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The properties of the modified Maxwell electrodynamics (ModMax) are investigated in the presence
of external and uniform electric and magnetic fields. We expand the nonlinear theory around an
electromagnetic background up to second order in the propagating fields to obtain the permittivity and
permeability tensors, dispersion relations, group velocity and refractive indices as functions of external
fields. The case with perpendicular background fields is contemplated. The phenomenon of birefringence is
discussed and the fundamental role of the ModMax parameter becomes clear. We calculate the difference of
the refractive indices in terms of this parameter and the external fields. Finally, we set up a scenario where
the axion is present and compute the interaction energy for the coupled axion-ModMax electrodynamics if
a magnetic background field is considered. This calculation is carried out in the framework of the gauge-
invariant, but path-dependent variables formalism. Our results show that the interaction energy contains a
linear component, leading to the confinement of static probe charges where the interference between the
ModMax parameter, the axion mass, and the axion-photon coupling constant is pointed out.
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I. INTRODUCTION

As is widely known, nonlinear electrodynamics has a
long history, beginning from the pioneering paper by Born
and Infeld (BI) [1], who introduced their theory in order to
overcome the intrinsic divergences in the Maxwell theory,
at short distances. In passing, we mention that, just like
Maxwell electrodynamics, the BI electrodynamics displays
no vacuum birefringence. We also recall here that, after the
development of quantum electrodynamics (QED) [2–5],
Heisenberg and Euler (HE) [6] proposed a new nonlinear
effective theory by summing up the quantum effects of
virtual electrons and positrons. Indeed, this new theory
contains a striking prediction of the QED, that is, the

light-by-light scattering arising from the interaction of
photons with virtual electron-positron pairs. It should be
further noted that one of the most interesting physical
consequences of the HE result is vacuum birefringence.
In other words, when the quantum vacuum is stressed by
external electromagnetic fields, it behaves like a birefrin-
gent material medium. Let us also mention that this
physical effect has been emphasized from different view-
points [7–12]. In the context of nonlinear electrodynamics,
all the solutions to the nonbirefringence condition are
shown in Ref. [13]. Nevertheless, this optical phenomenon
has not yet been confirmed [14–17].
It is noteworthy to recall here that a few years ago the

ATLAS and CMS Collaborations at the Large Hadron
Collider (LHC) have reported on the high-energy photon-
photon pair emission from virtual photon-photon scattering
in ultraperipheral Pb-Pb collisions [18,19]. It is remarkable
to notice that, in these results, there is no modification
of the optical properties of the vacuum [20]. Besides, the
new era of high-power LASER facilities also provides
us conditions to probe quantum vacuum nonlinearities
[21,22]. Among various experiments, a promising proposal
is the DeLLight Project [23], based on the induced change
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in the vacuum refractive index by virtue of nonlinearities in
electrodynamics.
In the spirit of the foregoing remarks, we have consid-

ered the physical effects presented by different models of
(3þ 1)-D nonlinear electrodynamics in vacuum [24–26].
This has led us to fresh insights on quantum vacuum
nonlinearities in different contexts. For instance, in the
generalized Born-Infeld and logarithmic electrodynamics,
our analysis reveals that the field energy of a pointlike
charge is finite, apart from displaying the vacuum bire-
fringence phenomenon. Additionally, we have examined
the lowest-order modifications of the static potential within
the framework of the gauge-invariant but path-dependent
variables formalism, which is an alternative to the Wilson
loop approach [27].
Moreover, a novel nonlinear modification of Maxwell

electrodynamics that preserves all its symmetries including
the electric-magnetic duality and the conformal invariance
has recently been proposed [28–30], which is referred to as
ModMax electrodynamics. Certainly, the interest in study-
ing nonlinear electrodynamics is mainly due to its poten-
tially significant contributions to light-by-light scattering
and in the description of novel black hole solutions (see, for
instance, Refs. [31–36]). It is of relevance to point out that
the ModMax model can be obtained from TT̄-like defor-
mations of Maxwell electrodynamics [37–40], and also
within the context of string theory [41].
From the previous considerations, and given the interest

and importance related to photon-photon interaction
physics, this work sets out to further elaborate on a number
of phenomenological consequences presented by the
ModMax electrodynamics. More specifically, we shall
focus our attention on the birefringence, dispersion rela-
tions, as well as the computation of the static potential
along the lines of the Refs. [25,26,42,43]. We shall present
results of the ModMax ED as a classical field theory and
the continuity equation for the energy-momentum tensor is
derived. We also work out the ModMax stress tensor and its
angular momentum tensor split into its orbital and spin
components. The electric/magnetic properties of the vac-
uum as a material medium ruled by the ModMax ED are
studied in presence of uniform electric and magnetic
backgrounds.
We focus on the particular case with perpendicular

electric and magnetic backgrounds because the CP-
symmetry of the theory is preserved under this condition.
Bearing this in mind, we study the wave propagation effects
in the linearized ModMax ED. We obtain the permittivity
and permeability tensors, the dispersion relations, the
refractive index and group velocity as functions of the
ModMax parameter, and the external electric and magnetic
fields. The phenomenon of birefringence in the electro-
magnetic background is studied in the presence of an
external magnetic field. Some particular cases are discussed
and the recent results in the literature of ModMax ED are

correctly recovered. As expected, all the results of the
Maxwell ED are also correctly reproduced whenever the
ModMax parameter goes to zero.
In the final part of the paper, we present our motivations

