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We study mono-Higgs signatures emerging in an illustrative new physics scenario involving Standard
Model Higgs boson decays to bottom quark pairs using hybrid deep neural networks. We use a multilayer
perceptron to analyze the kinematic observables and optimize the signal-to-background discrimination.
The global color flow structure of hard jets emerging from the decay of heavy particles with different color
charges is crucial to single out the mono-Higgs signature. Upon embedding the different color flow
structures for signal and backgrounds into constructed images, we use a convolution neural network to
analyze the latter. Specifically, the approach takes initially mono-type data as input, frittering away
invaluable multisource and multiscale information. We then discuss a general architecture of hybrid deep
neural networks that supports instead mixed input data. In comparison with single input deep neural
networks, like multilayer perceptron or convolution neural networks, the hybrid deep neural networks
provide higher capacity in feature extraction and thus in signal versus background classification
performance. We provide reference results for the case of the high-luminosity Large Hadron Collider.
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I. INTRODUCTION

Mono-X is a signal of a single particle produced along-
side missing ET (MET), where ET represents transverse
energy missing (transverse) energy, emerging at hadron
colliders, where X stands generally for a (light) jet, W�, Z,
or photon. In recent years, these processes have received a
lot of attention as a way to investigate new physics beyond
the Standard Model (BSM). In particular, mono-X signa-
tures of the above type would provide an indirect hint for
dark matter (DM), which would indeed manifest itself as
MET. A common question is which mono-X channel works
best. The monojet one has a large cross section relative
to the other modes, but the probe (a gluon or a quark) does
not typically couple to DM or the mediator. Also, such a
channel can suffer from large quantum chromodynamics
(QCD) backgrounds. Conversely, the other probes men-
tioned above could also couple to DM and/or the mediator
in the presence of a smaller background, but they are very

suppressed as they are electroweak (EW) processes in
nature. Altogether, to date, most sensitivity is acquired via
monojet processes.
In the above list, we have purposely left aside another

possible mono-X probe, where X is a Higgs boson. This
could be the SM-like one discovered at the Large Hadron
Collider (LHC) or else a companion state emerging in
many BSM scenarios. We are interested in this paper in
establishing a mono-Higgs signal, wherein such a state
decays into a bb̄ pair. The latter is the most frequent decay
channel for a light (neutral) Higgs boson, including the
SM-like one discovered in 2012 (hereafter denoted by h),
so it is of phenomenological relevance. Also this decay,
however, requires one to deal with an overwhelming QCD
background, so that attempts to extract it in mono-Higgs
events have been not very fruitful to date, including in
terms of eventually establishing sensitivity to DM and/or
the mediator properties, in comparison to what can be
established through the other aforementioned mono-X
channels. This is clearly a pity, as mono-Higgs has a
distinctive advantage with respect to all other mono-X
channels, i.e., in proton-proton collisions, for the cases
X ¼ jet;W�; Z, and γ, the probe can always be emitted
directly from a light quark as initial state radiation (ISR)
through the usual SM gauge interactions, even when the X
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object interacts with the remainder of the process. In
contrast, ISR induced by Higgs-strahlung (i.e., mono-
Higgs) is highly suppressed due to the small coupling of
the h state to light quarks. Hence, unlike other mono-X
signatures, a mono-Higgs one would probe exclusively the
properties of DM and/or the mediator.
Therefore, here, we take a step in the direction of

improving the scope of such a signature, i.e., the mono-
Higgs one with h → bb̄, by looking at signal events that
have a peculiar kinematics with respect to the background.
The opportunity is offered by the B − L supersymmetric
Standard Model (BLSSM) of Ref. [1], wherein heavy BSM
Higgs states (with masses up to around TeV) can mediate
final states involving invisible DM and a Higgs boson [2].
In this case, the final state contains a large amount of MET,
allowing the BLSSM signature to be accessed above the
SM background. However, in [2], only the γγ and ZZ� →
4l (l ¼ e, μ) decays of the SM-like Higgs were established,
as the bb̄ one was found to be overwhelmed by QCD
radiation yielding bb̄ pairs, upon adopting a signal-to-
background analysis solely based on kinematic cuts.
It is the purpose of this paper to revisit such an analysis,

with the intent of extracting the mono-Higgs signal h → bb̄
in the presence of machine learning (ML) techniques. The
reason for doing this is twofold. On the one hand, since
the appearance of [2], the h → bb̄ decay has now been
fully established (and found to be compliant with SM
predictions [3,4]), so that one can enforce the h mass
reconstruction from the bb̄ system. On the other hand,
actual experimental searches based on standard approaches
have primarily exploited alternative h decays, for the
aforementioned reasons: e.g., the recent ATLAS [5,6] and
CMS [7,8] analyses covered the mono-Higgs channels with
h decays to ZZ þMET, WþW− þMET, γγ þMET, and
τþτ− þMET, all of which have better sensitivity than the
bb̄þMETchannel (and reporting no significant excess over
the expected SM background).
Here, we surpass the state of the art in mono-Higgs

