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It is still unknown whether the mass terms for neutrinos are of Majorana type or of Dirac type. An
interesting possibility, known as pseudo-Dirac scheme, combines these two with a dominant Dirac mass
term and a subdominant Majorana one. As a result, the mass eigenstates come in pairs with a maximal
mixing and a small splitting determined by the Majorana mass. This will affect the neutrino oscillation
pattern for long baselines. We revisit this scenario employing recent solar neutrino data, including the
seasonal variation of the 7Be flux recently reported by BOREXINO. We constrain the splitting using these
data and find that both the time integrated solar neutrino data and the seasonal variation independently point
towards a new pseudo-Dirac solution with nonzero splitting for ν2 of Δm2

2 ≃ 1.5 × 10−11 eV2. We propose
alternative methods to test this new solution. In particular, we point out the importance of measuring the
solar neutrino flux at the intermediate energies 1.5 MeV < Eν < 3.5 MeV (below the Super-Kamiokande
detection threshold) as well as a more precise measurement of the pep flux.
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I. INTRODUCTION

Lepton flavor violation is the cornerstone of modern
neutrino physics, having been observed in various neutrino
experiments such as solar, atmospheric, reactor, and long
baseline neutrino experiments. The three neutrino mass
and mixing scheme has been established as the standard
solution to the observed lepton flavor violation in evolution
of neutrino states. It is not however known whether the
neutrino mass term also violates lepton number or not. In
other words, we do not know if the mass terms for neutrinos
are of Majorana type or of Dirac type. In general, we can
simultaneously write Majorana (μ) and Dirac mass (m)
terms for neutrinos. At the limit where the Majorana term is
much smaller than the Dirac term (i.e., in the limit μ ≪ m),
the scheme is called pseudo-Dirac. This limit is of interest
from both a model-building and phenomenological point of
view. It is straightforward to show that the mass eigenstates
composing the active states will split to pairs of Majorana
states with maximal mixing and tiny mass squared
differences given by Δm2 ¼ μm. For baselines much
smaller than Eν=ð2 μmÞ, the neutrino oscillation pattern
will be similar to that expected for the standard three

neutrino mass and mixing scheme. For baselines compa-
rable to Eν=ð2 μmÞ or larger, the active to active neutrino
oscillation probability will be smaller than that expected
within the standard scheme as a part of the active flux that
can oscillate to sterile neutrinos. There is already rich
literature on the potential of various neutrino observations
to test this scenario. Upcoming terrestrial experiments such
as DUNE and JUNO can test Δm2 ∼ 10−5 eV2 [1]. The
galactic supernova neutrinos can probe Δm2 down to
10−20 eV2 [2]. Ultrahigh energy cosmic neutrinos can be
sensitive to Δm2 > few × 10−18 eV2 [3–8]. Finally, the
solar neutrinos can be sensitive to Δm2 ≳ 10−13 eV2 [9].
The possible effects of pseudo-Dirac neutrino scheme on

solar neutrinos has been already discussed in the literature
[9,10]. Reference [9] constrains the splittings of ν1 and ν2
and finds a solution at ∼10−11 eV2 for the neutrino data.
Since the publication of Ref. [9], BOREXINO has released
more data, with a relatively precise measurement of the
pep flux as well as the measurement of seasonal flux
variation. Moreover, the Super-Kamiokande data has been
updated. We revisit the pseudo-Dirac scheme with the latest
available BOREXINO and Super-Kamiokande solar data,
also taking into account the precise measurement of Δm2

21

by KamLAND. Similarly to Ref. [9], we find a solution
with nonzero pseudo-Dirac splitting. We discuss the
importance of the precise measurement of 8B flux at
energies between 1.5 and 3 MeV (that is below the
detection threshold of Super-Kamiokande and above the
pep line) to test this solution.
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In the range that the oscillation length due to the
pseudo-Dirac mass splitting, Δm2, is comparable to the
variation of the Earth-Sun distance during a year (result-
ing from the eccentricity of Earth’s orbit), we expect a
signature in the seasonal variation. We examine the
recently reported seasonal variation of the 7Be flux to
search for such a variation. Independently of the time
integrated analysis, this data also points towards a pseudo-
Dirac solution with the same range of Δm2. We propose a
few alternative methods to test this new nontrivial
solution.
The paper is organized as follows: In Sec. II, we review

the oscillation of pseudo-Dirac neutrinos. This discussion is
complemented in the Appendix with a focus on matter
effects as well as on the eccentricity of Earth’s orbit. In
Sec. III, we summarize the basis of our analysis and define
the relevant χ2 tests. In Sec. IV, we show the implications of
the solar neutrino data for the pseudo-Dirac scheme. The
concluding remarks and suggestions for further study are
given in Sec. V.

