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We study the electrodynamics of a kinetically mixed dark photon cloud that forms through superradiance
around a spinning black hole, and design strategies to search for the resulting multimessenger signals.
A dark photon superradiance cloud sources a rotating dark electromagnetic field which, through kinetic
mixing, induces a rotating visible electromagnetic field. Standard model charged particles entering this
field initiate a transient phase of particle production that populates a plasma inside the cloud and leads to a
system which shares qualitative features with a pulsar magnetosphere. We study the electrodynamics of the
dark photon cloud with resistive magnetohydrodynamics methods applicable to highly magnetized plasma,
adapting techniques from simulations of pulsar magnetospheres. We identify turbulent magnetic field
reconnection as the main source of dissipation and electromagnetic emission, and compute the peak
luminosity from clouds around solar-mass black holes to be as large as 1043 erg=s for observationally
allowed dark photon parameter space. The emission is expected to have a significant x-ray component and
to potentially be periodic, with period set by the dark photon mass. The luminosity is comparable to the
brightest x-ray sources in the Universe, allowing for searches at distances of up to hundreds of Mpc with
existing telescopes. We discuss observational strategies, including targeted electromagnetic follow-ups of
solar-mass black hole mergers and targeted continuous gravitational wave searches of anomalous pulsars.
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I. INTRODUCTION

Ultralight fields arise in abundance in beyond the
Standard Model (SM) theories of particle physics. The most
well-known and well-motivated such particle is the QCD
axion [1,2], proposed to solve the discrepancy between the
observed and predicted magnitude of the neutron electric
dipole moment arising fromCP violation in the strong sector
of the SM [3]. Beyond the QCD axion, light bosonic fields
have been found to be ubiquitous in string theory [4–7], and
provide excellent candidates for the dark matter particle or a
dark matter mediator [8–16], making this class of particles
one of the most exciting candidates for new physics.
Black hole (BH) superradiance [17–22] is a unique

mechanism that enables searches for weakly interacting
ultralight bosons [4,23] that relies only on the boson’s
gravitational interaction. If a new light boson with

Compton wavelength of order the BH horizon size exists
in the theory—whether or not there is an initial abundance of
the particle in the environment—the BH will spin down and
source macroscopic, coherent, gravitationally bound states
of ultralight bosons [4,22,23]. These bosonic “clouds” carry
up to several percent of the BH’s initial mass, and have an
energy density comparable to that of neutron star matter for
stellar mass BHs [23–25]. The resulting large energy density
of the cloud has time-dependent components, rotating
around the BH axis at a frequency fixed by the particle
mass, resulting in coherent, monochromatic gravitational
wave (GW) radiation that depletes the cloud over parametri-
cally longer times [23,26–28].
The signatures of GW emission and BH spindown

have been proposed to constrain and search for ultra-light
bosons [22,23,25–27,29–42]. Bosons in the 10−13–10−11 eV
range can lead to up to thousands of GW signals originating
from our Galaxy alone [27,34,36,37]. Blind continuous
wave searches for monochromatic GW from scalar boson
clouds [42–47], as well as stochastic searches for an excess
of GW power from spin-0 [48] and spin-1 [49] boson clouds
around yet undiscovered BHs have been carried out with
LIGO-Virgo-KAGRA (LVK) [50–52] data. These searches
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have produced some constraints; however, a robust under-
lying BH natal spin distribution is needed to conclusively
exclude particle parameter space. Another search strategy is
to follow up BHs with a measured mass and spin, which are
newly born from binary BH mergers [34]; then the expected
signals can be precisely computed, and a conclusive search
performed. Directed searches for continuous GWs from a
potential scalar boson cloud around Cygnus X-1 have also
been carried out [53]. Currently, the sensitivity of GW
searches is not sufficient to see follow-up signals from spin-0
bosons around binary BH remnants [54], but they are
promising for spin-1 bosons in upcoming observation runs,
and especially in next-generation observatories [55,56].
BH spin measurements have set constraints on ultralight

bosons using measurements of BH properties from x-ray
binaries [27,57–59], as well as measurements of binary BH
constituents using LVK observations [57,60,61]. The latter
have produced constraints on spin-0 bosons of a factor of ∼2
in mass [60,61], and we expect slightly stronger constraints
for spin-1 bosons, although such an analysis has not been
carried out for the full dataset. The x-ray binary measure-
ments depend on BH accretion disk modeling, which may
introduce additional systematics [62,63]. In addition, while
the gravitational interaction of the BH superradiance cloud
and the accretion disk does not significantly affect the
constraints [27], nongravitational interactions of the cloud
can perturb the disk dynamics, invalidating the constraints
on the dark photon mass from BH spin measurements for the
parameters considered in this paper.
While the gravitational aspects of superradiance have

been studied extensively, making contact with particle
physics models of ultralight spin-0 or spin-1 particles
can dramatically change this picture. For spin-0 axions,
the relevant interaction at the next-order after the mass term
is a quartic coupling (see e.g. [23,64–67]). This results in
energy exchange between levels in the cloud [58,66,68],
slowing down the spin extraction and resulting in lower-
frequency gravitational waves from transitions and axion
wave emission [58]. More complicated dark sectors can
result in production of new dark states [38,67,69–72].
Beyond interactions within the dark sector itself, inter-
actions with SM particles can lead to additional energy loss
channels [73], although for axionlike particles these are
subdominant to the dynamics of self-interactions [58].
In this work, we focus on studying the effects of the

lowest-order interactions one can write down for spin-1
dark photons: kinetic mixing with the SM photon [74,75].
In the presence of such a mixing, the huge energy density of
the cloud picks up a visible electromagnetic field compo-
nent that interacts directly with electrons, leading to
cascade production of charged particles and to the for-
mation of a plasma. To study the plasma dynamics, we
analyze an isolated, relativistic superradiance dark photon
cloud, and compute the evolution of the visible electric and
magnetic fields using a resistive-magnetohydrodynamic

description, valid in the limit of a strongly magnetized,
tenuous plasma, that we adapt from simulations of pulsar
magnetospheres. See Fig. 1 for an example visualization of
the resulting magnetic field strength around a rotating BH.
Our simulations show that the resulting system is a

luminous multimessenger source: a BH system which emits
an enormous electromagnetic flux, up to several orders of
magnitude brighter than pulsars and magnetars. This
radiation is generated by turbulent field and plasma
dynamics in the superradiance cloud, and is expected to
have a large high-energy component. We find partial
evidence for an intrinsic periodicity set by the mass of
the dark photon particle, giving rise to a novel object that
we call a “new pulsar.” In Fig. 1, we show the parameter
space of dark photon particles and the expected peak
luminosity for illustrative BHs as a function of dark photon
mass and kinetic mixing parameter.
Our results motivate a variety of novel astrophysical

searches to discover these systems. These include electro-
magnetic follow-ups of BH mergers that result in rotating
BHs, most promising in the x-ray and radio bands. Another
target is gravitational wave follow-ups of pulsars with
coincident frequencies or positive frequency drifts, which
could be superradiance cloud signals lasting thousands of
years or more; see Fig. 1. In much of the parameter space,
we find that the evolution of the cloud is still dominated by
its gravitational dynamics, making the overall evolution
free of electromagnetic modeling uncertainties. At small
dark photon masses and large kinetic mixings, the electro-
magnetic emission has a larger power than the GWs, where
we also have an exceptionally bright sources.
Some aspects of dark photon superradiance with a

nonzero kinetic mixing have been explored in [78], and
superradiance of the SM photon itself has been treated
in [31,79–81]. Ours is the first work to consistently take
into account the dynamics of the SM plasma that is
automatically generated by the kinetically mixed cloud.
The interactions with the plasma completely alter the
behavior of the visible electromagnetic fields in the vicinity
of the BH and the resulting signatures.
This paper is organized as follows; in Sec. II, we review

gravitational spin-1 superradiance. In Sec. III, we provide
an executive summary of the dynamics of kinetically mixed
superradiance, which we explore in detail in the subsequent
sections. In Sec. IV, we describe the processes by which
an isolated dark photon cloud generates its own plasma
density. In Sec. V, we study the dynamics of the coupled
system of electromagnetic fields and charged currents. In
Sec. VI, we describe the key electromagnetic emission
mechanisms, including electromagnetic radiation and
power dissipation in the plasma due to turbulent dynamics.
In Sec. VII, we summarize the observational signatures and
propose several detection strategies for this new class of
astrophysical object, concluding and outlining future direc-
tions in Sec. VIII.
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This work spans the areas of particle physics, strong field
electrodynamics, gravity, and astrophysical systems, thus
introducing much notation, some nonstandard; we collect
definitions in Appendix A. We describe details of the
numerical simulations of the superradiance cloud and
electromagnetic fields and currents in Appendices B and C,
respectively. We present the resistive current prescription in
Appendix D, the small conductivity regime in Appendix E,
and aspects of the dark photon basis in Appendix F. We use
the mostly plus metric signature ð−;þ;þ;þÞ and natural
units, with ℏ ¼ c ¼ 1 and nonreduced Planck mass
Mpl ¼ 1=

ffiffiffiffi
G

p
.

II. BLACK HOLE SUPERRADIANCE
FOR VECTOR FIELDS

We begin by reviewing the BH superradiance of a
massive vector (spin-1) boson that interacts predominantly
through gravity. The kinetic and mass terms for this dark
photon A0μ are given by

L0 ¼ −
1

4
F0
μνF0μν −

1

2
μ2A0μA0

μ: ð1Þ

We assume that the dark photon mass μ arises from the
Stueckelberg mechanism [82] so in what follows, we do not
discuss any dynamics that could originate from a Higgs
sector [70,71].
The superradiant instability is a purely gravitational

process that can lead to the production of an exponentially

large number of massive bosons around spinning BHs by
extracting the BH’s energy and angular momentum. The
bosons occupy hydrogenic clouds characterized by a gravi-
tational fine-structure constant α≡ rgμ ¼ GMμ, a principal
quantum number n, and total, orbital, and magnetic angular
momentum numbers j, l, andm. The total and orbital angular
momentum can differ due to the boson’s intrinsic spin:
j ∈ fl − 1; l; lþ 1g. Among the different cloud levels, the
fastest-growing one for vector bosons is the ðj; n; l; mÞ ¼
ð1; 1; 0; 1Þ mode. Given its dynamical dominance, we focus
for brevity exclusively on the study of this level. This will be
sufficient for exploring the features that we wish to highlight
in this work. The boson’s energy in this level at leading-order
in the gravitational coupling is given by

ω ≃ μ

�
1 −

α2

2

�
: ð2Þ

After the birth of the source BH, the number of dark
photons in the cloud grows exponentially at a leading-α rate
that, for our dynamically dominant mode, is set by

ΓSR ≡ τ−1SR ≃ 4α7ðΩBH − ωÞ ≃ 4a�α6μ; ð3Þ

where a� is the BH’s dimensionless spin and ΩBH its
angular velocity

ΩBH ¼ 1

2

�
a�

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2�

p �
r−1g : ð4Þ

FIG. 1. Left: we show the visible magnetic field strength B2 (normalized by its maximum) in the equatorial plane of the central BH of
massM, dimensionless spin a� ¼ 0.86, and a dark photon mass μ ¼ 0.3=ðGMÞ. The dark photon of the superradiance cloud forces the
pair plasma into a circular motion resulting in magnetic field line twisting, which is released through magnetic field line reconnection,
resulting in a turbulent plasma state (shown here) and efficient energy dissipation into the plasma, driving the luminous electromagnetic
emissions from the system. Right: kinetically mixed dark photon parameter space of interest in this work. The solid (dashed) black lines
are contours of constant electromagnetic luminosity emitted from the superradiance cloud around a BH of mass 10ð100ÞM⊙ and initial
spin a� ¼ 0.9. The region above the blue contour is relevant for electromagnetic follow-ups of compact binary mergers, discussed in
Sec. VII A (the shaded band on top of the contour is due to uncertainties on the merger rate). The area within the green contour is of
interest for continuous gravitational waves searches targeted on anomalous pulsars, as described in Sec. VII B. The gray shaded region is
excluded by existing measurements of the CMB spectrum by COBE/FIRAS [76,77].
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In the last equality of (3), we approximated ΩBH ≫ ω and
took large-spin BHs ð1 − a2�Þ ≪ 1. If, on the other hand, the
BH’s spin is small so that its angular velocity falls below
the boson’s energy

ΩBH ≤ ω; ð5Þ

then ðj; n; l; mÞ ¼ ð1; 1; 0; 1Þ superradiance does not occur.
Equation (5) implies a maximum possible value for the fine-
structure constant (saturated for maximally spinning BHs)

α ≲ 1=2: ð6Þ

The above condition, together with the strong suppression
of the superradiant rate at small α [see (3)] indicate that
superradiance is most effective for gravitational couplings of
order α ∼ 10−1 or, equivalently, boson masses μ ∼ 0.1=rg,
which for stellar BHs corresponds to μ ∼ 10−12 eV.
The growth of the cloud stops when sufficient spin has

been extracted so that the condition Eq. (5) is saturated. The
number of dark photons in the cloud can reach 1077 or more
for a 10 solar mass BH, with the cloud mass

Mc ≃ 10−2
�
Δa�
0.1

��
α

0.1

�
M; ð7Þ

for α ≪ 1, where Δa� is the difference between the
initial BH spin and the final spin which saturates the

superradiance condition. The cloud mass reaches up
to 10% of the mass of the BH for large α and high initial
BH spin [24]. The vector field profile around the BH, on the
other hand, is given at leading order in the fine-structure
constant by

A0
0 ¼

ffiffiffiffiffiffiffi
Mc

p
ffiffiffi
π

p
μ2r5=2c

e−r=rc sin θ sinðωt − ϕÞ;

A0 ¼ −
ffiffiffiffiffiffiffi
Mc

p
ffiffiffi
π

p
μr3=2c

e−r=rcfcosωt; sinωt; 0g; ð8Þ

where rc ¼ rg=α2 is the cloud’s characteristic Bohr radius
and we have taken the BH spin direction to lie along the
z-axis. From Eq. (8), we see that the dark electric and
magnetic fields E0 ≡ −∇A0

0 − ∂tA0 and B0 ≡∇ ×A0 are
in a proportion jB0j=jE0j ∼ α, so the cloud is electrically
dominated. At leading order in α, the electric field
corresponding to the potential Eq. (8) is unidirectional
and equatorially oriented, and rotates on this plane at a
frequency ω ≃ μ, while the magnetic field lines form
concentric tori around the BH with a common axis
perpendicular to the electric field direction and passing
through the BH. Both fields decay exponentially away
from the BH. We show these features in Fig. 2, where we
present exact (in the test field limit) solutions for both the
electric and magnetic fields, obtained by numerically
solving the vector’s equations of motion in the BH’s Kerr

FIG. 2. We plot representative sets of field lines of the electric (left) and magnetic fields (right) of the superradiant cloud around the
central BH in Kerr-Schild coordinates (see Appendix B for details). The m ¼ 1 cloud is characterized by α ¼ 0.3, while the BH has a
corresponding spin of a� ¼ 0.86 (further details can be found in Table III). The BH spin-axis points in the z-direction. Color indicates
the field strength along each field line, normalized by the respective maximum field strength. On the right, we also plot the magnetic
field strength inside the equatorial plane of the BH.
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metric. We refer the reader to Sec. V and Appendix B for
details on the simulations. We note that, close to the BH,
the exact field solutions differ from the ones obtained
from the approximations (8) due to corrections that arise
at higher-order in the gravitational coupling.
Following its formation, the cloud decays via GW

emission, which is the main observable signature of
superradiance clouds composed of massive bosons that
interact with the SM solely by gravitation. The GW
emission power is given by

PGW ≃ 17
α10

G

�
McðtÞ
M

�
2

ð9Þ

in the α ≪ 1 limit [38,40]. The quadratic dependence of the
emission power on the cloud mass leads to a power-law
decay of the cloud set by

McðtÞ ¼
Mcðt0Þ

1þ ðt − t0Þ=τGW
; ð10Þ

where τGW is the gravitational-wave decay timescale,
which is given by

τGW ≃
GM

17α11Δa�
∼ 30 days

�
0.1
Δa�

��
0.1
α

�
11
�

M
10M⊙

�
:

ð11Þ

III. KINETICALLY MIXED SUPERRADIANCE
CLOUDS: AN OVERVIEW

So far, we have discussed a theory where vector bosons
lack nongravitational interactions. Going beyond this
minimal setup, dark photons may interact with the SM
at the renormalizable level via kinetic mixing with the
SM U(1) gauge boson. In an effective theory below the
electroweak scale, this interaction mixes the dark and SM
photons via a Lagrangian term L ⊃ εF0

μνFμν=2, where ε is a
parameter that quantifies the mixing [74,75]. This term can
be equivalently written as a mass-mixing term by perform-
ing the field redefinition, A0

μ → A0
μ þ εAμ ≡ A0

μ, which
results in the Lagrangian

L ¼ −
1

4
FμνFμν −

1

4
F0
μνF0μν

−
μ2

2
A0
μA0μ − εμ2A0

μAμ þ IμAμ; ð12Þ

where Iμ is the four-dimensional spacetime current. This
choice of fields is referred to as the interaction basis; other
choices of basis are discussed in Appendix F. Due to the
mass mixing, the dark photon field acts as a source current

for the visible fields and vice-versa, as can be seen either
from the equations of motion

∇αFαβ ¼ −Iβ þ εμ2A0β; ð13Þ

∇αF0αβ ¼ μ2A0β þ εμ2Aβ; ð14Þ

at leading order in the kinetic mixing parameter, or from the
energy-momentum conservation relations, which mani-
festly show exchange of energy between the vector fields

∇αTαβ ¼ −FβγðIγ − εμ2A0
γÞ;

∇αT 0αβ ¼ εμ2F0βγAγ: ð15Þ

In the context of superradiance, the kinetic mixing term
allows for the superradiance cloud to source electromag-
netic fields.1 Our objective in this work is to study the
corresponding electrodynamics, and we numerically solve
Maxwell’s equations with a superradiant source term in
curved spacetime. This task is technically complex, but
most of our results can be understood in simple physical
terms, so to guide the reader through the discussion
presented in the following sections, we will begin here
by providing a simplified overview of our findings.
The evolution of a kinetically mixed dark-photon super-

radiance cloud can be separated into several stages that are
schematically depicted in Fig. 3. Starting with a spinning
BH (leftmost panel), these stages correspond to the initial
growth of the cloud (center-left panel), creation of a
conducting plasma via particle acceleration and pair-
creation due to the visible electric field induced by the
cloud (center-right panel), and the establishment of an
electromagnetic field and plasma configuration, which
decays as the plasma radiates electromagnetically and
the cloud emits GWs (rightmost panel). The initial growth
of the cloud was reviewed in Sec. II for noninteracting dark
photons. From Eq. (14), we see that the inclusion of kinetic
mixing affects the dynamics of the superradiance cloud at
order ε, which in turn leads to effects at order ε2 in the
visible fields via Eq. (13). Here, we will limit ourselves to
computing the visible fields at leading (linear) order in ε, so
in what follows we ignore the effects of kinetic mixing on
the growth of the superradiance cloud. Thus, the evolution
of the cloud is governed purely by the gravitational
dynamics as in the previous section [with a growth time-
scale τSR given by Eq. (3)], and we may move on to
the description of the creation of the plasma by the

1The induced coupling to SM electrons also results in a higher-
dimensional self-interaction term for the dark photons of the
Euler-Heisbenberg Lagrangian. Approximately extrapolating
the results of self-interacting scalars [58], we estimate that the
induced quartic coupling would start to affect the growth of
the cloud for ε ≳Oð1Þ, a value far greater than relevant for the
dynamics discussed here, and that is already excluded.

DARK PHOTON SUPERRADIANCE: ELECTRODYNAMICS AND … PHYS. REV. D 107, 075025 (2023)

075025-5



cloud-induced electric field. See also the text below
Eq. (27) for a discussion of the negligible subleading
corrections to the dark photon mass.
As discussed in Sec. II, the cloud is dominated by an

equatorially oriented dark electric field, with a direction
that rotates in the equatorial plane at frequency
μ=ð2πÞ ∼ 102 Hzðμ=10−12 eVÞ. Due to kinetic mixing,
the superradiance fields act as a source term in the visible
field equations of motion, Eq. (13), and induce a visible
electric field that is equal to the dark electric field times
the mixing parameter. As the cloud grows through super-
radiance, the visible field grows concurrently. A fully
formed cloud would, in the absence of charged particles,
have a visible electric field of magnitude

jεE0j ≃ ε
ffiffiffiffiffiffiffiffi
Δa�

p
α5=2μffiffiffiffi
G

p

≃ 2 × 1013 V=m
ffiffiffiffiffiffiffiffi
Δa�

p �
ε

10−7

��
α

0.1

�
5=2

�
μ

10−12 eV

�
ð16Þ

at distances of order the Bohr radius from the BH
(rc ∼ 1=αμ). These large fields, however, cannot be
achieved due to plasma screening.
Before the cloud reaches its full size, and when visible

fields are still only a fraction of the value (16), environ-
mental charged particles are accelerated to ultra-relativistic
velocities. As illustrated in the middle-right panel in Fig. 3,
the rotation of the electric field with the cloud curves the
charged particle trajectories, which then emit synchrotron
photons. These photons, in turn, interact nonperturbatively
with the background electric field and produce additional
electrons and positrons. The charge acceleration and pair
production processes repeat in a cascade, until a conducting

plasma is created. This mechanism is reminiscent of
cascade production of electron-positron pairs in the strong
magnetic field around supermassive BHs described by
Blandford-Znajek [83], with the important difference that
our system is electrically instead of magnetically domi-
nated. An extended discussion of the plasma creation will
be presented in Sec. IV. The effects of the plasma on the
dark photon interactions with the visible fields are dis-
cussed in Appendix F.
Once the plasma is created, the electrodynamics can be

studied by encoding the microscopic particle physics in an
effective conductivity σ, which allows for the computation
of spatial plasma currents from the electromagnetic fields
using Ohm’s law,

J ¼ σðEþ v ×BÞ; ð17Þ

where v is the plasma fluid velocity. This Ohmic pre-
scription, which will be studied in detail in Sec. V, is
commonly used in magnetohydrodynamics [84], and
has been proposed to treat dissipative currents in
pulsars [85–89]. Pulsar magnetospheres are highly con-
ducting, σ=ω ≫ 1 (where ω is the plasma angular fre-
quency), so that in the bulk of the magnetosphere
electromagnetic fields are shorted out and combine to
cancel the Lorentz forces entering Eq. (17), resulting in a
so-called “force-free” system that is mostly dissipation-
less [28,90,91]. Dissipative effects, however, do arise on
specific two-dimensional planes called current sheets of
thickness ∼1=σ, which may be modeled using Eq. (17).
Our kinetically mixed superradiance cloud shares many

similarities with pulsars, and due to screening is also
expected to have force-free regions. In fact, from numerical
simulations presented in Sec. V, we will see that if the
plasma is highly conducting, σ=μ ≫ 1, plasma currents

FIG. 3. Schematic depiction of the evolution of a kinetically mixed dark photon superradiance cloud. Starting from a spinning BH
(left), a vector superradiance cloud forms on a timescale τSR (center-left).The visible electric field sourced by the cloud accelerates
environmental charged particles, leading to cascade production of electrons and positrons on a timescale τplasma; note that τSR ≫ τplasma

and the cascade production occurs and completes before the superradiance instability completes (center-right). The cloud finally decays
by GWemission on a timescale τGW, and by transferring energy to the plasma, which loses energy through electromagnetic emission on
a timescale τEMðrightÞ. See text for further details.
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effectively redistribute charge to screen the rotating electric
field induced by superradiance εE0. This leads to charge
being separated into a dipolelike distribution, with a
characteristic density that at the cloud radius is approx-
imately given by,

ρ ≃ ε∇ · E0 ≃� ε
ffiffiffiffiffiffiffiffi
Δa�

p
α7=2μ2ffiffiffiffi
G

p

≃�5 × 107 cm−3
ffiffiffiffiffiffiffiffi
Δa�

p �
ε

10−7

��
α

0.1

�
7=2

�
μ

10−12 eV

�
2

;

ð18Þ

where the plus and the minus signs correspond to opposite
ends of the dipolelike pattern. A crude, nonrelativistic
estimate indicates that the large magnitude of the charge
density is consistent with large conductivities: for a
nonrelativistic collisionless plasma the conductivity is
σ ≃ ρ=μme, which, using Eq. (18), gives σ=μ ∼ 1012, where
me is the electron mass.
Despite the utility of the pulsar analogy, the resemblance

with our system is limited. First, in the absence of a plasma,
the kinetically mixed superradiance cloud is electrically,
instead of magnetically, dominated. Second, while in a
pulsar the magnetic field is dipolar and decays away from
the neutron star, in Sec. V we will show that in our system
the resulting visible fields remain strong well outside of the
light-cylinder rLC ≡ 1=μ (the radius out to which the
plasma can corotate with the BH), up to the Bohr radius
r≳ 1=μα ≫ rLC. This means that in the bulk of our system,
charges cannot move fast enough to perfectly screen the
rotating source field. Electric dominance and imperfect
screening suggest that in our cloud a steady-state force-free
solution does not exist, unlike in pulsars where dissipative
effects are confined to the current sheets. Instead, our
numerical simulations, presented in Sec. V, show a
dynamical interplay between resistive and force-free
regions where electric fields have been mostly screened.
Up to now, we have only discussed the electric field

dynamics. Complementary insight into the electrodynamics
can be gained by studying instead the magnetic fields
induced by the plasma currents. The magnetic dynamics
can be analyzed by combining Ohm’s law Eq. (17),
Faraday’s, and Ampere’s law [derived from Eq. (13)] to
obtain the magnetic induction equation

∂tB ¼ εμ2B0

σ
þ 1

σ
∇2Bþ∇ × ðv ×BÞ; ð19Þ

where the first term on the right hand side accounts for the
background superradiant magnetic field. The induction
equation is used to study magnetic fields in a wide variety
of astrophysical plasmas, where the electric displacement
currents are smaller than plasma currents and can be
neglected, an assumption that our simulations show to

be valid. The three terms on the right-hand side of the
induction equation describe different characteristic regions
of the system. Closest to the BH, the superradiant driving
field is large, and the first term on the right-hand side
dominates the morphology of the magnetic fields. Away
from the neighborhood of the BH, the magnetic field is
nontrivially related to the superradiant driving fields,
and the two remaining terms become dynamically relevant
in a proportion set by a magnetic Reynolds number
Rm ¼ σjvjl, where 1=l characterizes the magnetic field
gradients. In zones where Rm ≫ 1, the last term on the
right-hand side of Eq. (19), which represents pure field
advection, is largest. The simulations presented in Sec. V
show that large regions in the bulk of the plasma are
dominated by advection, and are characterized by magnetic
flux conservation, tight-coupling of the plasma and the
magnetic fields, mostly screened electric fields, and some
emission of electromagnetic radiation due to the time-
dependent plasma charge and current densities.
Our simulations also show time-dependent regions,

especially outside of the light-cylinder, where the plasma
cannot corotate with the driving fields as advection would
impose. This leads to differential rotation within the plasma
and to the twisting and shearing of magnetic field lines, as
well as to regions where the second (diffusive) term in
Eq. (19) dominates due to large field gradients and/or small
plasma velocities that result in Rm ≪ 1. In these regions,
we find that the interplay of advection and diffusion drives
turbulent effects, such as breaking and reconnection of field
lines, schematically shown in the rightmost panel of Fig. 3.
Unscreened electric fields along the direction of plasma
currents, expected from the simple kinematic arguments
outlined above, are found at these sites. These electric fields
lead to significant Ohmic dissipation J ·E, which in our
simulation represent conversion of electromagnetic field
energy into particle acceleration and radiation.
Our simulations thus show that dissipation is associated

with magnetic field reconnection and unscreened electric
fields, as in the pulsar current sheets. In contrast to the
pulsar system, however, in the kinetically mixed super-
radiance cloud the resistive effects are realized in dynami-
cally evolving regions throughout the bulk of the plasma.
As a consequence, while in pulsars most of the power
emitted is due to the time-dependent nature of the currents
in the force-free bulk, we find that in our system the
comparative preponderance of dissipative effects leads to
an emission power that is dominated by Ohmic losses.
Importantly, the simulations presented in Sec. VI B

suggest that while increasing the conductivity reduces
the size of the dissipative regions, it also increases their
number, i.e. larger conductivities lead to “fragmentation” of
the dissipative regions without changing their volumetric
fraction. As a result, we find that the dissipative power
tends to a σ-independent value (at large σ), allowing us to
provide a prediction for the emitted power that is set
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entirely by the dark-photon model parameters and the BH
mass. The power emitted by our system typically exceeds
the emission power of pulsars by several orders of
magnitude, and for clouds around stellar BHs can be as
large as L ≃ 1043 erg=s [an exact expression can be found
in Eqs. (54) or (61)]. We ascribe this difference to the rapid
falloff of the dipolar magnetic field of the pulsar away from
the neutron star, the large volume of the superradiance
cloud when compared with the pulsar’s emission regions
Vcloud=V lightcylinder ∼ 1=α3, and to our system’s dissipative
features. Given the periodic rotation of the cloud, it is
possible that the emitted power will have a pulsating
component, and our simulations indeed show some limited
evidence that supports this hypothesis (see Sec. VI D).
From our simulations we cannot compute the spectral
decomposition of the emitted power; however, we can
speculate based on results of kinetic treatments of turbulent
plasmas (analogous to pulsar current sheet simulations) that
charged particles will be highly boosted by the large
electric fields resulting in a large component of high-
energy radiation in the form of x- and gamma-rays [92–95];
for further discussion see Sec. VI E.
In the final stage of our system’s evolution the cloud

decays predominantly by gravitational-wave emission,
accompanied by the novel electromagnetic emission out-
lined here, as depicted in the rightmost panel of Fig. 3.
These emission channels lead to concrete observational
signatures that we describe in Sec. VII, such as performing
EM follow-up observations of compact binary mergers,
searching for a population of same-frequency and/or
positive-frequency drift pulsars, and targeting such anoma-
lous pulsars with GW follow-up searches.
With this short summary in hand, we now move on to

provide an in-depth discussion of the plasma and field
dynamics at each stage of their evolution, starting with the
production of the plasma.