to introduce ModMax ED coupled to an axion scalar field
through an axion-(ModMax)photon interaction term. In
this case, we do not consider an electric background, and
focus on the axionic ModMax ED in presence of a
magnetic background field. In so considering, we study
the confinement properties of this new model by computing
the interaction energy for a pair of static probe charges
within the framework of gauge-invariant but path-
dependent variables formalism. In particular, we shall be
interested in the dependence of the confinement properties
in terms of the axion mass, axion-photon coupling and the
ModMax parameter.
Our contribution is organized as follows: In Sec. II, we

quickly review the setup of ModMax theory, derive the
field equations and conservation laws. In Sec. III, we
introduce the prescription of a uniform electromagnetic
background in order to expand the ModMax ED up to
second order in the propagating fields. In Sec. IV, the
properties of the wave propagation (dispersion relations,
refractive index, and group velocity) are calculated in the
situation where the electric and magnetic background fields
are perpendicular. In Sec. V, we investigate the phenome-
non of birefringence in the presence of electromagnetic
background fields. Subsequently, in Sec. VI, we consider
axionic ModMax electrodynamics and we show that the
interaction energy contains a linear potential, leading to the
confinement of static probe charges. Finally, our conclu-
sions are cast in Sec. VII.
At this point, we place a caveat on the fact that

Secs. III, IV and V deal essentially with the inspection
of material properties of the vacuum in presence of external
electric and magnetic fields, by considering the linearized
approximation in the propagating fields. To our sense,
it is important to make clear to the reader that this issue
has been fairly well investigated and discussed in a series
of pioneer papers, as quoted in the works cast in
Refs. [44–49]. Nevertheless, in the above mentioned
Secs. III, IV and V, we endeavor to propose an extended
reassessment of the aforementioned classical papers while
choosing the particular ModMax ED as our object of
investigation to illustrate the propagation of the linear
waves. We emphasize however that our attempt is not a
mere review. We work out new results, such as the explicit
expressions for refractive indices and group velocities,
conditions to establish dichroism of the vacuum, find
conditions that involve both the ModMax γ-parameter
and the external fields to inspect the positivity of the
permittivity and permeability tensors in the special case
where the external (electric and magnetic) fields are
orthogonal to each other. We would like to recall that in
the paper [28], the authors consider the specific situation of
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(anti) parallel external fields. Moreover, we also present a
discussion of the angular momentum tensor and the
corresponding spin vector for ModMax ED.
We adopt the natural units ℏ ¼ c ¼ 1with 4πϵ0 ¼ 1, and

the Minkowski metric ημν ¼ diagðþ1;−1;−1;−1Þ. The
electric and magnetic fields have squared-energy mass
dimension in which the conversion of Volt/m and Tesla
(T) to the natural system is as follows: 1 Volt=m ¼ 2.27 ×
10−24 GeV2 and 1 T ¼ 6.8 × 10−16 GeV2, respectively.

II. THE MODIFIED MAXWELL
ELECTRODYNAMICS

We start off the classical description of the ModMax ED
through the Lagrangian density:

LMM ¼ cosh γF þ sinh γ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F 2 þ G2

p
þ JμAμ; ð1Þ

where F and G denote the Lorentz and gauge invariants,

F ¼ −
1

4
F2
μν ¼

1

2
ðE2 −B2Þ; ð2aÞ

G ¼ −
1

4
FμνF̃μν ¼ E ·B; ð2bÞ

with γ being a real parameter, that satisfies the condition
γ ≥ 0 to ensure the causality and unitarity of the model
[28], and Jμ ¼ ðρ; JÞ is a classical source of charge and
current densities. The Fμν¼∂

μAν−∂
νAμ¼ð−Ei;−ϵijkBkÞ

is the skew-symmetric field strength tensor, and F̃μν ¼
ϵμναβFαβ=2 ¼ ð−Bi; ϵijkEkÞ corresponds to the dual tensor.
The usual Maxwell electrodynamics is recovered when
γ → 0.
The action principle yields the field equations

∂μ

�
cosh γFμν þ sinh γ

FμνF þ F̃μνGffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F 2 þ G2

p
�
¼ Jν; ð3Þ

and the dual tensor satisfies the Bianchi identity ∂μF̃μν ¼ 0.
The charge conservation obeys the continuity equation
∂μJμ ¼ 0, as in the Maxwell ED. The equations in terms of
the electric and magnetic fields can be written as:

∇ · D ¼ ρ; ∇ ×Eþ ∂tB ¼ 0; ð4aÞ

∇ · B ¼ 0; ∇ ×H − ∂tD ¼ J; ð4bÞ

where D and H are defined by

D ¼ cosh γEþ sinh γ
FEþ GBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F 2 þ G2

p ; ð5aÞ

H ¼ cosh γBþ sinh γ
FB − GEffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F 2 þ G2

p : ð5bÞ

Multiplying the Bianchi identity by Fμν, and using the
Eq. (3), we arrive at the conservation law

∂μΘμν ¼ JρFρν; ð6Þ

where the energy-momentum tensor of the ModMax ED is
given by

Θμν ¼ ðFμρFρ
ν − ημνF Þ

�
cosh γ þ sinh γFffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F 2 þ G2
p

�
: ð7Þ

This tensor has the properties of symmetry in the (μ ↔ ν)
indices and is gauge invariance. In the case of the ModMax
in a free space (with no charge and current densities),
the expression (6) satisfies immediately the continuity
equation, ∂μΘμν ¼ 0, where the Θ00- and Θ0i-components
denote the conserved energy and momentum densities
stored in the EM fields, namely,

Θ00 ¼ 1

2
ðE2 þB2Þ

�
cosh γ þ sinh γðE2 − B2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðE2 −B2Þ2 þ 4ðE ·BÞ2
p

�
;

ð8aÞ

Θ0i ¼ ðE ×BÞi
�
cosh γ þ sinh γðE2 − B2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðE2 −B2Þ2 þ 4ðE ·BÞ2
p