searches with h → bb̄ as we exploit three independent deep
neural networks (DNNs). First, we invoke multilayer
perceptron (MLP) systems, which analyze the constructed
kinematic distributions of the final state particles. Second,
we use convolution neural networks (CNNs), which ana-
lyze the jet images that can be constructed by embedding
the pT distribution of the final state jets into visual

representations, wherein the different color flow structure
of the signal and background processes is accounted for.
Third, we deploy hybrid deep neural networks (HDNNs),
which are a two-stream input framework that can analyze
the kinematic distributions and constructed jet images at the
same time, thereby being able to enhance the signal-to-
background classification performance better than the
previous approaches.
This paper is organized as follow. In Sec. II we

discuss the mono-Higgs signals via h → bb̄ arising in
the BLSSM, after a very brief discussion of the latter. In
Sec. III we discuss our analysis strategy. Section IV shows
the described network architectures and their data prepro-
cessing stages. The results of our analysis, exemplified for
the high-luminosity LHC (HL-LHC) [9], are given in
Sec. V. Finally, we summarize and conclude in Sec. VI.

II. MONO-HIGGS IN THE BLSSM

In addition to the (s)particles of the minimal super-
symmetric standard model (MSSM), the BLSSM includes
three chiral right-handed superfields (N̂i), a vector super-
field associated with Uð1ÞB−L (Ẑ0), and two chiral SM
singlet Higgs superfields (η̂1, η̂2), as discussed in detail,
with the following superpotential:

Ŵ ¼ YuQ̂Ĥ2Û
c þ YdQ̂Ĥ1D̂

c þ YeL̂Ĥ1Ê
c þ YνL̂Ĥ2N̂

c

þ YNN̂
cη̂1N̂

c þ μĤ1Ĥ2 þ μ0η̂1η̂2:

The quantum numbers for the particles content in the
BLSSM are given in Table I.
After B − L and EW symmetry breaking, the following

mass for the BLSSM-like CP-odd Higgs A0 is obtained:

m2
A0 ¼ 2Bμ0

sin 2β0
∼Oð1 TeVÞ; ð1Þ

where tan β0 ¼ v01=v
0
2. The BLSSM CP-even neutral Higgs

fields have the following masses at tree level:

m2
h0;H0 ¼ 1

2

�
ðm2

A0 þM2
Z0 Þ

∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

A0 þM2
Z0 Þ2 − 4m2

A0M2
Z0cos22β0

q �
: ð2Þ

TABLE I. Particle content of the BLSSM.

Q̂i Ûc
i D̂c

i
bli Êc

i N̂c
i Ĥ1 Ĥ2 η̂1 η̂2

SUð3ÞC 3 3̄ 3̄ 1 1 1 1 1 1 1

SUð2ÞL 2 1 1 2 1 1 2 2 1 1
Uð1ÞY 1=6 −2=3 1=3 −1=2 1 0 −1=2 1=2 0 0
Uð1ÞB−L 1=6 1=6 1=6 −1=2 1=2 1=2 0 0 −1 1
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If cos2 2β0 ≪ 1, one finds that the lightest B − L neutral
Higgs mass is given by

mh0 ≃
�
m2

A0M2
Z0cos22β0

m2
A0 þM2

Z0

�1
2

≃Oð100 GeVÞ: ð3Þ

Another important sector of the BLSSM spectrum is the
neutralino one. The neutral gaugino-Higgsino mass matrix
can be written as [1]

M7ðB̃; W̃3; H̃0
1; H̃

0
2; B̃

0; η̃1; η̃2Þ≡
�
M4 O

OT M3

�
;

whereM4 is theMSSM-typeneutralinomassmatrix [10–13]
andM3 is a 3 × 3 additional neutralinomassmatrix,which is
given by

M3 ¼

0
BB@

MB0 −gB−Lv01 gB−Lv02
−gB−Lv01 0 −μ0

gB−Lv02 −μ0 0

1
CCA: ð4Þ

In addition, the off-diagonal matrix O is given by

O ¼

0
BBBBB@

1
2
MBB0 0 0

0 0 0

− 1
2
g̃v1 0 0

1
2
g̃v2 0 0

1
CCCCCA
: ð5Þ

Note that the off-diagonal matrix elements herein vanish
identically if g̃ ¼ 0. In this case, one diagonalizes the real
matrix M7 with a symmetric mixing matrix V such that

VM7VT ¼ diagðmχ̃0k
Þ; k ¼ 1;…; 7: ð6Þ

In these conditions, the lightest supersymmetric particle
(LSP), i.e., the DM candidate of the BLSSM, has the
following decomposition:

χ̃01 ¼ V11B̃þ V12W̃3 þ V13H̃0
1 þ V14H̃0

2 þ V15B̃0

þ V16η̃1 þ V17η̃2: ð7Þ

TheLSP is called pure B̃0 ifV15 ∼ 1 andV1i ∼ 0 for i ≠ 5 and
pure η̃1ð2Þ if V16ð7Þ ∼ 1 and all the other coefficients are close
to zero.
Now, we can investigate the Mono-Higgs signal of

concern in such a BLSSM model. This signal can be
produced as initial, intermediate, or final state h radiation
associated with DM pair production (i.e., χ̃01χ̃

0
1) [2].