IV. PLASMA PRODUCTION

In this section we describe the production of the
conducting plasma within the superradiance cloud and
determine the values of the mixing parameter ε for which a
plasma is plausibly created. We identify two main proc-
esses that are crucial for the formation of the plasma,
synchrotron radiation emitted by environmental electrons
that are accelerated by the superradiance cloud, and
subsequent photon-assisted Schwinger pair production
in the background electric field. Here we estimate the
rates of these two processes and show that they can
effectively create the conducting plasma even for kinetic
mixing parameters that are several orders of magnitude
below current experimental bounds and of the region of
interest for the observational prospects discussed later in
this work. Several other mechanisms can produce charged
particles in background fields and additionally contribute
to the formation of the plasma, but for brevity we do not

discuss them here (for a comprehensive list we refer the
reader to [96]).

A. Synchrotron radiation

Any stray charged particle entering the kinetically mixed
superradiance cloud will experience strong electromagnetic
forces. Since the cloud’s magnetic field is subdominant,
jB0j ∼ αjE0j < jE0j, we simply consider the motion of e�
accelerated by the electric field (equivalently we can
perform a boost into a frame with vanishing magnetic
field and electric field amplitude reduced by a factor of
1 − α ≃ 1). Inside a fully grown cloud (at distance r such
that rg ≪ r≲ 1=αμ) the electric field has approximately
constant amplitude given by Eq. (16) and rotates with
angular velocity ω ≃ μ. The electrons/positrons are then
approximately linearly accelerated over a timescale of 1=μ,
reaching a maximum boost factor of

γe ≃
eεjE0j
meμ

≃ eεα5=2
ffiffiffiffiffiffiffiffi
Δa�

p Mpl

me

≃ 1012
�

ε

10−7

��
α

0.1

�
5=2

�
Δa�
0.1

�
1=2

; ð20Þ

where in the first line we made use of Eq. (16). As the
electric field rotates, the electron/positrons trajectories bend
with approximate radius of curvature rc ≃ γeme=ðeεjE0jÞ≃
1=μ. During this circular motion the charged particles
radiate synchrotron photons, predominantly at frequency
ωsyn ¼ γ3e=rc ≃ γ3eμ. We can estimate the rate for synchro-
tron emission at this frequency as Psyn=ωsyn, which gives

Γsyn ≃
2

3

e2γe
rc

≃
2

3

e3εjE0j
me

≃
2

3
e3εα5=2

ffiffiffiffiffiffiffiffi
Δa�

p
μ
MPl

me
; ð21Þ

where again, in the last equality we used (16). In order for
the plasma to be phenomenologically relevant it must be
created before the cloud is depleted by gravitational wave
emission, on a timescale given by Eq. (11). To ensure that
this occurs, we impose the sufficient requirement that the
synchrotron and photon-assisted pair production rates
(discussed in the next section) occur before any particle
can escape the cloud, i.e., that the synchrotron and pair-
production timescales are shorter than the light-crossing
time of the cloud, 1=αμ, which is much smaller than the
GW decay time (11). For the synchrotron emission rate of
Eq. (21), this leads to the requirement

ε >
1

e3α5=2
ffiffiffiffiffiffiffiffi
Δa�

p me

MPl
≃ 10−18

�
0.1
α

�
5=2

�
0.1
Δa�

�
1=2

ð22Þ

As evident from Eq. (20), the above requirement also
ensures that the accelerated electrons are highly relativis-
tic (γe ≫ 1).
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B. Photon assisted Schwinger pair production

A static electric field can decay to electron-positron pairs
through quantum tunneling, a process known as Schwinger
pair production. The probability of scalar e� pair creation
was first computed in Schwinger’s seminal work [97],
from vacuum decay in an external, slowly varying electric
field E. The rate per unit volume V is given by

Γe�

V
¼ ðejEjÞ2

4π3
X∞
n

1

n2
exp

�
−
πm2

e

ejEj n
�
; ð23Þ

and is exponentially suppressed for electric fields below
the critical value m2

e=e ≃ 1018 V=m. Even the large electric
field generated by the dark photon superradiance cloud,
given in Eq. (16), falls short by a few orders of magnitude,
making Schwinger pair production unlikely in our setup.
However, pair creation can be greatly enhanced in the
presence of highly energetic photons [98], such as the
synchrotron photons described in the previous section.
Photon assisted Schwinger pair production is similar to
magnetic pair production [99] invoked in Blandford-Znajek
processes [83], where radiation with energy above the
threshold 2me can produces electron-positron pairs by
scattering off of strong magnetic field.
Photon-assisted Schwinger pair creation can be viewed

as a semiclassical tunneling process and the production rate
has been computed with methods similar to the one used for
metastable vacuum decay in Ref. [100]. The exponential
factor in the rate is given by e−SB, where SB is the Euclidean
action evaluated on the bounce solution (the classical
trajectory that extremizes the action). In our case [101,102]

SB ¼ −γθ þ
�

2m2
e

eεjE0j þ
eεjE0j
2m2

e
γ2θ

�
arctan

2m2
e

eεjE0jγθ
; ð24Þ

where γθ ¼ sin θmeωγ=ðeεjE0jÞ, ωγ is the photon fre-
quency, and θ is the angle between the direction of the
photon and the background electric field. As the synchro-
tron photons travel in the cloud, they will encounter electric
fields that are almost perpendicular to their direction of
propagation within a timescale of 1=μ, when the production
rate is maximized. As a result, for a simple estimate of the
rate we can take sin θ ≃ 1.
There are two limiting cases of Eq. (24) depending on the

photon frequency. If ωγ ≪ 2me, SB ≃ πm2
e=ðeεjE0jÞ, which

reduces to the standard Schwinger result of Eq. (23).
Therefore if the photon energy is below the pair production
threshold, the electric field still needs to be supercritical for
the process not to be exponentially suppressed. On the
other hand, if ωγ ≫ 2me, as is the case for most of the
synchrotron photons described in the previous section,
SB ≃ 2m3

e=ðeεjE0jωγÞ. The additional, potentially very
small, factor of 2me=ωγ significantly enhances the prob-
ability of pair production. The full expression of the rate

(including the prefactor of the exponential term) is given in
Ref. [102] and is larger for photons with polarization
perpendicular to the electric field. For the highly energetic
synchrotron photons with perpendicular polarization,
we have

Γγ
e� ¼ αEM

2π

eεjE0j
me

exp

�
−

2m2
e

eεjE0j
2me

ωsyn

�

¼ αEM
2π

eεjE0j
me

exp

�
−

4m6
eμ

2

ðeεjE0jÞ4
�
: ð25Þ

For cascade production to occur in our system the term in
the exponential must reach a magnitude of order unity
when the cloud has reached its full size (or before) so that
the exponential suppression of pair-production is lifted.
This translates into a minimum value for the mixing
parameter ε≳m3=2

e μ1=2=ejE0j. More precisely, in what
follows we impose that the pair-production rate for a fully
grown cloud is faster than the light crossing time of the
cloud 1=αμ, so that the synchrotron photons split into e�
before escaping the superradiance cloud, ensuring a cas-
cade production of the plasma, which translates into a
minimal mixing parameter

ε ≫
�
ln
αEMγe
2πα

�
−1=4m3=2

e
ffiffiffiffiffi
2μ

p
ejE0j

≈
�
ln
αEMγe
2πα

�
−1=4 1

eα5=2
ffiffiffiffiffiffiffiffi
Δa�

p me

Mpl

ffiffiffiffiffiffiffiffi
2me

μ

s

≃ 10−10
�
0.1
α

�
5=2

�
0.1
Δa�

�
1=2

�
10−12 eV

μ

�
1=2

×

�
log αEMγe

2πα

20

�−1=4
; ð26Þ

where in the logarithmic term we made use of (20), and
in going to the second line we used Eq. (16). Notice that the
above requirement also guarantees that ωsyn ≫ 2me. For
kinetic mixing parameters saturating the lower bound in
Eq. (26), plasma production will be triggered when the
cloud has reached a close-to maximal size, while for mixing
parameters above this lower bound the plasma will be
created before the cloud has fully grown. We show the
smallest values of kinetic mixing parameters that allow for
cascade pair creation in the superradiance cloud as a
function of dark photon mass in the left panel of Fig. 4.

C. Dynamics leading to a quasisteady state

The plasma begins to be populated once the pair-
production cascade initiates, which as noted previously
happens when the superradiance cloud has grown to a size
such that the pair-production rate becomes of the order of
the cloud’s Bohr radius, i.e. Γγ

e� ≃ αμ. For this to occur and
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up to a logarithmic correction, the superradiant field must
reach a critical value eεjE0

critj ≃
ffiffiffi
2

p
m3=2

e μ1=2. The super-
radiant field grows to E0

crit in a few superradiance times
τSR ≃ 1=4α6a�μ. After that, the plasma is created by
cascade production on the much shorter light-crossing
timescale, over which the superradiant field and the cascade
production rates are approximately fixed to E0 ≃E0

crit and
Γγ
e� ≃ αμ respectively.2

During cascade production, the charge density grows
exponentially as ne ¼ n0e exp ð2Γγ

e�tÞ, where ne ¼ n−e þ nþe
is the total number density of electrons and positrons. Pair
production stops when the charged plasma effectively
screens the critical electric field due to charge separation,
which happens when the electron number density reaches
nfe ≃ ε∇ · E0

crit=e ≃
ffiffiffi
2

p
αðmeμÞ3=2=e2. Assuming that when

the cascade begins we start from one single electron in the

cloud, n0e ≃ ðαμÞ3, the plasma grows nfe=n0e e-folds before
the cascade stops, so that the plasma formation time can be
estimated as

τplasma ≃
1

2Γγ
e�
ln

�
nfe
n0e

�
≃

1

2αμ
ln

m3=2
e

e2α2μ3=2
:

The plasma production time is thus parametrically shorter
than the superradiance timescale by a factor

τplasma

τSR
≃ 2a�α5 ln

m3=2
e

e2α2μ3=2
: ð27Þ

In the right panel of Fig. 4 we show the above ratio of
timescales for the values of ε and α that satisfy the plasma
pair production requirement from Eq. (26).
As the dark photon cloud continues to grow and the

electric field increases, more charged particles will be
created and the plasma will rearrange itself in the screening
configuration, until E0 has reached its maximum value
Eq. (16) after ≈180τSR, at which point the charge density
achieves its maximal value Eq. (18). The numerical

FIG. 4. (left) Smallest values of the kinetic mixing parameter ε that allows for efficient e� pair production in the superradiance cloud as
a function of dark photon mass μ, for BH masses of 10M⊙ (blue) and 100M⊙ (orange), with initial BH spin of a� ¼ 0.9. The rate for
photon stimulated Schwinger pair production, given in Eq. (25), is required to be greater than the size of the cloud, αμ, when the cloud
has fully grown. Smaller dark electric fields at small μ, require larger ε to initiate the cascade. The sharp cutoff corresponds to the highest
dark photon mass that satisfies the superradiance condition for the fastest growing level. (right) Ratio of the time needed to populate the
plasma over the superradiance e-folding time as a function of the kinetic mixing parameter ε and the gravitational coupling α for a BH
mass of 10M⊙ and initial BH spin of a� ¼ 0.9 (the ratio is independent ofM and only mildly dependent on a�). An estimate of the ratio
is given in Eq. (27), while in the plot τplasma is evaluated using the electric field value at the time that the cascade pair production is
initiated. In the dark gray shaded region, the electric field is always too small to produce e�. When the cascade is efficient, the plasma is
filled within a small fraction of one superradiance e-folding time (τSR grows steeply at small α). In both panels, the light gray shaded
region is excluded by measurements of the CMB spectrum by COBE/FIRAS [76,77].

2For simplicity, through out Sec. IVA and IV B we used the
superradiance field value at saturation, Eq. (16), instead of the
critical field,E0

crit. The latter will be as large as the saturation field
only for the smallest values of ε allowed, given numerically in
Eq. (22) and (26).
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simulation presented in the next sections will show how
charge separation in the cloud and electric screening are
indeed good approximations. Note that the formation of
the plasma induces a plasma mass for the SM photon
(ωp ¼ e

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ne=me

p
), but does not significantly affect the dark

photon mass. In fact, in the limit μ → 0, a massless mode
must remain in the theory even in the presence of the
plasma, which indicates that the leading contribution to
the dark photon mass is simply μ, up to ε2 corrections. The
plasma frequency does not affect the mixing between the
dark and visible photons either, nor the propagation of
visible fields in the plasma, the reason being that in our
system the energy density in the visible electromagnetic
fields greatly exceeds the energy density in the charged e�

plasma (by a factor
ffiffiffiffiffiffiffiffiffiffiffi
me=μ

p
), so the tenuous plasma cannot

impede the propagation of the comparatively larger EM
fields. This is different from the case in [103], where the
EM fields are a small perturbation on top of a compara-
tively dense charged plasma. A more detailed discussion
of plasma effects on the dark photon is presented in
Appendix F.
Note also that the total mass of the plasma,

Mplasma≈
meρ

eðαμÞ3

≃εα1=2ðΔa�Þ1=2
meMpl

μ

≃10−29M⊙

�
ϵ

10−7

��
α

0.1

�
1=2

�
Δa�
0.1

�
1=2

�
10−12 eV

μ

�
ð28Þ

is much smaller than the mass of the cloud, Mc ¼
α2Δa�M2

pl=μ, leaving the gravitational potential unaltered.
We can then safely assume that the growth and dynamics of
the superradiance cloud is not affected by the presence of
the standard model plasma.
In the left panel of Fig. 4, we show the range of ε and μ

where fast cascade production occurs and the plasma is
populated, Γγ

e� > αμ. Much slower processes can also
populate this plasma in the parameter spaces where the
fast cascade production is inactive. Assuming, for example,
Bondi accretion andOð1Þ sound speeds cs, it takes roughly

τacc ¼
Mplasma

_MBondi

≈ εα−3=2ðΔa�Þ1=2
c3sMplμ

πnM

≃ 10 years

�
ε

10−7

��
α

0.1

�
−3=2

�
Δa�
0.1

�
1=2

×

�
μ

10−12 eV

��
1=cm3

nM

��
cs
1

�
3

ð29Þ

to populate enough charged particles inside the super-
radiance cloud, where nM is the matter number density in
the interstellar medium. Such a time scale suggests that for
parameters where the cascade production is active, accre-
tion from interstellar medium can be safely ignored during
dark photon superradiance and plasma generation. On the
other hand, in the parameter space where the cascade
production is inactive, such processes can be fast enough to
populate a plasma inside the superradiance cloud around
isolated BHs inside our galaxy, which are most likely more
than thousands if not millions of years old.
Finally, it is worth pointing out that the transient process

of cascade particle production discussed in this section only
produces a small and unobservable amount of emission.
The transient effects discussed in [78], for example, occur
when jEj2 ∼m3

eμ, which amounts to a total energy of
1032ð10−12 eV=μÞ2ð0.1=αÞ3 ergs (independent of ε). As we
will demonstrate in Sec. VI B, this is about 20 orders of
magnitude smaller than the total electromagnetically dis-
sipated power from the superradiance cloud. Similarly,
photon superradiance [31,79–81,104] will saturate long
before the field strengths and energy densities in the photon
superradiance cloud reaches sizes relevant for observation.

V. FIELD CONFIGURATIONS

We have shown that a pair production cascade ensues
on short timescales, once the superradiance dark photon
cloud surpasses a critical electric field strength during the
exponential growth of the cloud. The generated charges
form a highly conducting plasma that is subject to the
electromagnetic fields of the dark photon cloud. In this
section, we study the macroscopic state this plasma
equilibrates into. To that end, we consider, numerically,
the superradiance cloud of a kinetically mixed dark photon
on a fixed Kerr spacetime of mass M and dimensionless
spin parameter a�. As outlined throughout Secs. III and IV,
it is crucial to work with an Ohm’s law that accounts for
the energy dissipation into the plasma inside the cloud.
Building on the analytical discussions in the previous
section, we first examine the structure of the visible
electromagnetic fields of the cloud-plasma system on large
scales. On small scales, we demonstrate that, in the high
conductivity limit, turbulent dynamics emerges accompa-
nied by efficient magnetic field line reconnection in the
bulk of the dark photon cloud. Throughout the section, we
study the system considering all relativistic effects of the
background spacetime in the interaction basis.
We begin by introducing the plasma model in the context

of a kinetically mixed massive vector field with the SM
photon in Sec. VA. We establish that within this model,
a quasistationary end state of the pair production cascade
is reached and characterize its large scale behavior in
Sec. V B, and small-scale dynamics in Sec. V C. In Sec. V D,
we briefly summarize the main findings.
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A. Plasma model

We study the kinetically mixed field equations (13)
of the visible field Aμ in the interaction basis (12). A
strongly magnetized, highly conducting pair plasma, is
well described by the force-free limit of ideal magneto-
hydrodynamics (see, e.g., Ref. [105] for a review).
Specifically, force-free electrodynamics is applicable
when (i) resistive effects are negligible, (ii) the magnetic
field strength is larger than the electric field’s, i.e.,
B2 > E2, and (iii) the plasma mass density ρp and
pressure Pp are much smaller than the electromagnetic
energy density, i.e., B2 ≫ ρp; Pp (see e.g., [28,90]). In
force-free electrodynamics, one can numerically evolve
only the electromagnetic fields, without keeping track
of the fluid quantities, with the current being uniquely
determined from the electromagnetic fields by the
requirement that the Lorentz force vanishes (see, e.g.,
Refs. [106,107] for details on the force-free limit).
In essence, FαβIα ¼ 0 allows ∇βFαβ ¼ Iα to be rewritten
as Fαγ∇βFαβ ¼ 0. (More details, include the equations of
force-free electrodynamics in terms of electric and mag-
netic fields can be found in Appendix D.)
As discussed in the previous sections, the superradiant

system considered here satisfies condition (iii) [see (28)],
but a priori violates conditions (i) and (ii). Exactly how
and why these violations persist, even at large conduc-
tivities is the subject of the following subsections.
However, one can already anticipate that in the limit of
vanishing backreaction of the pair plasma onto the visible
electromagnetic fields, the magnetic dominance is lost by
virtue of the superradiant solution being electrically
dominated: B2 ¼ ε2B02 < ε2E02 ¼ E2. Since electric
dominance implies that there is no frame where the
electric field, and hence the acceleration on any charges,
vanishes, it is furthermore not surprising that dissipative
processes also become important. Therefore, in order to
relax assumptions (i) and (ii), we modify the force-free
equations to explicitly allow for dissipation by introduc-
ing an Ohm’s law with finite conductivity σ, while still
requiring the current to be a function of the electromag-
netic fields. This is done in such a way that, under a
certain set of assumptions, the force free limit can be
recovered as σ → ∞. Slightly abusing terminology, we
shall refer to this as resistive force-free electrodynamics.
Several variations of this approach have been applied to
simulating pulsar magnetospheres [85,86,88,108,109],
and in particular the electrically dominated current
sheet [88,109], and here we generalize these to the
kinetically mixed case (see also Appendix D for more
details). In the following, we will describe how we set up
the coordinate system, the Maxwell equations, the fluid
of charged particles and the Ohm’s law in a fully
relativistic simulation of the plasma of electrons and
positrons inside the superradiance cloud.

1. Space-time decomposition

We begin by discussing how the kinetically mixed
Maxwell’s equations for the visible fields can be decomposed
according to a given choice of time slicing of a spacetime,
which for this studywill begiven by theCartesianKerr-Schild
coordinate time t. Using the (future-pointing) unit normal to
slices of constant time nμ, the visible electric and magnetic
fields defined with respect to this slicing are

Ei ≡ nνFiν; Bi ≡ nνð�FÞiν ¼
1

2
nνεiναβFαβ: ð30Þ

where εαβγδ is the Levi-Civita tensor. These are the quantities
thatwe evolve on theBHspacetime. Projecting the kinetically
mixed Maxwell equations (13) into components orthogonal
and parallel to the time slice, one obtains the evolution
equations in terms of three-dimensional spatial quantities.We
give the explicit form of these equations that we use to carry
out the numerical evolution in Appendix C.
In order to evolve the electric and magnetic fields, we

also need to specify the electromagnetic current. The four
dimensional current Iμ can be decomposed into a spatial
component Ji, and a component perpendicular to the slices
of constant time

Ji ¼ Ii − ρqni; ρq ¼ −nμIμ; ð31Þ

where ρq is the Eulerian frame (i.e., with respect to
the slices of constant time) charge density. We directly
calculate the charge density from the divergence of the
electric field,

ρq ¼ DiEi − εμ2nμA0μ; ð32Þ

using the Gauss’s law constraint equation obtained from
projecting the kinetically mixed Maxwell equations for
the visible fields (13) onto the time slice. However, we still
need to specify the spatial part of the current Ji.

2. Ohm’s law

As discussed above, we introduce the effect of finite
conductivity using a simple Ohm’s law in the frame of the
fluid (plasma)

jμ ¼ σeμ; ð33Þ

where jμ and eμ are, respectively, the electromagnetic
current and visible electric field in the fluid frame. The
latter is defined in terms of the fluid velocity uμ,

eμ ≡ uνFμν; jμ ≡ Iμ þ ðuνIνÞuμ; ð34Þ

in an analogous way to the Eulerian frame quantities. With
this prescription, we are neglecting anisotropic magnetic
field effects. However, as the superradiance cloud system is
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characterized by strong electric fields, this is the dominant
contribution away from the force-free limit. Note that the
Ohm’s law (33) instantaneously relates currents and electric
fields, a prescription that is valid for low-inertia plasmas
such as ours. In Eq. (33), the conductivity σ is a phenom-
enological parameter that allows for energy dissipation via
mechanisms that are set by the microphysics, which is left
unspecified. While without a microphysical description it is
not possible to determine the value of the conductivity, we
expect that the conductivity of the pair plasma considered
here is large when measured in terms of the system’s natural
length scale (the inverse dark-photon mass), i.e., σ=μ → ∞
[see also a brief discussion below Eq. (18)]. Note that
in this limit, other charge transport mechanism such as
diffusion due to charge gradients can be safely neglected.
The resistive relation (33) allows us to compute the fluid-

frame currents from the visible electromagnetic fields.
However, since we are not directly evolving the fluid,
and in particular its velocity, this is not sufficient to give the
Eulerian current entering into the evolution equations.
In ideal magnetohydrodynamics (including the limiting
case of force-free), given the electromagnetic fields, one
can reconstruct one component of the velocity, referred to
as the drift velocity

vid;ideal ¼
εijkEjBk

B2
; ð35Þ

where here we use vi to refer to the Eulerian spatial velocity
of the fluid vi ¼ −ui=ðnμuμÞ, though not the component of
the velocity parallel to the magnetic field. In our resistive
extension, following [87] (see also Ref. [85]), we use a drift
velocity that is augmented with an electric component
to allow for electrically dominated regions to be treated
self-consistently,

vid ¼
εijkEjBk

B2 þ E2
0

; E2
0 ¼ B2

0 þ E2 − B2;

B2
0 ¼

1

2

�
B2 − E2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðB2 − E2Þ2 þ 4ðEiBiÞ2

q �
: ð36Þ

This ensures that the drift velocity is bounded by the speed
of light, even in electrically dominated regions, and is
further reduced in regions with nonvanishing resistive
effects, i.e., EiBi ≠ 0. We note that, while the quantities
above are written in terms of E and B fields, B2 − E2 ¼
FμνFμν=2 and EiBi ¼ Fμνð�FÞμν=4 are spacetime scalars.
In general, the full fluid velocity cannot be determined

from the electromagnetic fields alone, without extra con-
ditions. Here, following [88], we identify vi ¼ vid, i.e., we
set the nondrift velocity component to zero in the BH frame
defined by nμ. With the fluid velocity specified, we can
transform (33) into the Eulerian frame, giving

Ji ¼ ρqvid þ σE0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ E2

0

B2
0 þ E2

0

s �
E0Ei þ B0Bi

B2 þ E2
0

�
: ð37Þ

This is the kinetically mixed extension of the current
considered in [88]. In Appendix D, we further discuss
the advantages and limitations of this choice of current, and
contrast it with other currents developed in the literature.
Notice, however, this ansatz is merely a prescription to
extend the regime of validity of the force-free paradigm
to resistive regions (such as current sheets), which has
physical meaning only in the high-conductivity limit,
where B2 > E2, EiBi ¼ 0, and σE0 < ∞, such that
vid → vid;ideal. Hence, while different choices of currents
may result in different physics at moderate conductivity, for
σ → ∞ all prescripts converge toward the well-defined
force-free limit. Therefore, we primarily focus on the trend
toward this limit.