�
:

ð8bÞ

Notice that both components in Eqs. (8a) and (8b) are not
defined if the electric and magnetic fields, for example,
satisfy the relation of null electromagnetic fields,
E2 −B2 ¼ 0 and E ·B ¼ 0. To remove this singularity,
it is convenient to define the Legendre transformation:

HðD;BÞ ¼ E ·D − LMMðE;BÞ; ð9Þ

and using the ModMax Lagrangian (1), the Hamiltonian
density turns out to be given by

HMM ¼ 1

2
cosh γðD2 þB2Þ

−
1

2
sinh γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD2 −B2Þ2 þ 4ðD · BÞ2

q
; ð10Þ

which is positive-definite if the ModMax parameter obeys
the condition

tanh γ <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD2 þ B2Þ2

ðD2 −B2Þ2 þ 4ðD ·BÞ2

s
: ð11Þ

The quantity (10) is well defined for any D and B.
Furthermore, it is manifestly invariant under the duality
transformations D0 þ iB0 ¼ eiαðDþ iBÞ, with α being
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a real parameter. The Poynting vector, given by the
Θ0i-component in terms of the D- and B- read as below:

SP ¼ D × B: ð12Þ

The spatial component ν ¼ j in the conservation law (6)
yields the expression

∇ · T
↔
− ∂tSP ¼ fL; ð13Þ

where fL ¼ ρEþ J ×B is the Lorentz force density,

while the components of the Maxwell stress tensor T
↔

are given by

Tij ¼
�
cosh γ þ sinh γFffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F 2 þ G2
p

�

×

�
EiEj þ BiBj − δij

1

2
ðE2 þ B2Þ

�
: ð14Þ

The Lorentz force has the same definition as in Maxwell
ED, namely, it is obtained by integrating the corresponding
density over a region of the space.
Having established the energy-momentum tensor of the

ModMax ED, we now proceed to the angular momentum
tensor. Let us adopt the canonical approach and split it into
an orbital (OAM) and spin (SAM) components as follows:

Mμ
αβ ¼ xαTμ

β − xβTμ
α þ Sμαβ; ð15Þ

where Tμ
β stands for the canonical energy-momentum

tensor, whereas Sμαβ expresses the spin contribution:

Tμ
β ¼

�
cosh γFμλ þ sinh γ

FFμλ þ GF̃μλffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F 2 þ G2

p
�
∂βAλ − δμβLMM;

ð16Þ

and

Sμαβ ¼
�
cosh γ þ sinh γFffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F 2 þ G2
p

�
ðFμ

βAα − Fμ
αAβÞ

þ sinh γGffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F 2 þ G2

p ðF̃μ
βAα − F̃μ

αAβÞ: ð17Þ

Consequently, the corresponding spin vector can be read
from the expression below:

Sspin ¼
Z

d3x

��
cosh γ þ sinh γFffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F 2 þ G2
p

�
ðE ×AÞ

þ sinh γGffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F 2 þ G2

p ðB ×AÞ
�
; ð18Þ

which can be recast as

Sspin ¼
Z

d3xD ×A: ð19Þ

Both the OAM and SAM components are not gauge-
invariant and a physically unambiguous splitting into
these two pieces is still controversial and object of debate.
Actually, the formal separation into orbital and spin
parts of an optical field first appeared in a paper by J.
Humblet [50]. In 1932, C. G. Darwin pioneered the
investigation of the angular momentum tensor of electro-
magnetic radiation, though he did not exploit the OAM-
SAM splitting [51]. For an updated discussion, we
address the interested readers to the papers [52,53],
where alternative decompositions into OAM and SAM
components are presented and discussed with a great deal
of details.

III. THE LINEARIZED MODMAX
ELECTRODYNAMICS IN AN EM BACKGROUND

The ModMax ED can be linearized by expanding the
Aμ-potential around a uniform and constant EM field, as
Aμ ¼ aμ þ A0μ, where aμ is the excitation interpreted as the
photon field, whereas A0μ is the potential associated with
the EM background. We adopt a similar procedure and
notations of Ref. [24]. The expansion is considered up to
second order in the photon fluctuation aμ. Thereby, the
tensor Fμν is also decomposed as Fμν ¼ fμν þ F0μν, in
which fμν ¼ ∂

μaν − ∂
νaμ ¼ ð−ei;−ϵijkbkÞ is the EM field

strength tensor of the propagating field, and F0
μν ¼

∂
μA0

ν − ∂
νA0

μ ¼ ð−E0
i;−ϵijkB0

kÞ is the field strength
associated with the background electric and magnetic
fields. Now, by expanding the Lagrangian density (1)
around the external field, we arrive at

Lð2Þ
MM¼−

1

4
c1f2μν−

1

4
c2fμνf̃

μν−
1

2
G0μνfμνþ

1

8
Q0μνκλfμνfκλ;

ð20Þ

whereG0μν ¼ c1F0μν þ c2F̃0μν andQ0μνκλ ¼ d1F0μνF0κλ þ
d2F̃0μνF̃0κλ þ d3F0μνF̃0κλ þ d3F̃0μνF0κλ are tensors that
depend on the components of the EM background
fields. The f̃μν ¼ ϵμναβfαβ=2 ¼ ð−bi; ϵijkekÞ and F̃μν

0 ¼
ϵμναβF0αβ=2 ¼ ð−B0

i; ϵijkE0
kÞ are the dual field strength

tensors of the propagating and background fields, respec-
tively. The f̃μν satisfies the Bianchi identity ∂μf̃

μν ¼ 0 from
which there emerge the homogeneous field equations:

∇ · b ¼ 0; ∇ × e ¼ −∂tb: ð21Þ
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The coefficients c1, c2, d1, d2, and d3 of this expansion are
defined as cast below:

c1 ¼
∂LMM

∂F

����
E0;B0

; c2 ¼
∂LMM

∂G

����
E0;B0

;

d1 ¼
∂
2LMM

∂F 2

����
E0;B0

; d2 ¼
∂
2LMM

∂G2

����
E0;B0

;

d3 ¼
∂
2LMM

∂F∂G

����
E0;B0

; ð22Þ

that also depend only on the EM background. Substituting
the ModMax Lagrangian density (1), we obtain:

c1 ¼ cosh γ þ sinh γF 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F 2

0 þ G2
0

p ;

c2 ¼
sinh γG0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F 2

0 þ G2
0

p ;

d1 ¼
sinh γffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F 2

0 þ G2
0

p G2
0

F 2
0 þ G2

0

;

d2 ¼
sinh γffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F 2

0 þ G2
0

p F 2
0

F 2
0 þ G2

0

;

d3 ¼
sinh γffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F 2

0 þ G2
0

p F 0G0

F 2
0 þ G2

0

; ð23Þ

in whichF 0¼ðE2
0−B2

0Þ=2 and G0 ¼ E0 ·B0 are the gauge
and Lorentz invariants associated with the electric E0, and
magnetic B0 fields.
The action principle applied to the Lagrangian

density (20) yields the field equations:

∂
μ

�
c1fμν þ c2f̃μν −

1

2
Q0μνκλfκλ

�
¼ 0: ð24Þ

The usual Maxwell ED is recovered when the EM back-
ground fields are turned off and the ModMax parameter
goes to zero. Equation (24) can be written into the same
form of Eqs. (4a) and (4b), with the auxiliary fields

Di ¼ εijej þ σijbj; ð25aÞ
Hi ¼ − σjiej þ ðμijÞ−1bj; ð25bÞ

where the permittivity symmetric tensor εij, the inverse of
the permeability symmetric tensor ðμijÞ−1, and σij are given
in terms of the electric and magnetic background compo-
nents, as follows

εij ¼ c1δij þ d1E0iE0j þ d2B0iB0j þ d3E0iB0j þ d3B0iE0j;

ð26aÞ
σij ¼ c2δij − d1E0iB0j þ d2B0iE0j þ d3E0iE0j − d3B0iB0j;

ð26bÞ

ðμijÞ−1 ¼ c1δij − d1B0iB0j − d2E0iE0j

− d3E0iB0j − d3B0iE0j: ð26cÞ
Notice that the case in which c2 ≠ 0 and d3 ≠ 0,
CP-symmetry is violated in the linearized theory. To keep
CP invariance, we just consider the situation in which the
electric and magnetic background fields are mutually
orthogonal.

IV. WAVE PROPAGATION FOR
PERPENDICULAR EXTERNAL FIELDS

If we consider the case with E0 perpendicular to B0, the
second Lorentz and gauge invariant quantity G0 ¼ 0, so that
the coefficients from Eq. (22) are given by

c1 ¼ cosh γ þ sinh γsgnðF 0Þ;

d2 ¼
sinh γ
jF 0j

;

c2 ¼ d1 ¼ d3 ¼ 0; ð27Þ
in which sgnðF 0Þ is the signal function of F 0, where
sgnðF 0Þ ¼ 1 if jE0j > jB0j, and sgnðF 0Þ ¼ −1 if
jB0j > jE0j. Under these conditions, the permittivity ten-
sor, (26a), and the permeability tensor related to Eq. (26c)
turn out to be

εij ¼ c1δij þ d2B0iB0j; ð28aÞ

μij ¼
1

c1

�
δij þ

dEE0iE0j

1 − dEE2
0

�
; ð28bÞ

where the coefficient dE is

dE ¼ d2
c1

¼ tanhðγÞ
jF 0j þ tanhðγÞF 0

; ð29Þ

in which

dE ¼ 1 − e−2γ

E2
0 − B2

0

if jE0j > jB0j; ð30aÞ

dE ¼ e2γ − 1

B2
0 − E2

0

if jB0j > jE0j: ð30bÞ

The eigenvalues of the matrices εij and μij are given by:

λ1ε ¼ λ2ε ¼ c1; λ3ε ¼ c1 þ d2B2
0; ð31aÞ

λ1μ ¼ λ2μ ¼
1

c1
; λ3μ ¼

1

c1 − d2E2
0

; ð31bÞ

the electric permittivity and magnetic permeability are both
positive-definite if the eigenvalues satisfy the conditions
c1 > 0, 1þ dEB2

0 > 0, and 1 − dEE2
0 > 0.
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We turn now our attention to the dispersion relations.
Considering plane wave solutions, eðx; tÞ ¼ e0eiðk·x−ωtÞ

and bðx; tÞ ¼ b0eiðk·x−ωtÞ in Eq. (24), the wave equation
for the components of the electric amplitude e0i is

Mije0j ¼ 0: ð32Þ

The matrix elements Mij have the form

Mij ¼ ðω2 − k2Þδij þ kikj þ uivj; ð33Þ

where the vectors are defined by ui ¼ ωB0i − ðk ×E0Þi
and vi ¼ dEui. The determinant of the M-matrix can be
calculated and yields the expression

detM ¼ ðω2 − k2Þ½ω2ðω2 − k2 þ u · vÞ − ðu · kÞðv · kÞ�;
ð34Þ

The condition detM ¼ 0 leads to the usual photon
dispersion relation ω ¼ jkj as one of the solutions. The
other solutions correspond to the roots of the polynomial
equation:

ω2ðPω2 þQωþ RÞ ¼ 0; ð35Þ

where P ¼ 1þ dEB2
0, Q ¼ −2dEB0 · ðk × E0Þ, and

R ¼ dEðk ×E0Þ2 − k2 − dEðB0 · kÞ2. The zeroes of
Eq. (35) are ω ¼ 0, and the nontrivial solutions:

ωð−ÞðkÞ ¼ dEB0 · ðk ×E0Þ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − dEðk ×E0Þ2 − d2EðE2

0 − B2
0Þðk ·B0Þ2 þ dEðk · B0Þ2 þ dEB2

0k
2

p
1þ dEB2

0

; ð36aÞ

ωðþÞðkÞ ¼ dEB0 · ðk × E0Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − dEðk ×E0Þ2 − d2EðE2

0 −B2
0Þðk · B0Þ2 þ dEðk ·B0Þ2 þ dEB2

0k
2

p
1þ dEB2

0

: ð36bÞ

The limit of usual Maxwell ED (γ → 0) in Eqs. (36b)
and (36a) yields the roots limγ→0 ω

ð�ÞðkÞ ¼ �jkj, so that
the photon dispersion relation is recovered. Thereby, we
choose the ωðþÞ frequency for the analysis of the refractive
index of the medium. Notice that the refractive index
nðþÞ ¼ jkj=ωðþÞðkÞ does not depend on the wavelengths,
ðλ ¼ 2π=jkjÞ, so that dispersion does not occur. It is
important to remark that the frequencies in Eqs. (36a)
and (36b) have an asymmetry: jωð−ÞðkÞj ≠ jωðþÞðkÞj. In
the regime of strong magnetic fields, i.e., jB0j ≫ jE0j, the
previous frequencies can be simplified according to the
expressions that follow:

ωð�ÞðkÞ ≃�jkje−γ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2eγ sinhðγÞ cos2 θ

q
; ð37Þ

where cos θ ¼ k̂ · B̂0. It is interesting to highlight that this
frequency coincides with the results given in Ref. [28],
where the authors investigated a different configuration of
external fields, namely, (anti)parallel external fields.
In this condition, the frequency depends on the direction

of the magnetic field relative to the k-wave vector, and
consequently, the refractive index also depends on the

θ-angle. In addition, the frequency (37) does not depend
on the magnetic field magnitude when jB0j → ∞. We
also point out that the frequencies (36a) and (36b) are
degenerate at ωðþÞ ¼ ωð−Þ ¼ dEB0 · ðk ×E0Þ if the
ModMax parameter and the EM background field satisfy
the condition

1þ dEðk̂ · B0Þ2 þ dEB2
0

¼ dEðk̂ ×E0Þ2 þ d2EðE2
0 −B2

0Þðk̂ · B0Þ2: ð38Þ

On the other hand, if the EM background fields satisfy the
inequality

1þ dEðk̂ ·B0Þ2 þ dEB2
0 > dEðk̂ ×E0Þ2

þ d2EðE2
0 − B2

0Þðk̂ ·B0Þ2; ð39Þ

both the dispersion relations (36a) and (36b) are real.
Otherwise, if the expression (39) has the opposite inequal-
ity (<), the dispersion relations have imaginary parts. The
refractive index associated with the ωðþÞ-frequency is
defined by

n ¼ 1þ dEB2
0

dEB0 · ðk̂ × E0Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − dEðk̂ ×E0Þ2 − d2EðE2

0 −B2
0Þðk̂ ·B0Þ2 þ dEðk̂ ·B0Þ2 þ dEB2

0

q ; ð40Þ
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where the condition (39) can be imposed to obtain a real refractive index. It is opportune to point out that Eq. (39) with the
opposite inequality (<) implies into a dichroism effect in the refractive index (40). In the regime of a strong magnetic field
ðjB0j ≫ jE0jÞ, the previous refractive index leads to

n ≃
eγffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðe2γ − 1Þ cos2 θ
p ; ð41Þ

which depends on the θ-angle and γ-parameter.
The group velocity stemming from the polynomial equation (35) is

vg ¼
ω½ð1 − dEE2

0Þkþ dEðE0 · kÞE0 þ dEðB0 · kÞB0 þ dEωðE0 ×B0Þ�
2ω2 − k2 þ dEðωB0 − k ×E0Þ2 þ dEωB0 · ðωB0 − k ×E0Þ − dEðB0 · kÞ2

; ð42Þ

where ω must be evaluated at the solutions ω ¼ 0, (36a)
and (36b). The external electric and magnetic fields
correspond to space anisotropies and the group velocity
of the wave is no longer exclusively along k; it develops
components in other directions too. The limit γ → 0 in
Eq. (42) recovers the usual result from Maxwell ED,
vg ¼ ck̂ (with c ¼ 1 in natural units). As expected, the
solutionω ¼ 0 yields a null group velocity. In the regime of
a strong magnetic background ðjB0j ≫ jE0jÞ, the group
velocity (42) is reduced to

vg ≃ e−γ
k̂þ 2eγ sinh γ cos θB̂0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2eγ sinhðγÞ cos2 θ

p : ð43Þ

Observe that this result also depends on the θ-angle and has
a component on the magnetic background direction.
For the sake of simplicity, we consider the vectors k, B0

and E0 perpendicular among themselves, i.e., k ·B0 ¼
k · E0 ¼ B0 · E0 ¼ 0. The refraction index of this medium
associated with the ωðþÞ-frequency is given by