Representative Feynman diagrams for the considered signal
processes are shown in Fig. 1. (Notice that we ignore herein
Z0 mediated topologies, considered in [2], as they are
presently negligible, given the latest limits on Z0 masses
and couplings in the BLSSM [14].) The considered mono-
Higgs process benefits then from three subprocesses, two
involve t, u-channel exchange of squarks, with the h
emerging from either a q̃ or a χ̃0i , and one includes s-channel
propagation of all neutral Higgs boson states of the BLSSM,
with the h emerging from a χ̃0i .
In order to be consistent with the current experimental

bounds, we adopt a benchmark point (BP) from the scan
performed in [2] with the following features (as mentioned,
we take mh ¼ 125 GeV):

mχ̃01
¼ 48.4 GeV; mh0 ¼ 263.8 GeV;

mχ̃�1
¼ 712 GeV; mA0 ∼mH0 ¼ 800 GeV;

mχ̃02;3
¼ Oð100 GeVÞ; mχ̃04;5;6;7

¼ OðTeVÞ;
mq̃ ¼ OðTeVÞ; mA ∼mH ¼ OðTeVÞ:

Thus, for our BP, the DM is significantly lighter than
heavier neutralinos and the neutral Higgs states, which will
have implications for the event kinematics of the signal.
We have checked that the selected BP is consistent with
current LHC run-2 bounds and allowed by all the Higgs
searches and measurements at the 95% CL as checked by
HiggsBounds v5.3.2 [15–17] and HiggsSignals v2.2.3 [18–20],
respectively. Moreover, the LSP satisfies the latest LUX
bounds on the direct detection search for DM therein and

FIG. 1. Mono-Higgs Feynman diagrams qq̄ → χ̃01χ̃
0
i → χ̃01χ̃

0
1h with q̃ exchange (left), gg → Að0Þ=hð0Þ=Hð0Þ → χ̃01χ̃

0
i → χ̃01χ̃

0
1h (middle),

and qq̄ → χ̃01χ̃
0
i → χ̃01χ̃

0
1h with q̃ q̃ exchange (right).
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all other experimental limits [21]. However, the relic
abundance depends on the details of the underlying
cosmology (thermal or nonthermal abundance), so its
constraints will not be considered here [22–25].
The total cross section for the combined signal topol-

ogies including SM-like Higgs decays to bottom quark
pairs at

ffiffiffi
s

p ¼ 14 TeV is 9 × 10−3 pb. Assuming 1000 fb−1

of luminosity at the HL-LHC, this represents a sizable
signal event sample, thereby affording one with the
possibility of efficiently exploiting ML techniques.

III. ANALYSIS

In this section, we describe the strategy behind our
numerical analysis as well as the constituent elements of it,
i.e., the event generation and detector simulation procedure,
as well as the signal and background properties in terms of
kinematics and color dynamics of jets.

A. Strategy

Having clarified the theoretical setup, we now showcase
a phenomenological study of mono-Higgs signals in bb̄þ
MET final states using ML methods based on three
independent DNNs.
To start, global event information is extracted from

constructing all relevant kinematic distributions for signal
and background events. A MLP model is then adopted to
optimize the separation power between the two by analyz-
ing such distributions. The fact that some background
processes have similar kinematic structures as the signal
hinders the classification efficiency of this network, though.
Moreover, the huge background cross section leads to
smaller signal significance even after optimizing the cut on
the output score. To improve the MLP performance, one
could then apply initial cuts on some variables before
feeding the distributions to the MLP to enhance the signal
and suppress the backgrounds. Because of the correlations
among the constructed kinematic variables, applying a
cut on some variables will affect all others, though,
which in turn may undermine the network classification

performance. To improve the impact of the initial cuts, one
has then to decorrelate such a dependence across the
kinematic variables via the square root of the covariance
matrix as in [26]. However, in our analysis, we opted not to
apply any such cuts on the constructed kinematic variables.
Instead, we adopted a second approach following the fact

