
the Pauli spin matrices vector associated with nucleon j,
and E0 ¼ q0 is the energy transfer. Here, we substituted the
explicit form of Dirac spinors and used the nonrelativistic
expansion to expand the currents in powers of ϵNR ∼ PFermi

mN
≈

0.2 (PFermi is the Fermi momentum).
In the nuclear tensor current densities we obtained, one

can see that the terms of the spatial-temporal current
[Eq. (8b)] are suppressedby ϵNR or ϵrecoil. These suppressions
are on top of the small tensor effective theory coefficient, so
the spatial-temporal current does not appear in the BSM
leading order. That leaves us with the spatial vectorlike
tensor current. A closer look reveals that its leading order is
the same as the leading order of the 3-vector spatial
component of the SM axial-vector current density, i.e.,5

J⃗ Tðr⃗Þ ¼ −
iffiffiffi
2

p gT
gA

J⃗ Aðr⃗Þ þOðϵ2NRÞ: ð9Þ

3We impose periodic boundary conditions on the large volume
Ω and its dependence drops subsequently.

4We note that a similar nonrelativistic expansion was per-
formed in Ref. [26], using matrix spin-J generators of the SO(3)
Lie algebra. However, we believe that the simplicity of this
technique, utilizing our vectorlike decomposition, makes it
attractive.

5A more accurate form will include second-class currents:

J⃗ Tðr⃗Þ ¼ − iffiffi
2

p gTþ2iE0g
ð3Þ
T

gA−
E0
2mN

g̃TðAÞ
J⃗ Aðr⃗Þ þOðϵ2NRÞ, where gð3ÞT and g̃TðAÞ

are second-class current form factors which vanish in the isospin-
symmetric limit [36] in addition to their expressions being
suppressed by OðϵrecoilÞ. For more details, see Appendix E.
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With these current densities, the multipole operators from
Eq. (5) can be written as a sum of one-body operators.
Equation (9) clearly shows that the spatial vectorlike tensor
multipole operators are proportional to the spatial axial-
vector multipole operators6:

ÔT
J ðqÞ ≈ −

iffiffiffi
2

p gT
gA

ÔA
J ðqÞ; Ô ∈ fL̂; Ê; M̂g; ð10Þ

where the superscript A denotes a multipole operator
calculated with the axial-vector nuclear current J A

μ (not to
be confused with the sum over the A nucleons).
Equation (10) here is accurate to OðϵJqrϵ2NRÞ for M̂J, and
to OðϵJ−1qr ϵ2NRÞ for ÊJ and L̂J [when J > 0; for L̂0 it is

Oðϵqrϵ2NRÞ], with ϵqr ∼ qR (≈0.01A1
3 for an endpoint of

≈ 2 MeV. R is the radius of the nucleus).
This is a significant result that greatly simplifies the work

with the tensor, allowing calculations of the BSM tensor
interaction using only the well-known SM axial-vector
multipole operators7:

L̂A
J ðqÞ¼ igA

XA
j¼1

�
1

q
∇⃗MJðqr⃗jÞ

�
· σ⃗τ�j þOðϵJ−1qr ϵ2NRÞ; ð11aÞ

ÊA
J ðqÞ ¼ gA

XA
j¼1

�
1

q
∇⃗ × M⃗JJ1ðqr⃗jÞ

�
· σ⃗jτ�j þOðϵJ−1qr ϵ2NRÞ;

ð11bÞ
M̂A

J ðqÞ ¼ gA
XA
j¼1

M⃗JJ1ðqr⃗jÞ · σ⃗jτ�j þOðϵJqrϵ2NRÞ. ð11cÞ

The vectorlike spatial-temporal tensor current introduces
new multipole operators:

L̂T 0
J ðqÞ ¼ −

1ffiffiffi
2

p q
mN

XA
j¼1



ð2mNg

ð1Þ
T þ igTÞMJðqr⃗jÞ

þ gT

��
1

q
∇⃗MJðqr⃗jÞ

	
× σ⃗j

�
·
1

q
∇⃗
�
τ�j

þOðϵJ−1qr ϵ2NRÞ; ð12aÞ

ÊT 0
J ðqÞ ¼

1ffiffiffi
2

p q
mN

XA
j¼1



igT

��
1

q
∇⃗× M⃗JJ1ðqr⃗jÞ

	
× σ⃗j

�
·
1

q
∇⃗

þ
�
i
2
gT þ

E0

2
gð1ÞT − 2mNg

ð3Þ
T

	
σ⃗j · M⃗JJ1ðqr⃗jÞ

�
τ�j

þOðϵJ−1qr ϵ2NRÞ; ð12bÞ

M̂T 0
J ðqÞ ¼

1ffiffiffi
2

p q
mN

XA
j¼1



igT ½M⃗JJ1ðqr⃗jÞ × σ⃗j� ·

1

q
∇⃗

þ
�
i
2
gT þ E0

2
gð1ÞT − 2mNg

ð3Þ
T

	
σ⃗j

·

�
1

q
∇⃗ × M⃗JJ1ðqr⃗jÞ

��
τ�j þOðϵJqrϵ2NRÞ; ð12cÞ

but, as mentioned above, they do not appear in the BSM
leading order. The BSM leading order is controlled only by
the multipole operators L̂T

J ; Ê
T
J ; Ĉ

P
J ∝ ϵJ−1qr or M̂T

J ; Ĉ
S
J ∝ ϵJqr,

depending on the parity of the transition in question. ĈS
J

(ĈP
J ) is the Coulomb multipole operator when it is

calculated with the BSM scalar (pseudoscalar) nuclear
current. Similarly to the tensor leading order nuclear
current, the form of the scalar leading order nuclear current
is proportional to an SM nuclear current—the temporal part
(charge) of the 4-vector polar-vector current: J Sðr⃗Þ ¼
gS
gV
J V

0 ðr⃗Þ þOðϵ2NRÞ. Therefore, the scalar multipole oper-
ator is proportional to an SM multipole operator:

ĈS
JðqÞ ¼

gS
gV

ĈV
J ðqÞ þOðϵJqrϵ2NRÞ; ð13Þ

where ĈV
J is the polar-vector Coulomb multipole operator:

ĈV
J ðqÞ ¼ gV

XA
j¼1

MJðqr⃗jÞτ�j þOðϵJqrϵ2NRÞ: ð14Þ

Here gV is the vector nuclear charge form factor, which, due
to the conservation of the vector current, is 1 up to second-
order corrections in isospin breaking [37,38]. The scalar

nuclear charge gS ¼ gV
Mn−Mp

md−mu
≈ 0.8–1.2, whereMn (Mp) is

the mass of the neutron (proton) andmd (mu) is the mass of
the down (up) quark. Since this is a scalar, other multipole
operators, associated with the vector type of the current, do
not exist.
In order to complete the picture, let us introduce the last

BSM multipole operator—the Coulomb multipole operator
calculated with the pseudoscalar nuclear current. Like the
vectorlike spatial-temporal tensor operators, the pseudo-
scalar multipole operator is suppressed by an additional
small parameter, ϵrecoil:

ĈP
J ðqÞ ¼

q
2mN

gP
gA

L̂A
J ðqÞ þOðϵJ−1qr ϵ2NRÞ: ð15Þ

However, we will still consider it as contributing to the

leading order of BSM, since the pseudoscalar charge, gP ¼
gA

MnþMp

mdþmu
¼ 349ð9Þ [39], is two orders of magnitude greater

than other, SM and BSM, nuclear charges ( q
2mN

gP
gA
≈ 0.4

for an endpoint of ≈2 MeV). For a full discussion and

6A more accurate form will include second-class currents:

ÔT
J ðqÞ¼− iffiffi

2
p gTþ2iE0g

ð3Þ
T

gA−
E0
2mN

g̃TðAÞ
ÔA

J ðqÞþOðϵ2NRÞ¼− iffiffi
2

p gT
gA
½1þE0ð2i g

ð3Þ
T
gT
þ

gA
gT

g̃TðAÞ
2mN

Þ�ÔA
J ðqÞþOðϵ2NRÞ.

7For a more accurate form including the second-class currents,
see Appendix E.
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derivation of the scalar and pseudoscalar multipole oper-
ators, refer to Appendix D.
In summary, we found that for their leading orders, the

BSM multipole operators identify with the well-known SM
multipole operators. In this way, BSM contributions can be
calculated only from the SM phenomena, without calcu-
lating new matrix elements for BSM.
For this discussion to be complete, we must make note of

another aspect of the BSM signatures in nuclear currents,
the second-class currents. These currents do not add any
new multipole operators but correct the existing SM polar-
vector and axial-vector operators with some small contri-
butions (those can be found in Appendix E).

IV. BSM SIGNATURES IN β-DECAY
OBSERVABLES

The search for evidence of BSM interactions has been a
focus of research in recent years, and accurate measure-
ments of nuclear β-decays in various nuclei are used as a
means of searching for these BSM interactions. In order to
identify potential BSM signatures, it is necessary to
compare those experimental measurements with theoretical
predictions for the response of nuclei to interactions
characterized by symmetries beyond the known SM inter-
actions. Using the approach we developed for decomposing
the tensor probe of the weak interaction within the multi-
pole analysis, we are able to derive general expressions for
calculating the decay rates of β-decays including BSM
tensor couplings and to examine how BSM signatures
appear in observables relevant to current experiments.
Nuclear beta minus (plus) decay is a weak reaction in

which an atomic nucleus transforms into another by
changing one of its nuclear neutrons (protons) into a proton
(neutron), increasing (decreasing) its charge by one, and
emitting an electron (positron) and an antineutrino (neu-
trino). Consider a β∓-decay process with pμ (p0

μ) as the
initial (final) nucleus momentum, kμ (νμ) as the electron
(neutrino) momentum, and qμ ≡ pμ − p0

μ ¼ kμ þ νμ as the
momentum transfer. Its decay rate, which follows from the
golden rule of Fermi, is [21]

d5ω

dEdk̂
4π

dν̂
4π

¼ 4

π2
ðE0−EÞ2kEF∓ðZf;EÞCcorr

1

2Jiþ1
Θðq; β⃗ · ν̂Þ;

ð16Þ

where the function

Θðq; β⃗ · ν̂Þ≡ 1

4π

Ω2

2

X
lepton spins

X
Mi

X
Mf

jhfjĤwjiij2 ð17Þ

is the part depending on the nuclear wave functions,
represented here as the initial and final states. This is also
the part that is affected by non-V − A currents which may

be included in the weak interaction Hamiltonian. We sum
over final target states (spin projection Mf), and average
over initial states (Mi). Ji is the total angular momentum of
the initial nucleus, Ei (Ef) is the initial (final) energy of the

nuclear system, while E≡ k0 is the electron energy, β⃗≡ k⃗
E,

and ν is the energy of the neutrino.
To Eq. (16), we have added some known corrections.