3. Numerical setup

The visible fields Ei and Bi are numerically evolved on a
fixed Kerr spacetime in Cartesian Kerr-Schild coordinates.
The massive vector field solutions on this background
spacetime, which enter as source terms in the evolution
equations, are constructed numerically (this is discussed in
Appendix B). We restrict our attention to solutions where
the superradiant instability has been saturated, which
occurs when the cloud oscillation frequency is synchron-
ized with the horizon frequency ωR ¼ ΩBH. The computa-
tional domain extends from the BH horizon to spatial
infinity through the use of compactified coordinates, and
mesh refinement is used to concentrate resolution in the
central region, enabling us to resolve the BH-cloud system
sufficiently up to r ¼ 10rc. The conductivity σ is set to be
constant in space and time, as is serves merely as a proxy
for the local resistivity present in the cloud. In light of the
lack of a microphysically motivated conductivity, and the
success of analogous choices in the case of the pulsar
magnetosphere (see e.g., [88]), this choice, while unphys-
ical, is a first step toward a more complete analysis. We also
note that, any choice of spatially dependent conductivity,
that varies with a macroscopic length scale, likely results in
similar qualitative and quantitative behavior of the system.
This follows provided the system’s state is conductivity-
independent toward the force-free regime, and because
resistive features (magnetic reconnection, energy dissipa-
tion, etc.) are active on scales below the macroscopic scales
of the system. Finally, we evolve the system of equations
forward in time using a higher-order explicit Runge-Kutta
algorithm. The limitations of this choice in the context of
stiff equations in the large conductivity limit, as well as
further details of the numerical methods, are discussed in
Appendix C. We evolve the system, starting from suitably
chosen initial data, for a sufficiently long period of time
(∼200=μ or longer) such that it relaxes toward an
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approximate equilibrium, as measured by the Poynting
flux at large radii becoming nearly constant. Details are
given in Appendix C.

B. Field solutions: Large scale behaviors

In the following, we demonstrate how in the quasisteady
state solution, the strong electric field of the superradiance
cloud is mostly screened by locally produced charges at
large conductivities, and the visible magnetic field begins to
play an important role in the system. As noted above, the
physical value of the plasma conductivity σ will be set by a
microphysical scale (due to scattering, synchrotron radia-
tion, pair production and annihilation, etc.) that we expect
to be much smaller than the other physical length or
timescales in the system that we consider (e.g., 1=μ).
However, due to numerical limitations, we only consider
values up to σ=μ ¼ 20. Therefore, in order to make
qualitative and quantitative statements about the
properties of the quasiendstate, we proceed by discussing
the behavior of the system as a function of conductivity,
focusing primarily on σ=μ ≥ 1 (though we include the low-
conductivity limit in Appendix E for completeness), and
extrapolate trends toward σ → ∞ if possible. This is the

approach typically used to study resistive effects in pulsar
magnetospheres [88,108,109]; we discuss possible short-
comings of these methods below.
We begin by considering the behavior of the visible

electric field Ei of the quasistationary endstate of the pair
cascade as function of conductivity in Fig. 5. In the vacuum
limit, σ=μ ¼ 0, there is no electric field generated by a
charged plasma, and the depicted field lines are just an
equatorial slice of the electric field Ei ¼ εE0i shown in
Fig. 2. For σ=μ ≥ 1, the main qualitative feature, as
summarized in Sec. III, is the buildup of the dipolar
screening charge density leading to a significant reduction
of the visible electric field compared to the vacuum case. As
the conductivity increases, this suppression of E2 grows
and the component of Ei along the BH spin-axis becomes
more important, as Ez=E ∼Oð1Þ in the σ=μ ¼ 20 panel
of Fig. 5.
Another important qualitative feature we find is that the

visible electric field exhibits a global dephasing of π=2with
respect to the dark electric field at large conductivities. This
de-phasing can be understood analytically in the non-
relativistic limit, α ≪ 1. In this limit, a spatial derivative,
which is set by the inverse cloud size ð∇ ∼ αμÞ, is much

FIG. 5. We show the visible electric field geometry, Ei, and magnitude as a function of the plasma conductivity σ in the equatorial
plane of the BH. The superradiance cloud’s phase is the same in each panel. Colors (red/blue) correspond to the magnitude of the
component along the spin axis, i.e., in the z-direction, normalized by the maximal magnitude of that component at the given
conductivity. Field lines are projections of the electric field onto the equatorial plane, while the color of the field lines (yellow/green)
indicates the magnitude of the visible electric field normalized by the maximal magnitude at σ ¼ 0. The BH and cloud parameters are as
in Fig. 2, i.e., α ¼ 0.3 and a� ¼ 0.86. With increasing conductivity, the electric field magnitude decreases compared with the vacuum
limit, and Ez=E ∼Oð1Þ for σ=μ ¼ 20. The field geometry undergoes a phase-shift of π=2 between vacuum and large conductivity limits.

NILS SIEMONSEN et al. PHYS. REV. D 107, 075025 (2023)

075025-14



smaller than the time derivative ð∂t ∼ μÞ. For electric fields
with similar or larger strengths compared to the magnetic
field, as indicated by our numerical simulations at small
and moderate conductivities (see Fig. 7 below), the
Maxwell equations in the interaction basis (C2) reduce to

∂tEi ≈ −σEi þ εμ2A0i; ð38Þ

where we assume the same Ohm’s law as before in (33).
With the nonrelativistic superradiant field solutions A0

i
in (8), we see that the visible electric field is driven toward
the inhomogeneous solution

E ∝

0
B@

σ þ iμ

μ − iσ

0

1
CAe−iωt þ c:c: ð39Þ

over timescales of 1=σ. Hence, as conductivity increases
toward σ ∼ μ, the visible electric field direction rotates with
respect to a fixed superradiance cloud phase, such that at
large conductivities, σ=μ ≫ 1, the visible and superradiant

electric fields exhibit a phase-offset of π=2. Notice, how-
ever, at very large conductivity, this analytic approxima-
tion, in principle, is no longer valid, as it neglects the
magnetic field effects, which become important as the
electric field is screened, for σ=μ ≫ 1. These effects induce
the appearance of small scale structures visible in the last
panel of Fig. 5. We will elaborate on the break down of this
approximation and the emergence of small scale features in
more detail in Sec. V C.
As the conductivity grows, the electric field decreases in

amplitude and the magnetic field plays a more important
role. The field line geometry and magnitude of the visible
magnetic fields are shown as a function of conductivity in
Fig. 6. At vanishing σ, the solutions are identical to the
vacuum solution, and the snapshot in Fig. 6 simply
represents a slice of the geometry shown in Fig. 2. The
magnetic null line (i.e., where Bi ¼ 0) crosses this slice
once on either side of the BH as they spiral away from the
BH. The field lines close around this null line, and the
magnetic field strength is largest close to the BH and
decays exponentially toward spatial infinity. In the vacuum
limit, the dark photon field exhibits an exact helical

FIG. 6. Magnetic field lines Bi and magnitudes in a coordinate slice spanned by the BH spin (pointing in the z-direction), and an
arbitrarily chosen superradiance cloud phase. The six panels show the field configurations in the same slice for successively larger
conductivities σ. The background colors (red/blue) indicate the magnitude of the component perpendicular to the slice Bφ in the
φ-direction around the BH normalized by the magnitude of the visible magnetic field. The colors of the field lines (yellow/green)
indicate the magnitude of the visible magnetic field along the field lines normalized by the maximal magnitude in the vacuum case Bσ¼0

max .
The BH and cloud parameters in all panels are as in Fig. 2, i.e., α ¼ 0.3 and a� ¼ 0.86. The magnitude of the magnetic field, while
exponentially decaying in the vacuum limit, is roughly uniform at large conductivities σ=μ ¼ 20. The small-scale features are discussed
in detail in Sec. V C.
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symmetry about the BH spin-axis.3 For σ ¼ μ, the magnetic
field pattern still exhibits this helical symmetry approx-
imately on the spatial scales depicted in Fig. 6. This
symmetry is broken for σ=μ > 1. Therefore, the last two
snapshots of Fig. 6, while representing the magnetic field
geometry qualitatively, are not indicative of the full three-
dimensional field geometry. Qualitatively, at large con-
ductivities, the plasma turns into a highly conducting pair
plasma attaching to the visible magnetic field lines. This
implies a differential rotation of the magnetic field lines at
large and small distances from the BH, which breaks the
helical geometry into a more complex configuration pre-
senting small-scale features, that are further discussed in
the next section. For both the electric and magnetic field,
the presence of the plasma leads to field strengths that are
relatively uniform in magnitude within the Bohr radius (as
can be seen in the σ=μ ¼ 20 panel of Fig. 5). The small-
scale features, crucial for the high-conductivity dynamics
of the system, are discussed in detail in the next section.
In order to understand the degree to which our

solutions approach a force-free solution in the σ → ∞
limit, we consider how violations of the force-free

conditions EiBi ¼ 0 and B2 > E2 (respectively, condi-
tions (i) and (ii) discussed in the beginning of Sec. VA),
change with increasing conductivity. In Fig. 7, we show,
in representative slices, pointwise measures of the vio-
lations of these conditions, while in Fig. 8 we show how
volume integrated measures of these violations decrease
with increasing conductivity.
Examining a volume integral of EiBi as a function of

conductivity, shown in rightmost panel of Fig. 8, we find
that it begins to decrease like 1=σ for σ=μ ≥ 1. From the
bottom panels of Fig. 7, we can see that, in contrast to low
and moderate value of σ=μ, at high conductivity, large
values of EiBi (relative to the magnitude of the fields) occur
only in isolated, smaller-scale regions.
We also find that the fraction of the volume that is

magnetically dominated increases with increasing con-
ductivity, as shown in the middle panel of Fig. 8, in
particular, for a coordinate sphere of radius 4=ðαμÞ. For
σ ¼ 0, none of this volume is magnetically dominated (as
expected, since B0 ∼ αE0, B ¼ εB0, and E ¼ εE0), while
for σ=μ ¼ 20, approximately one-third of the volume is.
The spatial extent of these magnetically dominated
regions can be seen in the top panels of Fig. 7.
Similarly, as shown in the left panel of Fig. 8, the global
maximum visible electric and magnetic field strengths
are comparable, while the value of maxB2=E2 increases to
large values with large conductivities.

FIG. 7. Top row: the ratio between visible magnetic and electric field strengths, B2 and E2, respectively, as function of conductivity σ
in the same slices as in Fig. 6 (i.e., spanned by the BH spin-axis in the z-direction and an arbitrary superradiant phase). Contour lines
indicate, where B2=E2 ¼ 1. Bottom row: the magnitude of the visible electric field component in the direction of the visible magnetic
field, jEiBij, normalized by both magnitudes. The slices of the top and bottom rows are identical. The BH and cloud parameters in all
panels are as in Fig. 2, i.e., α ¼ 0.3 and a� ¼ 0.86. For σ=μ ≲ 1, the electric field is dominant everywhere and the violations of
jEiBij ¼ 0 is strong, while for σ=μ≳ 1, the magnetic field begins to dominate in some regimes and jEiBij ¼ 0 is violated only in
isolated regions.

3The helical Killing field is kμ ¼ ξμ −ΩBHφ
μ in terms of the

stationary and axisymmetric Killing vectors. The superradiant
field A0

μ strictly retains this symmetry, at leading order in the
kinetic mixing, i.e. LkA0

μ ∼Oðε2Þ.
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Naïvely, one might expect that in the infinite conduc-
tivity limit, the visible electric field in the fluid frame is
completely shorted out by large scale charge separation,
leading to eμ → 0, and hence a magnetically dominated
solution everywhere (recalling that magnetic dominance is
equivalent to the existence of a frame where the electric
field vanishes, i.e., B2=E2 > 1). The results above suggest
that a force-free solution might exist for σ → ∞, at least in a
significant fraction of the total volume taken up by the
plasma and superradiance cloud. However, given the slow
increase in the magnetically dominated fraction of the
volume with increasing conductivity, it seems plausible
that electrically dominated regions with nonzero volume
may persist as σ → ∞. Electric dominance implies an
unscreened electric field in the fluid frame, allowing for
strong particle acceleration, and the dissipation of field
energy. This is consistent with our force-free simulations
(without a guide field), which always evolve toward
developing electrically dominated regions (see Fig. 22 in
Appendix D for a discussion on these force-free simula-
tions), and will be discussed further in the following
section. In the next section, we will also discuss how the
violations of the force-free conditions are connected to the
turbulent behavior the plasma.

C. Field solutions: Small scale turbulence

In the previous section, we found that a large-scale
charge separation screens the superradiant electric field,
lifting the importance of the visible electric field and
leading to magnetically dominated regions. In what
follows, we focus on the magnetic field dynamics in
the large-conductivity regime. We show that, in this
regime, the dark photon superradiance cloud-plasma
system is characterized by turbulent plasma dynamics
in the bulk of the system. A trend toward small-scale
features can already be seen in Fig. 6, and becomes more

apparent in Fig. 7 in the previous section. The turbulent
regions emerge not in isolated and clearly structured
lower-dimensional regions, but rather across the bulk of
the cloud. This is in contrast to the pulsar magnetosphere,
where, at least in the high conductivity limit, small scale
features and dissipation are expected to be contained
mostly in a two-dimensional current sheet.
In order to understand the turbulent behavior of the

visible magnetic field dynamics at moderate and large
conductivities, it is instructive to consider the visible
magnetic induction equation in the presence of a finite
kinetic mixing with the massive vector field. For simplicity,
we focus on the flat spacetime limit only, noting that the
following qualitative arguments are unchanged on curved
backgrounds. Furthermore, for clarity, we assume that the
fluid (i.e., the plasma) is mostly nonrelativistic, and that at
large σ, the plasma is conduction (as opposed to advection)
dominated, as explicitly shown in Appendix E. Finally,
we can neglect the displacement current ∂tEi ∼ μEi, as it is
suppressed compared to the conduction term ∼σEi, if
σ ≫ μ. All qualitative arguments outlined below translate
to the fully relativistic case. Making these assumptions, the
evolution equations of the (kinetically mixed) Maxwell
equations (C2) together with the current (33) reduce to the
visible magnetic induction equation

∂tBi ¼ εμ2B0i

σ
þ 1

σ
∂j∂

jBi þ εijkεklm∂jvlBm; ð40Þ

where B0i ¼ εijk∂jA0
k and vi is the fluid velocity that we

identify with the drift velocity vi ¼ vid, such that viEi ¼ 0.
For later convenience, we define the Cartesian Kerr-Schild
coordinate radius ρ̂ ¼ ðx2 þ y2 þ z2Þ1=2 (see Appendix C
for details). With a characteristic length scale l ¼ 1=μ of
the system, we are able to define an effective magnetic
Reynolds number, Rm ¼ lvdσ ¼ σvd=μ, of the effective

FIG. 8. Left: we plot the maximal ratio of visible magnetic to electric field magnitudes maxB2=E2, and the maximal magnetic and
electric field magnitudes, B2

max and E2
max, normalized by their maximal vacuum values, as a function of plasma conductivity

σ=μ ∈ f0.001; 0.01; 0.1; 1; 2; 5; 10; 20g. Middle: the fractional coordinate volume VB2>E2 of magnetically dominated regions inside a
coordinate sphere of radius 4=ðαμÞ around the central BH as function of conductivity. Right: we show the behavior of the volume
integral of jEiBij over a coordinate sphere of radius 10rc, IEB, as a function of conductivity, normalized to its vacuum value Iσ¼0

EB . As
above, we consider here a BH-cloud system with α ¼ 0.3 and spin a� ¼ 0.86 in all panels.
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plasma defined in (37).4 For Rm ≫ 1, the magnetic field
dynamics is dominated by the third term in Eq. (40), which
represents field advection. In this regime the magnetic field
dynamics is entirely determined by the plasma, as both are
strongly coupled (i.e., the magnetic field is comoving with
the plasma). For Rm ≪ 1, the second term in the induction
equation is most important, which accounts for magnetic
field diffusion. In this case the magnetic field decouples
from the plasma motion and relaxes to a diffusive state. The
effects of the superradiant driving fields are included
explicitly in the first term of Eq. (40) and implicitly in
the plasma velocity, which depends on the driving electric
fields, and in the visible magnetic field themselves, which
are sourced by electrically induced currents.
To illustrate the different domains of the magnetic field

dynamics, in Fig. 9 we show the magnetic field magnitude
inside the equatorial plane as a function of conductivity.

In the vacuum limit, σ=μ ¼ 0, the magnetic field coincides
with the superradiant magnetic driving field shown in
Fig. 2. With increasing conductivity, i.e., σ=μ≳ 1, from
Fig. 9 we see that the regions where the morphology of the
magnetic field resembles the superradiant magnetic fields
are confined to distances from the BH that are smaller than
a characteristic radius r�, which we heuristically find to be

r� ≈ 80μGM=σ: ð41Þ

Inside this critical radius, the superradiant driving field B0i
is exponentially large, and the first term of (40) dominates,
compared with the terms it induces in the diffusion and
advection contributions.5 Note also that at large conduc-
tivities an overall phase-offset of π=2 between the super-
radiant and visible magnetic fields appears, similar to the

FIG. 9. We plot the visible magnetic field strength B2 in the equatorial plane of the system in the vacuum limit, σ ¼ 0, as well as at
moderate to high plasma conductivities, i.e., σ=μ ≳ 1. The BH and cloud parameters are as in Fig. 2, i.e., α ¼ 0.3 and a� ¼ 0.86. The
superradiance cloud phase is identical in each of the panels. The color is normalized by the maximal visible magnetic field strength at
each conductivity. The white dashed line indicates the critical coordinate radius r� ¼ 80μGM=σ, discussed in the main text. The region
ρ̂ < r� is dominated by superradiant driving, while the regions with ρ̂ > r� are characterized by an interplay of advective and diffusive
regions. The flat spacetime light cylinder for this system is roughly RLC ¼ GM=α ≈ 3.33GM. Notice, the resolution of our numerical
methods decreases with increasing coordinate distances jxj and jyj, resulting in, for instance, a suppression of small-scale features in the
σ=μ > 2 cases for jxj; jyj > 50GM.

4One could instead chose l ¼ rc. However, the qualitative
arguments are unaffected by the precise choice of magnetic
Reynolds number.

5Note, the superradiant components of the visible magnetic
fields in the second and third term in the induction equation (40),
are α2 and α suppressed, respectively, to the leading contribution
at intermediate conductivities.
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behavior of the electric field case (see Fig. 5); at the level of
the magnetic field, this phase-offset emerges from the first
term in the induction equation (40).
For radii larger than r� we see that the magnetic fields are

nontrivially related to the driving superradiant electric and
magnetic fields. At large distances from the BH and on
scales of order 1=μ, the magnetic field strength increases
with growing conductivity. On smaller scales, on the other
hand, and especially at large conductivities, we see that a
series of small scale features appear. These features, which
arise on scales of order 1=σ, emerge from the interplay of
the diffusion and advection components of the magnetic
induction equation. At large conductivities and due to
the large plasma velocities, most regions with ρ̂ > r� are
advection dominated. As a result, the oscillating super-
radiant driving fields source visible magnetic fields that
couple strongly to the plasma, while conversely, the plasma
cannot back react onto the superradiant driving fields. Our
results show that for radii ρ̂ > r�, and on spatial scales of
the entire cloud (i.e., > 1=μ), the plasma is unable to
corotate with the driving fields; hence, differential rotation
between plasma cells at different radii occurs. This shear
velocity results in twisting of the magnetic field lines on
scales of the cloud. The twist builds up magnetic energy
that is dissipated through turbulent magnetic reconnection
in regions of large magnetic diffusion, i.e., Rm ≪ 1 (as we
illustrate in detail below). Thus, the small scale features in
Fig. 9 are a result of this turbulent reconnection. The radius
r� may saturate at the light cylinder of the system for
σ → ∞ as inside it the plasma could rotate rigidly with the
superradiant driving fields. However, we do not find the
light cylinder to be a location of special importance for
the largest conductivity that we considered: σ=μ ¼ 20.
Another qualitative feature is the disappearance of the

magnetic null line of the superradiant magnetic field for
moderate conductivities, σ=μ > 5, outside the critical
radius r�, as can be seen in Fig. 9. Vanishing magnetic
field strength implies vanishing plasma bulk velocity, i.e.,
Rm ≈ 0, and equivalently the presence of strong magnetic
diffusion. Hence, we find that the magnetic null line is
quickly filled by magnetic field lines diffusing into the null
line from surrounding areas with finite magnetic field
strength. This process efficiently removes the null line
outside the critical radius r�.
In addition to the large scale differential rotation about

the BH, in advection dominated regions (where the plasma
and magnetic field are comoving) we observe localized
roughly uniform oscillatory motion of the plasma within
the equatorial plane (with oscillation radius given by 1=μ),
as well as periodic longitudinalmotion of the plasma along
the BH spin-axis.6 This periodic motion is likely driven by

the large scale superradiant electric field throughout the
plasma, in conjunction with large scale charge separation
of the pair plasma for σ=μ≳ 1. Charges are accelerated
along the large scale superradiant electric field. However,
the orbital frequency μ of the field’s direction forces the
charges into a circular trajectory with radius of 1=μ. This is
reflected in the circular motion of features in the magnetic
field of scale 1=μ inside the equatorial plane. The circular
motion of negative and positive charges is exactly out of
phase by π, resulting in out-of-phase oscillatory motion of
the plasma on either side of the BH due to the large scale
charge dipole screening the superradiant electric field.
The longitudinal periodic motion along the spin axis is
more complex, and likely a result of the electric field
driving within the equatorial plane. We will discuss the
observational consequence of this motion of charge
densities in Sec. VI D.
Let us illustrate some of these observations explicitly

in Fig. 10. In panel (a), we show the three-dimensional
geometry of the visible magnetic field lines in the vicinity
of the central BH. The field lines are mostly closed around
the BH, and only occasionally thread the event horizon.
This confirms the discussion above, as these field lines are
roughly inside ρ̂ < r� ≈ 4GM for the choice of parameters
in the figure, and hence, are approximately set by the
superradiant driving field (compare also to Fig. 2).
The large-scale differential rotation and twisting of

magnetic field lines on scales of the entire cloud is shown
in panel (b) of Fig. 10. There, we focus on a few
representative field lines crossing the equatorial plane.
Both above and below the equatorial plane, we find that
the azimuthal angular velocity of the magnetic field lines
decreases with increasing distance from the BH’s spin axis,
leading to a lag of portions of the field lines far away
from the BH compared to those closer to the center. This
lag causes twisting of the field lines roughly around the
spin-axis7 on scales of the superradiance cloud, which,
ultimately, results in the opening of the visible magnetic
field lines at large distances.
In addition to this large scale feature, the field line

geometry also exhibits features on scales of roughly 1=μ,
as can be seen in panel (c) of Fig. 10 (notice, this scale
compared with the BHmass is 1=ðμGMÞ ≈ 3.33). There we
show two collections of field lines exhibiting variations on
spatial scales set by the superradiance oscillation frequency.
These arise likely as a result of the periodic motion of the
plasma in the large scale superradiant electric field, twisting
the field lines on scales of 1=μ ≪ rc as well. Both the
twisting on scales of the cloud, and small scales, 1=μ,
builds up magnetic energy that is dissipated by means of
magnetic reconnection.

6Even in the force-free simulations, this periodic oscillatory
motion of the magnetic field strength in the equatorial plane can
be observed.

7This is only roughly true, since the plasma motion is more
complex as pointed out above.
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In panel (d) of Fig. 10, we isolate one such reconnec-
tion sight, representative for a class of reconnection
processes active throughout the bulk of the cloud. We
leave the details to the discussion in Sec. VI C, and just
point out here that the visible magnetic field lines enter-
ing the reconnection region along the white arrow,
diverge away into two distinct directions along the black
arrows. This indicates that the connectivity of the field
lines is discontinuously changed at the location labeled
as A. Another indication of magnetic reconnection at
location A in panel (d) of Fig. 10, is the appearance of
four bundles of field lines from the region around A. In
the highly conducting and highly magnetized plasma
limit, (at least one of) the dimensions of the reconnection
regions are expected to scale as 1=σ. Speculating about
the σ → ∞ limit, we hypothesize that these reconnection
sites turn into one- or two-dimensional highly fragmented
localized filaments and current sheets, where potentially
large amounts of electromagnetic energy is injected into

the plasma (as typically observed in turbulent highly
magnetized plasmas, e.g., [93,110,111]). We discuss the
connection between significant energy dissipation into the
plasma and magnetic reconnection in Sec. VI C in detail.

D. Summary of turbulent plasma scales

Before concluding this section, we provide a summary of
the main features of the quasiequilibrium endstate of the
pair production cascade. We begin with the largest scales
first, and work toward small scales:

(i) On spatial scales of the superradiance cloud,
∼rc ¼ 1=ðμαÞ, the superradiant electric field is
efficiently screened by a roughly dipolar charge
distribution. A significant fraction of the cloud’s
volume is magnetically dominated at σ=μ ¼ 20 with
trend toward larger fractional volumes for larger
plasma conductivities. This increases the importance
of the magnetic field dynamics for the cloud-plasma

FIG. 10. We plot a selection of visible magnetic field lines of the superradiance cloud-plasma system with conductivity σ=μ ¼ 20,
α ¼ 0.3, and a� ¼ 0.86. In panels (a), (b) and (c) we also plot the visible magnetic field strength within the equatorial plane, while in
panel (d) we show the visible magnetic field strength in the plane spanned by the BH spin and an arbitrary superradiance cloud phase.
We discuss this plot in detail in the main text. The main macroscopic scales involved are the BH-scale, set by the mass M, the
superradiance cloud’s oscillation timescale 1=μ ≈ 3.33GM, and the cloud’s Bohr radius rc ≈ 11.1GM.
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system. For sufficiently high conductivity, the mag-
netic field and the plasma become strongly coupled
except in isolated diffusion regions. Hence, at large
distances from the central BH’s spin axis, the plasma
rotates around the BH with period much longer
than the superradiant cloud’s period, inducing differ-
ential rotation on the scale of the entire cloud. The
resulting shearing magnetic field lines reconnect
inside the bulk of the cloud.