n1 ¼
E2
0 − B2

0 þ 2e−γ sinhðγÞB2
0

ðE2
0 − B2

0Þe−γ þ 2e−γ sinhðγÞE0B0

; ð44Þ

when E0 > B0, and

n2 ¼
E2
0 − B2

0 − 2eγ sinhðγÞB2
0

ðE2
0 − B2

0Þeγ − 2eγ sinhðγÞE0B0

; ð45Þ

for the condition B0 > E0. Here, we denote E0 ¼ jE0j and
B0 ¼ jB0j. The γ → 0 limit leads to n1 ¼ n2 ¼ 1. Although
the dE coefficient is not defined for E0 → B0, this limit
leads to n1 ¼ n2 ¼ 1, if E0 ≠ B0. For the condition of a
strong magnetic field, B0 ≫ E0, the refraction index
n2 ≃ e−γ and does not depend on the magnetic field.
Under the conditions of k · B0 ¼ k ·E0 ¼ B0 ·E0 ¼ 0,

the group velocity associated with the previous frequencies
is obtained from Eq. (42), namely,

vg ¼
k̂ω½k − dEB0E0ω − dEE2

0k�
2ω2 − k2 þ dEðωB0 − kE0Þ2 þ dEωB0ðωB0 − kE0Þ

:

ð46Þ

For a strong magnetic field, we have vg ≃ e−γk̂, the group
velocity decays with the ModMax parameter and propa-
gates only on the k̂-direction. This confirms the result (43)
whenever θ ¼ π=2.

V. BIREFRINGENCE IN PRESENCEOF ELECTRIC
AND MAGNETIC BACKGROUNDS

In this section, we investigate the birefringence phe-
nomenon in the context of ModMax ED. For this purpose,
we need to obtain the variation of the refractive index in
relation to the magnetic background field. In what follows,
we assume the external fields as B0 ¼ B0ẑ and E0 ¼ E0ŷ.
Initially, let us consider the plane wave solution for the

electric field into the form eðx; tÞ ¼ e03ẑeiðkx−ωtÞ. Notice
that the propagation direction is k ¼ kx̂ and the wave
amplitude is parallel to the magnetic background field.
Under these conditions, the wave equation (32) yields the
parallel refractive index:

nk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ22ðE0; B0Þε33ðE0; B0Þ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ dEB2

0

1 − dEE2
0

s
: ð47Þ

In the second situation, the plane wave solution has
the amplitude perpendicular to the magnetic background
field, eðx; tÞ ¼ e02ŷeiðkx−ωtÞ. In this case, the perpendicular
refractive index is

n⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ33ðE0; B0Þε22ðE0; B0Þ

p
¼ 1: ð48Þ

The birefringence is defined by the difference of the
refractive indices:

Δn ¼ jnk − n⊥j ¼
�����

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ dEB2

0

1 − dEE2
0

s
− 1

�����: ð49Þ
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In the limit γ → 0, we have Δn ¼ 0 and birefringence
disappears. Using the definitions of dE in Eqs. (30a)
and (30b), we obtain the following difference

Δn1 ¼
�����

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
0e

2γ − B2
0

E2
0 − B2

0e
2γ

s
− 1

�����; if E0 > B0; ð50aÞ

Δn2 ¼
�����

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
0e

2γ − E2
0

B2
0 − E2

0e
2γ

s
− 1

�����; if B0 > E0: ð50bÞ

The plot of Δn1 versus xðx ¼ E0=B0Þ (left panel), and
Δn2 versus x (right panel) are illustrated in Fig. 1. The
vertical asymptote in these plots is located at E0 ¼ eγB0

(left panel), and at E0 ¼ e−γB0 in the right panel.
Imposing the causality and unitarity conditions on the
ModMax ED [28], we choose the γ-values with γ > 0.
In the plot of Δn1, we choose the values for the
γ-ModMax parameter: γ ¼ 0.5 (black line), γ ¼ 0.8 (blue
line), and γ ¼ 1.0 (red line), in which E0 > B0. The
γ-values in the plot of Δn2 are γ ¼ 0.5 (black line),
γ ¼ 1.0 (blue line), and γ ¼ 1.5 (red line), that satisfies
the condition B0 > E0.
Birefringence manifests in the region below the curves

in Fig. 1. Under an intense magnetic background field,
B0 ≫ E0 (or when E0 → 0) and γ ≪ 1, the second
solution (50b) reads as given below:

Δn2 ≃ γ; ð51Þ

which agrees with the result given in Ref. [29]. Similarly, if
the electric background field is intense, where E0 ≫ B0 (or
when B0 → 0) and γ ≪ 1, the first solution in Eq. (50a)
leads to the same result Δn1 ≃ γ. The birefringence curves

go to infinity when x → eγ (left panel) and x → e−γ

(right panel).

VI. INTERACTION ENERGY FOR AN AXIONIC
MODMAX ELECTRODYNAMICS UNDER

A UNIFORM MAGNETIC FIELD

The coupling of the axion to the photon has been widely
investigated in different scenarios. There is a rich literature
on the issue, with special attention to the Primakoff effect
(see, for instance, the review [54] and references therein).
In the present section, we pursue the investigation of the
low-energy interparticle potential that emerges from a
scenario where the axion is coupled to the photon as
described by our object of study, ModMax ED. It is true
that we are taking an unusual viewpoint, by bringing
together two new physics: ModMax with its γ-parameter,
and the axionic sector, with the axion mass, ma, and the
axion-photon coupling constant, gaγγ . We justify our
attitude by calling into question our interest in under-
standing how the mentioned three parameters interfere with
each other in the screening and the confining sectors of the
particle-antiparticle potential, after we integrate out the
axion contributions to get an effective photonic mediation
of the interaction. Moreover, if an external magnetic field is
switched on, it would be interesting to understand how γ,
ma, gaγγ and the external magnetic field, B, combine to
screen and to a confining tail to the interparticle potential.
This shall be the content of this section.
As already expressed, we shall now discuss the inter-

action energy between static pointlike sources for an
axionic ModMax electrodynamics under a uniform mag-
netic field, along the lines of Refs. [25–27,42,43]. This can
be done by computing the expectation value of the energy
operator H in the physical state jΦi, which we denote by
hHiΦ. However, before going to the derivation of the
interaction energy, we will describe very briefly the model