The deformation of the lepton wave function, due to the
long-range electromagnetic interaction with the nucleus, is
taken into account in the Fermi function F∓ðZf; EÞ for a
β∓-decay, where Zf is the charge of the nucleus after the
decay. Other corrections to the nuclear-independent part,
such as radiative corrections, finite mass, and electrostatic
finite size effects, as well as atomic and chemical effects,
are represented by Ccorr. In the literature, these corrections
are assumed to be known and do not seem to limit
experimental accuracy significantly (for more details see
Refs. [40,41]).
Jackson, Treiman, and Wyld in their paper from 1957

[42], described the β-decay rate at its leading order, i.e., in
allowed (Fermi and Gamow-Teller) transitions, as propor-
tional to

d5ω ∝ ξ
�
1þ aβ⃗ · ν̂þ b

me

E
þ ...



; ð18Þ

where a is the electron-neutrino angular correlation, and b is
the Fierz interference term, both are observables that play a
leading role in ongoing BSM searches. The angular corre-
lation, a, can be extracted from measurements of the angle
between the emitted leptons, and its value changes in the
presence of BSMphysics. The Fierz interference term, b, can
be extracted from measurements of the energy spectrum of
the electron. It does not exist in the SM leading order, but
appears only when considering the full probe-nucleus
interaction Hamiltonian, Ĥw ¼ ĤSM

w þ ĤBSM
w , which results

in an interference term involving both SMandBSMcurrents.
Using the tensor multipole decomposition that we pre-

sented in the previous sections, we calculated Θðq; β⃗ · ν̂Þ
with tensor currents for all the different transitions, extend-
ing these important observables also to forbidden transi-
tions, which were previously unavailable in their complete
form for BSM tensor symmetry. As we demonstrated in the
previous section, the BSMmultipole operators identify with
the SM multipole operators. Therefore, we are able to
present BSM expressions and forecasts using only SM
nuclear matrix elements, that have been studied and known
for many years (see, e.g., Refs. [43,44] for analytical
expressions and Ref. [45] for Mathematica script for these
nuclear matrix elements in the harmonic oscillator base).
Considering the technical nature of this list of Θðq; β⃗ · ν̂Þ
expressions, as well as the list of BSM signatures appearing
in the mentioned observables, we present the explicit BSM
contributions in Appendix A, in the hope that it will prove
useful to the broad community interested in BSM searches
involving β-decays.
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V. SENSITIVITY TO BSM SIGNATURES IN 6He
AS AN EXEMPLARY NUCLEUS OF CURRENT

EXPERIMENTAL INTEREST

6He decays into 6Li in a pure Gamow-Teller β-decay
transition. This is a light nucleus, amendable to state-of-
the-art ab initio calculations, and its half-life is about
1 second, making it ideal for experimental study using
traps. For these reasons, it has a prominent role in several
ongoing precision experiments (see Ref. [46]). We thus use
it here as a case study to demonstrate the application of the
theory presented here.
Identifying a BSM signal relies on correctly evaluating

the theoretical prediction of the β-decay observables. We
thus plot the ratio, RðBSM=SMÞ, of BSM signal to the size
of associated nuclear structure-related SM corrections. If
the ratio RðBSM=SMÞ is of the order of 1, then the
corrections should be calculated explicitly. The limit of
theoretical uncertainty consequently occurs when the ratio
RðBSM=SMÞ is about the size of the theoretical uncertainty
in calculating the SM corrections.
We focus on tensor couplings of the order of

j CT
CA

j ¼ j C0
T

CA
j ∼ 10−3, corresponding to new physics at a

few TeV scale. Figure 1 compares the ratio RðBSM=SMÞ of
tensor BSM signatures in the aforementioned β-decay
observables, a and b, to the associated SM correction
calculated for 6He β-decay in Ref. [46].
As 6He β-decay is a pure Gamow-Teller transition, we

use Eq. (A10) from Appendix A and compare its Fierz term

to the associated SM correction δb in the spectrum (see
Ref. [46]), originating in nuclear structure corrections that
has a spectral behavior similar to the Fierz term, i.e.,

RbðBSM=SMÞ ¼ j2Re C�
ACTþC0�

AC
0
T

jCAj2þjC0
Aj2

=δbj. In Fig. 1, domains

where current theory enables separation of the BSM signal
from nuclear structure-related SM corrections appearing
in Fierz term, i.e., domains where RbðBSM=SMÞ >
jðδb uncertaintyÞ=δbj are shown in white and light gray.
As apparent in Fig. 1, a BSM Fierz signal is already
identifiable for tensor couplings as small as j CT

CA
j ∼ 10−4.

In contrast, a similar approach for the angular

correlation, i.e., RaðBSM=SMÞ ¼ j2 jCT j2þjC0
T j2

jCAj2þjC0
Aj2

=hδ̃aij [see

Eq. (A9) in Appendix A], where the angle brackets
represent an average weighted by the spectrum, shows
that the theory cannot identify the naive BSM signal of the
angular correlation from the SM corrections even for
j CT
CA

j ∼ 10−2 (the dark gray domain in Fig. 1).
However, when taking into account the way that a is

extracted from measurements, the spectral shape suggests
that ameasured ¼ hai

1þbhme
E i [47], making the measured value of

a sensitive also to the Fierz term, as specified in the
following relation for Gamow-Teller and unique forbidden
transitions:

ameasured ¼−
1

2Jþ1

�
1þhδ̃Jð−ÞJ−1a i− δJ

ð−ÞJ−1
b

�
me

E

�

∓ 2Re
C�
ACT þC0�

AC
0
T

jCAj2þjC0
Aj2

�
me

E

�
−2

jCT j2þjC0
T j2

jCAj2þjC0
Aj2

	
:

ð19Þ
This results in a relative size of the BSM signal,

RameasuredðBSM=SMÞ ¼
����
2Re C�

ACTþC0�
AC

0
T

jCAj2þjC0
Aj2

hme
E i þ 2

jCT j2þjC0
T j2

jCAj2þjC0
Aj2

hδ̃ai − δbhme
E i

����;
ð20Þ

which enables a separation between the BSM signal and
SM corrections for j CT

CA
j ¼ j C0

T
CA

j ∼ 10−3, as shown in Fig. 1
(the white domain).
To understand the ability of experiments to identify these

signals, we notice that the SM nuclear structure-related
corrections are of the order of 10−3 for b and for ameasured.
Thus, experimental accuracy of about 10−3 in the meas-
urement of both these observables is needed, as is aimed in
current and planned experimental campaigns.
A complete application of the theory presented,

extracting both the angular correlation and Fierz term
from measurements of the recoiled ion energy of the
23Ne β-decay, and combining the theory and experiment
sensitivities to present new bounds on BSM tensor cou-
pling constants, can be found in Ref. [48].
The above discussion concentrated on allowed transi-

tions, as they are the focus of many experimental

FIG. 1. The ratio RðBSM=SMÞ of BSM signatures in β-decay
observables to the associated SM correction calculated for 6He
β-decay in Ref. [46], for different values of the BSM coupling
constant. For visualization simplicity, we assume C0

A ¼ CA and
C0
T ¼ CT . The solid green line is the ratio for Fierz term b. The

dashed-dotted purple line is the ratio for the angular correlation a.
The dashed blue line is the ratio for the measured value of the
angular correlation, ameasured. In thewhite domain, considering the
theoretical uncertainty from Ref. [46], separating the BSM signal
from the SM corrections in both b and ameasured is possible. In the
other domains, separation is limited by theoretical uncertainties.
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campaigns. However, theoretical considerations that arise
also from the formalism presented here, show that studying
β-decays beyond allowed transitions can be of advantage.
The spectrum of unique forbidden transitions contains an
additional term [see Eq. (A8) in Appendix A],

J − 1

2J þ 1

EðE0 − EÞ
q2

½β2 − ðβ⃗ · ν̂Þ2�

×

�
1þ δ̃J

ð−ÞJ−1

β2 − 2
jCT j2 þ jC0

T j2
jCAj2 þ jC0

Aj2
	
; ð21Þ

which does not appear in Gamow-Teller transitions. This
makes the energy spectrum of the electron sensitive to both
angular correlation and Fierz term, as we detailed in Ref. [49]
for unique first-forbidden transitions. Consequently, several
experimental campaigns were initiated to measure unique
first-forbidden transitions, such as 16N at the SARAF accel-
erator, Israel [11,50], and 90Sr at the Hebrew University,
Israel. In addition, a new study at the Oak Ridge National
Laboratory, Tennessee, USA, opens the door to many more
possibilities [51].

VI. CONCLUSIONS AND OUTLOOK

In this paper, we introduced a general mathematical
formalism for calculating the interaction of a Lorentz
invariant probe with a nucleus. As we demonstrated, this
general formalism is useful for various types of BSM
physics analysis, from exotic interactions with standard
particles to interactions with new particles, such as those
expected in the astrophysical dark matter scenario, and thus
completing the theoretical parts needed for analyzing
ongoing and future experiments looking for BSM physics.
This paper results in three main findings: the first is the

multipole expansion of tensor interactions with a composite
particle, presented in Eq. (4). The second is that the needed
approximation of the tensor nuclear current is the same as
the leading order of the SM axial-vector current, as appears
in Eq. (9). The third is BSM expressions for β-decay, useful
for precision experiments searching for BSM signatures,
displayed explicitly in Appendix A, with an exemplary
application given in Sec. V. The latter shows the usefulness
of the theoretical analysis we presented in the analysis of
the potential of experimental campaigns in identifying
BSM signals.
With the presented technique, BSM multipole operators

are identical to those appearing in the SM to the required
approximations, what greatly simplifies future calculations
of BSM signatures. Consequently, in order to compute
BSM contributions to semileptonic processes, such as
β-decays, which are frequently used in BSM searches
today, there is no need to compute any new nuclear matrix
elements, but to use the well-established SM matrix
elements, as shown in Eqs. (10), (13), and (15).
Moreover, the additional terms we found, which com-

plete the ingredients for β-decays, are crucial for accurately
identifying the expected size of the BSM effect, as we

demonstrate for 6He in Sec. V. This can assist in the design
of future experiments to study BSM effects, as we pointed
out in Ref. [49], where, supported by this formalism, we
showed that the unique first-forbidden decay spectrum is
more sensitive to BSM signatures. In light of that, experi-
ments are underway at the SARAF accelerator, Israel, the
Hebrew University, Israel, and the Oak Ridge National
Laboratory, Tennessee, to measure the spectrum of unique
first-forbidden β-decays [11,50,51].
Finally, we mention that recent studies have already used

some of the results of this research, to describe the effect of
BSM tensor interactions in processes other than β-decays
and dark matter, such as neutrino scattering [52] and μ → e
conversion [53].