(ii) On spatial and temporal scales set by the Compton
wavelength of the dark photon, 1=μ, a variety of
features appear. The plasma orbits with the super-
radiance cloud in circular motion with radius given
by roughly 1=μ. This is likely due to the large scale
electric field set by the superradiance cloud. Hence,
negative and positive components of the local charge
density orbit exactly out of phase due to the large
charge dipole. In the large conductivity regime, this
circular motion implies circular motion of the visible
magnetic field due to the strong coupling in advec-
tion dominated regions. Features of size 1=μ in the
global visible magnetic field geometry appear due
to the built-up magnetic field twisting, which is
released in magnetic field line reconnection sites.

(iii) Besides the two macroscopic scales discussed
above, the conductivity σ sets the size of nonideal
features, which are expected to be of microscopic
size. We found that at moderately large conductiv-
ities σ=μ ¼ 20, these nonideal regions begin to form
filaments inside the superradiance cloud’s plasma,
setting the scale of the turbulent behavior. Specu-
lating, for very large conductivities, σ=μ ≫ 20, the
nonideal regions may fragment into a large number
of current sheetlike structures filling the turbulent
plasma.8 Below, in Sec. VI B, we elaborate on this
and identify these regions as sites of enhanced
energy dissipation.

Therefore, the superradiance cloud-plasma system is char-
acterized by differential rotation, as well as periodic plasma
motion with period given by the boson mass scale 1=μ,
leading the magnetic field lines to be twisted both on cloud
size scales 1=ðμαÞ, and on scales set by the dark photon
mass 1=μ. This twisting is relaxed through magnetic
reconnection in the bulk of the superradiance cloud in
features with size set by 1=σ. These processes likely lead to
strong electromagnetic transients with periodicity set by the
dark photon mass μ. Characterizing the power and perio-
dicity of these transients is the subject of the next section.

VI. ELECTROMAGNETIC EMISSION

The pair production cascade within the superradiance
cloud saturates in a turbulent, differentially rotating plasma

surrounding the central BH with a partially screened
electric field and magnetic field line reconnection in the
bulk. In highly magnetized astrophysical plasmas, particles
are efficiently accelerated at reconnection sites, leading
to high-energy electromagnetic emission. Therefore, we
expect strong electromagnetic signatures from the super-
radiance cloud system.
In the following, we illustrate the radiation and dis-

sipation channels in our setup in Sec. VI A, quantify the
emitted electromagnetic luminosity in Sec. VI B, identify
the dominant emission mechanism in Sec. VI C, discuss the
periodicity of the emission pattern in Sec. VI D, and
comment on the possible emission spectra in Sec. VI E.

A. Radiation and dissipation channels

The effective description of the pair plasma that we use,
introduced in the previous sections, includes only the
leading-order resistive correction to the force-free limit
of ideal magnetohydrodynamics. In the context of this
formalism, any microphysical processes (e.g. pair produc-
tion, scattering, photon emission, or other QED effects)
are averaged over, or only roughly approximated by the
macroscopic conductivity σ that characterizes the local
dissipation in the plasma, and not included from first
principles.9 However, our approximation is sufficient to
reliably estimate the total electromagnetic power output
of the system through the outgoing Poynting flux, as
well as through dissipation due to macroscopic spatial
currents along the visible electric field. The Poynting flux
is typically invoked, within the force-free paradigm to
estimate the rotational energy extraction rates of pulsars
[28,85,112–116] (which have been confirmed within
kinetic theory in [95,117,118]). For typical pulsars, this
macroscopic coherent energy flux is expected to be
emitted from the system in the form of lower-energy
radio waves, as well as dissipate in particle acceleration
processes in current sheets resulting in x-rays and
gamma-rays. While in the pulsar magnetosphere, dis-
sipation is mainly confined to roughly two-dimensional
current sheets, the superradiance cloud exhibits recon-
nection in the bulk, enabling efficient energy transfer into
high-energy emission. The dissipation of electromagnetic
energy can be interpreted as sourcing local particle
acceleration, synchrotron and curvature radiation, and
plasma heating. Therefore, estimating the total emitted
Poynting flux and dissipative energy losses of the super-
radiant system is crucial to understand the overall
electromagnetic signatures. In the following, we briefly
outline how these quantities are computed in our setup.

8This is typically found in treatments of turbulent magnetized
plasmas, e.g., [93,110,111].

9To some degree, this could be achieved within the context of
kinetic theory and particle-in-cell simulations. However, we leave
exploring this avenue to future work.

DARK PHOTON SUPERRADIANCE: ELECTRODYNAMICS AND … PHYS. REV. D 107, 075025 (2023)

075025-21



1. Modified Poynting theorem

The conservation of energy in the interaction basis, (15),
can be used to identify the macroscopic sources and types
of energy flows present in the system. The background Kerr
spacetime has an asymptotically timelike Killing field ξμ,
endowing the system with a local energy conservation law.
Therefore, we define the total energy E of Aμ, with respect
to ξμ, within the (coordinate) domain D as

E ¼
Z
D
d3x

ffiffiffi
γ

p
Tα

μnαξμ; ð42Þ

with the volume form d3x
ffiffiffi
γ

p
of a t ¼ const slice of Kerr

spacetime (see Appendix C for details), and the energy-
momentum tensor Tμν of the visible fields

Tμν ¼ Fμ
λFλν −

1

4
gμνFαβFαβ: ð43Þ

Throughout this work, the domain D of consideration is
the exterior of the BH up to a coordinate sphere S2ρ̂ at

coordinate radius ρ̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
in Kerr-Schild coor-

dinates (defined in Appendix C). In the following, we focus
entirely on the visible electromagnetic field. Intuitively,
this visible field is a superposition of the massless (i.e., the
SM photon) and the massive vector fields. The former is
propagating freely, and sourced only by the plasma, while
the latter is gravitationally bound to the BH, and non-
radiative. Given this, and the energy-momentum conser-
vation (15), we can relate the change of the total energy of
the visible electromagnetic fields within D, ∂tE, to the
energy fluxes across the boundary of the domain, ∂D, as
well as the work done on the plasma within D, by the
modified Poynting theorem, written as

∂tE ¼ −PEM − _EBH − Ldiss þ _EA0 : ð44Þ

The first two terms on the right-hand side correspond to the
Poynting flux emitted toward infinity, PEM, and the visible
electromagnetic field flux across the event horizon of the
BH, _EBH, respectively. The third term describes the energy
loss of the visible fields to the pair plasma through resistive
processes, Ldiss. Lastly, the source of energy of the super-
radiant system is the energy injection of the massive vector
field _EA0 . Notice, we assumed that the energy of the visible
electromagnetic fields is much larger than the energy
contained in the pair plasma, i.e., Tμν ≫ Tplasma

μν . Hence,
any finite mass loss due to the accretion or emission of
fermions is not contained in the above analysis, which was
shown to be a good approximation in (28). In the following,
we consider each component on the right-hand side of
Eq. (44) and take the flat spacetime limit to connect to
familiar expressions.

2. Poynting fluxes

The electromagnetic luminosity—the Poynting flux—
through a coordinate sphere at radius ρ̂, is

PEM ¼ −
I
S2ρ̂

dΩμTμ
νξ

ν ¼flat
I
S2ρ̂

dΩρ̂ · ðE × BÞ: ð45Þ

Here, dΩμ is the oriented area element of S2ρ̂ pointing
outwards, ρ̂ the radial unit vector, and dΩ the solid angle.
Hence, positive PEM implies visible electromagnetic energy
leaving the domain D. Since the massive linear combina-
tion of Aμ and A0

μ is gravitationally bound to the BH and
decays as ∼ expð−r=rcÞ, at large distances, the visible
Poynting flux, PEM, will receive a contribution only from
the massless linear combination (corresponding to the SM
photon) for sufficiently large ρ̂. Analogously, the energy
flux across the BH’s event horizon is

_EBH ¼ −
I
S2BH

dΩμTμ
νξ

ν; ð46Þ

where S2BH is the event horizon, and dΩμ the oriented area

element pointing outward. Hence, negative _EBH implies
visible electromagnetic energy accreting onto the BH. This,
of course, vanishes in the α ≪ 1 limit (i.e., in the flat
spacetime limit). At the saturation point, i.e., if ω ¼ ΩBH,
the massive field has vanishing flux across the horizon,
such that _EBH contains only massless fluxes. We can
therefore interpret (46) as a measure of the amount of
accretion, or energy extraction from the BH (e.g. the
Blandford-Znajek process [83]), triggered by the plasma
and superradiance cloud.

3. Dissipative energy losses

Besides these fluxes of energy across the boundary of the
domain, the resistive pair plasma is able to dissipate energy
in the bulk of D. This macroscopic dissipation is captured
by the dissipative losses10

Ldiss ¼ −
Z
D
d3x

ffiffiffiffiffiffi
−g

p
FαβξαIβ¼flat

Z
D
d3xE · J: ð47Þ

Here g is the metric determinant of Kerr spacetime. In the
flat spacetime limit, this expression reduces to the Joule
heating withinD. For later convenience, we define the local
dissipation density

ρdiss ¼ NFαβξαIβ; ð48Þ

10Again, due to the kinetic mixing, both the massive and
massless linear combinations of Aμ and A0

μ dissipate energy.
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where N ¼ ffiffiffiffiffiffiffiffiffiffiffi
−g=γ

p
is the lapse providing a macroscopic

measure of the local rate at which energy is lost to heating,
particle acceleration, etc.

4. Energy transfer from superradiance cloud

The main energy source, driving the radiation and
dissipation, is the superradiance cloud, which extracted a
non-negligible amount of rotational energy from the BH.
The rate of replenishment of E from the superradiance
cloud A0

μ is given by the last term in (44):

_EA0 ¼ −εμ2
Z
D
d3x

ffiffiffiffiffiffi
−g

p
FαβξαA0

β¼flatεμ2
Z
D
d3xE · A0: ð49Þ

This describes the energy transfer from superradiant to the
visible fields.
Most important for our discussion in the following

sections are the Poynting flux PEM and the dissipation
rate Ldiss. These determine the total electromagnetic
power output of the system, and provide insights into
the characteristics of the emission, such as the primary
emission mechanism, the time-dependence, and the
emission spectrum.

B. Power output

We find that the cloud-plasma system settles into a
driven turbulent state with a large electric dipole screening
the superradiant electric field and bulk magnetic field
reconnection. We demonstrate below that the dipole results
in coherent electromagnetic Poynting flux, while the
magnetic reconnection is associated with strong energy
dissipation from the visible electromagnetic fields into the
plasma. As we show in the following, due to the turbulent
nature of the dissipation in the bulk of the cloud, the
dissipative losses dominate over the Poynting flux from the
system by orders of magnitude.
In the vacuum limit, i.e., for σ ¼ 0, there is no dissipation

and electromagnetic modes propagate freely. However,
both the dark and visible electromagnetic fields fall off
exponentially at large distances away from the BH, and
there is no flux to infinity. At nonzero conductivities of the
medium, on the other hand, any Poynting flux is reabsorbed
by the plasma on scales set by the skin-depth of the
effective fluid, which is a complex function of propagating
mode frequencies, conductivity, background electromag-
netic field strengths, and local Ohmic losses. As we show
below, this leads the Poynting flux to go to zero in the
intermediate regime σ=μ ∼Oð1Þ. In this regime, the energy
dissipation is expected to be largest, while any freely
propagating electromagnetic modes are reabsorbed on
the skin depth length scales. In the limit where
σ=μ ≫ 1, the regime in which the cloud-plasma system
is expected to reside, the Poynting flux is expected to

mostly decouple from the plasma, except in locations of
large dissipation into the plasma, and propagate freely.
To understand the high-conductivity regime, we compute

the quantities PEM, Ldiss, and _EBH in our numerical
simulations for α ¼ 0.3 and various different conductivities
σ=μ ≳ 1 (note, in Appendix E, we discuss the small-σ
regime for completeness). In Fig. 11, we present the visible
Poynting flux and dissipative losses as functions of
conductivity and coordinate radius for the superradiant
cloud-plasma system. We postpone a discussion on time-
dependence of the electromagnetic emission to Sec. VI D,
and focus here on quantities time-averaged over one period
of the superradiance cloud. As anticipated, the energy
dissipation into the plasma is largest for intermediate
conductivities, σ ∼ μ. As a result, the visible Poynting flux
is efficiently reabsorbed by the fluid and decays exponen-
tially as it propagates away from the BH. The sinusoidal
features of PEM for σ=μ ≲ 1 are discussed in detail in
Appendix G. The local energy dissipation follows the radial
profile of the superradiant cloud ∼ expð−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðμ2 − ω2Þ

p
ρ̂Þ,

driving the energy injection into the plasma, at large
distances from the BH. Moving toward larger conductiv-
ities, σ=μ > 1, the weakening of the dissipative losses
roughly follows a ∼1=σ scaling, however, with important
corrections at σ=μ ≳ 5 discussed below. As can seen in the
left panel of Fig. 11, energy flows into the BH for σ=μ ≥ 1
(though the horizon is actually a source of energy for
lower conductivities, see Appendix E) at rate comparable
to the total Poynting flux to the wave zone. The radial
re-absorption length scale of the electromagnetic flux
increases significantly with conductivity for σ=μ > 1,
enabling efficient transfer of propagating modes from
the center of the superradiance cloud to the emission zone
far away from the BH. Focusing on the outgoing Poynting
fluxes at large distances, ρ̂ ¼ 10rc, a trend emerges, from
small fluxes at intermediate conductivities to large power at
large conductivity, saturating at a conductivity-independent
outgoing electromagnetic emission.
The conductivity of the pair plasma within the super-

radiance cloud is expected to be set by a micro-physical
scale far smaller than any macroscopic scale of the system,
σ ≫ μ. Therefore, in the left panel of Fig. 12, we consider
the trends of total dissipation Ldiss and Poynting flux at
large radii PEM toward the large-σ limit. As pointed out
above, the coherent electromagnetic flux emitted from the
system increases rapidly from σ ∼ μ toward a nonzero value
for σ ≫ μ. The blue band in the left panel of Fig. 12,
indicates possible fits with various σ-scalings of the trend,
extrapolating to physically relevant regimes, σ ≫ μ. We
discuss the behavior of PEM for σ=μ < 1 in Appendix G.
Turning to the dissipation of energy into the plasma, the
behavior in the low to medium conductivity regime,
σ=μ ≲ 1, is as expected. The energy injection at the
macroscopic level increases as ∼σ from the vacuum
limit toward intermediate resistivity levels. Beyond the
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peak dissipation power around σ ∼ μ, a decay following
Ldiss ∝ 1=σ is predicted by simple arguments of the bulk
dissipation inside the cloud (outlined below). However,
instead of following this behavior, the energy dissipation
rate deviates from this trend. In order to extrapolate to
large σ, we can therefore split the dissipation into two
different components:

Ldiss ¼ Lbulk
diss þ Lturb

diss ; ð50Þ

heuristically representing the bulk and the turbulent dis-
sipation, respectively. Based on analytic estimates (dis-
cussed below) the bulk dissipation Lbulk

diss is expected to
decrease as ∼1=σ toward small resistivity, while the
turbulent dissipation component Lturb

diss will have a nonzero
value in the infinite conductivity limit. To capture this,
in Fig. 12, we fit the results from the simulations with
Ldiss ∼ a1 þ a2ðμ=σÞp, considering p ∈ ½1; 0.025�, finding
Ldiss ¼ Lturb

diss ≈ 5 × 10−2ðε2=GÞðMc=MÞ for α ¼ 0.3 and
σ → ∞. The orange band in Fig. 12 represents the range
of values for the conductivity dependence, and is bounded
by the most optimistic and pessimistic fits considered, to
illustrate the uncertainty of this extrapolation.
We compare these extrapolations with the results

from force-free simulations, valid formally at σ → ∞,
[see Appendix D for details on the numerical implementa-
tion and setup; in particular the current is given by (D2)]. In
the force-free simulations, the continually development

of electrically dominated regions (where the evolution
equations breakdown) must be handled in an ad hoc
manner, by reducing the magnitude of the electric field
by hand, which gives rise to an artificial type of dissipation
in regions where current sheets might develop in a
more complete description of the plasma dynamics.
Nevertheless, we can determine the effective dissipation
rate by assuming energy conservation (44), as is common
in the literature (e.g. [119]), and also compute the
Poynting flux given by the force-free simulations at large
distances and across the BH horizon. Encouragingly, these
infinite conductivity results are in good agreement with
the extrapolation of the resistive plasma simulations
toward large conductivity, shown as the orange bands
in the left panel of Fig. 12. As we discuss in below, this
turbulent dissipation component is associated with mag-
netic reconnection and other small scale features of the
solution, and hence, is expected to remain finite even at
very large bulk conductivities, σ → ∞. The Poynting flux
at large distances from the central BH in the force-free
setting, shown in Fig. 12, is consistent with the large-σ
extrapolations of PEM (i.e., is within the blue band in the
left panel of Fig. 12).
The bulk dissipation is linked to the large-scale visible

electric field induced by the superradiance cloud, while the
turbulent dissipation emerges from higher-order magnetic
field corrections. The former can be understood analytically
in the nonrelativistic limit, i.e., for α ≪ 1, by means of the
solutions derived in (39). Given this solution and neglecting

FIG. 11. Left: we plot the total visible, time-averaged, Poynting flux PEM, defined in (45), through a coordinate sphere at radius ρ̂
around the BH, for various conductivities σ. Solid lines are positive (locally outgoing) fluxes, whereas dotted lines are negative (locally
ingoing) fluxes. The interior of the BH and the ergosphere (ES) in the equatorial plane are indicated by shaded regions; the smallest
radius value indicates the flux through the event horizon _EBH. Right: we plot the total energy dissipation rate due to Ohmic losses Ldiss,
defined in (47), everywhere outside a coordinate radius ρ̂ for various conductivities. In both panels, we focus on an α ¼ 0.3 cloud with a
BH of spin a� ¼ 0.86, and Bohr radius of the superradiance cloud of rc ¼ 1=ðμαÞ; notice,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðμ2 − ω2Þ

p
→ αμ for α ≪ 1. Note, our

simulations assume a conductivity constant everywhere in space. At intermediate conductivities, σ ∼ μ, the Poynting flux is efficiently
absorbed by the effective plasma, while toward large conductivity, the electromagnetic modes propagate freely. The energy injection into
the plasma Ldiss follows the profile of the cloud for all but the highest conductivities considered here.
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magnetic field effects, we can determine the electromag-
netic current density of the plasma to be

J¼σE

¼−
e−r=rc

ffiffiffiffiffiffiffiffiffi
Mcμ

p
α3=2εσω2

2
ffiffiffi
π

p ðσ2þω2Þ

0
B@

σþ iω

−ωþ iσ

0

1
CAe−iωtþc:c: ð51Þ

In the nonrelativistic limit, the spatial extend rc of the
superradiance cloud is large compared with the oscillation
frequency 1=μ, implying local charge neutrality ρq ¼ 0.
Hence, the spatial dependence of Ji is a large scale modu-
lation of the locally neutral plasma for α ≪ 1. Using the flat
spacetime limit of (47), together with the above current
density and the visible electric field solution (39), the bulk
dissipation rate of the cloud in the α ≪ 1 limit is

Lbulk
diss ¼ σαε2

μð1þ ðσ=μÞ2Þ
Mc

GM
: ð52Þ

As expected, this quantity goes to zero in both the insulating
and highly conducting limits, leading to free propagation of
Poynting flux away from the system.FromFig. 12,we can see

that this expression provides a good approximation for the
total dissipation for σ ≲ 2μ for α ¼ 0.3, while for higher
conductivities, the turbulent contributions, i.e., the magnetic
field driven component, to Ji are more important.
Most relevant for determining the potentially observ-

able electromagnetic signatures of superradiant systems
are the σ → ∞ estimates for Ldiss and PEM as functions
of α. In the right panel of Fig. 12, we show our results for
Ldiss and PEM in simulations with σ=μ ¼ 20 as functions
of α. Focusing on the numerical results first, it is evident
from the right panel of Fig. 12 that the Poynting flux and
the total dissipation power have different scalings with α.
The analytic estimate (52) for Lbulk

diss ∼ αMc=M suggests a
leading order α-scaling of Lnum

diss ∼ αMc=M, which
we find in Fig. 12 to provide the best fit to the data.
For the Poynting flux, we find a leading-order scaling of
PEM ∼ α3 to fit best. The two fits shown in the right panel
of Fig. 12, are11

FIG. 12. We show the energy dissipation rate, integrated over the entire cloud Ldiss, and the total (time-averaged) Poynting flux PEM
extracted at ρ̂ ¼ 10rc ¼ 10=ðμαÞ. Left: focusing on α ¼ 0.3 and a� ¼ 0.86, we plot the quantities obtained from our resistive force-free
simulations, black circles representing Lnum

diss , and black squares representing Pnum
EM , as functions of conductivity. The orange and blue

bands, labeled Lfits
diss and Pfits

EM, respectively, are a series of fits of the form a1 þ a2ðμ=σÞp to the simulation results with the three largest
conductivities. The fits are motivated by the discussion in the main text that the energy dissipation remains finite at infinite
conductivities. The bands are bounded by the most optimistic and pessimistic fits to the data. The black dotted and dashed lines show the
force-free estimates for the emitted Poynting flux and total dissipation, labeled Pff

EM and Lff
diss, valid formally at σ → ∞ (how these are

obtained is discussed in the main text). Lastly, we show the analytical approximations (52), labeled as Lana
diss, for comparison. Right: we

also show Lnum
diss and Pnum

EM from the simulations, but now fixing σ=μ ¼ 20 and varying α, assuming ω ¼ ΩBH. The two fits in (54) to the
numerical data Lnum

diss (dash-dotted line) and Pnum
EM (sparse-dashed line) are labeled as Pfit

EM and Lfit
diss (and use the ansatz a1α3 þ a2α4 and

a1α1 þ a2α2, respectively). The orange and blue bands, labeled L
extrap
diss and Pextrap

EM , are the σ=μ → ∞ extrapolations of the corresponding
bands in the plot on the left (there for α ¼ 0.3) applied to the two fits Pfit

EM and Lfit
diss. Lastly, the analytic estimate (52) is indicated as Lana

diss.
A discussion of both plots can be found in the main text.

11Note, fits of the form Lfit
diss ∼ αp þ α2p with p ∈ ð0.7; 1Þ are

plausible based on the numerical data and result in louder signals
for α < 0.1. Fits with p ∈ ð1; 1.2Þ are equally plausible, however,
are entirely consistent with the large-σ extrapolation uncertainty
of (53) down to α ∼ 10−4.
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Lfit
diss ¼ ε2FðαÞ Mc

GM
; ð53Þ

Pfit
EM ¼ ε2GðαÞ Mc

GM
; ð54Þ

with

FðαÞ ¼ 1.31 × 10−1α − 1.88 × 10−1α2;

GðαÞ ¼ 6.86 × 10−4α3 − 1.36 × 10−3α4: ð55Þ

Determining whether these scalings are also valid in the
σ → ∞ limit requires simulations with larger conductiv-
ities across a larger range of values for α. Hence,
we estimate the theoretical uncertainties of the fits (53)
and (54), indicated as orange and blue bands in the right
panel of Fig. 12, as follows. For α ¼ 0.3 (i.e., the left
panel of Fig. 12), we obtain a series of different σ → ∞
extrapolations for both the total dissipation and the
Poynting flux (blue and orange bands in the left panel
of Fig. 12). The spread of these σ → ∞ extrapolating fits
in the left panel of Fig. 12, corresponds to the width of the
orange/blue bands at α ¼ 0.3 in the right panel of Fig. 12.
We then use this relative uncertainty of the large-σ
extrapolation at α ¼ 0.3 and apply it to the fits for total
dissipation and Poynting flux, i.e., (53) and (54), for all α,
hence, obtaining the orange and blue bands in the right
panel of Fig. 12. Therefore, the fit in (53) for Ldiss is likely
an overestimate of the σ → ∞ result (the lower bound of
this extrapolation uncertainty is given by Lfit

diss=4), while
the fit in (54) for PEM, is likely underestimating the true

flux at σ → ∞. It is clear from Fig. 12, that the turbulent
dissipation power dominates over the total Poynting flux
across the entire parameter space of the m ¼ 1 super-
radiant state. Furthermore, the relatively flat α-scaling of
the total power output is in stark contrast to the depend-
ence of the total emitted gravitational wave energy flux
PGW ∝ α10M2

c=M2 from the oscillating dark photon cloud
in the α ≪ 1 limit. Lastly, for comparison, the super-
radiant instability growth rate of the m ¼ 1 state scales
as Γ ∼ a�α6μ.