II. OSCILLATION OF PSEUDO-DIRAC SOLAR
NEUTRINOS

Within the pseudo-Dirac scheme, the neutrino states
ΨT ¼ ðνLνRÞ have both Dirac mass (m) and Majorana mass
(μ) terms of form

Ψ̄mΨþ Ψ̄cμΨ with μ ≪ m ð1Þ

where Ψc ¼ −iγ2Ψ�. In general, both m and μ are 3 × 3
matrices in the flavor space. For simplicity, we assume that
m and μ can be simultaneously diagonalized. Then, as
shown in the Appendix, each Dirac mass eigenstate νi splits
into two Majorana states with a maximal mixing and a
splitting of Δm2

i ¼ 2μimi. Thus, the νe survival probability
and the probability of the conversion of νe into sterile
neutrinos can be written as

PeeðEν; L; rÞ≡ Pðνe → νeÞ

¼ cos4θ13

�
cos2θ12cos2θMcos2

�
Δm2

1

4Eν
L

�

þ sin2θ12sin2θMcos2
�
Δm2

2

4Eν
L

��

þ sin4θ13cos2
�
Δm2

3

4Eν
L

�
ð2Þ

and

PesðEν; L; rÞ≡
X
i

Pðνe → νsiÞ

¼ cos2θ13

�
cos2θMsin2

�
Δm2

1

4Eν
L

�

þ sin2θMsin2
�
Δm2

2

4Eν
L

��

þ sin2θ13sin2
�
Δm2

3

4Eν
L

�
ð3Þ

where θM is the effective mixing at the production point of
the νe inside the sun (at a distance of r from the Sun’s
center) given by Eq. (A10) in the Appendix. L is the
distance between the Sun and Earth and Eν is the neutrino
energy.
The density profile of the Sun is exponentially sup-

pressed with the distance from the Sun’s center so Pee
strongly depends on the production point, r. As explained
in the Appendix for each component of the solar flux
component (i.e., j ∈ fpp; 7Be; pep; 8Bg) we should aver-
age PeeðEν; L; rÞ and PesðEν; L; rÞ over the production
point, using the production point spatial distribution inside
the Sun associated with each flux component. More details
can be found in the Appendix. Hereafter, we show the
averaged survival probability over the production point of
component j by P̄j

eeðEν; LÞ. Figure 1 illustrates the oscil-
lation probability averaged with the distribution of 8B

FIG. 1. Average survival probability of solar neutrinos, Pðνe →
νeÞ versus neutrino energy for various values of the splitting.
Averaging is taken over the production point assuming the
distribution of 8B production. The L dependency is marginalized
by taking temporal averaging on a year. (For more clarification
see the bulk of the paper and the Appendix.) The black curve
corresponds to the pure standard MSW effect. The standard
neutrino parameters are set equal to the best fit values as in
[11,12]. In the upper (lower) panel, we have set Δm2

2 ¼ 0

(Δm2
1 ¼ 0) and only one Δm2

i is set nonzero. The blue, green,
and red lines respectively correspond to Δm2

i ¼ 1 × 10−11 eV2,
Δm2

i ¼ 1.5 × 10−11 eV2, and Δm2
i ¼ 3 × 10−11 eV2.
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production at several values of Δm2
1 and Δm2

2. The black
lines correspond to the standard Mikheyev–Smirnov–
Wolfenstein (MSW) solution. We expect for relatively
large Δm2

i the deviation to be more significant for large
energies and relatively suppressed at low energies because
the effect is given by the ratio Δm2

i =Eν. This behavior is
demonstrated by the red lines which correspond to Δm2

1

or Δm2
2 ¼ 3 × 10−11 eV2. For Δm2

i ∼ 10−11 eV2, the
deviation is especially significant for intermediate values
of energies 1.5 MeV < Eν < 3 MeV, lying below the
detection threshold of Super-Kamiokande where the solar
neutrino data is lacking.
The average Sun-Earth distance is ∼150 million km but

due to the eccentricity of Earth’s orbit around the Sun, L
varies during a year with Lmax − Lmin ¼ 5 million km.
Figure 2 shows

ΔP̄ee ≡ P̄
7Be
ee ðEν; LmaxÞ − P̄

7Be
ee ðEν; LminÞ

versus Δm2
1 and Δm2

2 at Eν ¼ 0.862 MeV which is the
energy of the 7Be line. As seen in these figures, for
Δm2 > 10−11 eV2, the seasonal variation can be sizable.
BOREXINO has recently published seasonal variation of
the 7Be flux reaching Earth. We shall examine whether this
piece of information can help to constrain the parameter
space of the pseudo-Dirac scheme.

III. ANALYSIS OF THE SOLAR NEUTRINO DATA

As seen in Eqs. (2), (3) and Eq. (A10), the solar neutrino
flux on Earth depends on θ12, Δm2

21, and θ13 as well as on
Δm2

i . Because of the smallness of sin2 θ13, the sensitivity of
the solar data to θ13 is negligible so we fix θ31 ¼ 8.57°
throughout our analysis [11]. Historically, the solar
neutrino data have provided the first measurement of θ12
and Δm2

21 within the standard neutrino mass and
mixing paradigm (i.e., setting Δm2

i ¼ 0). These measure-
ments were confirmed by the KamLAND reactor experi-
ment which measured the ν̄e flux from reactors active
throughout Japan. The baseline of KamLAND, LKam,

was less than 200 km so for the values of Δm2
i of our

interest (10−12 eV2 ≤ Δm2
i ≤ 10−9 eV2), we can write

Δm2
i LKam=ð2EνÞ ≪ 1. Thus, the neutrino oscillation in

the KamLAND experiment was sensitive only to θ12 and
Δm2

21. As a result, the determination of these parameters by
KamLAND is also valid for our pseudo-Dirac scenario with
Δm2

i ≠ 0 ≪ 10−9 eV2. Indeed, the determination of Δm2
21

by KamLAND suffers from much smaller uncertainty than
that by the solar neutrino data. We therefore treatΔm2