that SUð3Þ of color is conserved in the interaction processes
and provides different color flow structures for different
processes. This depends on the color nature of the inter-
acting particles, e.g., the radiation pattern within and
around the bottom quark pair from Higgs boson decays
is expected to be different from the radiation pattern of
bottom quark pairs from tt̄ production and decay or prompt
QCD processes. To quantify the impact on the signal-to-
background rate of different color structures, one can think
of a LHC detector as a giant camera and the streams of
hadrons as an image. Jet images can then be constructed as
two-dimensional arrays in the ðη;ϕÞ plane and the pixels
can be weighted by the sum of the total transverse
momentum deposited in the corresponding calorimetric
region of the detector [27–31]. We then adopt a CNNmodel
to analyze the constructed jet images in order to maximize
the signal-to-background classification efficiency.
Finally, to incorporate the different data structures as

inputs, whether kinematics or color flows, a two-stream
DNN is constructed [32–34]. The first stream, which
processes the input jet images, consists of convolution,
max pooling, and dropout layers plus one flattened layer.
The second stream, which processes the kinematic distri-
butions, consists of fully connected and dropout layers.
Both streams are then concatenated to one fully connected
layer and one output layer with two neurons for predictions,
hence, a hybrid DNN (HDNN).
Figure 2 shows the schematic architecture of the three

DNNs: MLP (left), CNN (middle), and HDNN (right).
Feeding the HDNN model with different kinds of infor-
mation enables it to extract the characteristic features of the
signal and background events without requiring initial cuts
or manual feature optimization. Moreover, combining the
global color structure and the events kinematics boosts the

FIG. 2. A schematic architecture for the used DNNs: MLP (left), CNN (middle), and HDNN (right). Unlabeled layers of HDNNs are
similar to the ones in MLP and CNN. The terms “FC” represents a fully connected neural network layer and “Conv2d” represents a two
dimensional convolution neural network layer.
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HDNN model performance above and beyond that of the
single stream networks, whether MLP or CNN, where
individual streams are used. In the following, we discuss
the structure of the three DNNs in detail and illustrate
how to prepare the input data for the networks. Before
doing so, though, we describe how we have generated our
Monte Carlo (MC) events.

B. Events generation and detector simulation

Both signal and background are simulated with
MadGraph5 [35], which is used to estimate multiparton
amplitudes and to generate events for subsequent process-
ing. All processes in Fig. 1 are computed at leading order
(LO) except Higgs production from gluon-gluon fusion,
which is calculated at next to LO in QCD using an effective
coupling calculated by SPheno [36,37]. PYTHIA [38] is used
for parton showering, hadronization, heavy flavor decays,
and for adding the soft underlying event. The simulation of
the response of, e.g., the ATLAS detector was done with
the Delphes package [39]. We slightly modified the standard
ATLAS card therein to allow for the extraction of the track
and energy deposit information for the final state hadrons.
In fact, reconstructed objects are simulated from the
parametrized detector response and include tracks, calo-
rimeter deposits, as well as high level objects such as
isolated electrons, jets, and taus (both leptonic and
hadronic), as well as MET.

C. Signal and background kinematics

Considering the discussed BP and the signal topologies
shown in Fig. 1, the dominant SM background contribu-
tions arise from the semileptonic decay of tt̄ pairs, digauge
boson production pp → hZ; ZZ, and, finally, vector boson
production with bottom quark pairs stemming from QCD
radiation, pp → Vbb̄ with V ¼ W or Z. We omit here
trigauge boson production, which has a small cross section
in comparison. Also, we neglect the processes pp → bb̄
and pp → bb̄þ jwith MET from the jet misreconstruction
or from mesons decay, by assuming large missing energy
cut, MET ≥ 250 GeV [40,41].
Based on the kinematics of signal and backgrounds, in

order to generate the events more effectively, we apply the
following cuts at the simulation (i.e., MadGraph level):
pTðjetÞ≥ 20GeV, pTðlÞ≥ 20GeV, pTðbÞ≥ 20, MET ≥
30 GeV, and jηðl; jet; bÞj ≤ 2.5 (hereafter, j ¼ e, μ).
Moreover, we require the events to have at least two b
jets with cone radius R ¼ 0.41 using a flat tagging
efficiency of 70%. (As for the mistagging efficiency of
gluon- and light-quark jets as b ones, we adopt a flat rate of
10−3.) After generating the events, we reconstruct nine

kinematic distributions for both signal and backgrounds as
detailed below. To collect the two b jets from the Higgs
boson decay, we do not require any mass window cut;
rather we collect the b-jet pair that has the closest invariant
mass to the SM-like Higgs boson mass.
Once events have passed the selection criteria, we exploit

the following kinematic variables, which we have plotted
in Fig. 3.

(i) MET: Defined as MET ¼ j −P
vi p⃗TðviÞj. Mono-

Higgs signals with neutralino DM with mass about
50 GeV allow for large MET that can help to
suppress the tt and digauge boson backgrounds.