C. Dissipation mechanism

Given the importance of the turbulent dissipation power,
even at large conductivity, we next discuss the spatial
dependence of the energy dissipation density ρdiss, defined
in (48), and demonstrate that regions of high dissipation
are associated with magnetic reconnection. This density
captures the macroscopic energy injection of the electro-
magnetic fields into the plasma, driving dissipative
processes at the microscopic level. Recall, magnetic
reconnection sites are regions, where the connectivity of
the otherwise frozen-in magnetic field is changed, resulting
in large spatial current along the visible electric fields
dissipating energy. In the following, we focus on the
α ¼ 0.3, a� ¼ 0.86 and σ=μ ¼ 20 case, while commenting
on how these results extrapolate to the physically relevant
limit of high conductivity.
In the left panel of Fig. 13, we show the local dissipation

rate per volume ρdiss [defined in (48)]. On large scales, this
quantity follows the same exponential fall-off in the radial

FIG. 13. We plot the dissipation density ρdiss [defined in (48)] normalized by the maximal density ρmax
diss ¼ max ρdiss, the ratio of visible

electromagnetic fields B2=E2, the violations of the force-free condition EiBi ¼ 0 normalized by the magnitude of the visible electric and
magnetic fields, and the magnitude of the plasma velocity vd ¼ jvdj in the equatorial plane of the central BH. All panels correspond to
the same coordinate time and a BH of spin a� ¼ 0.86, cloud with α ¼ 0.3, and plasma conductivity of σ=μ ¼ 20. We indicate where
B2=E2 ¼ 1 by a contour line. Regions of small plasma velocities, i.e., large magnetic diffusion, are also sites of large EiBi ≠ 0 and
locally enhanced energy injection density ρdiss. This implies that magnetic reconnection sites are locations of enhanced energy injection
into the plasma.
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direction as the superradiance cloud (at σ=μ ¼ 20), while
on smaller scales, strong variation associated with turbulent
features is apparent.12 We focus on the latter since, as
argued in the previous subsection, we expect these to
persist (though develop smaller scales) in the σ → ∞ limit.
From Fig. 13, it is clear that the regions of local enhance-
ment in the dissipation are associated with magnetic
dominance (second panel) combined with jEiBij ∼ EB
(third panel), or with electric dominance. From Eq. (37),
the plasma either allows for a significant component of the
current parallel to the electric field. Focusing on the insets
showing the neighborhood of the BH, locations of the
locally enhanced dissipation density, in addition to having
large jEiBij and being magnetically dominated, are also
bordered by zones of low drift velocity vd (or equivalently,
small magnetic Reynolds number Rm; fourth panel), which
are associated with efficient magnetic reconnection. Farther
away from the BH, large regions (at σ=μ ¼ 20) are strongly
electrically dominated, and associated with enhanced dis-
sipation and low drift velocity (in contrast to the magneti-
cally dominated regions which have vd ∼ 1), again
indicating strong magnetic diffusion and reconnection.
The magnetic field geometry within the plasma is set

by the three different spatial scales discussed in Sec. V D.
The differential rotation on scales of the cloud induces a

shearing of the magnetic field lines on scales of the cloud rc
around the spin-axis of the BH, while the intermediate scale
oscillations of the plasma (both in the equatorial plane and
longitudinally along the BH spin axis) drive twisting of the
field lines on scales of 1=μ. This combined macroscopic
build-up of magnetic field twisting is released in magnetic
diffusion regions associated with currents along the visible
electric fields of thickness 1=σ. As discussed in more detail
in Sec. V C, regions of small magnetic Reynolds number
Rm ¼ σvd=μ are characterized by efficient magnetic dif-
fusion. In these diffusive regions, the connectivity of the
magnetic field lines changes, i.e. reconnection occurs,
which drives enhanced dissipation and accounts for the
dominant channel for the loss of electromagnetic energy in
the superradiance cloud-plasma system.
To illustrate this connection explicitly, we show two

example magnetic reconnection events in Fig. 14. In panel
(b) of Fig. 14, magnetic field lines enter the reconnection
region (labeled “3.”) from the top along the white arrow
(and from behind the semitransparent plane on which ρdiss
is plotted). These same field lines exit the region in two
directions along the two black arrows (similarly for the
lines entering from behind the semitransparent plane).
The point where the field lines diverge is associated with
the magnetic field magnitude dropping to near zero
(indicated by the color of the magnetic field lines) and
locally enhanced dissipation density ρdiss (indicated by the
color in the semitransparent plane). This is characteristic of
discontinuous reconnection, where the magnetic field lines
change connectivity discontinuously along a line or plane

FIG. 14. We show the visible magnetic field lines (in dark/yellow, color indicating the visible magnetic field strength normalized by
the global maximum B=Bmax) and electric field lines (in white), as well as the local dissipation density ρdiss (all colors) in two different
contexts. Both panels show a close-up of the plasma roughly 15GM away from the central BH of spin a� ¼ 0.86, as well as α ¼ 0.3 and
σ=μ ¼ 20. In (a), the dissipation density is shown as semitransparent isosurfaces. The BH is located toward the bottom of the plot. In (b),
the dissipation density is plotted on a semitransparent plane spanned by the z and y directions. Here the BH is located toward the top left
of the plot. The numbers in both panels indicate regions of large energy injection into the plasma. The arrows show the divergence of
magnetic field lines away from the reconnection site. A detailed discussion can be found in the main text.

12These two spatial components are naturally associated with
the bulk and turbulent dissipation powers Lbulk

diss and Lturb
diss , driven

by electric and magnetic fields, respectively (as discussed in the
previous section).
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where the magnetic field goes to zero. In two dimensions,
X-point reconnection is the canonical example of discon-
tinuous reconnection, and most prominent in current sheets
of the pulsar magnetosphere powering the high-energy
component of the electromagnetic emissions. In particular,
the field line geometry shown in panel (b) of Fig. 14
resembles spine-fan type magnetic reconnection [120,121].
We show a second example of reconnection in panel (a)

of Fig. 14, where we isolate two sites of large magnetic
field gradients. There, we show a set of visible magnetic
field lines that are strongly twisted as they connect two
regions of locally enhanced ρdiss (labeled as “1.” and “2.”),
separated by a distance of ∼1=μ. Within each dissipation
region, the field lines are curved on smaller scales (plau-
sibly set by 1=σ). The strong field gradients in these
regions, as well as the fact that the magnetic field
magnitude does not go to zero, make this example more
consistent with continuous reconnection, where magnetic
field lines pass through each other in a diffusion dominated
region of small plasma velocity13 (see also Fig. 13).
Therefore, we find that the visible magnetic field line

connectivity changes discontinuously (and we find evi-
dence for continuous reconnection) at various places in
the bulk of the cloud. Both types are accompanied by
enhanced energy injection into the plasma. The reconnec-
tion is fundamentally driven by the fixed orbital frequency
of the superradiant magnetic field, suggesting that, for even
larger conductivities, σ=μ ≫ 20, the qualitative picture is
unchanged. We expect that, in this limit, though the size
of the diffusion regions may decrease as ∼1=σ down to
micro-physical scales, the rate of energy dissipation, which
is driven by reconnection, remains roughly constant.
Identifying the changing connectivity of the magnetic field
as the driver of dissipation allows us to make a connection
with existing kinetic analyses to roughly estimate the
particle and emission spectrum of the system, which is
the subject of Sec. VI E.

D. Periodicity of emission

So far, we have discussed the total time-averaged
Poynting flux and turbulent energy injection into the
plasma, ignoring the time-dependence of the emission. In
the case of a pulsar, the beamed radio emission, as well as
the pulsed high-energy component of the spectrum are
characteristics that emerge from the oscillation of the
magnetic dipole field around the spin-axis of the star.
Since even in the well-studied pulsar case, the radio
emission mechanism is a topic of debate, we ignore it
in the following, returning to a brief discussion of this

low-frequency component in Sec. VI E. The pulsed x-ray
component of the pulsar spectrum requires a large-scale,
coherent magnetic field geometry deep inside the light
cylinder, along which charges are accelerated and
radiate, or an oscillating current sheet outside the light
cylinder [95,118,123–125]. In the context of the super-
radiant system considered here, we do not find such
coherent and persistent field or current sheet structures, at
least at the conductivities we consider in this study.
Instead, we find the plasma surrounding the BH to be in a
turbulent state without persistent large-scale magnetic or
electric fields. However, since this is driven periodically
by the superradiant fields at a frequency ω one may
naïvely expect the electromagnetic emission to still be
periodic as well. Because modeling the light curve, as is
done in the pulsar case (see e.g., Refs. [95,124]), is
challenging for the superradiant system, we consider the
time-dependence of the macroscopic Poynting flux at
large distances, as well as the energy dissipation density
throughout the bulk of the cloud in order to understand
the temporal evolution of the electromagnetic emission.
We find that the (subdominant) Poynting flux shows signs
of periodicity, and the dissipation density locally exhibits
weak evidence of periodicity. We close this section by
discussing techniques which could improve our under-
standing of the temporal and viewing angle dependence
of the electromagnetic emission.
We begin by discussing the time-dependence of the

amplitude and angular distribution of the total Poynting
flux. In the left panel of Fig. 15, we demonstrate that both
the total Poynting flux entering the BH, and the flux
passing through a coordinate sphere at distance 6rc from
the central BH, vary periodically on timescales set by the
cloud’s frequency.14 The periodic absorption of electro-
magnetic energy by the BH is driven by the longitudinal
periodic plasma motion in the vicinity of the event horizon
elaborated on below. The plasma density is expected to
roughly follow the profile of the superradiance cloud
[compare (18)], and thus the conductivity should decrease
exponentially away from the central BH. This, paired with
the decreasing contribution of the periodic component of
PEM with increasing distance15 (as shown in Fig. 15),
suggest that the Poynting flux periodically injects energy
into the plasma ∼OðrcÞ away from the BH. Hence, the

13Continuous type reconnection typically occurs at quasise-
paratrix layers with large, but bounded, squashing degree
[120–122]. We do not attempt to identify quasiseparatrix layers,
instead resort to identifying reconnection zones based on field
diffusivity, magnetic field curvature and dissipation density.

14Notice, the visible Poynting flux at finite distances from the
BH contains propagating massive dark photon states that are
bound to the BH. This component is exponentially suppressed at
large distances. Hence, we have made sure that the contribution
to P6rc

EM in Fig. 15 from the massive states is negligible.
15Recall, the conductivity is spatially constant in our simu-

lations. At ρ̂ ¼ 10rc, the conductivity is several orders of
magnitude smaller compared with (18); hence, the physical
relevance of the Poynting flux at those large distances should
be interpreted with caution.
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periodicity of the total emitted Poynting flux is suggestive
of periodic electromagnetic emission.
We now turn to the temporal variation of the energy

injection density ρdiss into the plasma. Generally, the
dissipation density follows the motion of the plasma on
scales of 1=μ and rc. Close to the BH, the most relevant
periodic motion of the plasma is the longitudinal motion
(discussed in Sec. V C) along the spin-axis of the BH. In the
first panel of Fig. 16, the dissipation density is peaked in
pockets above and below the BH, moving along the spin-
axis toward the equatorial plane, as indicated by the arrows.
This corresponds to the time when the overall maximum of
the dissipation density is at its lowest value per period, as
shown in the bottom plot in Fig. 16. Subsequently, two
regions of enhanced dissipation density (and the associated
plasma) collide within the equatorial plane, as show in
the middle panel of the top row, leading to locally and
temporally large amplitudes of the energy injection rate
ρdiss. Finally, the regions of enhanced dissipation density
begin to move away from the equatorial plane along the
spin-axis in the last panel in the top row of Fig. 16, and the
associated maximum of the dissipation density decreases.
This process repeats on timescales of the cloud’s period. It
is nontrivial to translate this behavior directly into observ-
able variations of the electromagnetic signature. We may
speculate, however, that this periodic enhancement of the
dissipation density could lead to a periodic flaring of the
superradiance cloud (analogous to e.g., [119,126,127]). It
should be noted though, that the total integrated turbulent
energy dissipation does not show significant temporal
modulations.
In summary, both the Poynting flux and the local

dissipation rate exhibit weak evidence of periodicity on

timescales set by the dark photon mass 1=μ. Ultimately, our
large-scale macroscopic description of the system is insuf-
ficient to resolve and understand the microscopic particle
acceleration processes active in the turbulent plasma. As
well, with our current treatment, we are unable to determine
how the local dissipation rate translates into observing-
angle-dependent radiation, though naïvely one expects this
to be strongly modulated by the oscillation of the super-
radiance cloud. This could be improved by consider a small
domain near the BH and using higher resolution to resolve
higher values of conductivity than considered in this study,
e.g., using local resistive force-free techniques. This could
determine whether coherent magnetic and electric field
geometries remain inside the light cylinder, even at very
large conductivities. These sufficiently large scale field
geometries may then be used to perform light curve
modeling paralleling the advances made in understanding
high-energy pulsar light curves. Another avenue could be
to utilize particle-in-cell (PIC) simulations of the turbulent
regions of the plasma. This would recover the particle
acceleration and nonthermal heating within the plasma, and
could therefore be utilized to understand the time- and
angular-dependence of the x-ray/gamma-ray sky map of the
superradiant system.

E. Emission spectra

The plasma is characterized by differential rotation on
scales of the entire cloud, superradiant driving on scales of
1=μ, and turbulence down to microscopic scales accounted
for in our setup by the inverse conductivity 1=σ. Visible
electromagnetic energy is dissipated into the pair plasma by
resistive processes. Likely this dissipation occurs primarily

FIG. 15. Here we consider a system with a BH of spin a� ¼ 0.86, a superradiant cloud with α ¼ 0.3, and a plasma conductivity of

σ=μ ¼ 20. Left: we show the time dependence of the total visible Poynting flux entering the BH _̂EEH and the outward flux P̂EM through
spheres of coordinate radii of 6rc and 10rc. Hats indicates the rescaling P̂ ¼ PðG=ε2ÞðM=McÞ. Time is normalized by the period of the
superradiance cloud Tα ¼ 2π=ω. Right: we show a snapshot of the visible Poynting flux per solid-angle (centered on the BH) through a
coordinate sphere at 6rc, normalized by the maximum value. Due to the differential rotation of the turbulent plasma, this pattern only
rotates slowly along the azimuthal direction, i.e., with period T ≫ Tα. At a coordinate radii of 10rc, the periodic modulation of the
amplitude of the Poynting flux is mostly gone, indicating that the dissipation in the interior region is periodic. The small-scale features in
the angular distribution dPEM=dΩ is a result of the formation of current sheets and turbulence in the plasma.
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through particle acceleration, with the subsequent synchro-
tron emission of highly boosted particles leading to high
energy photons that escape the system. Besides this non-
thermal component at the high-energy end of the emission
spectrum, various coherent low-energy radio emission
processes may be active in regions of the superradiance
cloud. In the following, we briefly review existing kinetic
theory results for the spectra of turbulent pair plasma and
possible low-frequency radio emission mechanisms that
may be relevant to the emission spectrum for the system
considered here.
In the pulsar magnetosphere, resistive processes

occur mainly in current sheets outside the light cylinder.
There, magnetic dominance is lost, and electromagnetic
energy is efficiently dissipated by accelerating and heat-
ing the plasma. In order to gain insight into the micro-
physical processes in these accelerating regions, kinetic
approaches based on numerical PIC methods are typically
utilized [128]. Within this framework, the distributions of
charged particles are evolved in time according to the
Lorentz force of the local electromagnetic field, while
back-reacting on the ambient fields through the charge
and current they source. Local simulations resolve micro-
physical scales such as the Lamour radius rL ¼ meγ=ðeBÞ

of an electronwithmassme andboost factor γ ¼ Ee=me in an
ambient magnetic field of strength B. Therefore, these
methods are powerful tools to determine the classical particle
kinetic spectrum self-consistently from first principles.On the
other hand, radiative corrections to the particle motion, pair
production, are neglected, or added in an ad-hoc fashion, and
the expensive nature of these simulations make it difficult
to apply in a global setting, while still achieving sufficient
resolution to accurately approximating the microphysics.
Nonetheless, PIC methods have successfully recovered the
global pulsar magnetosphere, the expected nonthermal par-
ticle spectrum, and have played a central role in studies of the
radio emission mechanism of pulsars [95,117,129].
In the case of magnetic reconnection, PIC approaches

have found that the local electron acceleration results in a
particle distribution NeðγÞ with a high-energy, power-law
tail below a cutoff γc, of the form dNe=dγ ∝ γ−pe−γ=γc
[92,130,131], for γ ≳ 1 (see also Refs. [94,95,118,132,133]).
The size of the resistive region l sets the high-energy cutoff
γc as the boost factor where l equals the Lamour radius.
Most applicable to the superradiant system at hand are
studies focusing on three-dimensional turbulent pair
plasmas [93,110], determining the power-law to be roughly
p ¼ 2.8, for large plasma magnetizations. We leave a

FIG. 16. Top row: we show the dissipation density ρdiss in the plane spanned by the BH spin and a fixed direction in the equatorial
plane at three instances during a single superradiance cloud period. Here we focus on a BH with spin a� ¼ 0.86, α ¼ 0.3, and plasma
conductivity σ=μ ¼ 20. The arrows indicate the direction of the motion of the features, and are discussed in detail in the main text.
Bottom: we plot the maximum of the dissipation density max ρdiss as a function to time (normalized by the cloud’s period Tα ¼ 2π=ω)
for different values of α ∈ f0.1; 0.2; 0.3; 0.4g (and associated saturated BH spins satisfying ω ¼ ΩBH, see Table III). In the bottom
panel, we also indicate the times of the snapshots in the top panels by their corresponding number labels. Over the course of a single
period of the superradiance cloud, the plasma undergoes periodic motion along the BH’s spin axis (as indicated by the arrows in 1. and 3.
in the top row), leading to peaks in the local dissipation density, when the plasma from below and above the BH collide in the equatorial
plane (corresponding to snapshot 2.).
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detailed investigation of the kinetic spectrum in the context
of a kinetically mixed superradiance cloud to future work,
and in the following make a crude estimate of the high-
energy component of the emission associated with this
electron kinetic spectrum based on the characteristic length
scales and field strengths. The high-energy cutoff γc ¼
elhB2i1=2=me is set by the average ambient magnetic field
strength hB2i1=2, defined by hB2i ¼ 1=S2rc

R
S2rc

dVB2,

where S2rc is a coordinate volume of a sphere of radius
2rc centered on the BH. From the resistive force-free
simulations with σ=μ ¼ 20, we extract this root-mean-
square magnetic energy for each value of α we consider.
Fitting the α-dependence by16 ∼α5=2, the average magnetic
field is

hB2i1=2¼2.5×108Gauss

�
ε

10−7

��
M⊙

M

��
α

0.1

�
5=2

: ð56Þ

With this, the cutoff electron and positron boost factor,
with l ¼ 1=μ, is given by

γc ≈ 2.2 × 107
�

ε

10−7

��
α

0.1

�
3=2

: ð57Þ

The size of the resistive region could be set by smaller length
scales than the 1=μ value used above. However, for most the
parameter space of interest, the effects of the radiation
reaction will become important for much lower boost factors
than in (57). Synchrotron backreaction becomes significant,
when the radiation reaction timescale τR ¼ Ee=P

sync
e , where

Psync
e is the total single electron synchrotron power, is

comparable to, or smaller than, the Lamour timescale
τL ¼ 2πrL. Hence, this radiation reaction becomes impor-
tant for γ > γr ¼ ð3m2

e=ðe3hB2i1=2ÞÞ1=2 with

γr ¼ 3 × 103
�
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ε

�
1=2

�
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M⊙
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1=2
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0.1
α

�
5=4

: ð58Þ

Therefore, in the regime 1≲ γ < minðγr; γcÞ, the power-
law electron and positron kinetic spectrum results in a
synchrotron photon spectral power-law PðνÞ ∝ ν−s with
spectral index s ¼ 0.9 [134] (assuming p ¼ 2.8 [110]),
making up the nonthermal tail of the high-energy com-
ponent of the emitted photon spectrum, while above this
range the synchrotron spectral index is modified. The
synchrotron spectrum from a single electron or positron in
this nonthermal distribution with γ ≤ γr peaks at emission
frequencies

νpeak ¼ 12 keV
�
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�
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�
5=2

; ð59Þ

where the value of γ is chosen inspired by simulations
presented in [95] and a dedicated PIC simulation will
be helpful to determine the exact spectrum, and an
electron with kinetic energy of meγr radiates mostly
at νr ¼ 6.4 MeV.
In summary, in the superradiance cloud, the electromag-

netic fields lose energy predominantly through magnetic
reconnection in a strong ambient magnetic field with
strength on the order of (56). We can expect that this
efficiently accelerates electrons and positron to large boost
factors, γ ∼Oð103Þ, as given by the minimum of the values
in (57) and (58), and that these high-energy particles then
radiate synchrotron photons in the process, with spectrum
ranging from a few keVup to MeV [see (59)]. Therefore, it
is likely that there will be strong nonthermal high-energy
component of the emission spectrum from the kinetically
mixed superradiance clouds.
We turning now to the low-frequency, i.e., radio, end of

the spectrum, where the emission mechanisms are far less
well-understood. Even in the well-studied pulsar case, this
a topic of debate. Low-frequency electromagnetic phenom-
ena such as pulsar radio emissions and fast-radio bursts are
thought to be sourced through a shock induced synchrotron
maser emission mechanism in the pulsar wind, reconnec-
tion driven radio emission, or near field processes [129]. In,
for instance, Refs. [135,136], plasmoids forming from the
discontinuous reconnection of the pulsar current sheet was
demonstrated to result in the emission of fast magnetosonic
waves, plausibly escaping as radio emission to infinity.
Therefore, the efficient magnetic reconnection of the
superradiant plasma, some of which occurs through
the discontinuous reconnection channel, suggests that the
cloud is a source of continuous radio flux as part of the
total power output.17 Furthermore, as discussed above in
Sec. VI D, the plasma performs periodic longitudinal
motion along the BH spin axis with frequency 1=μ,
resulting in collisions of regions with enhanced dissipation
density within the equatorial plane close to the central BH.
If these collisions, at the microphysical level, manifest as
colliding shock waves and trigger a synchrotron maser
mechanism in the process (see, e.g. Refs. [137,138]), then
one would expect periodically enhanced radio flux from
these shocks. Hence, the naïve expectation is that the
plasma-filled superradiance cloud is a source of continuous
radio flux, together with periodic peaks in the radio power
with pulse period set by the dark photon mass 1=μ.

VII. MULTIMESSENGER SIGNALS

The system studied thus far motivates a novel target for
multimessenger searches: a new bright, possibly periodic,
source with specific, unusual properties. In this section,

16Functions of the form ∼α2 or ∼α3 provide worse fits, but are
plausible given the numerical and theoretical uncertainty.

17We note that, near the BH, the plasma frequency is on the
order of a GHz, but it is expected to decrease exponentially away
from the BH with the superradiance cloud density (see Sec. IV C).
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we summarize the relevant dynamics and observational
signatures of the kinetically mixed dark photon super-
radiance cloud. The numerical simulations performed in
this work give us an estimate of the total electromagnetic
power emitted, but do not directly provide the spectrum
of the emitted radiation, nor conclusively establish its
periodicity.
Nevertheless, the unique properties of the system and

the analogy with the well-studied neutron star pulsars allow
us to identify promising search strategies based on our
system’s combination of electromagnetic and GW emis-
sion. Given reasonable assumptions, outlined below, we
expect current and planned telescopes and GW observato-
ries to reveal dark photons in the 10−14–10−11 eV mass
range, with kinetic mixing below the current cosmological
bound ε≲ 3 × 10−7.
The evolution of our new pulsar begins with the birth of

a new, rotating, BH. Around this BH, the superradiance
instability populates a cloud of dark photons in Oð100Þ
superradiance times,18

tgrowth ∼ lnðMc=μÞτSR ≈ 104 s
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:
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The resulting large electromagnetic fields will, for large
enough values of the kinetic mixing parameter, ε≳ 10−10,
build up a dense plasma of charged particles in the last few
e-folds before saturation (see Sec. IV). The rotation of the
cloud and resulting turbulent electromagnetic processes in
the plasma lead to a large flux of electromagnetic emission
from the system, as described in Secs. V and VI B. The
energy output is dominated by the dissipative losses in the
turbulent regions, which we infer from our numerical
simulations [see Eq. (53)] to be

LEM ¼ ε2FðαÞ Mc
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where FðαÞ ¼ 0.13α − 0.19α2 is a polynomial fit to the
simulations, and we used the mass of the superradiance
cloud at its maximum and the small α limit. The
luminosity can be up to five orders of magnitude brighter
than the Crab pulsar’s bolometric luminosity [139], and up
to ten orders of magnitude brighter than the solar
luminosity. In the following, we will assume the

luminosity to be given by Eq. (61) also for α < 0.1,
below the smallest simulated value.
The cloud slowly decays through emission of GWs and

electromagnetic radiation on a timescale generally domi-
nated by the gravitational dissipation of the cloud, except at
small dark photon masses and large mixing, as shown in the
left panel of Fig. 17. The observable electromagnetic signal
lasts for ∼min fτGW; τEMg,

τGW ≈
GM

17α11Δa�
≈ 106 s
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GM ln 2
ε2FðαÞ ≈ 1011 s
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The decay is power-law in time when more energy is
released in GWs than electromagnetic radiation and expo-
nential otherwise,

McðtÞ
Mcðt0Þ

¼
� ½1þ ðt − t0Þ=τGW�−1 τGW ≪ τEM

e−ðt−t0Þ=τEM ln 2 τGW ≫ τEM:
ð63Þ

At small α and large enough ε, the superradiance growth
time τSR can become slower than τEM, possibly preventing
the cloud from reaching its full size. A detailed study of the
cloud saturation in this case is beyond the scope of this
work and we always require τSR < τEM, which applies to
most of the open parameter space (see Fig. 17).
To summarize, the evolution of a kinetically mixed cloud

is fully fixed by the dark photon mass μ, which sets the
overall fundamental scale, and the dimensionless couplings
ε and α. Over the lifetime of the cloud, the electromagnetic
and GW signals grow exponentially—at a rate fixed
uniquely by the dark photon mass and α—until the cloud
reaches its maximum size, and then decrease on longer
timescales as the cloud disappears.19 If the GW radiation
dominates, there is a unique relation between the growth
and decay timescales, τSR and τGW. For α ≪ 1 [for which
the GW timescale is given by Eq. (11)] it takes the
approximate form

τSR ≃ 0.98τ7=11GW r4=11g
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Δa�
0.5

�
7=11

�
: ð64Þ

We show the characteristic electromagnetic luminosities
and their time evolution due to GW emission in the right
panel of Fig. 17.
Clearly, the observational prospects of this system

depend heavily on the spectral shape of the electromagnetic
radiation; unfortunately, our simulations do not give us this

18The results in this section are obtained using the gravitational
waveform model SuperRad [56] for the superradiant vector
cloud, with approximate expressions for the timescales, etc. given
to guide the reader.

19The electromagnetic signal is only present for large enough
cloud sizes Mc and kinetic mixings ε which are needed to
generate the plasma, Sec. IV.
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information. However, given the similarities of our system
to pulsars, which have been observed across electromag-
netic bands in many systems, and have PIC simulations in
agreement with aspects of the observations, we can make
educated guesses as to the expected emission in differ-
ent bands.
In analogy with neutron star pulsars, one dominant

emission mechanism could be synchrotron radiation. As
discussed in Sec. VI E, the boost factor of electrons and
positrons in the cloud peaks in the range γ ∼Oð10 − 100Þ,
giving typical electron radiation frequencies ranging from
keV to a few MeV. Depending on the value of the kinetic
mixing and BH mass, most of the spectrum would fall
within the range of x-ray telescopes, such as Chandra [140]
and Swift [141] of Oð0.1–10 keVÞ or Fermi-GBM (8 keV
to 1 MeV) [142].
GW emission from the system is monochromatic with

frequency fGW ¼ ω=π, and the electromagnetic emission is
also expected to have periodicity on timescales of 1=ω
(Sec VI D). Here, ω is the energy per dark photon, given by
its rest mass with Δω=μ ≈ −α2=2 −Oðα4Þ corrections due
to the gravitational potential energy of the BH [39] and
Δωc=μ ≈ −ð5=8Þα2Mc=M the gravitational self-energy of

the cloud [56]. The combination of the decrease of the BH
mass as the cloud grows, and the decrease of the cloud mass
as it decays, result in a monotonically increasing frequency
correction. In other words, the cloud period decreases
during the whole evolution of the cloud [56], in stark
contrast with conventional pulsars, for which the period
increases in time. Thus, rotating BHs can host an anoma-
lously bright “pulsar” which spins up over time [27].
This new type of pulsar has several unique features and a

peculiar evolution history. While there are a variety of
signatures that can be looked for, here we highlight
two distinct observational prospects: searching for the
emergence of a bright electromagnetic source from a
known rotating BH remnant (with or without a periodic
component), or searching for continuous GWs emitted by
anomalous pulsars. These two observational strategies are
best-suited to regimes of large and small α, respectively.
Given the signal uncertainties, we propose discovery

oriented searches rather than exclusions. It is possible that
the absence of a large number of ultraluminous x-ray
sources already places limits on dark photon parameter
space; however, given uncertainties in natal BH spin
distributions, as well as in the emission spectrum of the

FIG. 17. Left: lifetime of the superradiance cloud as a function of the kinetic mixing parameter ε and the gravitational coupling α
for a BH with an initial mass of 10M⊙ and spin of a� ¼ 0.9. At large α, the cloud decays through GW emission, and the lifetime is
independent of ε. When α is too small, the power emitted in electromagnetic radiation overcomes the GW power and the cloud
depletes faster for larger ε [see Eq. (62)]. In both regimes, the lifetime is proportional to the BH mass, τ ∝ M, so the transition is
independent of the value chosen. The initial BH spin determines the largest value of α that satisfies the superradiance condition, but
otherwise has a mildly effect on the lifetime of the cloud. In the dark gray shaded region τSR > τEM, while the light shading
corresponds to parameters excluded by measurements of the CMB spectrum by COBE/FIRAS [76,77]. Right: time evolution of
the superradiance cloud’s electromagnetic luminosity [see Eq. (61)] for two different values of ε, for M ¼ 10M⊙ and a� ¼ 0.9 (the
luminosity is independent of M and only mildly dependent on a�, while the decay time will increase for heavier BHs). After the
spinning BH is formed, the energy emitted in radiation quickly grows exponentially with the superradiance cloud, and later slowly
decreases due to the cloud mass decay through GW emission.
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dark photon cloud, such a constraint would not be robust.
Similarly, we can speculate that such kinetically mixed
superradiance clouds may account for some of the ultra-
luminous x-ray sources already observed [143,144].