21 by a
nuisance parameter with a mean value of Δm̄2

21 ¼ 7.54 ×
10−5 eV2 and an error σΔm2

21
¼ 0.5 × 10−5 eV2 as mea-

sured by KamLAND [13]. The effects of Δm2
3 on Pee and

on Pes are respectively suppressed by sin4θ13 and sin2 θ13
so the sensitivity to Δm2

3 is low. We therefore set Δm2
3 ¼ 0

and focus on the effects of nonzero Δm2
1 and Δm2

2 on the
solar neutrinos. We employ the latest solar data both from
Super-Kamiokande and from BOREXINO to extract infor-
mation on Δm2

1 and Δm2
2. We also set θ12 as a free

parameter to be “remeasured” from the solar neutrino data
in the presence of nonzero Δm2

1 or Δm2
2.

We use the χ2 analysis in order to constrain the allowed
regions for the free parameters of the theory, separately
defining χ2 for eachΔm2

i while setting the rest equal to zero:

χ2minðΔm2
i ;θ21Þ¼ min

nusiance

�
χ2Suþχ2Boþ

�
Δm2

21−Δm̄2
21

σΔm2
21

�
2
�

ð4Þ

where Su (Bo) indicates the Super-Kamiokande
(BOREXINO) experiment. χ2Su is defined as follows [14]:

χ2Su ¼
X
k

��
Dk − fkðδB; δS; δRÞαB8T B8

k

σk

�
2
�

þ
�
αB8 − 1

σαB8

�
2

þ δ2B þ δ2S þ δ2R: ð5Þ

Subscript k runs over the 13 bins of 8B solar neutrino energy
spectrum starting from 3.5 to 10 MeV. Super-Kamiokande
covers the energy range 3.5 to 19.5MeV.However, the effect
of Δm2

i in the range under study in this paper will be
significant only at energies lower than 10 MeV. As a result,
we do not consider the higher energy bins and we do not
therefore need toworry about thehep data events.1 Similarly
for the BOREXINO experiment we have

χ2Bo ¼
X
j

��
Dj − αjT j

σj

�
2

þ
�
αj − 1

σαj

�
2
�
: ð6Þ

Superscript j runs over pp, 7Be, and pep solar neutrino
event rate (counts per day per 100 t).

FIG. 2. ΔP̄ee ¼ P̄Be7
ee ðEν; LmaxÞ − P̄Be7

ee ðEν; LminÞ versus Δm2
1

and Δm2
2 at Eν ¼ 0.862 MeV (i.e., for 7Be line). Lmax ¼ 1.52 ×

108 km and Lmin ¼ 1.47 × 108 km are the Earth-Sun distance at
aphelion and perihelion, respectively.

1Regarding the day/night effect, see the Appendix.
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D represent the background-subtracted measured data. σ
include both statistical and systematic errors. Their values
are taken from Ref. [15] and Table 1 of Ref [16] for Super-
Kamiokande and BOREXINO respectively. While the
Super-Kamiokande data covers the solar neutrino spectrum
with energies above 3.5 MeV, the BOREXINO data
provides precision measurement of the low energy part
of the spectrum. The data used in Eqs. (5) and (6) is
averaged over a year.
T is the prediction which will be discussed below. αj are

added as nuisance parameters to account for the flux

normalization uncertainty in the predictions of various
solar neutrino components. The uncertainty values for
pp and pep are taken equal to 1% and those for 7Be
and 8B are taken equal to 6% and 12%, respectively [17].
We also consider the energy correlated systematic uncer-
tainties in spectral shape, energy scale, and energy reso-
lution of 8B by adding nuisance parameters δB, δS, and δR,
respectively. The dependence of fkðδB; δS; δRÞ on the
nuisance parameters and energy bins are explained in
Ref. [18]. The prediction of the theory is derived by

T j
kðt0; t1;ΔtÞ ¼

t0
Δt

N det

Z
t1þΔt

t1

dt
Z

dEν

Z
Tmax
e

0

dTeR
j
kðTeÞϕjðLÞ dλ

j

dEν
ðEνÞ

�
dσe
dTe

ðEν; TeÞP̄j
eeðEν; LÞ

þ dσμ;τ
dTe

ðEν; TeÞ
�
1 − P̄j

eeðEν; LÞ − P̄j
esðEν; LÞ

	�
; ð7Þ

where Δt is the time period over which the temporal
average is taken. For annually averaged data, Δt should be
of course taken to be a year; then, T j

k will be independent of
t1, i.e., independent of the start of the data-taking period.
t0 determines the temporal unit of data which for the
BOREXINO and Super-Kamiokande experiments are re-
spectively taken to be a day and a year. For the BOREX-
INO experiment, N det ¼ 3.307 × 31 per 100 ton. For the
Super-Kamiokande experiment, N det ¼ ð10=18Þð1=mpÞ is
the number of electron at each kilo ton of the Super-
Kamiokande detector and mp is the mass of the proton in
kilotons. RjðTeÞ is the detector performance function to
measure the jth component. Te is the recoil energy of the
scattered electron. The RjðTeÞ ∼ 1 for all three components
ðpp; pep; 7BeÞ because we have used the total event rate
for the case of BOREXINO. RB8

k ðTeÞ for kth energy bin of
8B follows a Gaussian function computed in Ref. [14].