ACKNOWLEDGMENTS

We wish to acknowledge the support of the Israel
Science Foundation Grant No. 1446/16. A. G.M.’s research
was partially supported by a scholarship sponsored by the
Ministry of Science & Technology, Israel.

APPENDIX A: BSM SIGNATURES IN β-DECAY
OBSERVABLES

Here we present explicitly BSM contributions for the
experimentally important case of β-decays, which is inten-
sively used these days in BSM searches. The BSM con-
tributions were calculated using the tensor multipole
decomposition displayed in this paper. Detailed derivations
can be found in Appendixes B (pure tensor terms), C (tensor
Fierz interference term), and D (scalar and pseudoscalar
terms, including their Fierz interference with tensor terms).
For presenting these contributions, we use the notation

we developed in Ref. [31]. As outlined there, a decay rate of
a Jπii → J

πf
f β-decay transition with Ji (Jf) and πi (πf), the

initial (final) angular momentum and parity, will include all
integer angular momentum changes that satisfy the selec-
tion rules jJi − Jfj ≤ J ≤ Ji þ Jf and Δπ ¼ πi · πf:

Θðq; β⃗ · ν̂Þ ¼
XJiþJf

J¼jJi−Jf j
ΘJΔπ ðq; β⃗ · ν̂Þ: ðA1Þ

[see Eq. (17) in the main text for the definition of
Θðq; β⃗ · ν̂Þ.] In the following, we will present the BSM
contributions to eachΘJΔπ , divided, as in Ref. [31], into two
parity types (for 1 ≤ J; the special cases JΔπ ¼ 0� will be
discussed separately): Δπ ¼ ð−ÞJ, presenting nonunique
Jth forbidden transitions, and Δπ ¼ ð−ÞJ−1, presenting
Gamow-Teller (J ¼ 1) and unique ðJ − 1Þth forbidden
transitions (J > 1). We note that allowed transitions were
recently studied comprehensively in Ref. [26].

1. JΔπ = 0+ : Fermi transition

Having J ¼ 0, BSM contributions to the Fermi transition
(JΔπ ¼ 0þ) come from the scalar multipole operator ĈS

0,
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which is proportional to the Fermi operator, ĈS
0 ≈

gS
gV
ĈV
0 [see

Eq. (13) in the main text for more details]:

Θ0þðq; β⃗ · ν̂Þ¼ jCV j2þjC0
V j2

2jgV j2
jhkĈV

0 kij2

×

�
1þδ0

þ
1 þ jCSj2þjC0

Sj2
jCV j2þjC0

V j2
	

×

�
1þ β⃗ · ν̂

�
1þ δ̃0

þ
a −2

jCSj2þjC0
Sj2

jCV j2þjC0
V j2

	

þme

E

�
δ0

þ
b �2Re

CVC�
SþC0

VC
0�
S

jCV j2þjC0
V j2

	�
; ðA2Þ

where � are for β∓-decays, hkÔJki is a short notation for
the reduced matrix element hfkÔJkii of a multipole
operator ÔJ between the final and initial nuclear states,
and δ0

þ
1 , δ̃0

þ
a , and δ0

þ
b are the SM next-to-leading order

(NLO) nuclear structure and recoil corrections discussed in
Ref. [31]. There are two observables of interest here for the
search for BSM signatures. The first is the electron-
neutrino angular correlation,

a0
þ ¼ 1þ δ̃0

þ
a − 2

jCSj2 þ jC0
Sj2

jCV j2 þ jC0
V j2

; ðA3Þ

which is a0
þ ¼ 1 in the SM leading order. The second is the

Fierz interference term,

b0
þ ¼ δ0

þ
b � 2Re

CVC�
S þ C0

VC
0�
S

jCV j2 þ jC0
V j2

; ðA4Þ

which vanishes in the SM leading order. These results
recover the well-known Jackson, Treiman, andWyld results
[42] for allowed leading orders. In their formulation
[Eq. (18) in the main text],

ξ0
þ ¼ jhkĈV

0 kij2
jgV j2

½ðjCV j2þjC0
V j2Þð1þδ0

þ
1 Þþ jCSj2þjC0

Sj2�;

ðA5aÞ

a0
þ
ξ0

þ ¼ jhkĈV
0 kij2

jgV j2
½ðjCV j2 þ jC0

V j2Þð1þ δ0
þ

a Þ

− jCSj2 − jC0
Sj2�; ðA5bÞ

b0
þ
ξ0

þ ¼ jhkĈV
0 kij2

jgV j2
½ðjCV j2 þ jC0

V j2Þδ0þb
� 2ReðCVC�

S þ C0
VC

0�
S Þ�; ðA5cÞ

where hkĈV
0 ki

gV
¼ MF is the Fermi matrix element used in their

paper, and the NLO SM corrections δ0
þ

1 , δ0
þ

a ¼ δ̃0
þ
a þ δ0

þ
1 ,

and δ0
þ

b are higher order precision corrections not found in the
Jackson, Treiman, and Wyld paper.

2. JΔπ = 0− : A nonunique first-forbidden transition

For the nonunique first-forbidden transition JΔπ ¼ 0−,
the nuclear structure expression includes BSM contribu-
tions from the tensor multipole operator L̂T

0 ≈ − iffiffi
2

p gT
gA
L̂A
0

and the pseudoscalar multipole operator ĈP
0 ≈ q

2mN

gP
gA
L̂A
0

[see Eqs. (10) and (15) in the main text] as follows:

Θ0−ðq; β⃗ · ν̂Þ ¼ jCAj2 þ jC0
Aj2

2jgAj2


jhkĈA

0kij2 þ
�
1þ jCT j2 þ jC0

T j2
jCAj2 þ jC0

Aj2
þ
�

q
mN

	
2 jCPj2 þ jC0

Pj2
jCAj2 þ jC0

Aj2

� me

mN
Re

CAC�
P þ C0

AC
0�
P

jCAj2 þ jC0
Aj2

� E0 − 2E
mN

Re
CTC�

P þ C0
TC

0�
P

jCAj2 þ jC0
Aj2

�
jhkL̂A

0kij2

− 2Re

��
E0

q
∓ me

q
C�
ACT þ C0�

AC
0
T

jCAj2 þ jC0
Aj2

	
hkL̂A

0kihkĈA
0ki�

�

þ β⃗ · ν̂

�
jhkĈA

0kij2 þ
�
1 −

jCT j2 þ jC0
T j2

jCAj2 þ jC0
Aj2

−
�

q
mN

	
2 jCPj2 þ jC0

Pj2
jCAj2 þ jC0

Aj2

∓ me

mN
Re

CAC�
P þ C0

AC
0�
P

jCAj2 þ jC0
Aj2

∓ E0 − 2E
mN

Re
CTC�

P þ C0
TC

0�
P

jCAj2 þ jC0
Aj2

	
jhkL̂A

0kij2

− 2Re

��
E0

q
�me

q
C�
ACT þ C0�

AC
0
T

jCAj2 þ jC0
Aj2

	
hkL̂A

0kihkĈA
0ki�

��

þme

E
2Re

��
me

q
∓ E0

q
C�
ACT þ C0�

AC
0
T

jCAj2 þ jC0
Aj2

∓ q
mN

C�
ACP þ C0�

AC
0
P

jCAj2 þ jC0
Aj2

	
hkL̂A

0kihkĈA
0ki�

�
�
C�
ACT þ C0�

AC
0
T

jCAj2 þ jC0
Aj2

−
E0

mN

C�
ACP þ C0�

AC
0
P

jCAj2 þ jC0
Aj2

−
me

mN

C�
TCP þ C0�

T C
0
P

jCAj2 þ jC0
Aj2

	
jhkL̂A

0kij2
�

þ 2
EðE0 − EÞ

q2

�
β2 −

�
β⃗ · ν̂

	
2
��

1 −
jCT j2 þ jC0

T j2
jCAj2 þ jC0

Aj2
	
jhkL̂A

0kij2
�
þOðϵMÞ: ðA6Þ
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[ϵM ∼ ΔM
Mmin

, where ΔM ≡Mi −Mf, Mmin ≡min ðMi;MfÞ,
and Mi (Mf) is the mass of the initial (final) nucleus,
presents SM recoiled nucleus corrections, which we will
not give explicitly here, since they are relevant only for very
light nuclei. For example, for the β-decay of 6He, ϵM ∼
7 × 10−4 [31].] The BSM tensor and pseudoscalar

signatures, jCT j2þjC0
T j2

jCAj2þjC0
Aj2
, jCPj2þjC0

Pj2
jCAj2þjC0

Aj2
, C�

ACTþC0�
AC

0
T

jCAj2þjC0
Aj2

, C�
ACPþC0�

AC
0
P

jCAj2þjC0
Aj2

and
C�
TCPþC0�

T C
0
P

jCAj2þjC0
Aj2

, in the observables of this nonunique first-

forbidden transition, can be recognized similarly to those
in the observables of allowed transitions. In the notion of
Jackson, Treiman, and Wyld, these observables will be

ξ0
− ¼ 1

jgAj2


ðjCAj2 þ jC0

Aj2ÞjhkĈA
0kij2

þ
�
jCAj2 þ jC0

Aj2 þ jCT j2 þ jC0
T j2 þ

�
q
mN

	
2

ðjCPj2 þ jC0
Pj2Þ

� me

mN
ReðCAC�

P þ C0
AC

0�
P Þ �

E0 − 2E
mN

ReðCTC�
P þ C0

TC
0�
P Þ
�
jhkL̂A

0kij2

−2Re


�
E0

q
ðjCAj2 þ jC0

Aj2Þ ∓ me

q
ðC�

ACT þ C0�
AC

0
TÞ
�
hkL̂A

0kihkĈA
0ki�

��
; ðA7aÞ

a0
−
ξ0

− ¼ 1

jgAj2


ðjCAj2 þ jC0

Aj2ÞjhkĈA
0kij2

þ
�
jCAj2 þ jC0

Aj2 − jCT j2 − jC0
T j2 −

�
q
mN

	
2

ðjCPj2 þ jC0
Pj2Þ

∓ me

mN
ReðCAC�

P þ C0
AC

0�
P Þ ∓ E0 − 2E

mN
ReðCTC�

P þ C0
TC

0�
P Þ
�
jhkL̂A

0kij2

−2Re


�
E0

q
ðjCAj2 þ jC0

Aj2Þ �
me

q
ðC�

ACT þ C0�
AC

0
TÞ
�
hkL̂A

0kihkĈA
0ki�

��
; ðA7bÞ

b0
−
ξ0

− ¼ 1

jgAj2
2Re


�
�ðC�

ACT þ C0�
AC

0
TÞ ∓ E0

mN
ðC�

ACP þ C0�
AC

0
PÞ

∓ me

mN
ðC�

TCP þ C0�
T C

0
PÞ
�
jhkL̂A

0kij2 þ
�
me

q
ðjCAj2 þ jC0

Aj2Þ

∓ E0

q
ðC�

ACT þ C0�
AC

0
TÞ ∓ q

mN
ðC�

ACP þ C0�
AC

0
PÞ
�
hkL̂A

0kihkĈA
0ki�

�
; ðA7cÞ

where ĈA
0 ∝ ϵNR and L̂A

0 ∝ ϵqr are the SM operators
that dominate the JΔπ ¼ 0− nonunique first-forbidden
transition.