A. Electromagnetic follow-ups of black hole mergers

Most of the compact binary mergers detected by the
LVK observatories result in a BH remnant with a mass
between 10 to a 100M⊙ and high spin, due to the capture of
a significant component of the binary’s orbital angular
momentum [145]. Electromagnetic follow-up observations
of the mergers could reveal the existence of a dark photon
superradiance cloud around the BH remnant. We select
three illustrative events from the LSC O1-3 catalogs
[146–148] and forecast the sensitivity of radio and x-ray
searches in Fig. 18. The best targets and their inferred
parameters are listed in Table I; they correspond to the
closest mergers with the best sky localization and one high
mass and one low mass event, to cover the widest range of
dark photon masses. We also include the possible neutron
star–BH merger GW190814 [149], for which an electro-
magnetic counterpart was not found in the radio [150–152],
optical, and near-infrared [153–157], and x-ray [158].
These null results could exclude new dark photon param-
eter space, provided a more reliable prediction for the
emission spectra from the superradiance system.

For our projections, we assume an Oð1Þ of the super-
radiance cloud luminosity (61) is emitted into x-rays and a
Oð10−4Þ fraction into radio frequencies, in analogy with the
spectrum of standard pulsars [159,160]. For the follow-up
to detect the EM emission, the cloud needs to grow within a
reasonable observational timescale; for concreteness we
impose the requirement tgrowth < 10 years [cf. Eq. (60)],
which translates into a large-α requirement given by
α≳ 0.036, 0.04, and 0.03 for our three selected candidates.
The left panel of Fig. 18 shows how current instruments
could already measure a signal, taking a radio flux
sensitivity of 40 μJy at 944 MHz for an observation time

FIG. 18. Range of dark photon kinetic mixing parameter ε and mass μ producing a visible signal for electromagnetic follow-up
observations of LVK compact binary merger events with a BH remnant. As an example, we choose the three best target events:
GW170814 (blue), GW190814 (yellow), GW200202_154313 (red) (measured parameters are given in Table I). The thin solid lines
show the regions where a signal could exist, which are bounded from below by the requirement that the visible electric field is large
enough to produce the plasma [see Sec. IV and Eq. (26)], to the left by the requirement that the cloud grows within 10 years [see
Eq. (60)], and to the right by the superradiant condition for the fastest-growing bound state (see Sec. II). The reach is further limited on
the right by the signal duration falling below a minimum observational time. The gray shaded region is excluded by measurements of the
CMB spectrum by COBE/FIRAS [76,77]. Left: current prospects for an x-ray [141] (solid) and radio transient [150] (dashed) search.
Right: future prospects for an x-ray search (solid) and a radio search for a pulsating source (dashed). See the text for more details. The
cyan contour corresponds to one merger event per year visible in the x-ray, with shaded band indicating the error due to the uncertainty in
the BH merger rate.

TABLE I. List of example compact binary merger events
observed by LIGO-Virgo-KAGRA that are promising candidates
for a dark photon superradiance search through electromagnetic
follow up observations and corresponding central values of their
parameters. See Fig. 18 for the observational prospects.

Name

Final BH
mass
½M⊙�

Final
BH
spin

Distance
[Mpc]

ΔΩ
½deg2�

GW170814 [146] 53.2 0.72 600 87
GW190814 [147] 25.7 0.28 230 19
GW200202_154313
[148]

16.76 0.69 410 170
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of 10 h, achievable by ASKAP searching for transient
events [150], and an x-ray detection sensitivity of
2 × 10−14 erg cm−2 s−1 in 104 s, attainable by Swift-XRT
[141] as it scans through the sky (eROSITA has similar
performance [161]). Better reach can be achieved with
Chandra, which however requires prior angular localiza-
tion. For instance, for sources with angular localization
from radio observations, Chandra could probe almost an
order of magnitude smaller x-ray fluxes [162].
The sky localization is expected to improve during

O4 with the Advanced LIGO, Virgo, and KAGRA
network, with about 10% of the events localized within
5 deg2 [163], improving the prospects of detecting an
electromagnetic counterpart. In the right panel of Fig. 18,
we assume smaller positional errors that would allow a
Chandra-like x-ray search sensitive to 10−15 erg cm−2 s−1

fluxes in 105 s. In the same panel we also indicate with a
cyan contour the region of parameter space above which
more than one x-ray event per year from BH mergers could
be observed with the same x-ray sensitivity. To obtain this
contour we made use of the BH merger rate as a function of
primary BH mass measured by LVK [164], assuming a
final BH spin of 0.7, and a final mass equal to twice the
primary mass. The shaded band around the cyan contour
indicates the uncertainty in the merger rate.
The searches discussed so far in this subsection are

aimed at a steady source that shines for as long as the
required observational time, without assuming any perio-
dicity. If we further assume partial or total periodicity in the
electromagnetic emission power, a search for a long lasting
pulsating radio signal could be performed. We estimate that
the prospect of such a search with a sensitivity of 10 μJy at
1 GHz with 500 MHz bandwidth for 15 minute observa-
tions daily over the lifetime of the cloud,20 which is
comparable to the performances of FAST [165] and slightly
better than CHIME [166].
The superradiance cloud could also have higher energy

emission, up to γ-rays. Telescopes with nearly all sky
coverage, such as Fermi-LAT [142], are well suited to
perform follow-up observations of compact binary coa-
lescences (which have been done and are planned during
O4 [167]). Current flux sensitivities result in reach in
kinetic mixing comparable to current constraints, but a
signal could be detected in the event of an exceptionally
close merger.
In the event of a positive detection of a new luminous

source following a binary BH merger, there are nontrivial
cross checks that can be used to confirm the superradiance
origin of the signal. First, by measuring the peak luminosity
of the different sources, the luminosity’s unique depend-
ence on the parameter α—Eq. (61)—can be verified. For a
dark photon with a given mass and kinetic mixing, the
luminosity will only depend on the BH mass and spin,

which are measured in the merger. Secondly, the measured
light curve should be consistent with an exponential growth
as dictated by superradiance, and power-law decay, as
expected from GW emission, with growth and decay time-
scales satisfying the nontrivial relation Eq. (64). Thirdly, if a
pulsating electromagnetic signal is observed, the measure-
ment of the period, given by 2π=μ, can be used to extract
the dark photon mass and verify the signal growth and
decay times dependence on the parameter α—see Eqs. (60)
and (62). Multiple sources will have the same period up to
Doppler shifts of Oð10−3Þ, and gravitational potential
corrections of up to a few percent. Finally, the superradiance
system also emits continuous GWs with frequency ω=π,
which could be detected with a search targeted on the
luminous source [34,54–56]. The GW has the same signal
growth and decay times as the electromagnetic emission,
which, together with the period coincidence, constitute
unmistakable signatures of dark photon superradiance.
The discovery of such an ultraluminous source depends

crucially on our ability to localize the newly formed BH. In
particular, for sources with short duration (large α), it is
important that the source is located hours before the merger
to allow telescope observation coincident with the merger.
Space-based, midband detectors can locate stellar mass
BH merger events similar to GW150914 to an angular
area of ∼0.01 deg2 an hour before the merger [168,169].
Similar angular localization can be reached with the Laser
Interferometer Space Antenna (LISA) and similar space
missions for intermediate mass and supermassive BH
mergers [170,171]. These missions could significantly
improve the chances of finding the x-ray and radio signals
from the dark photon superradiance cloud.

B. Gravitational follow-ups of anomalous pulsars

If the superradiance electromagnetic emission is periodic,
old galactic BHs dressed with a dark photon cloud could
look like a neutron star pulsar, and be detected by ongoing
surveys of pulsating sources. Such “fake” pulsars appear to
be rotating at a single frequency f set by the dark photon
mass, spin up over time, and emit continuous GWs with
frequency fGW ¼ 2f. Their GW strain is up to several orders
of magnitude larger than the neutron star spin down limit and
can be searched for with targeted continuous GW analyses.
We select two types of potential candidates in the ATNF

pulsar catalogue [160,172]. The first type is a set of
frequency multiplets, i.e. sources i with at least one other
pulsar j that satisfies jfi − fjj=fi < 10−3, which takes into
account the spread in frequency due to Doppler shifts of
Oð10−3Þ. The second type is a source with _fobs > 0 that is
not known to be in a binary system, to avoid spurious
positive spin frequency derivatives due to the source’s
acceleration in a binary orbit.
Since all these pulsars are within our Galaxy, the BH

formation event must have occurred long enough ago
so that it was not observed. We therefore impose20Private communications with Kendrick Smith.
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τGW > 103 yr, which translates into a maximum value for
α≲ 0.03–0.05 for the selected sources. For each system,
the dark photon mass is fixed to be μ ¼ 2πf (gravitational
corrections to the dark photon energy are negligible in the
small α limit). A lower bound on α is set by the smallest
possible BH mass, which we take to be 3M⊙, resulting in
α≳ 0.05 − 0.005 across the range of frequencies consid-
ered. We take the initial BH spin to be 0.5. A better choice
for the BH spin would be to sample it from the spin
distribution of the Galactic BH population; however, this is
not well known.
We only consider sources with f > 50 Hz, since for a

stellar mass BH, smaller frequencies would correspond to a
very small α, and correspondingly small signal. Above this
threshold, the ATNF catalogue contains 229 sources with
measured f, distance, and with positive or unknown _fobs.
Among these, there are 3 frequency triplets and 26
frequency doublets (19 of the doublets have a nonzero
allowed range of α between the upper and lower bound),
statistically compatible with the number of accidental
multiplets expected for a uniform frequency distribution
between 50 and 500 Hz. For each fake pulsar in a multiplet,
the emitted GW strain cannot be uniquely predicted, since
the BH mass and age (that sets the remaining superradiance

cloud mass, and thus affects the GW emission power)
are unknown. In the left panel of Fig. 19, we show the
maximum possible strain for the allowed range of α values,
for two example BH ages of 103 and 106 years. As pointed
out previously, we do not consider younger systems. These
young systems are excluded by all-sky searches for
continuous GWs [43,173], but strains below the current
bounds are possible for older systems, and within the reach
of a targeted search [174].
With the same selection criteria as above, but without

requiring frequency multiplets, we find 20 sources
with _fobs > 0, with values between 4 × 10−17 Hz=s and
5 × 10−14 Hz=s. Only 16 of these sources have a nonzero
range of α values between the upper and lower bound.
Interestingly, four of these sources (J0024-7204Z [175],
B0021-72G [175,176], J1801-0857C [177,178], and
B0021-72M [175,176]) also belong to a frequency doublet.
The frequencies of the four doublets are approximately
219.6, 247.5, 267.4, and 272.0 Hz. These candidates could
be further strengthened (or disfavored) by performing spin
derivative measurements of the other component of each of
the doublets, which at present do not have _f measurements,
and that are J0514-4002D [179], J1824-2452J [180],
J0024-7204ad [181], and J0125-2327 [182], respectively.

FIG. 19. Left: we show the projected gravitational wave strain of observed pulsating sources whose luminosity could be powered by
the kinetically mixed dark photon superradiance cloud. The potential candidates are selected from the ATNF pulsar catalogue [160], as
described in Sec. VII B, and are frequency doublets (dark red), frequency triplets (light red), and pulsars with positive measured
frequency derivative (blue). The filled (empty) triangles correspond to the largest possible strain that a source in a frequency multiplet
could produce if the cloud were created 103 (106) yr ago. The strain could take any value below that upper bound (thin solid lines) down
to a minimum strain outside of the range shown here. The blue down-pointing and up-pointing triangles denote the range of strains
allowed assuming that the spin-up is due to gravitational wave emissions from the cloud. The 95% C.L. upper limits on the signal strain
amplitude from Refs. [43,173] are shown in dark and light gray shading, respectively. The solid gray line corresponds to the expected
sensitivity of a targeted search with LIGO Livingston derived in [174]. Right: range of kinetic mixing parameters allowed for each
pulsar, with frequency doublets (dark red), frequency triplets (light red), and pulsars with positive measured frequency derivative (blue).
For the frequency multiplets, filled (empty) down-pointing triangles correspond to the largest ε that allows the cloud to decay through
GW emission for at least 103 ð106Þ yr. For the sources that are spinning up, down-pointing triangles give the largest ε that allows the
cloud to decay through GWemission up to their current age (which is fixed by _fobs). For all the sources, up-pointing triangles denote the
smallest mixing parameter that allows for plasma pair production in the cloud [see Sec. IV and Eq. (26)].
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If the spin-up is due to the superradiance cloud decay
through GW emission, we expect an intrinsic spin fre-
quency derivative [56]

_fint ≃
5

8π
αμ2GPGW: ð65Þ

The observed frequency derivative could differ from the
intrinsic one due to additional positive contributions from
acceleration along the line of sight. Thus, one should
interpret the measured spin derivative _fobs only as an upper
limit on the intrinsic spin derivative. Here, however, our
intention is to provide a first example of how spin derivative
measurements could be used to discover anomalous pul-
sars, so in what follows we simply neglect accelerations
along the line of sight and assume _fobs ≃ _fint. With this
assumption, the measured value of _fobs fixes the power
emitted in GWs PGW for any given α. Since the power
emitted decreases as the cloud’s mass decays, there is a
minimum α that allows for a spin up rate as large as the one
observed when the cloud is as young as possible, i.e., at
least 1000 yr. This lower bound on α is stronger than the
one described above from the minimum BH mass for
f ≲ 270 Hz. Therefore, the observable strain is predicted to
be within a small range given by the small spread of α
values allowed, as shown on the left of Fig. 19 with the
short segments bounded by the downward and upward
pointing blue triangles.
We find that most sources should have already been seen

by all-sky searches for continuous waves, but one candidate
pulsar with a frequency around 600 Hz remains uncon-
strained, which could be an interesting candidate for a
targeted search. We note that if the assumption _fobs ≃ _fint is
correct, the four previously mentioned events that are
frequency multiplets and have _fobs > 0would be excluded,
since their _fobs > 0 measurement leads to a strain pre-
diction that is already ruled out by existing GW searches.
These sources, however, could certainly be compatible with
data if _fint < _fobs, due to the source accelerations along the
line of sight that we have neglected.
For each anomalous pulsar, the kinetic mixing parameter

could lie within a range of allowed values, which are shown
in the right panel of Fig. 19. In the prediction of the strain
described above, we assumed that the cloud decays through
GW emission, and that the power emitted in electromag-
netic radiation is subdominant at all times, giving an upper
bound on ε of around a few times 10−7 for a system that is
1000 years old (see Fig. 17)—a different time evolution for
the cloud is, in principle, allowed and would give a different
observable strain. The lower bound on ε shown in Fig. 19
comes from requiring the superradiance cloud to pair
produce the plasma, as described in Sec. IV. This bound,
however, can be relaxed since the BH was formed long ago,
and charged particles could be slowly accreted and build up

the plasma over time (see Sec. IV C). In this case, ε as small
as 10−12 could produce a pulsating source that is luminous
enough to be observed at galactic distances. Finally, we
notice that a few of the pulsating sources used here have a
measured luminosity, which could be used to fix the value
of ε if the emission spectra were known (see Sec. VI E).
Taking the fraction of total luminosity that goes in the
radio band to be between 10−4 and 10−6 gives ε between
approximately 10−12 and 10−11 [159,160].

C. Concluding remarks

In the last two subsections, we discussed two detection
strategies which take advantage of the multimessenger
signals from a dark photon superradiance cloud around a
spinning BH. In both cases, a combination of the electro-
magnetic and GW observations allow us to perform highly
nontrivial cross checks to uniquely identify our system
and measure the dark photon mass and kinetic mixing
parameter. Our analysis can be strengthened by dedicated
numerical studies which

(i) extend our analysis to smaller gravitational coupling
α and larger conductivity σ=μ,

(ii) provide robust information about the electromag-
netic emission spectrum,

(iii) show robust evidence for or against periodicity in the
electromagnetic emission in different electromag-
netic bands.

In addition to the signals mentioned above, our system
may host a plethora of phenomena, including ultraluminous
x-ray sources (ULX) [143], as well as transient processes
such as fast radio bursts (FRB) [183,184] and x-ray flares
and giant flares [185]. Follow-up GWobservations of these
events could identify their origin as a dark photon super-
radiance cloud. With electromagnetic observations alone,
more dedicated numerical studies are needed to determine
the similarities and differences in the spectral properties
and transient dynamics between our system and a neutron
star pulsar or magnetar [117], or other astrophysical
sources. If BH superradiance is discovered with continuous
GW searches at LVK and future GWobservatories, follow-
up electromagnetic observations can discover the kineti-
cally mixed phenomena presented in this paper or put
robust constraints on the dark photon parameter space.
Finally, note that in this work we have exclusively

focused on signals from stellar BHs, but the computations
and the results for the luminosity presented in Eq. (61) also
apply to the case of isolated supermassive BHs, which
would be of relevance for follow-up signatures of mergers
detected by LISA.

VIII. DISCUSSION AND CONCLUSIONS

In this paper, we performed a detailed analytical and
numerical study of the dynamics of a kinetically mixed,
dark photon superradiance cloud and the resulting
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multimessenger signatures. If a dark photon with Compton
wavelength on the order of the radius of a stellar mass black
hole exists, isolated, rotating black holes turn into very
bright electromagnetic sources for kinetic mixings on the
order of ε ∼ 10−10–10−6. We summarize our approach,
discuss the unique dynamics and observational signatures
of the system, and outline future directions for investiga-
tion below.
A dark photon superradiance cloud is a dark electro-

magnetic field rotating at a frequency fixed by the dark
photon energy. Charged particles in the interstellar medium
enter the rotating cloud and, in the presence of a kinetic
mixing, initiate a transient phase of cascade particle
production, resulting in a dense plasma. The stable rotation
of the cloud, large strength of the visible electromagnetic
fields, and the appearance of the charged plasma resemble
pulsar magnetospheres. We use resistive electrodynamic
methods that interpolate between the vacuum and the force-
free limit. Our methods are adapted from those originally
developed to model resistive effects in the pulsar magneto-
sphere, here applied to a fixed Kerr spacetime and the
kinetically mixed case.
Due to the system’s large conductivity, plasma currents

redistribute charge in an approximately dipolar form on
large scales in order to screen the coherent visible electro-
magnetic field set up by the rotating superradiance cloud.
We find that, due to the electric dominance of the oscillating
superradiance cloud, the charged plasma cannot completely
screen the electromagnetic field. Our numerical simulations
of the field electrodynamics indicate that the differential
rotation between the background fields and the plasma leads
to the emergence of small-scale turbulence in the form of
magnetic field reconnection and unscreened electric fields
(Sec. V C). We establish that the electromagnetic emission
from the system is dominated by such small-scale turbulent
dissipation into the standard model plasma, with a peak
luminosity of up to 10 orders of magnitude larger than the
solar luminosity, as described in Sec. VI B [see Eqs. (54)
and (61)]. In addition, we find a Poynting flux component
to the emission. Though subdominant, ∼102–104 times
smaller than the local dissipation, this may also be signifi-
cant for the observational signatures of the system. These
are the main results of our paper.
Given the rotation of the superradiance cloud, we expect

that at least a fraction of our system’s emission is periodic
(with period T ≈ 2π=μ), a property that would extend the
analogy with pulsars into the observational domain. Our
simulations show some evidence for such a periodicity, as
discussed in Sec. VI D, but cannot conclusively verify this
expectation. By analogy with the results for pulsar mag-
netospheres and findings from PIC simulations of turbulent
plasmas, we expect that the emission spectrum contains a
nonthermal x-ray component for kinetic mixing parameters
ε≳ 10−7, softer spectra for smaller mixing parameters, and
likely a radio component (see Sec. VI E). Our simulations

cannot directly determine the spectrum of the emitted
luminosity, so given the differences between our system
and pulsars, both in field profile morphology and strength,
more investigations are essential to conclusively establish
the spectral shape.
Based on the system’s large luminosity, characteristic

time evolution, and expected periodicity, we propose
several search strategies for dark photon superradiance
clouds. The first strategy relies on the extreme brightness of
our system: electromagnetic follow-up searches targeting
binary BH mergers observed by the LVK Collaboration
(Sec. VII A). Based on our expectations of the spectrum,
the most promising reach is achieved by x-ray and radio
observations. In addition to the spatial and temporal
correlation of a merger and the resulting electromagnetic
emission, one could discriminate between superradiance
clouds and standard astrophysical sources by requiring a
fast exponential rise, and 1=t power-law fall-off of the light
curve, consistent with superradiant growth and subsequent
decay by GW emission. Given the measured remnant BH
mass and spin from the gravitational waveform, these
timescales are fully determined by the dark photon mass;
for the parameters necessary to see these signals over
cosmological distances, the electromagnetic power is
subdominant to the GW power and does not affect the
time evolution. This results in a nontrivial relation between
the rise and decay times [see Eq. (64)], which if exper-
imentally confirmed, would provide a smoking gun sig-
nature of superradiance.
Further assuming periodicity, a variety of additional

signatures can be explored. For the proposed electromag-
netic follow-ups, the periodicity alone could be used to
measure the dark photon mass μ, as the periodicity is set by
the dark photon mass up to a few-percent binding energy
corrections from the BH potential. This would further
strengthen the evidence for the new physics hypothesis by
requiring consistency between the period-based measure-
ment of μ and the light curve rise and decay times.
Another observational strategy targets known pulsars,

either by selecting those with positive frequency deriva-
tive, or by selecting those with the same measured period
up to Oð10−3Þ due to Doppler shifts. Interestingly, by
surveying existing pulsar catalogs we find four candidate
sources for which a partner with the same frequency exist,
and that have a positive frequency derivative measure-
ment. Our computation of the GW power with the
measured “pulsar” period and spin-up rate suggest that
many of these objects would emit continuous gravitational
wave with strain above the LVK threshold if their origin is
dark photon superradiance. Many potential sources could
be excluded with blind continuous wave searches while
others could be further probed with targeted continuous
wave searches (Sec. VII B).
Apart from these multimessenger signatures of corre-

lated EM and GWemission, at small α and large ε the dark
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photon cloud depletion is dominated by EM emission,
leading to persistent ultra-bright sources of x-rays.
Observation of several periodic sources with periods within
a few percent of each other would be strong evidence for
the origin of these objects being a dark photon super-
radiance cloud. The absence of these sources in the
Universe may already imply constraints on the dark photon
parameter space assuming a natal black hole mass and
spin distribution; given the uncertainties in BH properties
and the EM signal spectral shape, we leave this study to
future work.
We close with a discussion of future directions. In this

paper, we studied the case of an isolated BH and a single
new particle with a minimal interaction, the kinetically
mixed dark photon. In the presence of a more complex dark
sector, such as the existence of a dark Higgs, the dynamics
may be altered further. Recently, some of the authors
showed that in the Higgsed dark photon scenario, vortex
lines can form and deplete the cloud before it reaches its
maximum size [70,71]. Further study is needed to under-
stand how the vortex production and evolution is affected
by the presence of plasma (see, e.g., Refs. [71,186]).
Furthermore, many BHs are not isolated: they are sur-

rounded by an accretion disk, leading to additional dynam-
ics. While it is a negligible perturbation to the background
dark photon field, a dense accretion disk affects the visible
electromagnetic field and resulting electromagnetic dynam-
ics and emission. BH systems affected by these dynamics
include accreting supermassive black holes, x-ray binaries,
etc. Preliminary studies show that even a small superradiance
cloud (or a small ε ∼ 10−12 for a maximal cloud) affects the
disk properties, and would invalidate the ISCO-based spin
measurements [62,187,188]; we leave further details to a
future publication [63].
This work sets the stage for the exploration of kinetically

mixed dark photon superradiance. We have established
numerical simulation techniques to understand the electro-
dynamics of the cloud and its electromagnetic emission. The
parameter space of possible signatures is vast, from weak,
long-lasting signals to bright, short signals, across the
electromagnetic spectrum. We have detailed several possible
observations, and a more wide-ranging study of search
strategies is warranted. Utilizing different simulation
approaches to better understand the electromagnetic emission
spectrum would be invaluable to pin down observables.
Finally, given the similarities between our system and a
magnetar, it is conceivable that the dark photon superradiance
cloud could host a wide range of astrophysical phenomena,
such as x-ray flares and fast radio bursts. Due to the
differences in the magnetic field structures, further inves-
tigations are clearly needed, and would be of great interest.
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APPENDIX A: NOTATION

We list the variable definitions used throughout the text
in Table II.

TABLE II. List of the variables used most commonly through-
out the main text, as well as a brief description.