(ii) pTðb1Þ: Transverse momentum of the leading b jet
originating from SM-like Higgs boson decays. The
rest mass of the (rather) heavy mediator Higgs boson
[withmass ofOð100–800Þ GeV, see Fig. 1 (middle)],
in comparison to theDMmass, boosts the final state b
jets showing a similar distribution to that of tt̄
production and decay (wherein b jets originate from
top quark decays), while this kinematics is notably
different for the other backgrounds.

(iii) pTðb2Þ: Transverse momentum of the second lead-
ing b jet, which shows a similar behavior as pTðb1Þ
in both signal and background events.

(iv) ηðb1Þ: Pseudorapidity of the leading b jet, which
shows a similar behavior in both signal and back-
ground events except for the process pp → Zbb̄,
showing a broader peak.

(v) ηðb2Þ: Pseudorapidity of the second leading b jet,
which shows a similar behavior as ηðb1Þ for all
processes.

(vi) pTðbb̄Þ: Transverse momentum of the two b jets
best reconstructing mh which exemplifies the Higgs
boson boost in signal events (again, signal and tt̄
events have similar distributions, which are in turn
different from all other background processes).

(vii) ηðbb̄Þ: Pseudorapidity of the two b jets above which
exhibits a deeper dip around 0 for background
events, where b jets are scattered back to back
[signal events with a larger boost show a somewhat
different behavior at ηðbb̄Þ ¼ 0].

(viii) ΔRðb; b̄Þ: Angular distance separation between
the two b jets reconstructing the Higgs boson,

with ΔRðbb̄Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔηðbb̄ÞÞ2 þ ðΔϕðbb̄ÞÞ2

q
. For back-

ground events via ZZ or hZ production, the two b
jets are from the Z or h boson decay. When the Z=h
boson is produced near its peak in the running of

ffiffiffî
s

p
,

most of the gauge/Higgs boson events have small
boost factors. Then the pair of b jets from Z=h decay
are expected to fly back to back. A similar behavior
also applies to the b jets emerging from top quark
decays, for which ΔRðb; b̄Þ peaks around 3. For the
QCD final state Zbb̄, the angular separation between
the two b jets has a broader peak, as the b jets come

1The analysis is insensitive to whether we use the kT [42],
anti-kT [43,44], or Cambridge-Aachen [45,46] jet clustering
algorithm.
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from QCD radiation. The signal events, with a larger
boost of the b jets, allow for ΔRðb; b̄Þ to peak
around 1.

(ix) Mðb; b̄Þ: Invariant mass of the two b jets that is
closest to the SM-like Higgs boson mass. For signal
events, Mðb; b̄Þ peaks at the Higgs boson mass,
while, for the processes ZZ and hZ, Mðb; b̄Þ peaks
at the Z and (somewhat more broadly than the
signal) Higgs boson mass, respectively, while, for
the tt̄ and Zbb̄ processes,Mðb; b̄Þ does not show any
obvious peak.

To adjust the reconstructed distributions as an input to
the DNNs, we stack all background and signal events
separately such that each dataset has dimensions of
ddistribution ¼ ðN; 9Þ, with N being the total number of
events. In our analysis, we use equal size datasets for
signal and background events, N ¼ 200; 000 each. As the
network does not understand the meaning of signal or
background, we assign a numeric label Y ¼ 1 to the former
and Y ¼ 0 to (the whole of) the latter. Once the labels are

adjusted during the training of the network, the model tries
to minimize the error between its predictions and the
assigned labels for each dataset of signal or background
events. The network then repeats this process until it
reaches the desired classification accuracy. Finally, it is
important to mention that a DNN convergence to a global
minimum is sensitive to the ranges of the input datasets;
this is why we normalize all distributions to one.

D. Color flow in signal and background

SUð3Þ color symmetry implies that color is conserved in
the jet interactions providing different color flows for
different processes. The structure of the color flow depends
on how the group indices are contracted at each vertex, e.g.,
jets produced from a color singlet have their indices
contracted with each other, thereby forming a color dipole,
while jets produced from the decay of a colored particle
have their indices contracted with those of the parent
particle, thereby forming isolated poles connected to the
parent particle [47–49]. The global structure of the color

FIG. 3. The kinematic distributions discussed in the text for signal and background events superimposed and normalized to 1. The
color codes apply for all distributions as follows: signal (black), pp → tt̄ (blue), pp → hZ (orange), pp → ZZ (green), and
pp → Zbb̄ (red).
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flow can be seen in LHC events as a color string from the
soft hadrons that stretches between two color-connected
jets [33,50]. This dynamics thus potentially provides one
with color observables that can be used to aid the search
for new physics. Specific to our case, the two b quarks
from the hadronic decay of the Higgs boson form a color
dipole whose radiation pattern is contained primarily
within a pair of cones around the two b-quark directions,
with a tendency for more radiation to occur in the region
between the two b quarks. In contrast, the two b quarks
in the hadronic decay of a colored particle, e.g., a top
(anti)quark, are color connected to the incoming proton
beams, forming two isolated cones with less radiation in
the region between the two b quarks. Since color flow is
physical, it may be possible to extract the color con-
nections of an event. In Fig. 4 we show, for illustrative
purpose only, the cumulative transverse momentum dis-
tribution from showering a parton level signal and tt̄ event
10,000 times each. As can be seen, indeed, the two b
quarks from the Higgs boson decay tend to radiate toward
each other, allowing for soft radiation to fill the region
between them, while the b quarks from (anti)top quark
decay are color connected to the incoming beam and thus
the soft radiation tends to fill the outer region between the
two b quarks.
In order to explore the global color structure of actual