3. Δπ = ð− ÞJ − 1: Gamow-Teller and unique
forbidden transitions

In discussing the ΘJΔπ expressions for J’s greater
than 0, we distinguish between transitions with two
parity types: Δπ ¼ ð−ÞJ, and Δπ ¼ ð−ÞJ−1. Jð−ÞJ angular
momentum presents nonunique Jth forbidden transitions,

while Jð−ÞJ−1 presents, for J ¼ 1, the allowed Gamow-Teller
transition, and for J > 1, unique ðJ − 1Þth forbidden
transitions (we will refer to them together as unique
transitions).
Starting with the unique transitions, their BSM contri-

butions involve the tensor and pseudoscalar multipole
operators, L̂T

J ≈ − iffiffi
2

p gT
gA
L̂A
J [Eq. (10) in the main text]

and ĈP
J ≈ q

2mN

gP
gA
L̂A
J [Eq. (15) in the main text]. A general

expression that includes the BSM contributions along with
the SM NLO corrections can be written as

AYALA GLICK-MAGID and DORON GAZIT PHYS. REV. D 107, 075031 (2023)

075031-10



ΘJð−ÞJ−1 ðq; β⃗ · ν̂Þ ¼ jCAj2 þ jC0
Aj2

2jgAj2
jhkL̂A

Jkij2
2J þ 1

J



1þ δJ

ð−ÞJ−1
1 þ jCT j2 þ jC0

T j2
jCAj2 þ jC0

Aj2

þ J
2J þ 1

��
q
mN

	
2 jCPj2 þ jC0

Pj2
jCAj2 þ jC0

Aj2
� me

mN
Re

C�
ACP þ C0�

AC
0
P

jCAj2 þ jC0
Aj2

� E0 − 2E
mN

Re
C�
TCP þ C0�

T C
0
P

jCAj2 þ jC0
Aj2

��

×



1 −

1

2J þ 1
β⃗ · ν̂

�
1þ δ̃J

ð−ÞJ−1
a − 2

jCT j2 þ jC0
T j2

jCAj2 þ jC0
Aj2

þJ
��

q
mN

	
2 jCPj2 þ jC0

Pj2
jCAj2 þ jC0

Aj2
� me

mN
Re

C�
ACP þ C0�

AC
0
P

jCAj2 þ jC0
Aj2

� E0 − 2E
mN

Re
C�
TCP þ C0�

T C
0
P

jCAj2 þ jC0
Aj2

	�

þme

E

�
δJ

ð−ÞJ−1
b � 2Re

C�
ACT þ C0�

AC
0
T

jCAj2 þ jC0
Aj2

∓ J
2J þ 1

�
E
mN

Re
C�
ACP þ C0�

AC
0
P

jCAj2 þ jC0
Aj2

þme

q
Re

C�
TCP þ C0�

T C
0
P

jCAj2 þ jC0
Aj2

	�

þ J − 1

2J þ 1

EðE0 − EÞ
q2

�
β2 − ðβ⃗ · ν̂Þ2

��
1þ δ̃J

ð−ÞJ−1

β2 − 2
jCT j2 þ jC0

T j2
jCAj2 þ jC0

Aj2
	�

þOðϵMϵ2J−2qr Þ; ðA8Þ

where the different δJ
ð−ÞJ−1

are the NLO SM corrections
described in Ref. [31] (ϵMϵ2J−2qr presents SM recoiled
nucleus corrections, which we will not display here,
since they are relevant only for very light nuclei [31]).
Note that for the Gamow-Teller case (J ¼ 1), the

term J−1
2Jþ1

ð1þ δ̃J
ð−ÞJ−1

β2 −2
jCT j2þjC0

T j2
jCAj2þjC0

Aj2
ÞEðE0−EÞ

q2 ½β2−ðβ⃗ · ν̂Þ2�
does not exist. Instead, there is an NLO SM correction,
δ̃1

þ
β2;ðβνÞ2 [31].

According to the V − A structure of the weak interaction,
the leading order of the electron-neutrino angular correla-

tion should be aJ
ð−ÞJ−1 ¼ − 1

2Jþ1
. As was already known for

Gamow-Teller transitions but actually applies to any unique

transition, when adding BSM tensor contributions, the
angular correlation becomes

aJ
ð−ÞJ−1 ¼−

1

2Jþ 1

�
1þ δ̃J

ð−ÞJ−1
a − 2

jCT j2þjC0
T j2

jCAj2þjC0
Aj2

	
: ðA9Þ

Also the Fierz term which vanishes for the leading order in
the V − A structure as was already known for Gamow-
Teller but actually applies to any unique transition, differs
from zero when including tensor BSM contributions (here
we also include a term with a similar spectral behavior that
can be extracted from the NLO SM spectrum):

bJ
ð−ÞJ−1 ¼ δJ

ð−ÞJ−1
b � 2Re

C�
ACT þ C0�

AC
0
T

jCAj2 þ jC0
Aj2

: ðA10Þ

However, pseudoscalar terms may also contribute to leading orders of BSM. Their inclusion along with the above tensor
terms can be simplified using the notion of Jackson, Treiman, and Wyld:

ξJ
ð−ÞJ−1 ¼ jhkL̂A

Jkij2
jgAj2



ðjCAj2 þ jC0

Aj2Þð1þ δJ
ð−ÞJ−1

1 Þ þ jCT j2 þ jC0
T j2

þ J
2J þ 1

��
q
mN

	
2

ðjCPj2 þ jC0
Pj2Þ �

me

mN
ReðC�

ACP þ C0�
AC

0
PÞ�

E0 − 2E
mN

ReðC�
TCP þ C0�

T C
0
PÞ
��

; ðA11aÞ

aJ
ð−ÞJ−1

ξJ
ð−ÞJ−1 ¼ −

1

2J þ 1

jhkL̂A
Jkij2

jgAj2


ðjCAj2 þ jC0

Aj2Þð1þ δJ
ð−ÞJ−1

a Þ − jCT j2 − jC0
T j2

þ J

��
q
mN

	
2

ðjCPj2 þ jC0
Pj2Þ �

me

mN
ReðC�

ACP þ C0�
AC

0
PÞ�

E0 − 2E
mN

ReðC�
TCP þ C0�

T C
0
PÞ
��

; ðA11bÞ

bJ
ð−ÞJ−1

ξJ
ð−ÞJ−1 ¼ jhkL̂A

Jkij2
jgAj2



ðjCAj2 þ jC0

Aj2ÞδJ
ð−ÞJ−1

b � 2ReðC�
ACT þ C0�

AC
0
TÞ

∓ J
2J þ 1

�
E
mN

ReðC�
ACP þ C0�

AC
0
PÞ þ

me

q
ReðC�

TCP þ C0�
T C

0
PÞ
��

: ðA11cÞ
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By substituting J ¼ 1, one obtains the well-known
Jackson, Treiman, and Wyld results for the leading order

observables of the Gamow-Teller transition, where hkL̂A
1 ki

gA
¼

MGT is the Gamow-Teller matrix element used in their
paper. Here, again, the NLO SM corrections δ1, δa ¼
δ̃a þ δ1 and δb are higher order precision corrections not
found in the Jackson, Treiman, and Wyld paper, and so are
the terms containing the pseudoscalar coupling con-

stants Cð0Þ
P .

A full allowed (mixed Gamow-Teller and Fermi) tran-
sition will be a sum of Eqs. (A2) and (A8) for J ¼ 1 (with
the NLO SM correction δ̃1

þ
β2;ðβνÞ2 to replace the vanishing

term, as explained above), where the full ξ presented in the

Jackson, Treiman, and Wyld paper is the sum of Eqs. (A5a)
and (A11a) for J ¼ 1, aξ is the sum of Eqs. (A5b) and
(A11b) for J ¼ 1, and bξ is the sum of Eqs. (A5c) and
(A11c) for J ¼ 1. All are in agreement with their
paper.

4. Δπ = ð− ÞJ: Nonunique forbidden transitions

Finally, the case of nonunique Jth forbidden transitions,
i.e., decays with angular momentum change J greater than
0, and parity change π ¼ ð−ÞJ, involves BSM contributions
from the scalar and tensor multipole operators, ĈS