ϕjðLÞ is the solar neutrino flux normalization:

ϕjðLÞ≡ ϕ̄j L̄
2

L2
: ð8Þ

ϕ̄j is the solar standard model prediction [17] calculated at
L̄, temporal average of the Sun to Earth distance.
L is the Sun to Earth distance which varies during a year
due to Earth’s orbit eccentricity. dλj

dEν
ðEνÞ is the solar

neutrino spectrum. For the pp and 8B components which
have continuous spectrum, ϕppðLÞðdλpp=dEνÞ and
ϕB8ðLÞðdλB8=dEνÞ are in units of ½cm−2 s−1MeV−1�. The
normalization of the monoenergetic 7Be and pep fluxes are
in the unit of ½cm−2 s−1�.
The differential cross sections of the electron scattered

by neutrinos of different flavors (e, μ, τ) are [19]

dσeðμ;τÞ
dTe

¼ G2
Fme

2π

�
ð2sin2ðθWÞ � 1Þ2 þ

�
2sin2ðθWÞ

�
1 −

Te

Eν

��
2

− 2sin2ðθWÞð2sin2ðθWÞ � 1ÞmeTe

E2
ν

�
ð9Þ

where for νe (for νμ, ντ) we should take the plus (minus)
sign. We take the Weinberg angle as sin2ðθWÞ ¼ 0.22342.2

The maximum recoil energy of the electron is given by

Tmax
e ¼ E2

ν

Eν þme=2
:

IV. RESULTS

In Sec. IVA, we first study how by combining the
BOREXINO data on the 7Be, pep, and pp event rate
with the Super-Kamiokande solar neutrino spectrum data,
we can constrain Δm2

1 and Δm2
2. Surprisingly, we

find that there is a new solution in the range of
Δm2

2 ¼ ð1 − 2Þ × 10−11 eV2. We discuss whether the
measurement of the total active neutrino fluxes by SNO
or by current and future direct dark matter search experi-
ments can test this new solution with nonzero Δm2

2. In
2https://pdg.lbl.gov/.
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Sec. IV B, we study the effects of Δm2
1 and Δm2

2 on the
seasonal variation of the 7Be flux and contrast it with the
recent BOREXINO data release on the seasonal variation
of the 7Be flux on Earth. Surprisingly, this data independ-
ently points toward the same solution. We then discuss the
prospect of testing this solution by a more precise meas-
urement of the seasonal variation of the 7Be flux.

A. Total solar flux integrated over year(s)

In this subsection, we analyze the time-integrated
BOREXINO and Super-Kamiokande solar neutrino data.
The datapoints are shown in Fig. 3. The vertical axis in the
left (right) panel is the number of counts per day per
100 tons [the number of counts over MC (unoscillated) per
year per kilo ton]. The predictions of the pseudo-Dirac
scenario with Δm2

2 ¼ ð1; 1.5; 3Þ × 10−11 eV2 are also
shown. To obtain these predictions, we have set Δm2

1 ¼ 0

and have used Eq. (7). The standard MSW scheme (i.e.,
Δm2

1 ¼ Δm2
2 ¼ 0) is added for comparison. As seen from

the figure, large values of the splitting such as Δm2
2 ∼ 3 ×

10−11 eV2 can be ruled out by the 8B datapoints. Although
the range few × 10−12 eV2 < Δm2

2 < 10−11 eV2 is consis-
tent with the Super-Kamiokande data, it is located out of
one sigma error of the precise 7Be line measurement by
BOREXINO. As demonstrated by the green curve and
triangle,Δm2

2 ¼ 1.5 × 10−11 eV2 also gives a good fit to 8B
datapoints as well as to the BOREXINO datapoints.
Reference [9] had also found this solution with

Δm2
2 ∼ 10−11 eV2. Our results with updated solar data

[16] which includes the relatively precise pep line meas-
urement confirm their finding. Notice that the prediction
with Δm2

2 ¼ 1.5 × 10−11 eV2 for the pep line is smaller
than that with Δm2

2 ¼ 0. Improving the precision of the
pep line can therefore test this nontrivial solution.
Figure 4 shows Δχ2 versus Δm2

1 and Δm2
2. χ

2 is defined
by Eq. (4). To compute Δχ2, we have minimized over θ12
and have subtracted the minimum χ2 with respect to Δm2

i .
As seen from the figure, the values of Δm2

2 (Δm2
1) larger

than 2 × 10−11 eV2 (1.5 × 10−12 eV2) is ruled out at 2σ.
This figure also demonstrates that 1 × 10−11 eV2 < Δm2

2 <
2 × 10−11 eV2 provides a fit comparable with SM when
Δm2

2 → 0.3 Δm2
2 < 1.5 × 10−12 eV2 is allowed within 1σ

confidence level (CL). The 1σ and 2σ contours of Δm2
2

versus θ12 are shown in Fig. 5. As seen from the figure, the
values of θ12 at the solutions that we have found are
consistent with the θ12 measurement by the global neutrino
data analysis.
Let us now discuss the implication of the SNO meas-

urement of the total active solar neutrino flux. The SNO
experiment has extracted the total flux by measuring the
Deuteron dissociation rate νþD → νþ nþ p with a
precision of 8% [20,21]. This measurement is well con-
sistent with the standard solar model prediction for the total
neutrino flux within the uncertainties. In our model, the
measured total active flux is suppressed by ð1 − PesðEνÞÞ.
The SNO detection threshold is practically above 5 MeV.4