signal and background events entering our MC analysis, we
can use the energy deposit in the LHC calorimeters to

depict the information of the final state hadrons into
images. Indeed, the calorimeters already provide the
requisite pixelization of the constructed image. The pixel
intensity of the image can be weighted according to the
total transverse momentum of the final state hadrons, while
the image dimensions will be the pseudorapidity and the
azimuthal angle of the calorimetric element. The results in
Fig. 4 are only valid in a statistical sense, in fact, since we
use the same parton level event and shower it multiple
times. In reality, events are independent and we remark that
only one b-quark pair is embedded into an image with
different locations for it in each event. Thus, in Fig. 5 we
show the accumulated average of the described pT dis-
tribution for 50,000 events (with image preprocessing steps
discussed in the next section) after a Delphes simulation for
signal and backgrounds events.
To adjust the reconstructed images as an input to the

DNNs, we construct image datasets by embedding each
event into an image with dimensions 25 × 25 × 1.
Specifically, we stack all signal and background images
separately such that the dimensions of each set are
dimages ¼ ðN; 25; 25; 1Þ, where N is the number of con-
structed images for signal and backgrounds, which we take
to be N ¼ 200; 000. In order to improve the network
performance and to minimize the ensuing error, it is
important to properly process signal and background
images before feeding them into the DNNs, as we shall
discuss later in the text.

IV. DEEP LEARNING ANALYSIS

In this section, we discuss how to construct the afore-
mentioned three independent DNNs to classify the mono-
Higgs signal events from the various backgrounds taken
together. We thus discuss the model architecture, prepro-
cessing of input data, model training, and classification
efficiency. Finally, we compare the classification perfor-
mance for the three networks.

A. Image preprocessing

For each event we construct an image as a square array in
the (η;ϕ) plane with each pixel given by the total hadrons
pT deposited in the associated region in the calorimeter.

FIG. 4. Cumulative pT distributions resulting from showering
10,000 times a single event at parton level for the signal (left) and
tt̄ production (right).

FIG. 5. Accumulated average of the discussed pT distribution for 50,000 events after a Delphes simulation for signal and backgrounds
events.
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The rectangular region between −2.5 ≤ η ≤ 2.5 and −π ≤
ϕ ≤ π is discretized into a 25 × 25 pixel grid. To ensure
that the DNN is not learning spacetime symmetries, the jet
images are preprocessed as follows.
(1) Image cleansing: We consider only particles that

have track information. Also, we remove leptons and
photons from the constructed images.

(2) Pixelization: We discretize the region in the ðη;ϕÞ
plane into a 25 × 25 grid with each pixel weighted
by the sum of the transverse momentum in it.

(3) Centering: We shift the center of the image from

(0,0) to ððηbþηb̄Þ
2

; ðϕbþϕb̄Þ
2

Þ.
(4) Momentum smearing: We smear the transverse

momentum using a Gaussian function with 3 stan-
dard deviations to reduce the number of sparse pixels
in the images [51].

(5) Normalization: We normalize the pixel intensity by
dividing each pixel in the image by the maximum
pixel intensity value.

After these image preprocessing steps, we end up
with signal and background image datasets ready to be
analyzed by the networks (herein, with image dimension
of 25 × 25 × 1).

B. Network architectures

As intimated, in this paper, we compare the performance
of three DNNs in distinguishing mono-Higgs signals via
h → bb̄ from various backgrounds. We first use the MLP
model that processes the nine constructed kinematic dis-
tributions. The model consists of three fully connected
layers with a Rectified Linear Unit (ReLU) activation
function and last output layer with two neurons and a
soft-max activation function. The number of neurons in the
first dense layer is 256, in the second layer is 128, and
in the third layer is 64. To avoid overtraining, we insert a
dropout layer after each dense layer with 20% dropout rate.
An Adam optimizer, i.e., an algorithm for first order
gradient-based optimization of stochastic objective func-
tions [52], is used to minimize the loss function with
learning rate η ¼ 0.001.
In analyzing jet images, we use a CNN with four