J ≈
gS
gV
ĈV
J

[Eq. (13) in the main text], and M̂T
J ≈ − iffiffi

2
p gT

gA
M̂A

J [Eq. (10)

in the main text]. The ΘJð−ÞJ expression can be written as

ΘJð−ÞJ ðq; β⃗ · ν̂Þ ¼

jCV j2 þ jC0

V j2
2jgV j2

�
1þ 1

J
E2
0

q2
ð1 − ðJ þ 1Þ2ReδJ

ð−ÞJ Þ
�
þ jCSj2 þ jC0

Sj2
2jgV j2

∓ meE0

q2
2Re

CVC�
S þ C0

VC
0�
S

2jgV j2
�
jhkĈV

J kij2 þ
�jCAj2 þ jC0

Aj2
2jgAj2

þ jCT j2 þ jC0
T j2

2jgAj2
	
jhkM̂A

Jkij2

�
ffiffiffiffiffiffiffiffiffiffiffi
J þ 1

J

r
2Re

�
E0

q

�
E0 − 2E

q
CVC�

A þ C0
VC

0�
A

2gVg�A
ð1 − δJ

ð−ÞJ Þ −me

q
CVC�

T þ C0
VC

0�
T

2gVg�A

	
hkĈV

J kihkM̂A
Jki�

�

þ β⃗ · ν̂


��
1 −

2J þ 1

J
E2
0

q2

�
1 −

J þ 1

2J þ 1
2ReδJ

ð−ÞJ
	� jCV j2 þ jC0

V j2
2jgV j2

−
jCSj2 þ jC0

Sj2
2jgV j2

�meE0

q2
2Re

CVC�
S þ C0

VC
0�
S

2jgV j2
�
jhkĈV

J kij2 þ
�
−
jCAj2 þ jC0

Aj2
2jgAj2

þ jCT j2 þ jC0
T j2

2jgAj2
	
jhkM̂A

Jkij2

∓
ffiffiffiffiffiffiffiffiffiffiffi
J þ 1

J

r
2Re

�
E0

q

�
E0 − 2E

q
CVC�

A þ C0
VC

0�
A

2gVg�A
ð1 − δJ

ð−ÞJ Þ −me

q
CVC�

T þ C0
VC

0�
T

2gVg�A

	
hkĈV

J kihkM̂A
Jki�

��

þme

E


�
2
meE0

q2
jCV j2 þ jC0

V j2
2jgV j2

�
�
1þ E2

0

q2

	
2Re

CVC�
S þ C0

VC
0�
S

2jgV j2
�
jhkĈV

J kij2

∓ 2Re
C�
ACT þ C0�

AC
0
T

2jgAj2
jhkM̂A

Jkij2 �
ffiffiffiffiffiffiffiffiffiffiffi
J þ 1

J

r
2Re

��
meE0

q2
CVC�

A þ C0
VC

0�
A

2gVg�A
ð1 − δJ

ð−ÞJ Þ

þ E2
0

q2
CVC�

T þ C0
VC

0�
T

2gVg�A

	
hkĈV

J kihkM̂A
Jki�

��

þ EðE0 − EÞ
q2

½β2 − ðβ⃗ · ν̂Þ2�
�
J − 1

J
E2
0

q2

�
1þ J þ 1

J − 1
2ReδJ

ð−ÞJ
	 jCV j2 þ jC0

V j2
2jgV j2

jhkĈV
J kij2

þ
�
−
jCAj2 þ jC0

Aj2
2jgAj2

þ jCT j2 þ jC0
T j2

2jgAj2
	
jhkM̂A

Jkij2
�
þOðϵMϵ2JqrÞ; ðA12Þ

where δJ
ð−ÞJ

is an NLO SM correction described in Ref. [31] (ϵMϵ2Jqr presents SM recoiled nucleus corrections, which wewill
not display here, since they are relevant only for very light nuclei [31]). The multipole operators involved are ĈV

J ; M̂
A
J ∝ ϵJqr,

and the equivalents to the terms of Jackson, Treiman, and Wyld will be
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ξJ
ð−ÞJ ¼


�
1þ 1

J
E2
0

q2
ð1 − ðJ þ 1Þ2ReδJ

ð−ÞJ Þ
�
ðjCV j2 þ jC0

V j2Þ þ ðjCSj2 þ jC0
Sj2Þ

∓ meE0

q2
2ReðCVC�

S þ C0
VC

0�
S Þ
� jhkĈV

J kij2
jgV j2

þ ðjCAj2 þ jC0
Aj2 þ jCT j2 þ jC0

T j2Þ
jhkM̂A

Jkij2
jgAj2

�
ffiffiffiffiffiffiffiffiffiffiffi
J þ 1

J

r
2Re


�
E0ðE0 − 2EÞ

q2
ðCVC�

A þ C0
VC

0�
A Þð1 − δJ

ð−ÞJ Þ

−
meE0

q2
ðCVC�

T þ C0
VC

0�
T Þ
� hkĈV

J kihkM̂A
Jki�

gVg�A

�
; ðA13aÞ

aJ
ð−ÞJ

ξJ
ð−ÞJ ¼


�
1 −

2J þ 1

J
E2
0

q2

�
1 −

J þ 1

2J þ 1
2ReδJ

ð−ÞJ
	�

ðjCV j2 þ jC0
V j2Þ − ðjCSj2 þ jC0

Sj2Þ

�meE0

q2
2ReðCVC�

S þ C0
VC

0�
S Þ
� jhkĈV

J kij2
jgV j2

þ ð−jCAj2 − jC0
Aj2 þ jCT j2 þ jC0

T j2Þ
jhkM̂A

Jkij2
jgAj2

∓
ffiffiffiffiffiffiffiffiffiffiffi
J þ 1

J

r
2Re


�
E0ðE0 − 2EÞ

q2
ðCVC�

A þ C0
VC

0�
A Þð1 − δJ

ð−ÞJ Þ

−
meE0

q2
ðCVC�

T þ C0
VC

0�
T Þ
� hkĈV

J kihkM̂A
Jki�

gVg�A

�
; ðA13bÞ

bJ
ð−ÞJ

ξJ
ð−ÞJ ¼

�
2
meE0

q2
ðjCV j2 þ jC0

V j2Þ �
�
1þ E2

0

q2

	
2ReðCVC�

S þ C0
VC

0�
S Þ
� jhkĈV

J kij2
jgV j2

∓ 2ReðC�
ACT þ C0�

AC
0
TÞ

jhkM̂A
Jkij2

jgAj2

�
ffiffiffiffiffiffiffiffiffiffiffi
J þ 1

J

r
2Re


�
meE0

q2
ðCVC�

A þ C0
VC

0�
A Þð1 − δJ

ð−ÞJ Þ

þE2
0

q2
ðCVC�

T þ C0
VC

0�
T Þ
� hkĈV

J kihkM̂A
Jki�

gVg�A

�
: ðA13cÞ

APPENDIX B: TENSOR SEMILEPTONIC
NUCLEAR PROCESS

Here we derive explicitly the pure tensor multipole
expansion for semileptonic nuclear processes. We write
the tensor lepton current in its most general form [24,25],
adjusted to the nowadays convention [10]:

jμνðr⃗Þ ¼ ψ̄ 0ðr⃗ÞσμνðCT − C0
Tγ5Þψðr⃗Þ; ðB1Þ

where ψ ð0Þ are fermion fields, and γ5 (σμν) is the
fifth gamma matrix (the commutator of the gamma

matrices) (see Appendix G for conventions). The

coupling constants Cð0Þ
sym (sym ∈ fS; P; V; A; Tg) are

real if time reversal invariance is preserved in the
process, but this will not be assumed in the following.
Assuming the leptons have a plane wave character
(interaction with the nucleus will be inserted perturba-
tively), the general matrix element can be written

as hfjjμνðr⃗Þjii≡ lμνe−iq⃗·r⃗, where q⃗≡ k⃗f − k⃗i is the
momentum transfer, and lμν is defined as lμν ¼
1
Ω l̄

0ðk⃗0ÞσμνðCT − C0
Tγ5Þlðk⃗Þ, where l; l0 ∈ fu; vg.
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UsingWigner-Eckart theorem [54], we distract from Eq. (4) in the main text, a general result for any semileptonic nuclear
tensor process in terms of reduced matrix elements of the multipole operators:

X
Mi

X
Mf

jhfjĤT
wjiij2 ¼ 4π


X∞
J¼0

�
lT3 l

T�
3 jhkL̂T

Jkij2 þ lT
0

3 l
T 0�
3 jhkL̂T 0

J kij2 þ 2ReðlT3 lT
0�

3 hkL̂T
JkihkL̂T 0

J ki�Þ
�

þ 1

2

X∞
J¼1

�
ð⃗lT · ⃗lT� − lT3 l

T�
3 ÞðjhkÊT

Jkij2 þ jhkM̂T
Jkij2Þ

þ ð⃗lT 0
· ⃗lT

0� − lT
0

3 l
T 0�
3 ÞðjhkÊT 0

J kij2 þ jhkM̂T 0
J kij2Þ

þ 2Re½ð⃗lT · ⃗lT
0� − lT3 l

T 0�
3 ÞðhkÊT

JkihkÊT 0
J ki� þ hkM̂T

JkihkM̂T 0
J ki�Þ�

− 2Re½ið⃗lT × ⃗lT�Þ3hkÊT
JkihkM̂T

Jki� þ ið⃗lT 0
× ⃗lT

0�Þ3hkÊT 0
J kihkM̂T 0

J ki�

þ ið⃗lT × ⃗lT
0�Þ3ðhkÊT

JkihkM̂T 0
J ki� þ hkM̂T

JkihkÊT 0
J ki�Þ�

��
: ðB2Þ

Summing over the lepton spins and substituting the lepton traces (see Appendix F) produces a general expression for a
semileptonic process of tensor symmetry between any two nuclear states. After taking into account also the parity selection

rules, as well as the relation ÊJ ¼
ffiffiffiffiffiffiffi
Jþ1
J

q
L̂J þOððqRÞJþ1Þ for J > 0, where L̂J isOððqRÞJ−1Þ [21], the summation over the

lepton spins is reduced to [see Eq. (17) in the main text for the definition of Θðq; β⃗ · ν̂Þ]:

Θðq; β⃗ · ν̂Þ ≈ jCT j2 þ jC0
T j2

g2T



ð1þ β⃗ · ν̂ − 2ðν̂ · q̂Þðβ⃗ · q̂ÞÞðjhkL̂T

0kij2 þ jhkL̂T 0
0 kij2Þ

þ
X∞
J¼1

�
2J þ 1

J

�
1þ J

2J þ 1
β⃗ · ν̂ −

J − 1

2J þ 1
ðν̂ · q̂Þðβ⃗ · q̂Þ

	
ðjhkL̂T

Jkij2 þ jhkL̂T 0
J kij2Þ

þ ð1þ ðν̂ · q̂Þðβ⃗ · q̂ÞÞðjhkM̂T
Jkij2 þ jhkM̂T 0

J kij2Þ

þ
ffiffiffiffiffiffiffiffiffiffiffi
J þ 1

J

r
q̂ · ðν̂þ β⃗Þ2ReðhkL̂T

JkihkM̂T 0
J ki� þ hkM̂T

JkihkL̂T 0
J ki�Þ

��
: ðB3Þ

Finally, using the connection from Eq. (10) in the main text, we find the leading order BSM expression:

Θðq; β⃗ · ν̂Þ ≈ jCT j2 þ jC0
T j2

2g2A



ð1þ β⃗ · ν̂ − 2ðν̂ · q̂Þðβ⃗ · q̂ÞÞjhkL̂A

0kij2

þ
X∞
J¼1

�
2J þ 1

J

�
1þ J

2J þ 1
β⃗ · ν̂ −

J − 1

2J þ 1
ðν̂ · q̂Þðβ⃗ · q̂Þ

	
jhkL̂A

Jkij2ð1þ ðν̂ · q̂Þðβ⃗ · q̂ÞÞjhkM̂A
Jkij2

��
: ðB4Þ

This is a general result that holds for any β-decay transition, and, up to the signs in the lepton traces, for any semileptonic
nuclear process (see Appendix F for more details), including different types of BSM physics. It yields the pure tensor terms
presented in Appendix A (see Appendix C for interference terms).