For Eν > 5 MeV and Δm2
2 < 2 × 10−11 eV2, Pes is below

FIG. 3. Annually averaged BOREXINO (left) and Super-
Kamiokande (right) datapoints. Predictions for the splitting
values of Δm2

2 ¼ 1 × 10−11 eV2 (blue), Δm2
2 ¼ 1.5 × 10−11 eV2

(green), and Δm2
2 ¼ 3 × 10−11 eV2 (red) are illustrated. The

standard MSW prediction (black) is added for comparison. We
have taken Δm2

21 ¼ 7.5 × 10−5 eV2 and θ12 ¼ 33.4° [11].

FIG. 4. Δχ2 as a function of Δm2
i minimized over θ12. The

dashed and dotted horizontal lines respectively correspond to the
68% and 95.45% confidence levels.

3We have also performed a similar analysis with the official
Super-Kamiokande data release in 2016 [14] which confirmed
the current results, except that those data tended to have lower
values and thus the region found in the interval of Δm2

2 ¼ð1; 2Þ × 10−11 compared to Δm2
2 → 0 has lower χ2 value; i.e.,

providing a slightly better fit than the standard MSW with
Δm2

2 ¼ 0.
4The natural energy threshold, which is set by the binding

energy of the Deuteron nucleus, is 2.2 MeV.
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10% and as a result, the suppression of the total active flux
measurement relative to the SM prediction will be within
the flux prediction uncertainty of 12% [17] and cannot
therefore be resolved. For lower energies (below the SNO
threshold), the deviation should be more significant. The
total flux with lower energy threshold can be measured by
the coherent elastic neutrino nucleus scattering at large
scale direct dark matter experiments such as the ongoing
XENONnT and LZ experiments and future DARWIN
experiment, promising to test this model.

B. Seasonal variation

Recently, the BOREXINO experiment released data
on the residual of the 7Be neutrino event rate, showing
modulation due to the seasonal variation [22]. The
selected events include an electron with a recoil energy
larger than 0.3 MeV. The rate is given in terms of per day
per 100 t. The datapoints, covering a period of almost
10 years, are a time series binned in time intervals of
30 days. The annual trend of the data is subtracted.5 We
use this new data to independently examine the validity
of the new solution (Δm2

2 ≃ ð1 − 2Þ × 10−11 eV2) found
in Sec. IVA. Furthermore, studying the seasonal variation
is an alternative approach to probe the pseudo-Dirac
mass splitting. The datapoints along with the predictions
with various values of Δm2

1 and Δm2
2 are shown in Fig. 6.

As seen in Fig. 2, depending on the exact value of Δm2
1

and/or Δm2
2 in the range ∼ð1 − 2Þ × 10−11 eV2, the

pseudo-Dirac scheme can lead to enhancement or suppres-
sion of the seasonal modulation. This behavior is also

confirmed in Fig. 6. In the following, we focus on Δm2
2 and

set Δm2
1 ¼ 0. To constrain Δm2

2, we define χ2 as

χ2 ¼
X
t

h
DBe

t − ðT Beðday; t;mÞ − T Beðday; t; yÞÞ
i
2

σ2t

ð10Þ

where t runs over the 120 bins, each bin corresponding to a
one month data-taking period. m and y stand for month and
year, respectively. DBe

t is the residual of the events per day
per 100 ton which are modeled as a time series trend [22].
σ2t is the corresponding error at each bin t, as shown in
Fig. 6. T Beðday; t;monthÞ is computed using Eq. (7) by
replacing the lower limit of the electron recoil energy with
Te ¼ 0.3 MeV and integrating over monthly periods.
T Beðday; t; yearÞ is computed using the same formula
with an averaging period of a year. As discussed before,
T Beðday; t; yearÞ should be independent of t. We fix
θ12 ¼ 33.4°, Δm2

21 ¼ 7.54 × 10−5 eV2, and Δm2
1 ¼ 0 but

vary Δm2
2. Similarly to the previous section, we invoke the

standard solar model for the flux normalization, with
negligible uncertainty. As seen from Fig. 7, the χ2 analysis
using this new dataset independently supports the enhance-
ment of the modulation which occurs in the 1.4 ×
10−11 eV2 < Δm2

2 < 2 × 10−11 eV2 range. This nontrivial
solution falls in the 2σ region of the annually averaged data
that we have found in Sec. IVA. The nontrivial solution
that we have found provides a better fit to the seasonal
variation (see Fig. 7) than the standard model with
Δm2

2 → 0. This is because the data shows about 10% more
enhanced modulation than the 1=L2 modulation
expected in the standard MSW scenario. On the other
hand, a cancellation on the modulation takes place in the
range 0.6 × 10−11 eV2 < Δm2

2 < 1.3 × 10−11 eV2 which is
clearly ruled out with current data. The standard solution
(Δm2

2 → 0) is allowed at just 80% confidence level.
However, the fact that the two independent measure-
ments, namely the Super-Kamiokande time integrated solar
data with Eν > 3 MeV and the seasonal variation of
the 7Be flux measured by BOREXINO, as well as the
time integrated BOREXINO solar neutrino data, simulta-
neously point towards the same nonzero value of Δm2