convolution layers, one dense layer, and one output layer.
The first and second convolution layers have 256 kernels
with kernel size 3, a ReLU activation function, and stride
length of 1 plus; in order to keep the dimensions of the
original input images, we use a padding layer. The third and
fourth convolution layers both have 128 kernels with kernel
size 3 and a ReLU activation function. After the second and
fourth convolution layers, we use max-pooling layers with
size 2 × 2 with stride of length 2. After the pooling layer,
we use a dropout layer with a 30% dropout rate. The last
convolution layer is flattened and projected to one fully
connected layer with 64 neurons and a ReLU activation
function. The output layer has two neurons and a soft-max

activation function. Again, the Adam optimizer is used to
minimize the loss function with learning rate η ¼ 0.001.
Finally, a HDNN is constructed by combining the above

models without the output layers; rather a layer is inserted
to concatenate the two dense layers from the two models. A
fully connected dense layer with 128 neurons is thus added
with a ReLU activation function and a dropout layer with
30% dropout rate is also added. The last output layer
consists of two neurons and a soft-max activation function.
Finally, the Adam optimizer is used again to minimize the
loss function with learning rate η ¼ 0.001.

C. Training the network

Once the datasets are prepared, we train the networks to
learn the nonlinear relationships between the input data
and their labels. For signal events, as mentioned, we
assign the label Y ¼ 1 and for background events we
assign the label Y ¼ 0. In order to remove the network
dependence on the position of the signal and background
events, we stack the signal and background events in one
dataset and shuffle it together with the assigned labels.
During the network training stage, during each epoch
(defined as number of passes of the entire datasets), the
network updates the weights assigned to the neurons for
each event via backward propagation of errors. The
network then tries to minimize the error between its
predictions and the true labels by reaching a global
minimum of some loss function. Finally, the network
repeats the process until it reaches the desired accuracy.
Once the model is trained, we test it by using completely
unseen new datasets to measure the network performance.
For MLP and CNN models, we divide the datasets, both
kinematic distributions and images capturing color
dynamics, into 70% training and 30% testing samples
with total size of 200,000. For the HDNN model, we use
the same training and test datasets, with the same sizes
now for each stream. Also, we train the model on equal
size datasets for both signal and (whole) background. The
network predictions error is quantified by using the
categorical cross entropy loss, given as

Loss ¼ −
X
i

Yi logðŶiÞ; ð8Þ

with i ¼ 0, 1 for signal and background classes,
respectively, and where Yi; Ŷi are the true and predicted
labels for each class. For all networks, we train the
model with 20 epochs with batch size equaling a 500
sample. The dimension of the final output probability Ŷ is
1 × 2, ðPsig;PbkgÞ, with P ranging between [0, 1]. If
Psig > 0.5ðPbkg < 0.5Þ, the corresponding event is clas-
sified as most likely being a signal event, and if
Psig < 0.5ðPbkg > 0.5Þ, the corresponding event is clas-
sified as most likely being a background event.
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D. Hyperparameters optimization and cross validation

When creating a ML network, one has to define the
model architecture that contains a set of parameters, for
which values the network itself is unable to estimate, and
thus the user has to fix these. Such parameters are called
hyperparameters. The network performance is crucially
dependent on the fixed values of these hyperparameters and
thus we have to search for those that give the optimal
network performance. A traditional way for hyperpara-
meter optimization is the grid search. Grid search is
arguably the most basic hyperparameter tuning method.
With this technique, one simply builds a model for each
possible combination of all hyperparameter values pro-
vided, evaluating each model and selecting the architecture
that produces the best results. Although the grid search
method can perfectly fix the hyperparameter values that
optimize the network performance, it is very time consum-
ing. Consequently, we use amore economicalmethod called
random grid search. Random grid search differs from grid
search in that one no longer provides a discrete set of values
to explore for each hyperparameter, rather, one provides a
statistical distribution for each hyperparameter from which
their values can be randomly sampled. To find the hyper-
parameter values for the networks, like done in Sec. IV B,we
carried out a random grid search over the hyperparameters
and fixed their values to the highest network performance.
For the MLP, we randomly searched for the number of
neurons in each layer and dropout rate, with number of
neurons from 64 to 256 in each layer and dropout rate from
5% to 35%. For the CNN, we searched for the kernel
numbers in each convolution layer, kernel, and pooling size
as well as dropout rate, with number of kernels from 64 to
256 in each layer. For both convolution and pooling kernel
size, we scanned over a list of symmetric kernels with size
from (2,2) to (5,5), while we used the same MLP ranges to
scan over the dropout rate. For the HDNN, in which we
concatenated these two networks, thus leading to larger set

of hyperparameters, we just used the optimized hyper-
parameter values in each previous network.
The fact that the network performance can depend on the

random partitioning of the available data into three sets,
e.g., training, test, and validation set, which can change the
network performance if we repeat the training and test steps
with new splitting. A solution to this problem is a procedure
called cross validation. In this approach, the dataset is split
into k smaller sets and the network is trained on k − 1 sets,
while the remaining set is used for validation purposes. The
performance measure reported by the cross validation
method is then the average of the values computed in
the loop. In our training, we use k ¼ 5 for all networks.