APPENDIX C: TENSOR FIERZ TERM

To complete the discussion, the full probe-nucleus interaction Hamiltonian Ĥw ¼ ĤSM
w þ ĤBSM

w should be considered.
This leads to an interference term, known as the Fierz term, involving both SM and BSMHamiltonians. The matrix element

of the SMHamiltonian ĤSM
w ¼ ĤV

w þ ĤA
w, where Ĥ

VðAÞ
w ¼ R

d3rjVðAÞμ ðr⃗ÞJ VðAÞμðr⃗Þ is its polar-vector (axial-vector) part, can
be written as [21]
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hfjĤVðAÞ
w jii ¼

X∞
J¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πð2J þ 1Þ

p
ð−iÞJ½lVðAÞ0 hfjĈVðAÞ

J0 jii − lVðAÞ3 hfjL̂VðAÞ
J0 jii�

þ
X∞
J¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πð2J þ 1Þ

p
ð−iÞJ

X
λ¼�1

lVðAÞλ hfjÊVðAÞ
J;−λ þ λM̂VðAÞ

J;−λ jii; ðC1Þ

where the superscriptVðAÞ denotes amultipole operator [Eq. (5) in themain text] calculatedwith thepolar-vector (axial-vector)
nuclear current (described in Appendix E), and lVμ ¼ 1

Ω l̄
0ðk⃗0ÞγμðCV − C0

Vγ5Þlðk⃗Þ (lAμ ¼ 1
Ω l̄

0ðk⃗0ÞγμðC0
A − CAγ5Þlðk⃗Þ).

For the tensor BSM case, Ĥw ¼ ĤSM
w þ ĤT

w, following both multipole expansions for V − A [Eq. (C1)] and tensor
couplings [Eq. (4) in the main text], a general interference term for any semileptonic nuclear process, involving both SM
currents and BSM tensor currents, will be

X
Mi

X
Mf

2ReðhfjĤVðAÞ
w jiihfjĤT

wjii�Þ ¼ 8πRe

X∞

J¼0

½lVðAÞ3 lT�3 hkL̂VðAÞ
J kihkL̂T

Jki� þ lVðAÞ3 lT
0�

3 hkL̂VðAÞ
J kihkL̂T 0

J ki�

− lVðAÞ0 lT�3 hkĈVðAÞ
J kihkL̂T

Jki� − lVðAÞ0 lT
0�

3 hkĈVðAÞ
J kihkL̂T 0

J ki��

þ 1

2

X∞
J¼1

½ð⃗lVðAÞ · ⃗lT� − lVðAÞ3 · lT�3 ÞðhkÊVðAÞ
J kihkÊT

Jki� þ hkM̂VðAÞ
J kihkM̂T

Jki�Þ

þ ð⃗lVðAÞ · ⃗lT 0� − lVðAÞ3 lT
0�

3 ÞðhkÊVðAÞ
J kihkÊT 0

J ki� þ hkM̂VðAÞ
J kihkM̂T 0

J ki�Þ
− ið⃗lVðAÞ × ⃗lT�Þ3ðhkÊVðAÞ

J kihkM̂T
Jki� þ hkM̂VðAÞ

J kihkÊT
Jki�Þ

− ið⃗lVðAÞ × ⃗lT
0�Þ3ðhkÊVðAÞ

J kihkM̂T 0
J ki� þ hkM̂VðAÞ

J kihkÊT 0
J ki�Þ�

�
: ðC2Þ

Summing over the lepton spins, substituting the lepton traces (Appendix F), and considering parity selection rules lead to
the Fierz vector-tensor (axial-tensor) interference term. After taking into account parity selection rules, as well as the

relation ÊJ ≈
ffiffiffiffiffiffiffi
Jþ1
J

q
L̂J (see Appendix B), one stays with the full tensor Fierz term:

Θðq; β⃗ · ν̂ÞVT;AT ≈ ∓me

E

ffiffiffi
2

p
Re



i

�
CAC�

T þ C0
AC

0�
T

gAg�T
hkL̂A

0kihkL̂T
0ki� þ

CVC�
T þ C0

VC
0�
T

gVg�T
hkL̂V

0 kihkL̂T 0
0 ki�

−
CAC�

T þ C0
AC

0�
T

gAg�T
ðν̂ · q̂ÞhkĈA

0kihkL̂T
0ki� −

CVC�
T þ C0

VC
0�
T

gVg�T
ðν̂ · q̂ÞhkĈV

0 kihkL̂T 0
0 ki�

�

þ i
X∞
J¼1

�
CAC�

T þ C0
AC

0�
T

gAg�T

2J þ 1

J
hkL̂A

JkihkL̂T
Jki� þ

CVC�
T þ C0

VC
0�
T

gVg�T

2J þ 1

J
hkL̂V

J kihkL̂T 0
J ki�

−
CAC�

T þ C0
AC

0�
T

gAg�T
ðν̂ · q̂ÞhkĈA

JkihkL̂T
Jki� −

CVC�
T þ C0

VC
0�
T

gVg�T
ðν̂ · q̂ÞhkĈV

J kihkL̂T 0
J ki�

þ CAC�
T þ C0

AC
0�
T

gAg�T
hkM̂A

JkihkM̂T
Jki� þ

CVC�
T þ C0

VC
0�
T

gVg�T
hkM̂V

J kihkM̂T 0
J ki�

þ
ffiffiffiffiffiffiffiffiffiffiffi
J þ 1

J

r
ðν̂ · q̂ÞCVC�

T þ C0
VC

0�
T

gVg�T
ðhkL̂V

J kihkM̂T
Jki� þ hkM̂V

J kihkL̂T
Jki�Þ

þ
ffiffiffiffiffiffiffiffiffiffiffi
J þ 1

J

r
ðν̂ · q̂ÞCAC�

T þ C0
AC

0�
T

gAg�T
ðhkL̂A

JkihkM̂T 0
J ki� þ hkM̂A

JkihkL̂T 0
J ki�Þ

��
; ðC3Þ

or its BSM leading orders [using Eq. (10) in the main text]:

MULTIPOLE DECOMPOSITION OF TENSOR INTERACTIONS OF … PHYS. REV. D 107, 075031 (2023)

075031-15



Θðq; β⃗ · ν̂ÞVT;AT ≈ �me

E
2Re



C�
ACT þ C0�

AC
0
T

2jgAj2
½jhkL̂A

0kij2 − ðν̂ · q̂ÞhkĈA
0ki�hkL̂A

0ki�

þ
X∞
J¼1

�
C�
ACT þ C0�

AC
0
T

2jgAj2
�
2J þ 1

J
jhkL̂A

Jkij2 − ðν̂ · q̂ÞhkĈA
Jki�hkL̂A

Jki þ jhkM̂A
Jkij2

	

þ
ffiffiffiffiffiffiffiffiffiffiffi
J þ 1

J

r
ðν̂ · q̂ÞC

�
VCT þ C0�

VC
0
T

2jgV j2
hkL̂V

J ki�hkM̂A
Jki

��
: ðC4Þ

This yields the tensor Fierz terms presented in Appendix A.
Note that a complete BSM discussion, affecting the full
Fierz term, will include also scalar and pseudoscalar terms,
described in Appendix D.

APPENDIX D: SCALAR AND PSEUDOSCALAR
MULTIPOLE DECOMPOSITION

Here we derive the scalar and pseudoscalar terms within
the multipole decomposition, including their interference
terms with the SM Hamiltonian and the BSM tensor
Hamiltonian. We start from the scalar Hamiltonian,
ĤS

w ¼ R
d3rjSðr⃗ÞJ Sðr⃗Þ, with the scalar lepton current

jSðr⃗Þ ¼ ψ̄ 0ðr⃗ÞðCS − C0
Sγ5Þψðr⃗Þ [24,25]. Its matrix element

can be written using the multipole expansion:

hfjĤS
wjii ¼

X∞
J¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πð2J þ 1Þ

p
ð−iÞJlShfjĈS

J jii; ðD1Þ

where lS ¼ 1
Ω l̄

0ðk⃗0ÞðCS − C0
Sγ5Þlðk⃗Þ, yielding the term

X
Mi

X
Mf

jhfjĤS
wjiij2¼4π

X∞
J¼0

lSlS�jhkĈS
Jkij2; ðD2Þ

as well as the Fierz interference terms,

X
Mi

X
Mf

2ReðhfjĤVðAÞ
w jiihfjĤS

wjii�Þ

¼ 8π
X∞
J¼0

Re½lVðAÞ0 lS�hkĈVðAÞ
J kihkĈS

Jki�

− lVðAÞ3 lS�hkL̂VðAÞ
J kihkĈS

Jki��; ðD3Þ
X
Mi

X
Mf

2ReðhfjĤT
wjiihfjĤS

wjii�Þ

¼ 8π
X∞
J¼0

Re½−lT3 lS�hkL̂T
JkihkĈS

Jki�

− lT
0

3 l
S�hkL̂T 0

J kihkĈS
Jki��; ðD4Þ

where ĈS
J is the Coulomb multipole operator, defined in

Eq. (5) in the main text, calculated with the scalar nuclear
currentwhichwill be described following. The pseudoscalar
coupling, originating from the pseudoscalar lepton current
jP ¼ ψ̄ 0ðr⃗ÞðCPγ5 − C0

PÞψðr⃗Þ, will have the same expansion,
onlywith ĤP

w, Ĉ
P
J and lP ¼ 1

Ω l̄
0ðk⃗0ÞðCPγ5 − C0

PÞlðk⃗Þ, instead
of ĤS

w, Ĉ
S
J , and lS. Note that although it is possible to

calculate a scalar-pseudoscalar interference term, according
to parity selection rules, there will not be any transition that
will involve this kind of term. Summing over the lepton
spins, substituting the lepton traces (Appendix F), and
considering parity selection rules, lead to the scalar and
pseudoscalar expression:

Θðq; β⃗ · ν̂ÞS;P ¼
X∞
J¼0



ð1 − β⃗ · ν̂Þ

�jCSj2 þ jC0
Sj2

2jgSj2
jhkĈS

Jkij2 þ
jCPj2 þ jC0

Pj2
2jgPj2

jhkĈP
J kij2

�

� 2
me

E
Re

�
CVC�

S þ C0
VC

0�
S

2gVg�S
hkĈV

J kihkĈS
Jki� −

CAC�
P þ C0

AC
0�
P

2gAg�P
hkĈA

JkihkĈP
J ki�

�

� 2
me

E
ðν̂ · q̂ÞRe

�
CVC�

S þ C0
VC

0�
S

2gVg�S
hkL̂V

J kihkĈS
Jki� −

CAC�
P þ C0

AC
0�
P

2gAg�P
hkL̂A

JkihkĈP
J ki�

�

� 2
ffiffiffi
2

p
q̂ · ðν̂ − β⃗ÞRe

�
i
CTC�

S þ C0
TC

0�
S

2gTg�S
hkL̂T 0

J kihkĈS
Jki� þ i

CTC�
P þ C0

TC
0�
P

2gTg�P
hkL̂T

JkihkĈP
J ki�

��
: ðD5Þ

In order to complete this discussion, one needs to calculate the scalar and pseudoscalar multipole operators. The general
forms of the single-nucleon matrix element of the scalar and pseudoscalar parts of the charge-changing weak current
are [34]
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hp⃗0; σ0; ρ0jJ Sjp⃗; σ; ρi ¼ 1

Ω
gSðq2Þūðp⃗0; σ0Þηþρ0τ�ηρuðp⃗; σÞ

þOðϵ2recoilÞ; ðD6aÞ

hp⃗0; σ0; ρ0jJ Pjp⃗; σ; ρi ¼ 1

Ω
gPðq2Þūðp⃗0; σ0Þηþρ0γ5τ�ηρuðp⃗; σÞ

þOðϵ2recoilÞ: ðD6bÞ

Expanding the needed matrix elements in the inverse mass
(following what we did to the tensor matrix element in
Sec. III), one obtains the following nonrelativistic expan-
sion for the scalar and pseudoscalar nuclear current
densities8:

J Sðr⃗Þ ¼ gS
XA
j¼1

τ�j δ
ð3Þðr⃗ − r⃗jÞ þOðϵ2NRÞ

¼ gS
gV

J V
0 ðr⃗Þ þOðϵ2NR; ϵrecoilÞ; ðD7aÞ

J Pðr⃗Þ ¼ −
i

2mN
gP

XA
j¼1

∇⃗ δð3Þðr⃗ − r⃗jÞ · σ⃗jτ�j þOðϵ2NRÞ;

ðD7bÞ

where the scalar current is proportional to the temporal part
(charge) of the 4-vector polar-vector current J V

0 . The

multipole operators [Eq. (5) in the main text], calculated
with the scalar and pseudoscalar symmetry contributions to
the weak nuclear current, can be written as a sum of one-
body operators:

ĈS
JðqÞ ¼

gS
gV

ĈV
J ðqÞ þOðϵJqrϵ2NR; ϵJqrϵrecoilÞ; ðD8aÞ

ĈP
J ðqÞ ¼

iq
2mN

gP
XA
j¼1

�
1

q
∇⃗MJðqr⃗jÞ

�
· σ⃗jτ�j þOðϵJqrϵ2NRÞ

¼ q
2mN

gP
gA

L̂A
J ðqÞ þOðϵJ−1qr ϵ2NR; ϵ

J
qrϵrecoilÞ; ðD8bÞ

where ĈV
J is the SM polar-vector Coulomb multipole

operator [Eq. (14) in the main text], and L̂A
J is the SM

axial-vector longitudinal multipole operator [Eq. (11a) in
the main text]. Unlike Eq. (D8a), originating from the
relation between the scalar and polar-vector charges,
Eq. (D8b) is an accidental relation between the multipoles.
Despite the fact that the pseudoscalar multipole is

suppressed by ϵrecoil, we consider its contribution a

BSM leading order since the pseudoscalar charge gP ¼
gA

MnþMp

mdþmu
¼ 349ð9Þ [39] is two orders of magnitude larger

than gA. Therefore, the scalar and pseudoscalar contribu-
tions to the BSM leading order are as follows:

Θðq; β⃗ · ν̂ÞS;P ≈
X∞
J¼0



ð1 − β⃗ · ν̂Þ

�jCSj2 þ jC0
Sj2

2jgV j2
jhkĈV

J kij2þ
�

q
2mN

	
2 jCPj2 þ jC0

Pj2
2jgAj2

jhkL̂A
Jkij2

�

� 2
me

E
Re

�
CVC�

S þ C0
VC

0�
S

2jgV j2
jhkĈV

J kij2 −
q

2mN

CAC�
P þ C0

AC
0�
P

2jgAj2
hkĈA

JkihkL̂A
Jki�

�

� 2
me

E
ðν̂ · q̂ÞRe

�
CVC�

S þ C0
VC

0�
S

2jgV j2
hkL̂V

J kihkĈV
J ki� −

q
2mN

CAC�
P þ C0

AC
0�
P

2jgAj2
jhkL̂A

Jkij2
�

� 2q̂ · ðν̂ − β⃗ÞRe

�
q

2mN

CTC�
P þ C0

TC
0�
P

2jgAj2
jhkL̂A

Jkij2
��

: ðD9Þ

This yields the scalar and pseudoscalar terms (including
their interference Fierz terms) presented in Appendix A.

APPENDIX E: SECOND-CLASS
MULTIPOLE OPERATORS

The general forms of the single-nucleon matrix elements
of the vector and axial parts of the charge-changing weak
current are (respectively) [34]

hp⃗0;σ0;ρ0jJ V
μ ð0Þjp⃗;σ;ρi

¼ 1

Ω
ūðp⃗0;σ0Þηþρ0

�
gVðq2Þγμ− i

g̃TðVÞðq2Þ
2mN

σμνqνþ
g̃Sðq2Þ
2mN

qμ

�

× τ�ηρuðp⃗;σÞ; ðE1aÞ

hp⃗0;σ0;ρ0jJ A
μ ð0Þjp⃗;σ;ρi

¼ 1

Ω
ūðp⃗0;σ0Þηþρ0

�
gAðq2Þγμ− i

g̃TðAÞðq2Þ
2mN

σμνqνþ
g̃Pðq2Þ
2mN

qμ

�

× γ5τ
�ηρuðp⃗;σÞ: ðE1bÞ

In the SM, gV ¼ 1 up to second-order corrections in isospin
breaking [37,38] as a result of the conservation of the vector

8A more accurate form will include second-class currents:
J Sðr⃗Þ ¼ gS

gVþ E0
2mN

g̃S
J V

0 ðr⃗Þ þOðϵ2NRÞ, where the second-class cur-

rent form factor g̃S is suppressed by OðϵrecoilÞ.
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current, and gA ≈ 1.276gV [55,56]. The induced charges,
g̃TðVÞ, g̃S, g̃TðAÞ, and g̃P (not to be confused with the actual
BSM charges, gS, gP, and gT , which appear in the scalar,
pseudoscalar, and tensor currents), contribute to the cur-
rents at the recoil order ϵrecoil [34]. g̃TðAÞ is known also as

the weak magnetism, and g̃P ∼ −ð2mN
mπ

Þ2gA. g̃S and g̃TðAÞ,
known as second-class currents, do not exist in the SM, g̃S
due to current conservation, and g̃TðAÞ because of G-parity
considerations [36].
Substituting the explicit form of Dirac spinors and

making a nonrelativistic expansion, leads to the explicit
expressions for the multipole operators calculated with the
vector and axial currents:

ĈV½2c�
J ðqÞ ¼

�
gV þ E0

2mN
g̃S

	XA
j¼1

MJðqr⃗jÞτ�j þOðϵJqrϵ2NRÞ;

ðE2aÞ

L̂V½2c�
J ðqÞ ¼ −

q
2mN

XA
j¼1



ðgV − g̃SÞMJðqr⃗jÞ

− 2gV

�
1

q
∇⃗MJðqr⃗jÞ

�
·
1

q
∇⃗
�
τ�j þOðϵJ−1qr ϵ2NRÞ;

ðE2bÞ

ÊV½2c�
J ðqÞ ¼ q

mN

XA
j¼1



−igV

�
1

q
∇⃗ × M⃗JJ1ðqr⃗jÞ

�
·
1

q
∇⃗

þ gV þ g̃TðVÞ
2

M⃗JJ1ðqr⃗jÞ · σ⃗j
�
τ�j

þOðϵJ−1qr ϵ2NRÞ; ðE2cÞ

M̂V½2c�
J ðqÞ ¼ −

iq
mN

XA
j¼1



gVM⃗JJ1ðqr⃗jÞ ·

1

q
∇⃗

þ i
gV þ g̃TðVÞ

2

�
1

q
∇⃗ × M⃗JJ1ðqr⃗jÞ

�
· σ⃗j

�
τ�j

þOðϵJqrϵ2NRÞ; ðE2dÞ

ĈA½2c�
J ðqÞ¼−

iq
mN

XA
j¼1



gAMJðqr⃗jÞσ⃗j ·

1

q
∇⃗

þ1

2

�
gA−

E0

2mN
g̃Pþ g̃TðAÞ

	�
1

q
∇⃗MJðqr⃗Þ

�
· σ⃗j

�
τ�j

þOðϵJqrϵ2NRÞ; ðE2eÞ

L̂A½2c�
J ðqÞ ¼ i

�
gA þ

�
q

2mN

	
2

g̃P −
E0

2mN
g̃TðAÞ

�

×
XA
j¼1

�
1

q
∇⃗MJðqr⃗jÞ

�
· σ⃗jτ�j þOðϵJ−1qr ϵ2NRÞ;

ðE2fÞ

ÊA½2c�
J ðqÞ ¼

�
gA þ

�
q

2mN

	
2

g̃P −
E0

2mN
g̃TðAÞ

�

×
XA
j¼1

�
1

q
∇⃗× M⃗JJ1ðqr⃗jÞ

�
· σ⃗jτ�j þOðϵJ−1qr ϵ2NRÞ;

ðE2gÞ

M̂A½2c�
J ðqÞ ¼

�
gA þ

�
q

2mN

	
2

g̃P −
E0

2mN
g̃TðAÞ

�

×
XA
j¼1

M⃗JJ1ðqr⃗jÞ · σ⃗jτ�j þOðϵJqrϵ2NRÞ; ðE2hÞ

where the superscript V½2c� ðA½2c�Þ indicates that the
multipole operators are calculated using the vector (axial)
current including its second-class part. MJ and M⃗JL1 are
defined in Eq. (6) in the main text. One can recognize that
these multipole operators that include the second-class
currents are actually the SM multipole operators with small
changes:

ĈV½2c�
J ðqÞ ¼

gV þ E0

2mN
g̃S

gV
ĈV
J ðqÞ; ðE3aÞ

L̂V½2c�
J ðqÞ ¼ L̂V

J ðqÞ þ
q

2mN

g̃S
gV

ĈV
J ðqÞ; ðE3bÞ

ĈA½2c�
J ðqÞ ¼ ĈA

J ðqÞ −
q

2mN

g̃TðAÞ
gA

L̂A
J ðqÞ; ðE3cÞ

ÔA½2c�
J ðqÞ ¼

gA þ ð q
2mN

Þ2g̃P − E0

2mN
g̃TðAÞ

gA þ ð q
2mN

Þ2g̃P
ÔA

J ðqÞ;

Ô ∈ fL̂; Ê; M̂g: ðE3dÞ
The multipole operators ÊV

J and M̂V
J stay with no change for

their leading orders when including second-class currents.