2

makes it imperative to look for ways to test this new
solution.
In the previous sections, we proposed three alternative

methods to test this solution. In the following, we inves-
tigate how by improving the seasonal variation measure-
ments, this new solution can be tested.
Let us suppose the true value of Δm2

2 is close to the best
fit that we have found and then study what level of
precision is required to rule out the standard solution with
Δm2

2 ¼ 0. The dashed line in Fig. 7 shows the value of Δχ2
versus Δm2

2 setting σt ∼ 0.5 ðcount=day per 100 tÞ. Notice

FIG. 5. Allowed 1σ and 2σ regions of joint χ2 analysis for the
ðΔm2

2; θ21Þ space, assuming Δm2
1 is zero. The black and gray

band show the 1σ and 2σ allowed range of θ12 by global neutrino
data analysis [11].

5For the exact definition of trend and residue, the reader may
consult [22].
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that such σt requires a factor of 2 reduction in the current
uncertainty. As seen from the figure, with such an improve-
ment, the standard solution can be ruled out at better than
2σ CL.
Let us now discuss how small σt should be in order to

obtain a desired precision onΔm2
2. To answer this question,

we assume that the error value σt ∼ σF is equal for all bins
and utilize the Fisher forecast formalism [23] with

σF ¼ σΔm2
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
t

�
∂T Beðday; t;mÞ

∂Δm2
i

�
2

s
: ð11Þ

σF is the ideal measurement error in order to have 2 × σΔm2
i
,

the 1σ allowed region for parameter Δm2
i . The sum is over

one year of datapoints binned in 30 days and T Be is the
prediction for 7Be neutrino event rate with Te > 0.3 MeV,

FIG. 6. Seasonal variation of event rate (per day per 100 t) for 7Be. The datapoints are taken from [22]. The predictions for various
values of Δm2

i are shown by curves. The upper (lower) panel corresponds to nonzero Δm2
1 (nonzero Δm2

2). The values of the standard
mixing parameters are fixed to θ12 ¼ 33.4° and Δm2

21 ¼ 7.5 × 10−5 eV2.

FIG. 7. Δχ2 as a function of Δm2
2 using just the seasonal

variation dataset. The values of the standard mixing parameters
are fixed to θ12 ¼ 33.4° and Δm2

21 ¼ 7.54 × 10−5 eV2. The
dashed curve illustrates the forecast for similar experiment with
error σt ∼ 0.5 per day per 100 t, i.e., with errors reduced to almost
half of the current values. The right panel of Fig. 4 is added as an
orange curve for comparison in the closeup box.

FIG. 8. Precision required in the time variation measurement to
determine Δm2

2 with a precision of σΔm2
2
. We have assumed that

the true value is Δm2
2 ¼ 1.5 × 10−11 eV2.
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similarly to the current measurement. We assume the true
value Δm2

2 ¼ 1.5 × 10−11 eV2 which is in the range of
∼ð1 − 2Þ × 10−11 eV2. The result is shown in Fig. 8. Error
values of order of σF ∼ 1 ðcount=day 100 tÞ lead to 1σ
range 2 × σΔm2

i
∼ 10−12 eV2. In particular, we obtain

2 × σΔm2
i
∼ 0.5 × 10−12 eV2 reducing them to σF ∼ 0.5

ðcount=day 100 tÞ.

V. DISCUSSION AND CONCLUSIONS

We have studied the oscillation of the solar neutrinos
within the pseudo-Dirac scheme. Our focus has been on the
splittings of ν1 and ν2 states, Δm2

1 and Δm2
2 of order of

10−13 eV2–10−10 eV2 which are relevant for solar neutri-
nos. Since the contribution of ν3 to the solar neutrinos (νe at
the production) is suppressed by θ13, a splitting in ν3 will
not affect the solar neutrino data. To derive bounds on the
splitting, we have used the latest BOREXINO and Super-
Kamiokande solar neutrino data and have employed the
Δm2

21 measurement by KamLAND. We have found that
these data rule out Δm2

1 and Δm2
2 above 2 × 10−11 eV2.

However, we find a new solution in the range of
Δm2

2 ∼ ð1 − 2Þ × 10−11 eV2 and Δm2
1 ¼ 0 which fits the

solar neutrino data (especially the 8B data measured by
Super-Kamiokande) in addition to the standard three
neutrino scenario with Δm2

1 ¼ Δm2
2 ¼ 0. We have dis-

cussed the possibility of ruling out this solution with the
total active neutrino flux measurement by SNO. We found
that the deviation due to Pðνe → νsÞ at this solution for
neutrinos with energy above the SNO detection threshold
can hide within the flux prediction. We have examined the
robustness of this new solution against the accumulation of
more solar data. The data available by 2016 slightly prefers
this solution to the standard MSW. Reference [9] also
confirms this solution.
We have examined the possibility of testing this non-

trivial pseudo-Dirac solution with the recent data release
by BOREXINO on the seasonal variation of 7Be [22].
Surprisingly, the seasonal variation also points towards a
solution with 1.4 × 10−11 eV2 < Δm2

2 < 2 × 10−11 eV2,
independently. Indeed, this solution fits the seasonal
variation better than the standard three neutrino scheme
but, the Δm2

1 ¼ Δm2
2 ¼ 0 solution is still allowed at

80% CL. We have discussed how reducing the uncertainty
in the measurement of seasonal variation can help to
measure Δm2

2 with better precision or set a bound on it.
We have proposed four independent approaches to test

the nontrivial solution that we have found: (i) Measurement
of the 8B flux in the energy range below 4 MeV with a
moderate precision of 20% (or better) can test the solution.
The proposed THEIA detector [24], with a relatively low
detection energy threshold will be able to perform such a
measurement. (ii) By improving the precision of the
measurement of the pep line, the solution can be tested.