Variable Description

ε Kinetic mixing
μ Massive vector field mass
rc Cloud’s Bohr radius
a� Black hole dimensionless spin
Δa� Loss of black hole dimensionless spin
M Black hole mass
rg Half black hole Schwarzschild radius
ω Superradiance cloud angular frequency

(Table continued)
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APPENDIX B: CONSTRUCTION OF MASSIVE
VECTOR CLOUD

To construct the superradiantly unstable massive vector
field modes on a fixed Kerr spacetime of mass M and
dimensionless spin a�, we follow Refs. [192–194], as well
as [40,195]. Neglecting all nonlinear effects both on the
massive vector field A0

μ, as well as in the gravitational
sector, we treat A0

μ as a test field on a fixed Kerr background
spacetime. In this Ricci-flat geometry, the vector field
satisfies the massive vector wave equation

gαβ∇α∇βA0γ ¼ μ2A0γ; ðB1Þ

with gαβ ¼ gαβKerr and mass parameter μ. The Kerr family of
BH spacetimes, a special case of the Kerr-NUT-(A)dS class
of spacetime, admits additional symmetries beyond statio-
narity and axisymmetry generated by the timelike and axial
Killing fields, ξ and η, respectively. These “hidden” sym-
metries were utilized in Ref. [193] to construct an ansatz for
the field A0

μ, satisfying the massive vector wave equation,

that separates radial and angular dependencies. The ansatz
makes use of the Killing-Yano symplectic 2-form h, whose
tensor components satisfy∇μhνγ ¼ 2gμ½νξγ�. The vector field
ansatz of frequency ω and azimuthal index m reads [193]

A0μ ¼ Bμν∇νZ; Z ¼ RðrÞSðθÞe−iðωT−mφÞ ðB2Þ

in Boyer-Lindquist (BL) coordinates ðT; r; θ;φÞ. The polari-
zation tensor Bμν is implicitly defined by Bαβðgβγ þ ihβγÞ ¼
δαγ utilizing the Killing-Yano 2-form. Due to the presence of
ξ and η in the spacetime, the temporal and azimuthal
dependencies are trivially satisfied. The radial and polar
dependencies are determined by solving a nonlinear ordinary
differential eigenvalue problem with eigenfunctions RðrÞ
and SðθÞ and complex eigenvalues ω and ν of the form,
Dr

ω;νRðrÞ ¼ 0 and Dθ
ω;νSðθÞ ¼ 0, where Dr;θ

ω;ν are second
order ordinary differential operators depending on r and θ
only. Bound state solutions are obtained by imposing
ingoing radiation boundary conditions at the horizon, and
asymptotically flat boundary conditions at spatial infinity.
For details on how the polar equation is solved, see
Ref. [195]. The radial solution is expanded around the outer
horizon, r ≥ rþ, with r� ¼ M �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
, in a Frobenius

series of the form [195]

RnearðrÞ ¼ r̂iκð1þ â1r̂þ â2r̂2 þ…Þ; ðB3Þ

with κ ¼ 2mrþðω −mΩBHÞ=ðrþ − r−Þ, coefficients âi, and
r̂ ¼ ðr − rþÞðrþ − r−Þ−1. The coefficients âi can be solved
for by plugging RnearðrÞ into the radial equation
Dr

ω;νRðrÞ ¼ 0. The near-horizon solution (B3) is then used
to numerically integrate the radial second order ordinary
differential equation outwards from rs ¼ rþ þ ϵ toward large
r ≫ 10=ðαμÞ, with ϵ ¼ 10−4M typically, in the spirit of the
shootingmethod. Integration cannot start at r ¼ rþ, as theBL
coordinates are singular on the event horizon. For further
details, see Refs. [40,195]. The superradiantly unstable vector
cloud can then be reconstructed with Eq. (B2).
Our numerical setup, outlined in Appendix C, utilizes the

Kerr spacetime in Cartesian Kerr-Schild (KS) coordinates
ðt; x; y; zÞ. Therefore, the relevant spacelike hypersurface is
the surface of constant KS coordinate time t, not BL time T;
these are two different slices of the Kerr spacetime.
Therefore, we transform the above constructed vector field
A0μ from BL coordinates to KS coordinates. The two
gauges are related by

t ¼ T þ
M2 log r−rþ

r−r−ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p þM logΔ;

x ¼ sin θðr cos ϕ̄ − a sin ϕ̄Þ;
y ¼ sin θða cos ϕ̄þ r sin ϕ̄Þ;
z ¼ r cos θ; ðB4Þ

TABLE II. (Continued)

Variable Description

f Superradiance cloud frequency
ΩBH Black hole horizon frequency
Mc Superradiance cloud mass
α Gravitational fine structure constant
t, x, y, z Cartesian Kerr-Schild coordinates

σ Plasma conductivity
γe Electron/positron Lorentz factor
me Electron/positron mass
e Positron charge
τplasma Timescale to populate the e� plasma
ωp Plasma frequency

A0
μ Dark vector potential (interaction basis)

E0i;E0 Dark electric field (interaction basis)
B0i;B0 Dark magnetic field (interaction basis)
Aμ Visible vector potential (interaction basis)
Ei;E Visible electric field (interaction basis)
Bi;B Visible magnetic field (interaction basis)
Iμ Electromagnetic 4-current
Ji Electromagnetic spatial current
ρq Charge density
vid Plasma drift velocity in Eulerian frame

fGW Gravitational wave frequency
PGW Gravitational wave luminosity
τGW Gravitational radiation timescale
τSR Superradiance instability timescale
PEM Visible Poynting flux
Ldiss Visible energy dissipation power
τEM Electromagnetic radiation timescale
ν Spectral frequency of electromagnetic emissions
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whereΔ ¼ a2 − 2Mrþ r2. The inverse of these relations is

T ¼ t −
M2 log r−rþ

r−r−ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p −M logΔ;

r ¼ 2−1=2
�
−a2 þ x2 þ y2 þ z2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2z2 þ ða2 − x2 − y2 − z2Þ2

q �
1=2

;

ϕ ¼ arctan
�
rxþ ay
−axþ ry

�
−

a log r−rþ
r−r−

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p ; x > 0

θ ¼ arccos
z
r
; ðB5Þ

where ϕ̄ ¼ ϕþ ð2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
Þ−1a log½ðr − rþÞðr − r−Þ−1�,

valid outside the event horizon r > rþ. Using these
coordinate transformations, we transform the massive
vector field to KS coordinates for r > rþ þ ϵ. Subtleties
arise for r < rþ þ ϵ. However, it is necessary for the
successful evolution of the system of equations in the
interaction basis that the source term is defined (at
the very least) everywhere outside the event horizon
r ≥ rþ, and while allmodes on the horizon are marginally
trapped, the finite difference length scale (potentially)
allows for values at points inside the horizon to numeri-
cally affect points just outside the horizon. Furthermore,
the exponential blue-shift captured in the transformation
rules (B4) and (B5) of the type cos logðr − rþÞ for r > rþ
leads to an exponential amplification of any truncation
error in the numerical solution of the radial and angular
equations Dr

ω;νRðrÞ¼0 and Dθ
ω;νSðθÞ ¼ 0. Hence, any

powerlike converging numerical truncation error is expo-
nentially enhanced for r → rþ, and dominates the sol-
ution for some rd with rd > r > rþ. To address this
subtlety, we employ a C4-transition function ftðrÞ that
matches the Frobenius solution RnearðrÞ, valid for r≳ rþ
and the numerical solution RnumðrÞ, valid for r > rþ þ ϵ,
in the overlap region rþþϵ<r<rþþ102ϵ: RmatchedðrÞ ¼
ftRnearðrÞ þ ð1 − ftÞRnumðrÞ. In addition to these manip-
ulations at small radii, we also need to address the
exponential fall-off as r → ∞. Due to finite floating
point precision, the shooting method will inevitably
switch from the exponentially decaying solution into the
exponentially diverging solution at some large r ¼ rmax.
Therefore, in order to provide sensible estimates also for
r > rmax (which is necessary since we are working with a
compactified setup that includes spacelike infinity, as outlined
below inAppendixC),we fit an exponential of the formae−br

for b > 0 to the solution RnumðrÞ in the range
r ∈ ð0.9rmax; rmaxÞ. With this, we obtain a RmatchedðrÞ that
is valid for r ∈ ðrþ;∞Þ.
Finally, the 3þ 1 superradiant vector variables

are projected with respect to the t ¼ const spacelike
hypersurface using the hypersurface normal nμ and the

projector γαβ ¼ δαβ þ nαnβ (further details can be found in
Appendix C). In this framework, the vector field decom-
poses into χϕ ≡ −nμA0μ and χi ≡ γiμA0μ, which are recon-
structed from the matched and extrapolated radial
solution, in conjunction with the polar solution, the
transformation rules (B5) and (B4), and ansatz (B2),
everywhere in the t ¼ const spacelike hypersurface with
r > rþ. Lastly, we find better convergence properties of
the DiBi ¼ 0 constraint close to the BH event horizon if a
buffer region between the event horizon and the excision
surface in the BH interior is used. To that end, we utilize
second order extrapolation of all 3þ 1 variables along
lines of constant θ;φ; t from r > rþ to r− < r < rþ to
ensure well-defined gradients at rþ, we utilize zeroth
order extrapolation from a distance of δ ¼ 10−4M away
from the spin-axis to set the cloud values on the axis in
KS coordinates, since the BL coordinates also exhibit
a coordinate singularities at the poles. The time-
dependence of the cloud in KS coordinates is then
simply χϕ; χi ∼ eiωt. In this work, we consider only
those superradiance clouds that arose from the fast
growing modes, and subsequently saturated the super-
radiance condition, i.e., satisfying ω ¼ mΩBH. That is,
we focus on m ¼ 1, n̂ ¼ 0, and S ¼ −1 clouds, in the
language of [40] (corresponding to ðj; n; l; mÞ ¼
ð1; 1; 0; 1Þ, introduced in Sec. II). Properties of the
clouds considered in this work are given in Table III.
These states are expected to be the end state of the
instability to a good approximation [24,35], and hence,
exhibit vanishing growth rates.
We test our numerical implementation of the above

described reconstruction of the cloud in KS coordinates by
considering the numerical truncation error τ of the massive
vector wave equation (B1) in KS coordinates: τ ¼P

α jð□Kerr;KS − μ2Þðχϕnα þ χαÞj. Inside the event horizon,
the truncation error τ is divergent with decreasing grid
spacing h, which is likely due to inaccuracies in the
extrapolation procedure described above. On the event
horizon, the truncation error shows marginal point-wise
convergence τjr¼rþ ∼Oðh1=2Þ or better. To quantify the
convergence behavior outside the event horizon, in the

TABLE III. The properties of the four clouds used in the main
text. We consider only them ¼ 1; n̂ ¼ 0 and S ¼ −1 superradiant
vector boson clouds in the language of Ref. [40] [corresponding
to ðj; n; l; mÞ ¼ ð1; 1; 0; 1Þ used in Sec. II] around spinning BHs
of mass M and dimensionless spin a�. The saturation condition,
ω ¼ ΩBH, fixes the spin a� for each α.

α ωM a�
0.1 0.099485 0.382787
0.2 0.195543 0.678411
0.3 0.283390 0.857953
0.4 0.357498 0.946250
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coordinate domain D, we introduce the norm LDðfÞ of
function f as

LDðfÞ≡
Z
D
d3x

ffiffiffi
γ

p jfj; ðB6Þ

where d3x
ffiffiffi
γ

p ¼ d3x
ffiffiffiffiffiffiffiffiffiffiffiffi
det γij

p
is the volume form of the

spacelike hypersurface. Here, and in the following, the
domain D ¼ Dd is the coordinate shell defined by the radii
10rc > r > rþ (recall, rc ¼ 1=ðμαÞ is the cloud’s Bohr
radius). The norm of the truncation error converges
approximately as LDd

ðτÞ ∼Oðh2Þ for α ∈ f0.2; 0.3g and
as LDd

ðτÞ ∼Oðh1Þ for α ∈ f0.1; 0.4g, see Fig. 20. We use
second order accurate methods to compute the residual τ.
This convergence behavior can be explained by considering
the shooting method underlying the reconstructed solution.
As discussed above, any remaining truncation error close to
the horizon is exponentially amplified, while at large radii,
the shooting method inevitable switches from the expo-
nentially decaying solution to the exponentially increasing
solution due to finite floating point accuracy (see also a
discussion of this in [40]). While our shooting method
implementation makes use of higher-than double-precision
floating point arithmetic, the convergence is ultimately
limited, especially for small α. Further, the extrapolation
of the cloud to the spin-axis in KS coordinates, and the
exponential extrapolation at large radii, can further reduce
the convergence rate, especially at large α. Therefore, even
slow convergence is a good sign of correct implementation
of the superradiant source terms in our compactified KS
evolution implemented discussed next.

APPENDIX C: NUMERICAL EVOLUTION SETUP

Our calculations are carried out on a fixed rotating BH
background of mass M and dimensionless spin a�. We
adopt the Kerr metric gαβ in Cartesian Kerr-Schild coor-
dinates ðt; x; y; zÞ, with line element

ds2 ¼ −dt2 þ dx2 þ dy2 þ dz2

þ 2Mr3

r4 þ a2M2z2

�
dtþ z

r
dz

þ rðxdxþ ydyÞ
r2 þ a2M2

−
aMðxdy − ydxÞ

r2 þ a2M2

�
2

; ðC1Þ

where r satisfies ðx2þy2Þ=ðr2þa2Þþz2=r2¼1. However,
we evolve the fields using a 3þ 1 space–time decom-
position, making using of several such geometric quan-
tities. This includes the unit normal to slices of constant
time, which can be decomposed as nμ ¼ ð1;−βiÞ=N,
where N and βi are the lapse and shift vector, respectively.
There is also the spatial metric/projection operator
γμν ¼ nμnν þ gμν, the extrinsic curvature tensor Kij ¼
−ðDtγijÞ=ð2NÞ, where Dt ¼ ∂t − Lβ with Lβ the Lie
derivative along the shift. In a Minkowski spacetime in
Cartesian coordinates these 3þ 1 variables would be
N ¼ 1, βi ¼ 0, γij ¼ δij, and Kij ¼ 0. For convenience,
we also define also the covariant derivative Di defined
with respect to γij, as well as the trace of the extrinsic
curvature K ¼ Kijγ

ij.
The kinetically mixed Maxwell’s equations, presented in

covariant from in (13), in terms of the visible electric and
magnetic fields are given by

DtEi ¼ NKEi þ εijkDjðNBkÞ − NJi þ Nεμ2γiμA0μ;

DtBi ¼ NKBi − εijkDjðNEkÞ;
DiEi ¼ ρq þ εμ2nμA0μ;

DiBi ¼ 0; ðC2Þ

where εijk ¼ εijkαnα is the 3-dimensional Levi-Civita
tensor. These evolution equations (C2) are discretized
using fourth-order accurate spatial finite-difference sten-
cils, in conjunction with fourth-order Runge-Kutta inte-
gration in time [196,197]. All simulations are performed
on a 3D Cartesian grid that includes spatial infinity through
the use of compactified coordinates (details can be found
in [198]). Sixth-order, Kreiss-Oliger-type numerical dis-
sipation is applied to the evolution variables for numerical
stability. This further dissipates shorter wavelength features
at large distances beyond the compactification scale,
minimizing reflection off spatial infinity. We use between
ten and seven mesh-refinement levels centered on the BH,
with refinement ratio 2∶1, for α ¼ 0.1 through α ¼ 0.4,
respectively. We choose the finest level to have length
roughly twice the diameter of the BH in each linear

FIG. 20. The norm LDd
ðτÞ of the residual of the massive vector

wave equation, defined in (B6), as a function of the number of
grid points Np considered with respect to the base resolution NB.
The default resolution used for each of the configurations given in
Table III and presented throughout the main text is Np=NB ¼ 2.
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dimension. The system is rescaled so that 20μ−1α−1 ¼ 20rc
is roughly equal to the compactification scale (recall rc is
the cloud’s Bohr radius). This allows us to resolve both the
scale set by the BH, as well as that set by the superradiance
cloud, for sufficiently long times as to ensure relaxation into
a quasiequilibrium state. For all cases, we use a grid spacing
of Δx ≈ 0.03M on the finest mesh refinement level. Due to
this scaling, radiation extraction can be done up to a distance
of r ≤ 10rc; beyond this distance, high-frequency radiation
modes are no longer sufficiently resolved in the wave
extraction zone due to the compactification of the domain.
The Maxwell equations with an Ohm’s law become stiff
in the high conductivity limit (discussed further in
Appendix D). Hence, at conductivities of σ=μ > 2, we
adjust the time-step Δt to account for this behavior. For
α ¼ 0.3, we decrease it gradually with increasing conduc-
tivity from Δt=Δx ¼ 0.5 down to Δt=Δx ¼ 0.075 to
achieve a robust numerical evolution. For α ∈ f0.1; 0.2;
0.4g and σ=μ ¼ 20, we scale Δt, such that σΔt remains
as small, or smaller than, the value of σΔt for α ¼ 0.3,
everywhere in the relevant computational domain. The
construction of the superradiance cloud is described in
detail in Appendix B. As we are neglecting backreaction of
the presence of the plasma and massless electromagnetic
fields, the superradiance cloud is not evolved numerically,
rather it is a preprescribed function of time.
The set of equations (C2) is comprised of the two

constraints, the Gauss law for electric and magnetic fields,
and the Faraday equation and Ampere’s law as evolution
equations. Numerically, we damp possible violations of the
constraint equations by means of two constraint-damping
fields Φ and Ψ [199,200]. To that end, we perform the
replacements DtBi → DtBi − NDiΦ and DtEi → DtEi −
NDiΨ at the level of the evolution equations in (C2).
Furthermore, we promote the constraint equations to
evolution equations for these auxiliary fields, following
Refs. [199,200]:

DtΨ ¼ −NðDiEi − εμ2nμA0μ − ρqÞ − NκΨ;

DtΦ ¼ −NDiBi − NκΦ: ðC3Þ

This ensures that any numerical violation of the constraints
DiEi − εμ2nμA0μ − ρq ¼ 0 andDiBi ¼ 0 are damped expo-
nentially over timescales 1=κ. For all (resistive) force-free
simulations, the constraint DiEi − εμ2nμA0μ − ρq ¼ 0 is
trivially satisfies since the charge density is defined to
be ρq ¼ DiEi − εμ2nμA0μ. Hence, unless we explicitly
assume vacuum (and in particular, set σ ¼ 0), Ψ is
identically zero. In all cases, the initial conditions for these
auxiliary fields is Φ ¼ Ψ ¼ 0. In addition, we perform
ideal force-free simulations by means of two ad-hoc field
modifications applied at each grid point after an evolution
step [200,201] (see Ref. [202] for a discussion):

Ei → Ej

�
δij −

BjBi

B2

�
; ðC4Þ

Ei → Ei

�
1 − θ̂ðλÞ þ θ̂ðλÞB

E

�
; ðC5Þ

where λ ¼ E2 − B2 and θ̂ is the Heaviside function.
This prescription enforces the two force-free conditions,
EiBi ¼ 0 and B2 > E2, by explicitly rescaling the electric
field at each grid point. The rescaling is a form of ad-hoc
numerical dissipation that is not physically motivated and
reproduces physical dissipation behavior only in special
cases. Therefore, as pointed out in the main text, the
dissipation estimates provided by these force-free evolution
schemes should be interpreted with caution.
The evolution of the system proceeds as follows. We

evolve the system toward its equilibrium state in several
steps. Initially, we set the fields to visible fields to zero
Ei ¼ Bi ¼ 0 and evolve until time t ¼ ts assuming vacuum
Iα ¼ 0. With ts ≈ 5=μ, this allows the system to equilibrate
at roughly Ei ¼ εE0i and Bi ¼ εB0i, which is purely the
superradiance cloud’s contribution to the visible fields.
During this time, we utilize both the electric and magnetic
field’s Gauss constraint cleaning potentialsΦ and Ψ. These
ensure that constraint violations in the magnetic field are
kept small, as well as efficiently remove constraint viola-
tions of the Ei ¼ 0 initial data on timescales 1=κ ≪ ts. At
t ¼ ts, the resistive current (37) is discontinuously turned
on, and the system is evolved until the total Poynting flux
at the largest radii where we extract it is relaxed to a
quasiconstant value. For α ¼ 0.4, we found that this
required the system to be evolved for ∼8tLC light crossing
times of the entire cloud, defined as tLC ¼ 10rc, whereas
for α ¼ 0.1, we evolved the system for ∼3tLC. During the
evolution of the system, we monitor the behavior of the
Gauss constraint DiBi ¼ 0 throughout the entire domain.
This provides a measure for the rate of convergence of the
numerical solution, and the self-consistency of the numeri-
cal implementation.
To test the numerical implementation of the kinetically

mixed force-free Maxwell equations, together with the
reconstruction of the massive vector field modes, we begin
by considering the α ¼ 0.3 vacuum case σ ¼ 0. To that end,
we consider (C2) with Iμ ¼ 0, and perform a series of
simulations with increasing resolution starting from vac-
uum initial data: Bi ¼ Ei ¼ 0. To demonstrate the correct
implementation of the equations, we monitor the evolution
of the constraints DiBi ¼ 0. In Fig. 21, we show the
convergence of this Gauss constraint with grid spacing h
utilizing the norm defined in (B6). As can be seen there,
roughly LDs

ðDiBiÞ∼Oðh3.5Þ, whereas LDd
ðDiBiÞ∼Oðh2Þ.

Therefore, in the bulk of the vector cloud, the convergence
is roughly fourth order, as expected. Close to the event
horizon, convergence is slower. This may be attributed to
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the presence of the excision surface close to the event
horizon, as well as the lower convergence order of the
massive vector cloud residual τ just outside the horizon.
The constraint DiEi − εμ2nμA0μ ¼ 0 (not shown here) is
violated by the initial data, but quickly becomes dominated
by converging truncation error after a few periods of the
cloud. This could be improved upon, by choosing con-
straint satisfying initial data. However, the goal of this work
is to investigate the system with nonvanishing charge
density, and at late times, the latter constraint is satisfied
to floating point accuracy if Iμ ≠ 0. Moving to cases with
nonvanishing conductivity, we show in Fig. 21 the con-
vergence properties of α ¼ 0.3 systems for σ=μ ¼ 1 and
σ=μ ¼ 20. The former exhibits the same convergence
behavior as the vacuum case, whereas the latter follows
roughly LDd

ðDiBiÞ ∼Oðh0.6Þ. This can be explained by
considering the scales of the features that need to be
resolved. As we showed in the main text, the scale of the
features is roughly given by 1=σ, which translates into a
length scale of l ≈ 0.17M for α ¼ 0.3. On the finest level,
the grid spacing, Δx ¼ 0.03GM, is sufficient to resolve
these features, while on coarser levels, numerical dis-
sipation likely dampens these scales efficiently. This
damping is numerical, rather than physical, in nature,
and does not obey the Maxwell equations, and therefore,
leads to a larger violation of the Gauss constraint and
worse convergence properties.
Apart from the convergence of the constraints, the

vacuum quasistationary state, after several tLC, should
exhibit no energy flux across the event horizon, as it is,
by construction, synchronized with the BH angular veloc-
ity. In practice, there are various sources of numerical error

that can spoil this property. The synchronization condition
ω ¼ ΩBH can be achieved only up to finite precision,
when solving for the superradiance cloud. Finite reso-
lution both in the evolution scheme, as well as in the cloud
construction scheme, may also leave room for the solution
to develop a small, but finite, energy flux across the
horizon and toward spatial infinity. To quantify this, and
to obtain a rough estimate for the time at which the system
is truly settled, tsettle, we monitor the energy fluxes across
the horizon, the BH ergosurface, and coordinate spheres
of radius ρ̂ ¼ 8rc, and ρ̂ ¼ 10rc in Fig. 21. In the
continuum limit, with ω ¼ ΩBH exactly, we expect all
these fluxes to be zero. Therefore, the flux evolution
presented in Fig. 21 can be used to establish tsettle, i.e.,
when the system has reduced the superradiance cloud’s
emission powers to the degree necessary.
We briefly comment on issues related to performing

simulations of the superradiance cloud system in the small-
α limit. In the Newtonian limit, the massive vector wave
equation on a Kerr background is obtained by expanding in
small α to leading order. All spin-effects are subleading in
this expansion, and the leading contribution is solely given
by the far-zone Newtonian potential of the BH ∼GM=r.
In this limit, the vector wave equation reduces to a radial
Schrödinger-type equation with solution (8). Within a
numerical time-domain evolution setup, the singular behav-
ior of the Newtonian potential at the location of the BH poses
challenges. However, there are subtleties associated with
replacing the far-zone weak-field metric by Minkowski both
in the interaction and mass eigenbases ((12) and (F1),
respectively). Within the mass eigenbasis, the force-free
condition (or resistive generalization thereof) FαβIβ ¼ 0,

FIG. 21. Right and top left: we present the convergence of the norm (B6) of the Gauss constraintDiBi within domainsDs (solid lines)
andDd (dashed lines) for the α ¼ 0.3 system at three different conductivities σ. The former is the entire domain outside the outer horizon
with r > 1=μ (i.e., neglecting the near-horizon behavior), whereas the latter is the entire domain outside the BH r > rþ. Np=NB is

defined as in Fig. 20, and we set ε ¼ 10−6. Bottom left: we plot the Poynting fluxes across the ergosurface, PES, the event horizon, _EBH,
as well as the flux PEM coordinate radii r ¼ 8rc and r ¼ 10rc in the α ¼ 0.3 cloud with Iμ ¼ 0 and ε ¼ 10−6.
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depends on the electric and magnetic field components
of (8). The nonrelativistic field (8) and its electric and
magnetic field components are multivalued, i.e., discontinu-
ous, at the origin, leading to a breakdown in the validity of
numerical schemes around the origin. Additionally, the usual
force-free current would require modification, as it requires
the field (8) to satisfy the corresponding Maxwell equations
on a weak-field background spacetime. As noted above, a
weak-field metric is numerically challenging to implement,
such that the choice of a flat background introduces
inconsistencies when using the (resistive) force-free current.
These could be remedied, however, by including terms
involving higher order derivatives of the massive vector
field (8) in the equations, but this would add further
complications at the origin. By contrast, the evolution
equations in the interaction basis depend only on A0

μ, and
not on its spatial derivatives; hence, the interaction basis
evolution approach allows one to evolve the system self-
consistently on a flat background. On the other hand, this
choice is accompanied by subtleties associated with the
photon-dark photon interaction term in (12). The massless
state can mix into the massive state as it radiates toward
infinity. In a weak-field metric, this mixing prevents the
massive component of the visible field Aμ from radiating to
infinity, as it is bound to the central gravitational potential. In
the flat spacetime limit, leakage of the massive state into
radiation emitted to infinity is not prevented (an illustration
of this behavior is presented in Fig. 23). Therefore, in this
context, any radiated Poynting flux is to be understood as an
upper bound for the total emitted power. All these subtleties
are absent in the fully relativistic calculations we use as our
main results, where the relativistic clouds constructed in
Appendix B is considered on a Kerr BH background
spacetime as described above.