APPENDIX F: BSM LEPTON TRACES

As lepton traces produce the coefficients of the multipole
expansion, they are essential for any specific calculation.
Here we present BSM lepton traces for β-decays. Although
they were derived here for β-decays, they should be the
same for other semileptonic weak nuclear processes
involving a neutrino or an antineutrino (as neutrino/anti-
neutrino reaction and charged lepton capture), except for
the sign, which might be different.
Note that the symmetry coefficients appearing in the lepton

traces are the nucleon-level coefficients Csym ∼ gsym · ϵsym.
Since the quark-level nuclear currents already contain the gsym
form factors, when coming to use the lepton traces with the
quark-level multipole operators we discuss in Sec. III, there is
a need to make a small adjustment: a simple replacement of

the following obtained lepton coefficientsCð0Þ
sym, with adjusted

coefficients Cð0Þ
sym

gsym
, would satisfy this need.
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Let us start with the tensor lepton traces:

Ω2

2

X
lepton spins

lμνl�ρσ ¼
1

2
Tr

�
σμνðCT − C0

Tγ5Þ
�
γαν

α

2ν

	
ðC�

T þ C0�
T γ5Þσρσ

�
γβkβ þme

2E

	�

¼ jCT j2 þ jC0
T j2

2

�
ðgρμgσν − gρνgσμÞ

ναkα
νE

þ gσμ

�
νρkν
νE

þ ννkρ
νE

	

− gσν

�
νρkμ
νE

þ νμkρ
νE

	
þ gρν

�
νσkμ
νE

þ νμkσ
νE

	
− gρμ

�
νσkν
νE

þ ννkσ
νE

	�

þ i
CTC0�

T þ C0
TC

�
T

2
ϵμνγδ

�
gγρgδσ

ναkα
νE

þ gγσ

�
νρkδ

νE
þ νδkρ

νE

	
þ gδρ

�
νσkγ

νE
þ νγkσ

νE

	�
; ðF1Þ

where gμν is the metric and ϵμνρσ is the totally antisymmetric
Levi-Civita tensor (see Appendix G for their conventions).

Using the definitions of lT
ð0Þ

i from Eq. (2) in the main text, we

find that (notice that q̂ is the third direction ẑ≡ q⃗
jqj, and that

one can write q̂ ¼ k⃗þν⃗
q ¼ Eβ⃗þðE0−EÞν̂

q to obtain recoil terms):

Ω2

2

X
lepton spins

lT3 l
T�
3

¼ ðjCT j2 þ jC0
T j2Þ½1þ β⃗ · ν̂ − 2ðν̂ · q̂Þðβ⃗ · q̂Þ�; ðF2aÞ

1

2

Ω2

2

X
lepton spins

ð⃗lT · ⃗lT� − lT3 l
T�
3 Þ

¼ ðjCT j2 þ jC0
T j2Þ½1þ ðν̂ · q̂Þðβ⃗ · q̂Þ�; ðF2bÞ

−
i
2

Ω2

2

X
lepton spins

ð⃗lT × ⃗lT�Þ3 ¼ ðCTC0�
T þ C0

TC
�
TÞq̂ · ðν̂þ β⃗Þ:

ðF2cÞ
Replacing lTi l

T�
j with lT

0
i l

T 0�
j produces the exact same

expressions. However, replacing lTi l
T�
j with lTi l

T 0�
j produces

the same lepton terms, but with different symmetry
coefficients—wherever the unmixed trace lTi l

T�
j produces

jCT j2 þ jC0
T j2, the mixed trace lTi l

T 0�
j will produce

CTC0�
T þ C0

TC
�
T , and vice versa.

Second, the mixed lepton traces for the tensor Fierz term,

Ω2

2

X
lepton spins

lAμ l�ρσ ¼
1

2
Tr

�
γμðC0

A −CAγ5Þ
�
γαν

α

2ν

	

× ðC�
T þC0�

T γ5Þσρσ
�
γβkβ �me

2E

	�

¼ �i
me

E
C0
AC

�
T þCAC0�

T

2

�
gμσ

νρ
ν
− gμρ

νσ
ν

	

�me

E
CAC�

T þC0
AC

0�
T

2
ϵμαρσ

να

ν
; ðF3Þ

will be

Ω2

2

X
lepton spins

lA3 l
T�
3 ¼ ∓ iffiffiffi

2
p me

E
ðCAC�

T þ C0
AC

0�
T Þ; ðF4aÞ

−
Ω2

2

X
lepton spins

lA0 l
T�
3 ¼ � iffiffiffi

2
p me

E
ðCAC�

T þ C0
AC

0�
T Þðν̂ · q̂Þ;

ðF4bÞ

1

2

Ω2

2

X
lepton spins

ðl⃗A · l⃗T�− lA3 l
T�
3 Þ ¼∓ iffiffiffi

2
p me

E
ðCAC�

T þC0
AC

0�
T Þ;

ðF4cÞ

−
i
2

Ω2

2

X
lepton spins

ðl⃗ A× l⃗ T�Þ3¼∓ iffiffiffi
2

p me

E
ðC0

AC
�
TþCAC0�

T Þðν̂ · q̂Þ;

ðF4dÞ

where � are for β∓-decays. Replacing lAi l
T�
j with lAi l

T 0�
j

produces the same lepton terms, but with different sym-
metry coefficients: CAC�

T þ C0
AC

0�
T should be replaced with

C0
AC

�
T þ CAC0�

T , and vice versa. The interference with the
polar-vector current will have the same expressions, only
with the superscript V, C0

V , and CV instead of the super-
script A, CA, and C0

A, respectively (note the replacement
of ð0Þ).
Last, the scalar and their interference traces will be

Ω2

2

X
lepton spins

lSlS� ¼ jCSj2 þ jC0
Sj2

2
ð1 − β⃗ · ν̂Þ; ðF5aÞ

Ω2

2

X
lepton spins

lV0 l
S� ¼ �CVC�

S þ C0
VC

0�
S

2

me

E
; ðF5bÞ

Ω2

2

X
lepton spins

lA0 l
S� ¼ �C0

AC
�
S þ CAC0�

S

2

me

E
; ðF5cÞ
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−
Ω2

2

X
lepton spins

lV3 l
S� ¼ �CVC�

S þ C0
VC

0�
S

2
ðν̂ · q̂Þme

E
; ðF5dÞ

−
Ω2

2

X
lepton spins

lA3 l
S� ¼ �C0

AC
�
S þ CAC0�

S

2
ðν̂ · q̂Þme

E
; ðF5eÞ

−
Ω2

2

X
lepton spins

lT3 l
S� ¼ ∓i

ffiffiffi
2

p C0
TC

�
S þ CTC0�

S

2
q̂ · ðν̂ − β⃗Þ;

ðF5fÞ

−
Ω2

2

X
lepton spins

lT
0

3 l
S� ¼ �i

ffiffiffi
2

p CTC�
S þ C0

TC
0�
S

2
q̂ · ðν̂ − β⃗Þ:

ðF5gÞ

Pseudoscalar traces will be similar, replacing the coeffi-
cients CS and C0

S with the coefficients −C0
P and −CP,

respectfully.

APPENDIX G: CONVENTIONS

In this paper we use the nowadays convention for the
gamma matrices (see, e.g., Ref. [57]):

fγμ; γνg ¼ 2gμν; σμν ≡ i
2
½γμ; γν�;

γ5 ¼ γ5 ≡ iγ0γ1γ2γ3; γ5σμν ¼
i
2
ϵμνρσσ

ρσ; ðG1Þ

where gμν ¼ diagð1;−1;−1;−1Þ is the Minkowski metric,
and ϵijk [ϵμνρσ ¼ −ϵμνρσ] is the Levi-Civita symbol [tensor],
which is 1 if ði; j; kÞ [ðμ; ν; ρ; σÞ] is an even permutation of
(1,2,3) [(0,1,2,3)], −1 if it is an odd permutation, and 0 if

any index is repeated. Some of the calculations make use of
the Dirac representation of the gamma matrices:

γ0 ¼
�
1 0

0 −1

	
; γ⃗ ¼ γ0

�
0 σ⃗

σ⃗ 0

	
; ðG2Þ

with the Pauli matrices σ⃗.
The conventions we use for a Dirac spinor of a free

particle of mass m, momentum pμ, and energy E ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
is

uðp⃗; σÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþm
2E

r �
1
σ⃗·p⃗
Eþm

	
χσ; ðG3aÞ

where χσ is a two-component Pauli spinor for a spin up and
down along the p̂ axis, and the normalization is

uþu¼ 1;
X

lepton spins

uðp⃗Þūðp⃗Þ ¼ γμpμþm

2E
; ū≡uþγ0:

ðG3bÞ

The isospin raising and lowering operators we use are
defined as

τ�≡ ∓ 1

2
ðτx � iτyÞ: ðG4Þ

The circular polarization base unit vectors we use are

ê�1≡ ∓ 1ffiffiffi
2

p ðx̂� iŷÞ; ê0 ≡ ẑ≡ q⃗
jqj ; ðG5Þ

where we choose the ẑ axis to be the direction of the
momentum transfer q⃗, and the multipole decomposition of
this base is [21,54]

êþλ e
−iq⃗·r⃗ ¼

8<
:

i
q

P∞
J¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πð2J þ 1Þp ð−iÞJ∇½jJðqrÞYJ0ðr̂Þ� λ ¼ 0

−
P∞

J¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πð2J þ 1Þp ð−iÞJfλjJðqrÞY−λ

JJ1ðr̂Þ þ 1
q∇ × ½jJðqrÞY−λ

JJ1ðr̂Þ�g λ ∈ f�1g
; ðG6Þ

with jJ the spherical Bessel functions, YJM the spherical harmonics, and Y⃗M
JL1 the vector spherical harmonics defined by the

relation [54]

Y⃗M
JL1ðr̂Þ≡

XL
μ¼−L

X1
λ¼−1

hLμ1λjJMiYLμðr̂Þêλ; ðG7Þ

where hj1m1j2m2jJMi are the Clebsch-Gordan coefficients.
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