(iii) Reducing the uncertainty in the seasonal variation of
the 7Be line by half can test this solution. (iv) Finally, the
measurement of the total active solar flux via coherent
elastic ν nucleus scattering by direct dark matter search
experiments can provide an alternative method for testing
the solution.
We have found that both time integrated solar neutrino

data and the 7Be time variation, independently from each
other, constrain Δm2

1 < 1.5 × 10−12 eV2 and Δm2
2 < 2 ×

10−11 eV2 at 2σ CL.
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APPENDIX: PSEUDO-DIRAC SCHEME IN THE
PRESENCE OF MATTER

In this appendix, we derive dispersion relation and the
energy-momentum eigenstates for the pseudo-Dirac
scheme in the presence of matter effects. We compute
Pðνe → νeÞ and Pðνe → νsÞ for solar neutrinos in the
pseudo-Dirac neutrino scheme. We then formulate the time
dependence (seasonal variation) of the flux arriving to
Earth, considering the eccentricity of Earth’s orbit around
the Sun.
Let us start with one flavor state with the effective

Lagrangian,

L ¼ Ψ̄i∂ · γΨ −mΨ̄Ψ − VΨ̄γ0PLΨ − μΨ̄cPRΨ − μΨ̄PLΨc

¼ Ψ̄ci∂ · γΨc −mΨ̄cΨc þ VΨ̄cγ0PRΨc

− μΨ̄cPRΨ − μΨ̄PLΨc ðA1Þ

where Ψ is a general Dirac spinor and Ψc ¼ −iγ2Ψ�.
Taking the derivative of the Lagrangian in the first line
of Eq. (A1) with respect to Ψ̄, we arrive at the Euler-
Lagrange equation,

i∂ · γΨ −mΨ − Vγ0PLΨ − μPLΨc ¼ 0: ðA2Þ

Similarly taking the derivative of the Lagrangian in the
second line of Eq. (A1) with respect to Ψ̄c, we find

i∂ · γΨc −mΨc þ Vγ0PRΨc − μPRΨ ¼ 0: ðA3Þ
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Applying ðiγ · ∂ − Vγ0PLÞ and ðiγ · ∂þ Vγ0PRÞ respec-
tively to Eqs. (A2) and (A3), we obtain the following
relations:

−∂2Ψ − 2iVPL∂3Ψ ¼ m2ΨþmμΨc − μ2PRΨ;

−∂2Ψc þ 2iVPR∂3Ψc ¼ m2Ψc þmμΨþ μ2PLΨc; ðA4Þ

where we have taken the third (z) direction along the
momentum (p) of the particle. Remembering PLΨ ¼ νL,
PLΨc ¼ νcR, PRΨ ¼ νR, PRΨc ¼ −νcL, and using
PLPR ¼ 0, we obtain

ðE2 − p2Þ
�
νL

νcR

�
¼

�
2pV þm2 mμ

mμ m2 þ μ2

��
νL

νcR

�

¼
��

2pV 0

0 0

�
þ
�

0 m

m μ

�
2
��

νL

νcR

�

ðA5Þ

and

ðE2−p2Þ
�
νR

νcL

�
¼
�
m2−μ2 −mμ

−mμ m2−2pV

��
νR

νcL

�
: ðA6Þ

Let us focus on Eq. (A5). We should of course take the
ultrarelativistic limit, p ≫ V, m, μ so the energy eigen-
vectors correspond to the eigenvectors of

0
B@V þ m2

2p
mμ
2p

mμ
2p

m2þμ2

2p

1
CA: ðA7Þ

In the limit 2Vp ≪ mμ, we recover the famous pseudo-
Dirac scheme with maximal mixing. That is the eigenstates
will be the following Majorana states with energy eigen-
values as

χ1 ¼
νL þ νcR

2
with E2 ¼ p2 þm2 þ μm ðA8Þ

and

χ2 ¼
νL − νcR

2
with E2 ¼ p2 þm2 − μm: ðA9Þ

As a result, active νL can oscillate to a sterile neutrino with
oscillation length determined by splitting Δm2 ¼ 2mμ and
maximal mixing

PðνL → νcRÞ ¼ sin2
�
μm
2p

L

�

and

PðνL → νLÞ ¼ 1 − PðνL → νcRÞ ¼ cos2
�
μm
2p

L

�
:

Notice that the active and sterile neutrinos respectively
correspond to νL and νR (or νcR). We therefore use νcR and νs
interchangeably: PðνL → νcRÞ ¼ Pðνa → νsÞ.
For 2pV ≫ μm, the mixing between νL and νcR will be

suppressed by μm=ð2pVÞ so the oscillation to sterile
neutrino will be negligible. For the sake of simplicity,
for the three neutrino flavors, we strict ourselves to the case
that the m and μ matrices can simultaneously be diagon-
alized. Thus, in the mass basis all terms will be diagonal
except for the effective potential V

P
i;j UeiU�

ejΨ̄jγ
0Ψi.