FIG. 1. The variation of the refractive index Δn1 (left panel) and Δn2 (right panel) as functions of the dimensionless variable
x ¼ E0=B0. The left panel is plotted for γ ¼ 0.5 (black line), γ ¼ 0.8 (blue line), and γ ¼ 1.0 (red line) in the range of E0 > B0. The right
panel is for γ ¼ 0.5 (black line), γ ¼ 1.0 (blue line), and γ ¼ 1.5 (red line), with the condition of B0 > E0, respectively.
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under consideration. The initial point of our analysis is the
Lagrangian density

L ¼ coshðγÞF þ sinhðγÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F 2 þ G2

p
þ 1

2
ð∂μaÞ2

−
1

2
m2

aa2 þ gaγγaG; ð52Þ

where a is the axion field and gaγγ has dimension
of ðmassÞ−1.
Following our earlier procedure [42,43], if we consider

the model in the limit of a very heavy a-field and we are
bound to energies much below ma, we are allowed to
integrate over a and to speak about an effective model for
the Aμ-ModMax field. Once this is done, we arrive at the
following effective Lagrangian density:

L ¼ coshðγÞF þ sinhðγÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F 2 þ G2

p
þ g2aγγ

2
G

1

ð□þm2
aÞ
G;

ð53Þ

where we define the D’Alembertian operator □≡ ∂μ∂
μ.

Since we are interested in estimating the lowest-order
interaction energy, we will linearize the above effective
theory following the procedure that led to the Eq. (20).
Thus, in the case of a pure magnetic background, we
make E ¼ 0, in which the effective Lagrangian density
simplifies to

L ¼ −
1

4
e−γfμνfμν −

1

2
e−γFBμνfμν

þ 1

4

sinhðγÞ
B2

0

F̃BμνF̃Bκλfμνfκλ

þ g2aγγ
8

F̃Bμνfμν
1

ð□þm2
aÞ
F̃Bκλfκλ: ð54Þ

In passing, we note that the effective model described
by the Lagrangian density (54) is a theory with a nonlocal
time derivative. However, as we have already explained in
Refs. [42,43], we recall that this section is aimed at
studying the static potential, so that □ can be replaced
by the spatial operator −∇2. As before, we will maintain□,
but it should be borne in mind that this paper essentially
deals with the static case.
With this in hand, the canonical quantization of this

effective theory from the Hamiltonian analysis point of
view is straightforward. The canonical momenta reads

Πμ ¼ −e−γf0μ − e−γFB
0μ þ sinhðγÞ

B2
0

F̃BκρfκρF̃B
0μ

þ g2aγγ
2

F̃Bκρfκρ
1

ð□þm2
aÞ
F̃B

0μ; ð55Þ

which produces the usual primary constraint

Π0 ¼ 0; ð56Þ

and

Πi ¼ −
�
e−γδij þ 2BiBj

�
sinhðγÞ
B2

0

þ g2aγγ=2

ð□þm2
aÞ
��

ej: ð57Þ

Let us also mention here that the electric field due to the
fluctuation takes the form

ei ¼
1

u detD

�
δij detD −

1

Ω2
BiBj

	
Πj; ð58Þ

where u ¼ e−γ and detD ¼ 1þ B2

Ω2, whereas

1

Ω2
¼ 2eγ

�
sinhðγÞ
B2

þ g2aγγ=2

ð□þm2
aÞ
�
: ð59Þ

Recalling again thatB represents the external (background)
magnetic field around which the aμ-field fluctuates.
The canonical Hamiltonian can beworked as usual and is

given by

HC ¼
Z

d3x

�
Πi
∂ia0 þ

Π2

2u
þ 1

2
ub2 þ uB · b

�

−
Z

d3x
1

2uΩ2 detD
ðB · bÞ2: ð60Þ

Time conserving the primary constraint, Π0, immedi-
ately yields the secondary constraint, Γ1 ≡ ∂iΠi ¼ 0, which
is the Gauss constraint, and together displays the first-class
structure of the theory. The extended Hamiltonian that
generates translations in time is now found to be

H ¼ HC þ
Z

d3x½c0ðxÞΠ0ðxÞ þ c1ðxÞΓ1ðxÞ�; ð61Þ

where c0ðxÞ and c1ðxÞ are the Lagrange multipliers. As
before, neither a0 nor Π0 are of interest in describing the
system and may be discarded of the theory. Thus we are left
with the following expression for the Hamiltonian

H ¼
Z

d3x

�
cðxÞ∂iΠi þΠ2

2u
−

1

2uΩ2 detD
ðB · bÞ2

�
; ð62Þ

we have defined cðxÞ ¼ c1ðxÞ − a0ðxÞ.
To fix gauge symmetry we adopt the gauge discussed

previously [27], that is,

Γ2ðxÞ≡
Z
Cζx

dzνaνðzÞ≡
Z1

0

dλxiaiðλxÞ ¼ 0: ð63Þ
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Here λð0 ≤ λ ≤ 1Þ is the parameter describing the spacelike
straight path xi ¼ ζi þ λðx − ζÞi, and ζi is a fixed point
(reference point). There is no essential loss of generality if
we restrict our considerations to ζi ¼ 0. With such a choice,
the fundamental Dirac bracket is given by

faiðxÞ;ΠjðyÞg� ¼ δi
jδð3Þðx − yÞ − ∂

x
i

Z1

0

dλxjδð3Þðλx − yÞ:

ð64Þ

Next, we recall that the physical states jΦi are gauge-
invariant [42,43]. In that case we consider the stringy
gauge-invariant state

jΦi≡ jΨ̄ðyÞΨðy0Þi

¼ Ψ̄ðyÞ exp
�
iq

Z
y

y0
dziaiðzÞ

	
Ψðy0Þj0i; ð65Þ

where the line integral is along a spacelike path on a fixed
time slice, q is the fermion charge and j0i is the physical
vacuum state.
This leads us to the expectation value hHiΦ

hHiΦ ¼ hHi0 þ hHið1ÞΦ ; ð66Þ

where hHi0 ¼ h0jHj0i, whereas the hHið1Þ0 term is given by

hHið1ÞΦ ¼ −
e−γ

2
hΦj

Z
d3xΠi ð∇2 −m2

aÞ
ð∇2 −M2ÞΠijΦi; ð67Þ

where M2 ¼ m2
a þ g2aγγB2e−γ .

Following our earlier procedure [42,43], when gaγγ → 0,
the static potential profile for two opposite charges located
at y and y0 then reads

VðLÞ ¼ −
q2

4π
e−γ

1

L
; ð68Þ

where L≡ jy − y0j is the distance that separates the two
charges. It is also, up to the e−γ factor, just the Coulomb
potential. This result agrees with that of Ref. [30], and finds
here an independent derivation. While in the case gaγγ ≠ 0,
the interaction energy takes the form

VðLÞ¼−
q2

4π
e−γ

e−ML

L
þq2m2

a

8π
e−γ

�
ln

�
1þ Λ2

M2

	�
L; ð69Þ

where Λ is a cutoff. The next step is to give a physical
meaning to the cutoff Λ. Proceeding in the same way as we
did before [42,43], we recall that our effective model for
the electromagnetic field is an effective theory that arises

from the integration over the a-field, whose excitation is
massive. In this case, the Compton wavelength of this
excitation (l ¼ m−1

a ) defines a correlation distance. In view
of this situation, we see that physics at distances of the
order or lower than m−1

a must necessarily take into account
a microscopic description of the a-fields. By this we mean
that, if we work with energies of the order or higher than
ma, our effective description with the integrated effects of a
is no longer sensible. As a consequence of this, we can
identify Λ with ma. This then implies that the static
potential profile assumes the form

VðLÞ¼−
q2

4π
e−γ

e−ML

L
þq2m2

a

8π
e−γ

�
ln

�
1þm2

a

M2

	�
L: ð70Þ

Again, up to the e−γ factor, we mention that similar
forms of interaction potentials have been reported before
from different viewpoints. For example, in the context of
the Standard Model with an anomalous triple gauge boson
couplings [42], in connection with anomalous photon and
Z-boson self couplings from the Born-Infeld weak hyper-
charge action [43], also in a theory of antisymmetric tensor
fields that results from the condensation of topological
defects [55], and in a Higgs-like model [56].

VII. CONCLUSIONS

In this contribution, we study the modified Maxwell
electrodynamics (ModMax ED) and its propagation proper-
ties in uniform electric and magnetic background fields.
By expanding the ModMax Lagrangian density up to
second order in the propagating photon field, we obtain
the permittivity and permeability tensors, dispersion rela-
tions, refractive index and group velocity as functions of
the wave propagation direction, ModMax parameter and
external fields. In the regime of a strong magnetic field, the
dispersion relations for plane wave solutions depend only
on the ModMax parameter and θ-angle between the wave
propagation direction and magnetic background field. In
this regime, we also find that the refractive index and group
velocity decay with the ModMax parameter in the situation
where the wave vector, the electric and magnetic back-
ground fields are perpendicular to each other.
We discuss the birefringence phenomenon by taking into

account the difference of the refractive indices for the wave
amplitude parallel and perpendicular to the external mag-
netic field. We obtain the region of birefringence in the
plots of Fig. 1. In both regimes of strong magnetic or
electric fields, birefringence is approximately given by the
ModMax parameter, which confirms the result obtained
previously in the Ref. [29]. The well-known results of
Maxwell ED are recovered in the limit where the ModMax
parameter goes to zero.
Finally, using the gauge-invariant but path-dependent

variables formalism, we have computed the static potential
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profile for an axionic ModMax electrodynamics under a
uniform magnetic field. Once again, we have exploited a
correct identification of field degrees of freedom with
observable quantities. Interestingly, the static potential
profile contains a linear potential leading to the confine-
ment of static charges. As already expressed similar forms
of interaction potentials have been reported before from
different viewpoints [42,43,55,56].
Having in mind the possible relevance of the ModMax

model to describe nonlinear electromagnetic effects, we
call into question its application to study a number of
physical properties of Dirac materials. In the work of
Ref. [57], the authors show that the latter may display
electromagnetic nonlinearities at magnetic fields as low
as 1T. We point out that reassessing the inspection of
magnetic enhancement of the dielectric constant of insula-
tors and, on the other hand, possible electric modulation of
magnetization could be a good path to further investigate
the potentialities of ModMax.

A direct contact we might establish between ModMax
and electroweak physics could be through the issue of the
photon and Z-boson self-couplings by associating the weak
hypercharge symmetry to a ModMax description. In the
work of Ref. [43], we adopt a Born-Infeld description for
the weak hypercharge and consider the Z-decay channel
into three photons to constrain the Born- Infeld parameter.
By going along the same lines with ModMax, we could get
a bound on the γ-parameter by considering the Z-three
photon anomalous vertex and the decay of the Z-boson into
three photons.
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