V. RESULTS

We employ our DNNs to perform the described mono-
Higgs analysis at the HL-LHC with

ffiffiffi
s

p ¼ 14 TeV in
energy and 1000 fb−1 of integrated luminosity. The
discriminating power of each of the networks will
be a measure of how well the signal and background
may be characterized through their different features, all
entangled together into several kinematic distributions and
color flows.
Figure 6 (left) shows the recursive operating curve score

for the three networks: MLP using kinematic distributions
as input, CNN trained on jet images, and HDNN, which
processes both kinematic distributions and jet images.
Herein, the area under the curve (AUC) quantifies the
ability of the network to correctly predict the event class,
i.e., signal or background. The MLP gives better perfor-
mance than the CNN network, while the HDNN has the
best performance overall for separating the mono-Higgs
signal events from the various backgrounds combined.
Specifically, the AUC for the HDNNmodel (green curve) is
96.87%, while we find 88.84% and 78.81% for the MLP
(orange curve) and CNN (blue curve) network, respec-
tively. In Fig. 6 (right) we show the classifier distribution

FIG. 6. Signal efficiency versus false positive rate with AUC distribution for the three ML types (left). Model output versus density for
signal and background in the three ML types (right).

SEARCH FOR MONO-HIGGS SIGNALS IN bb̄ FINAL … PHYS. REV. D 107, 075027 (2023)

075027-9



for both signal (blue histograms) and background (red
histograms) in the case of the three networks: MLP (short
dashed), CNN (long dashed), and HDNN (solid), each with
the usual inputs. The DNN model output predictions
ðPsig; 1 − PbkgÞ range from 0 to 1: the events with
discriminant value near 1 are classified as signal-like
events, while those near 0 are considered as backgroundlike
events. The intersection area between the two distributions
(signal and background) indicates the misclassified events
by each network. Again, it is clear that HDNN is the best
performer, ahead of MLP and CNN, in turn.
The optimization of the signal-to-background signifi-

cance, as a function of the network output, has been
performed using the following formula [53–55]:

σ ¼
�
2

�
ðNs þ NbÞ ln

ðNs þ NbÞðNb þ σ2bÞ
N2

b þ ðNs þ NbÞσ2b
−
N2

b

σ2b
ln

�
1þ σ2bNs

NbðNb þ σ2bÞ
���

1=2
; ð9Þ

withNs andNb being the number of signal and background
events, respectively, and σb parametrizing the systematic
uncertainty on the latter. Upon adjusting the cut to
maximize the signal-to-background yield, the CNN shows
a best significance of 4.9σ, MLP gives 6.1σ, and HDNN
yields 8.9σ. Figure 7 shows the HDNN signal significance
in terms of the integrated luminosity for different back-
ground uncertainties.

VI. SUMMARY AND CONCLUSIONS

The discovery of a SM-like Higgs boson h with a mass
of 125 GeV measured to percent precision by the ATLAS
and CMS Collaborations and the extraction of its bb̄ decays
at the LHC has opened up the possibility of using this decay
channel as an indirect probe of the existence of DM (and its
mediator) in so-called mono-X channels, wherein X ¼ h.
However, this specific probe suffers from significant QCD
background, when standard analysis techniques (i.e., those

used in cut-and-count approaches) are used to extract such
a signal, so that other h decay channels typically afford one
with greater sensitivity in comparison.
In this paper, we have carried out an analysis that showed

the possibility of establishing such a signature in a specific
case where the kinematics of the signal is peculiarly
different from that of the background, as the DM mediator
is a rather heavy object, in the form of a companion Higgs
boson existing, e.g., in the BLSSM, which we have used as
a template scenario of a supersymmetry model (wherein the
DM candidate has a mass of around 50 GeV). This has been
made possible by ML techniques, specifically exploiting
HDNNs, which afford one with the ability of simultane-
ously using kinematic distributions and images of jets, the
latter obtained by embedding the pT distribution of the final
state particles into visual representations, wherein the
different color flow structure of the signal and background
processes is accounted for.
Using such a new computational framework, we have

been able to prove the sensitivity of mono-Higgs signals
involving h → bb̄ decays emerging in the BLSSM in the
presence of large MET over a region of its parameter space
comparable to those that have been previously shown to be
accessible in such a theoretical framework, specifically
involving h → γγ and ZZ� → 4l (l ¼ e, μ) decays at the
HL-LHC. We regard this as an encouraging result, enabled
by ML techniques which one would hope to be also
exploitable for other DM production mechanisms where
the mediator is lighter, thereby originating less MET in
comparison, in turn plagued by a much larger SM back-
ground. In fact, eventually, we deem this ML informed
approach to be potentially also useful in the search for new
Higgs bosons decaying into bb̄ pairs.
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