Now, let us consider solar neutrinos with μm=ð2pÞ ∼
1=L where L is the Earth-Sun distance. Within the Sun, the
matter effects will dominate and will suppress the νLi and
νcRi mixing. That is within the Sun, we shall have the
standard MSW effect and the νe state after crossing the
Sun will emerge at the Sun’s surface as an incoherent
combination of νL1, νL2, and νL3 with probabilities
cos2 θM cos2 θ13, sin2 θM cos2 θ13, and sin2 θ13. Here, θM
is the effective 12 mixing at the production point of νe:

cos 2θM

¼ Δm2
21 cos 2θ12 − VEν

½ðΔm2
21 cos 2θ12 − VEνÞ2 þ ðΔm2

21 sin 2θ12Þ2�1=2
ðA10Þ

in which V ¼ 2
ffiffiffi
2

p
GFNeðrÞjat production. Notice that we have

taken into account two facts: (i) conversion in the Sun is
adiabatic; (ii) the matter effect on θ13 is negligible due
to suppression with 2Vp=ðΔm2

31 sin θ13Þ ≪ 1. The mass
eigenstates on their way to Earth can oscillate into their
sterile counterpart (νcRi) with maximal mixing so the
survival probability up to Earth’s surface can be written as

Pee ¼ cos4θ13

�
cos2θ12cos2θMcos2

�
μ1m1

2p
L

�

þ sin2θ12sin2θMcos2
�
μ2m2

2p
L

��

þ sin4θ13cos2
�
μ3m3

2p
L

�
ðA11Þ

and

Pes ¼ cos2θ13

�
cos2θMsin2

�
μ1m1

2p
L

�

þ sin2θMsin2
�
μ2m2

2p
L

��

þ sin2θ13sin2
�
μ3m3

2p
L

�
: ðA12Þ
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For simplicity, we denote Pee ≡ Pðνe → νeÞ and
Pes ≡P

i Pðνe → νsiÞ. This formula corresponds to that
in Ref. [10] in the limit μimi ≪ VEν. For relatively high
energy solar neutrinos, the oscillation in Earth due to matter
effects (i.e., day/night effect) can also be important but our
focus is on the intermediate energy solar neutrinos for
which the matter effects are negligible.
Through θM, Pee depends on the location of νe pro-

duction inside the Sun. We define

P̄j
eeðEν; LÞ ¼

Z
R⊙

0

PeeðEν; L; rÞΦjðrÞdr ðA13Þ

where j can be any of the flux components pp, 7Be, pep,
and 8B. ΦjðrÞ is the flux from radius r taken from [25].
Notice that ΦjðrÞdr includes the volume factor (r2dr)
in its definition and vanishes at r ¼ 0. The dependence
of ΦjðrÞ on r is different for the j modes. For example,
while for j ¼ pp the flux peaks at r ≃ 0.1R⊙, for j ¼ 8B,
the peak is at r ≃ 0.05R⊙, The dependence of PeeðEν; L; rÞ
on r is through the dependence of θM on NeðrÞ. Let us
define

Δm2
i ¼ 2μimi:

In the following, we discuss the time dependence of the
flux throughout a year. The Sun-Earth distance during a
year varies between Lmax ¼ 152.1 × 106 km (aphelion
occurring around 4 July) and Lmin ¼ 147.1 × 106 km
(perihelion occurring around 4 January). That is, the orbit
of Earth around the Sun can be written as

LðθÞ ¼ að1 − e2Þ
1þ e cos θ

ðA14Þ

in which a ¼ ðLmin þ LmaxÞ=2 and the eccentricity is
e ¼ ðLmax − LminÞ=ðLmax þ LminÞ ¼ 0.0167. The conser-
vation of the angular momentum implies dt ¼ ðL2=HÞdθ
in which H ¼ jr⃗ × _r⃗j. The number of events during a time
interval ðT1; T2Þ is proportional toZ

t1þΔt

t1

Peeσe þ ð1 − Pee − PesÞσμ
L2

dt

¼
Z

θ2

θ1

Peeσe þ ð1 − Pee − PesÞσμ
H

dθ ðA15Þ

where σe and σμ are, respectively, the scattering cross
sections of νe and νμ (or ντ) at the detector. To compute the
number of events during a time interval we should know
the relation between θ and time. Replacing LðθÞ given in
Eq. (A14) we findZ

t1þΔt

t1

H
a2ð1 − e2Þ2 dt ¼

Z
θ2

θ1

dθ
ð1þ e cos θÞ2 ðA16Þ

which yields

H ¼ 6.55a2ð1 − e2Þ2
1 year

:

We have used these formulas to study the seasonal variation
of the 7Be solar flux. As shown in [26], the widths of 7Be
and pep lines are of order of kinetic energy in the Sun’s
center ΔEν ∼ 0.6 keV. Thus, as long as Δm2L=E ≪ 1000,
we have ðΔEν=EνÞðΔm2L=EÞ ≪ 1, and the finite width of
these lines will not smear the oscillatory behavior.

All material and code for this article are publicly
available [27].
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