APPENDIX D: RESISTIVE FORCE-FREE
CURRENTS

In this appendix, we discuss different resistive general-
izations of force-free electrodynamics used in the literature
to identify the approach most applicable in the kinetically
mixed scenario at hand. In the main text, we demonstrated
that the system is characterized by turbulence and magnetic
reconnection with efficient energy dissipation into the
plasma. In principle, there are two feasible approaches for
capturing these effects: resistive magnetohydrodynamics and
kinetic PIC methods. PIC methods, which capture the
macro- and microphysics, are ideally suited to tackle the
magnetosphere of the kinetically mixed superradiance cloud.
However, as we are interested in the overall electromagnetic
power-output and large scale features of the system in three
dimensions, PIC simulations are prohibitively computation-
ally expensive, especially on a curved background BH
spacetime. Full resistive magnetohydrodynamics, on the
other hand, is notoriously difficult to apply to regimes in
which the plasma mass density is far below the energy

density of the electromagnetic field, which is the case for the
superradiant system considered here. Hence, we choose to
use a resistive approach where the plasma dynamics is
not directly tracked, and rely only on the electromagnetic
field’s evolution. A few approaches have been developed
in the literature, particularly to model the resistive regions
of pulsar magnetospheres [85,86,88,108,203] (see also
Refs. [89,200]). All are based on an electromagnetic current
Ji that aims to capture the physics of a highly conducting
plasma in strong electromagnetic fields, while being speci-
fied solely in terms of the electromagnetic fields. Generally,
this current can be decomposed into a piece describing the
drift velocity of the charges, vid, and a contribution orthogo-
nal to the drift velocity

Ja ¼ ρqvad þ Ja⊥: ðD1Þ

In all (resistive) force-free approaches, the charge density is
defined using the (kinetically mixed) electric Gauss law:
ρq ¼ DiEi − εμ2nμA0μ. In the following, we briefly review
the currents considered in the literature, apply these to
kinetically mixed superradiance clouds in the nonrelativistic
limit, and compare our findings with the vacuum and force-
free limits in order to evaluate their applicability.
We begin with a discussion of the commonly invoked

force-free paradigm, which assumes vanishing Lorentz
force FμνIν, as well as FμνFμν > 0 and Fμνð�FÞμν ¼ 0.
In terms of electric and magnetic fields, the last two
conditions are, respectively, equivalent to magnetic domi-
nance B2 > E2 and EiBi ¼ 0. With these assumptions, the
corresponding force-free current is given by (the relativistic
contributions in the form of the extrinsic curvature K and
covariant derivative Di are defined in Appendix C)

vad ¼
εajkEjBk

B2
;

Ja⊥;FF ¼
Ba

B2
½2KBiEi − 2KijEiBj þ Biϵ

ijkDjBk

− Eiϵ
ijkDjEk þ εμ2Biγ

i
μA0μ�: ðD2Þ

The current is perpendicular to the electric field, and there
is no dissipation of electromagnetic energy. Therefore, the
force-free limit of ideal magnetohydrodynamics excludes
resistive processes or transfer of electromagnetic energy to
the plasma (e.g., particle acceleration, magnetic reconnec-
tion, plasma heating, etc.), which however, are active
throughout the superradiance cloud due to the electric
dominance of the fields A0

μ in vacuum. Notice, the plasma
drift velocity vad is entirely determined by the dynamics of
the electromagnetic fields. While the force-free approxi-
mation is, in principle, ideal, it can break down at current
sheets and places where magnetic dominance is lost.
Numerically, this is handled with numerical dissipation
which is particularly large in turbulence driven regimes
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(due to the cascade to short, unresolved wavelengths), as
well as by (as noted in Appendix C) enforcing the force-
free conditions by rescaling the visible electric field, as
shown in (C5). We perform a set of force-free simulations
of the α ¼ 0.3 and a� ¼ 0.86 cloud-plasma system. As the
turbulent features reach scales much below the grid scale
of our simulations, numerical dissipation and the prescrip-
tion (C5) efficiently remove energy that was sourced by the
superradiance cloud. Therefore, it serves as an artificial
source of dissipation, that nonetheless agrees well with the
σ → ∞ extrapolations shown in Fig. 12. Regardless, results
from these force-free simulations should be interpreted
with caution and in light of the unphysical dissipation
mechanism. In Fig. 22, we show the force-free solution the
system attains at late times (with strong numerical dis-
sipation in the bulk of the cloud). In all cases, the magnetic
Gauss constraint is nonconvergent, while the time-averaged
outgoing Poynting flux and energy injection from the
superradiance cloud are roughly consistent across resolu-
tions to within an Oð1Þ-factor (the Poynting flux estimates
is shown in Fig. 12). For all the numerical resolutions we
considered, features emerged on the grid scale, suggesting
the end state of the pair production cascade is a bulk
turbulent state. As can be seen in Fig. 22, no large scale
electric field and charge separation persists, while
Ez=E ∼Oð1Þ. The numerical implementation, by construc-
tion, removes any violation of B2 > E2 at each grid point
after each time step, such that the ratio B2=E2, shown in
last panel in Fig. 22, is strictly larger than unity. Similarly,
the violations of EiBi ¼ 0 are at the level of floating
point error.
In the context of resistive magnetohydrodynamics, a

macroscopic resistivity is introduced by means of a
suitably chosen Ohm’s law with conductivity σ. In order

to recover the force-free approximation in the σ → ∞
limit and to maintain a form for the electrodynamics
that does not require one to also keep track of the fluid
dynamics, all resistive force-free approaches assume the
drift velocity vid of the charges is altered as [86] (see
also Ref. [85] for a similar approach)

vid ¼
εijkEjBk

B2 þ E2
0

; E2
0 ¼ B2

0 þ E2 − B2;

B2
0 ¼

1

2

�
B2 − E2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðB2 − E2Þ2 þ 4ðEiBiÞ2

q �
: ðD3Þ

Thus, even for fields with E2 > B2, the drift velocity vid
is bounded by the speed of light due to the additional
electric field contribution E2

0 in the denominator
compared with the force-free prescription (D2).
Nonvanishing EiBi can only reduce the resulting drift
velocity further. This ensures that around current sheets
within a strongly magnetized plasma, the characteristic
speeds remain physical. Three distinct methods to
construct Ji⊥ have been considered in the literature.
In Ref. [87], the Ohm’s law was applied in the frame
of vanishing charge density, referred to as (A) in the
following. In Ref. [88] (see also Ref [204]), the Ohm’s
law was applied in the minimal velocity (with respect to
the “lab” or simulation frame) fluid frame, labeled as
(B) in what follows. Lastly, the approach of Ref. [108]
introduces resistive effects with a prescription driving
EiBi toward JiBi=σ over some arbitrary timescale 1=κ,
called approach (C) from here on. Beyond the drift
velocity, the three approaches (A), (B), and (C) differ.
Comparing the three currents, method (A) is manifestly

covariant, but lacks a well-defined vacuum limit, while

FIG. 22. We show the visible electric and magnetic fields, charge density, and the ratio of electromagnetic field magnitudes obtained
from a force-free simulation using the current (D2), with prescription (C5) for a superradiance cloud system with α ¼ 0.3 and a BH spin
of a� ¼ 0.86. In the case of the visible electric field, the field line color code is the same as in Fig. 5.
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both (B) and (C) exhibit Ji → 0 as σ → 0. Since the
superradiant system is well understood a priori only in
the vacuum limit, we focus on (B) and (C) in this
discussion. Explicitly, the orthogonal component of the
current (B) constructed in Refs. [88,204] reads

Ja⊥;ðBÞ ¼ σE0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ E2

0

B2
0 þ E2

0

s
E0Ea þ B0Ba

B2 þ E2
0

: ðD4Þ

The prescription, ðCÞ modifies the force-free contribution
as [108]

Ja⊥;ðCÞ ¼
σ

ðσ þ κÞ
�
Ja⊥;FF þ κEiBi

Ba

B2

�
: ðD5Þ

Here, the driving timescale 1=κ can be understood by
contracting the above current by Ba, using the Maxwell
equations to arrive at

DtðEiBiÞ ¼ −κN
�
Ei −

1

σ
Ji
�
Bi; ðD6Þ

such that EiBi is driven toward JiBi=σ. Note, we assume
the resulting system to be hyperbolic (see e.g.,
Refs. [205,206] for a discussion).
Physically, these currents describe the interaction of an

effective plasma with the visible electromagnetic fields,
assumingE2; B2 ≫ ρp; Pp,whereρp andPp are the plasma’s
mass density and pressure. The σ → 0 limit corresponds to
the vacuum limit. To understand this, consider the charge
conservation ∇μIμ ¼ 0. In the Eulerian frame, together
with (31), this leads to

Dtρq ¼ NρqK −DiðNJiÞ ¼ NρqK −DiðNρqvidÞ ¼ 0:

ðD7Þ

Hence, if the initial conditions satisfy ρq ¼ 0, then the
system does not acquire a nontrivial charge distribution
dynamically, i.e., in a medium with small conductivity
charges cannot separate. This implies that the resistive
currents above reduce to Iμ ¼ 0, assuming the initial data is
neutral. Therefore, the σ ¼ 0 regime is the vacuum limit of
the system. Moving away from this limit to nonzero, but
small conductivities, σ ≪ μ, the effective fluid coupling to
the visible electromagnetic fields is an efficient insulator.
The current Iμ is timelike, and Ji is advection dominated.
Due to the residual conductivity, the charges in the
insulating fluid can move along the electric field with
mobility∼σ=μ, i.e., the chargemobility in the fluid frame is
conductivity suppressed. However, since the system is
advection dominated, no large charge gradients can build
up, unless the fluid is compressible. In our case, the fluid
velocity in the Eulerian frame is Divid ≠ 0, resulting in
potential charge pile-up in regions of large vd-gradients and

compressibility. At intermediate resistivity, σ ∼ μ, the
insulating fluid transitions to a moderately conducting
plasma. Here, the current Iμ is both locally spacelike and
timelike in different places, and the system has advection
and conduction dominated regions. For σ ≫ μ, the plasma
turns into a highly conducting plasma with only residual
resistivity. Here, the advection of the fluid is a negligible
contribution to the overall charge distribution. Large scale
charge separation is enabled by large conduction currents
along the electromagnetic fields. In this regime, the
conductivity sets the diffusion length scale l ¼ 1=σ that
governs residual resistive features such as current sheets
and tearing modes. Finally, assuming that in the σ → ∞
limit, the system becomes largely magnetically dominated
and EiBi → 0 while σE0 remains finite, then all three
currents reduce to the familiar and physically well-defined
force-free limit. This is discussed further in the context of
the superradiance system in Appendix E.
In all cases, the conductivity σ is to be understood as a

proxy for a class of dissipative processes and is chosen to
be constant in space and time (primarily due to the lack of a
physically motivated prescription for the spatial depend-
ence of conductivity in this setup), as as typically done, for
instance in [88,109] (see [108] for a notable exception).
The advantage of current (C) is its numerical properties
in the high-conductivity limit. There, due to the prefactor
σ=ðσ þ γÞ multiplying the orthogonal component, the
magnitude of the source of the Maxwell equations remains
small, ensuring that the evolution equations do not become
stiff. This ultimately allows us to evolve the system even at
relatively large conductivities with moderate resolution
within an explicit forward integration scheme. However,
a drawback of approach (C) is that Ji⊥;ðCÞ diverges wherever
B2 ¼ 0. In a magnetically dominated pulsar magneto-
sphere, this does not lead to problematic behavior, while
in the case of an electrically dominated superradiance
cloud, this causes issues at moderate and high conductiv-
ities, since within the equatorial plane, the magnetic field of
the superradiance cloud smoothly transitions through zero.
We tested explicitly, that this magnetic null line causes
the current (D5) to diverge in the intermediate and high
conductivity regime, leading to nonconvergent features
orbiting in the equatorial plane (particularly on mesh-
refinement boundaries). As the resistive methods outlined
above are designed to remove nonconverging behavior in,
for instance, current sheets, and we require convergence
of our numerical implementation in order to validate our
findings, approach (C) is not well suited to tackle the
kinetically mixed superradiance cloud without modifica-
tion. Therefore, we resort to approach (B) and current (D4)
to model resistive processes and the electromagnetic field
geometries throughout the superradiance cloud. This evo-
lution method has a stiffness problem at large conductiv-
ities, as outlined in Appendix C, which ultimately limits our
ability to explore the σ=μ > 20 parameter space.
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We briefly illustrate the shortcomings of performing
simulations on Minkowski spacetime, and the extent to
which current (C) can be used in the context of a magnetic
guide field removing magnetic null lines. To that end, we
consider a α ¼ 0.3 superradiance cloud of the form (8) on a
fixed Minkowski background. The constant magnetic guide
field is initialized at the beginning of the simulations as
Bi
0 ¼ ð0; 0; BzÞi (where ẑ is the spin-direction of the cloud),

with magnitude Bz ¼ 3 × 104B0
max ≫ εjE0jM. We test that

the following results are independent of the choice of Bz, as
long as the guide field magnitude is larger than a threshold,
Bz > Bt. Below this threshold, the electric field εE0 starts
dominating around the origin of the cloud. With this
construction, a series of simulations is performed varying
the conductivity from σ=μ ¼ 10−3 to 103 within the context
of the resistive methods (C) introduced above. In addition,
we also study the vacuum limit Ja ¼ 0, as well as the force-
free limit on this flat background.
In Fig. 23, we show the behavior of the total power

output of the system as function of bulk conductivity in
the model (C) in (D5). Let us compare these quantities to
those obtained on Kerr spacetime without a guide field and
using model (B) [given by Eq. (D4)] shown in Fig. 12 and
Fig. 8. The flat spacetime guide field setup recovers the
correct bulk dissipation component Ldiss ¼ Lbulk

diss , both in
amplitude and in conductivity dependence, while the
turbulent component Lturb

diss is absent. The latter is due to

the magnetic guide field removing any magnetically
diffusive regions that might form due to turbulence.
The behavior of IEB in Fig. 23 is entirely analogous to
the corresponding quantity in Fig. 8. Lastly, the outgoing
Poynting flux in Fig. 23 is constant across decades of
conductivities, and agrees well with both the vacuum and
the force-free limits. This illustrates the leakage discussed
above due to the lack of gravitational confining potential
in flat spacetime, filtering out the massive propagating
states. This demonstrates that, within the interaction basis,
the flat space solution cannot be used to estimate physical
observables associated with the outgoing Poynting flux.
Hence, we cannot use model (C) without a guide field, as
discussed above. However, using a guide field also does
not give the correct answer, as this artificially removes the
turbulent dynamics characterizing the high-conductivity
limit of the system.

APPENDIX E: CHARGE DISTRIBUTION AND
SMALL CONDUCTIVITY REGIME

In Fig. 24, we illustrate the spatial charge distribution ρq
of the solution at low and intermediate conductivities.
At low conductivity, the largest charge separation occurs
along the spin-axis of the BH. This may be interpreted as
follows: Charge separation is suppressed at high resistivity,
1=σ ≫ 1. However, any residual conductivity can separate
charges on scales ∼σ=μ (assuming vanishing charge
diffusion). Any separated charge distribution advects with
the drift velocity of the fluid. In the presence of sufficiently
large fluid velocity gradients (with finite fluid compress-
ibility) large charge densities may build up. In the super-
radiance cloud context, regions of high velocity gradients
coincide with regions where the charge density is largest for
σ=μ ¼ 10−2. Once the charge density is accumulated, and
the fluid velocity varies on scales larger than the charge
distribution scale, the latter is frozen into the flow of the
former and is carried away from the BH along the spin axis.
At moderate and large conductivity, σ=μ ≳ 1, the resistivity
is sufficiently small as to enable large scale charge
separation. While for σ=μ ¼ 1, the charge density follows
roughly the superradiant electric field morphology [com-
pare with Eq. (18)], for σ=μ ¼ 20, small scale features
begin to appear, likely driven by the turbulent dynamics
inside the plasma.
Let us demonstrate explicitly that at large resistivity, the

plasma cannot charge separate across scales larger than the
charge separation scale∼σ and that the superradiant electric
field is screened efficiently at large conductivity. To that
end, we define the quantity

Iρ ¼
Z
D
d3x

ffiffiffi
γ

p jρqj; ðE1Þ

measuring the charge separation in a coordinate volume D
extending out to ρ̂ ¼ 10rc within the slice Σt with volume

FIG. 23. We show the rescaled energy emission rates,
P̂ ¼ PðG=ε2ÞðM=McÞ, of the Poynting flux PEM (extracted at
r ¼ 10rc), the Joule heating Ldiss, and IEB ¼ R

d3
ffiffiffi
γ

p jEiBij, as
functions of conductivity σ=μ for model (C) with a superradiance
cloud of α ¼ 0.3 on a Minkowski background with magnetic
guide field Bz ¼ 3 × 104B0

max. The corresponding Poynting
fluxes in the vacuum Pvac

EM and force-free limits Pff
EM are indicated

for reference.
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form
ffiffiffi
γ

p
d3x. This is compared with the charge separation

required screen the superradiant electric field E0
i entirely

[see also (18)]:

IE0 ¼
Z
D
d3x

ffiffiffi
γ

p
εjDiE0ij: ðE2Þ

We show the behavior of Iρ as a function of conductivity,
compared with IE0 , in the right panel of Fig. 25 (recall, IE0

is conductivity independent). For σ=μ ≪ 1, we find that
Iρ → 0, indicating that the system tends to the vacuum
solution set by the superradiance cloud. At intermediate
conductivity, the charge separation scales roughly as
Iρ ∼ σ=μ. At large conductivity, Iρ ∼ IE0 , supporting the
conclusion that, for σ=μ ≫ 1, the solution exhibits large
scale charge separation that screens the field E0

i efficiently,
even in the turbulent regime. Furthermore, we also show
the behavior of the norm IμIμ of the electromagnetic
4-current (37) in Fig. 25. As outlined in Appendix D,
for σ ≪ μ, the current is fluid advection dominated, where a
residual charge distribution is flowing with the fluid on
timelike trajectories. Conversely, for large conductivities
the conduction part of the current starts to dominate, the
current becomes spacelike, and the solution begins to
asymptote toward a conductivity independent value
of max½IμIμ�.
In Fig. 26, we show the spatial distribution of ρdiss at

small and large σ=μ. For σ=μ < 10, the dissipation density
roughly follows the shape of the superradiance cloud. This
is consistent with (48), since the visible electric field is

dominated by the superradiance electric field component
E0i for σ=μ ≪ 1. Hence, any small dissipation density
traces out the superradiance cloud’s electric field E0i; in
the main text, this component is referred to as Lbulk

diss . This is

FIG. 24. The charge distribution ρq for various small to large conductivities in the equatorial plane (bottom row) and in a plane
spanned by the BH spin and an arbitrary superradiance cloud phase (top row). The slices at varying conductivities correspond to the
same superradiance cloud phase. We focus on a α ¼ 0.3 and a� ¼ 0.86 BH-cloud system.

FIG. 25. We show the charge separation Iρ [defined in (E1)]
as a function of conductivity in units of IE0 [defined in (E2)],
as well as the global maximum max½IμIμ� of the electromagnetic
4-current (37) and global minimum −min½IμIμ� (recall, we are
using the −þþþ signature). We focus on a α ¼ 0.3 and
a� ¼ 0.86 BH-cloud system and consider conductivities
σ=μ ∈ f0.01; 0.1; 1; 2; 5; 10; 20g.
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the relativistic result corresponding to the approximation
(51). In Fig. 26, for σ=μ ¼ 10, the dissipation density
deviates from the superradiance cloud’s electric field; more
precisely, the dissipation density is set by the superradiance
cloud for r < r�, and set by the plasma dynamics for
r > r�, with r� defined in (41). Therefore, the appearance
of r� marks the breakdown of approximation (51), and the
onset of the reconnection driven regime, leading to the
turbulent dissipation component Lturb

diss . The latter dominates
over the dissipation density component provided by the
contribution of the dark photon electric field to the visible
electric fields in practically all regions outside the BH, for
σ=μ ¼ 20, as can be seen in Fig. 26. The dissipation density
develops features on the scale 1=μ, set by the boson mass,

and 1=σ, set by the conductivity. This is consistent with
the discussion in Sec. V C, where local magnetic field line
twisting, on scales of 1=μ and scales of the entire cloud,
are relaxed by reconnection events, dissipating energy
through a locally enhanced ρdiss. For completeness, we
show the ratio of visible electromagnetic fields in Fig. 26
at low to moderate conductivities. This completes the low-
conductivity regime of the behavior shown in Fig. 9. As
evident from Fig. 26, the field structure is affected at the
Oð1Þ-level only at intermediate conductivities, σ ∼ μ. For
σ=μ < 1, the two magnetic null lines inside the equatorial
plane are unchanged. In the case of σ=μ ¼ 10−2, the
charge distribution accumulating along the spin-axis of
the BH, leaves mild imprints on B2=E2.

FIG. 26. Top and middle row: we show the energy dissipation density ρdiss, defined in (48), as a function of conductivity in a slice
spanned by the BH spin and an arbitrary superradiance cloud phase (top row), as well as in the equatorial plane of the BH (middle row).
The color scale is normalized by the global maximum dissipation density at each conductivity. All slices correspond to the same
superradiance cloud phase. White contour lines indicate where the density goes through zero. We focus on a α ¼ 0.3 and a� ¼ 0.86
BH-cloud system. Bottom row: we show the ratio of visible electromagnetic fields, B2=E2, in a plane spanned by the BH spin and an
arbitrary superradiance cloud phase for various small and moderate conductivities. The σ=μ > 1 regime is shown in Fig. 7. We compare
the plasma cases to the vacuum case, i.e., σ=μ ¼ 0.
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APPENDIX F: DARK PHOTON BASIS

A kinetic mixing between the SM photon and a dark
massive photon enters as L ¼ LSM þ LProca þ εF0

μνFμν=2
at low energies. Under the field redefinition Aμ → Aμ þ
εA0

μ ≕Aμ this turns into the Lagrangian in the mass
eigenbasis

Lmass ¼ −
1

4
F μνF μν −

1

4
F 0

μνF 0μν

−
μ2

2
A0

μA0μ þ IμðAμ þ εA0μÞ; ðF1Þ

or, using A0
μ → A0

μ þ εAμ ≕A0
μ into the interaction basis

Linter ¼ −
1

4
FμνFμν −

1

4
F0
μνF0μν

−
μ2

2
A0
μA0μ − εμ2A0

μAμ þ IμAμ: ðF2Þ

In both bases, the current Iμ is the current of the SM
charged particles. These lead to the field equations, in the
mass eigenbasis,

∇αF αβ ¼ −Iβ;

∇αF 0αβ ¼ μ2A0β − εIβ; ðF3Þ

and interaction basis

∇αFαβ ¼ −Iβ þ εμ2A0β;

∇αF0αβ ¼ μ2A0β þ εμ2Aβ; ðF4Þ

when working to leading order in the kinetic mixing ε. The
mixing of the SM and the dark fields at the level of the
electromagnetic current Iα is manifest in (F1). Hence, both
the SM fields and the dark fields can accelerate charged
particles. This is reflected in the energy-momentum con-
servation of (F1):

∇αT αβ ¼ −F βγIγ;

∇αT 0αβ ¼ −εF 0βγIγ: ðF5Þ

In the mass eigenbasis, no energy is transferred from the
dark to the SM field, while both transfer energy to and from
charge particles. In the interaction basis, we have

∇αTαβ ¼ −FβγðIγ − εμ2A0
γÞ;

∇αT 0αβ ¼ εμ2F0βγAγ; ðF6Þ

where the energy transfer between fields is manifest.

Furthermore, at leading order in ε this implies the Lorenz
condition on A0

μ, as well as the current conservation

∇μA0
μ ¼ 0; ∇μIμ ¼ 0: ðF7Þ

In the main text, in particular after Sec. III, we work out
all the dynamics in the interaction basis, which is most
convenient for the analysis since, inside the dense plasma, Aμ

has equations of motion which are potentially sensitive to
the scale σ and ωp, both of which are much larger than the
dark photon mass μ. This manifests in the simulation as short
distance turbulent dynamics of the field Aμ, while the
background A0

μ has only dynamics on length scales of order
1=μ. Therefore, inside this dense plasma, the interaction
basis of the plasma modes Aμ and the dark photon A0

μ is also
the mass basis. Clearly, the interaction basis is more
convenient for our simulations. In the following, we empha-
size some of the important physical intuition that is hidden in
Eqs. (F3)–(F6) and clarifying some points of confusion.
A first confusion comes from searching for static solutions

by inspection. From Eqs. (F3) and (F5), it seems apparent
that there is a solution of Iμ ¼ 0 while Eqs. (F4) and (F6)
would naively suggest that there is a solution of Iβ ¼ εμ2A0β.
Both of these two solutions we have in fact discussed in the
main text. The solution Iμ ¼ 0 is the vacuum solution, which
corresponds to a dark photon cloud with zero charged
plasma. Such a solution is, however, unstable due to pair
production instabilities described in Sec. IV. The solution of
Iβ ¼ εμ2A0β in the interaction basis corresponds to the naive
physical picture of a rotating electric dipole, which is not
viable due to the fact that the cloud is electrically dominated
(with size that is much larger than the light cylinder radius).
A second confusion pertains to the common lore that in a

dense plasma, the effect of the dark photon is suppressed by
the ratio of the dark photon mass and the plasma mass of
the photon, usually in the form of ðμ=ωpÞ2. However, this
suppression assumes that the dark photon field weakly
perturbs a dense fluid of SM particles, which is not true in
our case. Rather, in the superradiance cloud, the dark
photon cloud energy density scales as jE0j2, the visible
electric field energy density scales as ε2jE0j2, while the
charged particle energy density we obtain in the simulation
is OðmeμεjE0jÞ. Given that εjE0j ≈m3=2

e μ1=2 when pair
production starts, the pair produced plasma carries energy
density that is at most Oððμ=meÞ1=2Þ of the energy density
of the electromagnetic field. In this case, the dark photon
field is no longer a small perturbation and the SM plasma,
as a result, is very far from an equilibrium state at zero field.
As a result, the intuition developed in Refs. [103,207] fails.

APPENDIX G: FLUX DISCUSSION

In Sec. VI B, we extrapolated the electromagnetic
power through the Poynting flux PEM and the energy
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dissipation Ldiss from our numerical data at moderate
conductivities σ=μ ≤ 20 to very large conductivities
σ → ∞. In Fig. 11, we showed, however, only those
scenarios with conductivities resulting in qualitatively
different behavior of the Poynting flux. Therefore, for
completeness, we show the electromagnetic emission
power for all values of the conductivity considered in
Fig. 27, as function of the radial coordinate distance ρ̂
from the BH. The exponential decay and oscillatory
behavior of PEM in the low-conductivity regime reflects
the exponential decay and oscillatory behavior of the
electromagnetic waves in a medium with low conduc-
tivity. These electromagnetic waves are eigenstates of
the Helmholtz equation in spherical coordinates, with

eigenvalues of �i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σμþ iμ2

p
. The eigenfunctions are

spherical Hankel functions of the first kind, which have
a similar spatial dependence (this oscillatory behavior can
be observed also in e.g. B2 in the equatorial plane of the
BH-cloud system for σ=μ < 1, which is not shown here).
Such exponential decay and oscillatory behavior is
evident in Fig. 27 close to the BH at low and intermediate
conductivities. In this regime, low frequency oscillations
on large scales dominate, which gives rise to the same
oscillatory features in PEM. Finally, in the right panel of
Fig. 27, we show the total time-averaged Poynting flux
for σ=μ ¼ 20 as a function of coordinate distance from the
BH for each of the values of α considered in this work.
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