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Current data on semileptonic charged- and neutral-current B decays show deviations from the
predictions of the Standard Model. It is well known that a charged Higgs boson, belonging to the
two-Higgs doublet model without Z2 symmetry, offers one of the simplest solution to the charged-current B
decays. We show that this solution naturally induces a negative shift ofOð1Þ in the Wilson coefficient (C9l)
of operator ðs̄LγμbLÞðlγμlÞ, potentially resolving the tension in neutral-current B decays as well.
Interestingly, the lepton universality ratios in b → slþl− decays, in tune with the recent LHCb result,
remain SM-like. Precision constraints from neutral B and K meson mixing, decays Bc → τν̄, B → Xsγ, and
leptonic decays of τ and Z can be satisfied. Furthermore, a positive shift in W-boson mass, nicely in
agreement with the CDF measurement, is also possible, requiring the neutral scalars to be heavier than the
charged Higgs but within the sub-TeV region.
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I. INTRODUCTION

It is remarkable that though there already exists irrefutable
experimental evidence (e.g., baryon asymmetry of the
Universe, neutrinomasses) and persuasive theoretical reasons
(e.g., naturalness problem, flavor problem) for physics
beyond the Standard Model (SM), no new physics (NP)
particle has turned up so far at the LHC. One reason could be
that the NP scale is very heavy and beyond LHC reach.
However, in recent years a number of measurements, espe-
cially those associatedwith semileptonic decays ofBmesons,
have been significantly at odds with the SM predictions and
could be telltale sign of sub-TeV scale NP accessible at the
LHC.We discuss one example of such NP—a chargedHiggs
boson ðHþÞ of a few hundred GeV mass, which can help in
alleviating the tension between theory and the current data.
In semileptonic B decays, one set of prominent anoma-

lies, persisting for many years and strengthened further by
the recent LHCb measurement [1], are in the lepton flavor
universality (LFU) ratios

RDð�Þ ¼ BRðB → Dð�Þτν̄Þ
BRðB → Dð�Þlν̄Þ ; l ¼ fe; μg: ð1Þ

The current world average by HFLAV [2], based on
measurements by B factories [3–7] and LHCb [1,8–10],

gives RD ¼ 0.358� 0.028 and RD� ¼ 0.285� 0.013.
Individually, these values disagree with the SM expect-
ation [11–18] at the significance level of 2.2σ and 2.3σ,
respectively. Taken together (the correlation coefficient
is −0.29), the disagreement increases to 3.2σ.1 On the
other hand, measurements of analogous muon vs
electron LFU ratios are in agreement with the SM
predictions [22–24].
Another set of anomalies are observed in b → sμþμ−

decays. One of these is the ∼3σ anomaly in the
measurement of angular observable P0

5 in the decay
B → K�μþμ− [25–27]. Another sizable tension, of
3.6σ significance, is reported by LHCb [28–30] in the meas-
urement of branching fraction of the Bs → ϕμþμ− decay,
finding it below the SM expectation. The data on
B → Kμþμ− [31] and Λb → Λμþμ− [32] also show a
deficit in branching fractions with respect to the SM
predictions. The recent update from LHCb [33,34]
however finds no evidence of LFU breaking in b →
slþl− decays: the ratios RKð�Þ ¼ BRðB → Kð�Þμþμ−Þ=
BRðB → Kð�Þeþe−Þ [35] measured in the dilepton invariant
mass bins 0.1 < q2 < 1.1 GeV2 and 1.1 < q2 < 6 GeV2
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1The trend of surplus in tauonic modes is also observed in
the measurement of RJ=ψ [19], the LFU ratio defined similar to
Eq. (1) for Bc → J=ψ transition, while the ratio RΛc

(related to
Λb → Λc transition) shows a relative deficit [20]. These devia-
tions, however, are relatively mild in significance as the cur-
rent associated experimental uncertainties are large. We therefore
do not include these two ratios in our analysis. We refer to a
recent paper [21] analyzing the impact of RΛc

inclusion in NP
analysis.
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are in complete agreement2 with the SM predictions known
with percent-level accuracy [36–38]. These new findings
overturn previous results [39–41] that reported a deficit in
RKð�Þ . Although the predictions of individual branching
fractions and optimized angular observables such as P0

5 are
subject to significant hadronic uncertainties [42–52]; at
present it is contestable whether the long-distance effects
can fully account for the tension in b → slþl−, and NP
may be warranted to explain the data (e.g., see Ref. [53]).
Recently, the Fermilab CDF collaboration [54], based on

2002–2011 data with 8.8 fb−1 integrated luminosity,
reported a new measurement of W-boson mass:

MW ¼ 80.4335� 0.0094 GeV; ð2Þ

which differs from the SM prediction MSM
W ¼ 80.357�

0.006 GeV [55] with 7σ significance. It is intriguing to note
that the CDF measurement also differs with MW measure-
ments reported by ATLAS [56] and LHCb [57], an issue to
be resolved3 in the future with improved measurements.
Here, we will take a view that the CDF measurement hints
towards NP presence in the MW value.
In this article we show that aHþ boson, naturally present

in simple extensions of the SM such as two-Higgs doublet
model (2HDM) [59], can account for the above-mentioned
anomalies. The fact that Hþ can explain RD and RD�

anomalies is well known in literature [60–77]. Here, we
show that same set of Hþ interactions that explain the RDð�Þ

anomaly unavoidably induce a destructive NP contribu-
tion desired to simultaneously explain the tension in
b → slþl−, while keeping the ratios RKð�Þ unaltered.
Our results strengthen the viewpoint that a common NP
could be behind the charged- and neutral-current B
anomalies. The MW anomaly can also be explained by a
NP contribution to the Peshkin-Takeuchi T parameter [78],
which helps determine the allowed mass range of the
physical scalars in the 2HDM.

II. H + INTERACTIONS AND RELEVANT
NP PARAMETERS

The Hþ boson we consider belongs to a 2HDM without
any special discrete symmetry (see Ref. [79] for a com-
prehensive review). The general Hþ interactions in the
fermion mass basis are given by the Lagrangian [80]

LHþ ¼ −ūðVρdR − ρu†VLÞdHþ − ν̄ρeReHþ þ H:c:; ð3Þ

where ρf (f ¼ u, d, e) are 3 × 3 NP Yukawa matrices, V
denotes the Cabibbo-Kobayashi-Maskawa (CKM) matrix,
and L=R≡ ð1 ∓ γ5Þ=2 are the chirality projectors. In
addition to the Hþ boson, 2HDM also has CP-even/odd
scalar bosons H, A. Their Yukawa interactions are not
important for our analysis; we refer to Refs. [80,81] for
their details. However we need to define the masses of H,
A, as those would be required in the computation of MW in
the model. The masses ofH, A are related to mass ofHþ by
the relations4

m2
Hþ ¼ m2

H −
v2

2
ðΛ4 þ Λ5Þ; m2

A ¼ m2
H − v2Λ5; ð4Þ

where v ≃ 246 GeV, and Λ4, Λ5 are the quartic couplings
in the Higgs potential (see the Appendix for details).
To explain the anomalies with a minimal set of NP

parameters, we make the ansatz that NP Yukawa matrices
have the following simple structure

ρu ¼

0
B@

0 0 0

0 0 0

0 ρtc 0

1
CA; ρe ¼

0
B@

0 0 0

0 0 0

0 0 ρττ

1
CA; ð5Þ

and ρd ¼ 0. The texture, such as in Eq. (5), is the most
economical choice to affect rate of B → Dð�Þτν̄ only:
the off-diagonal coupling ρtc facilitates Hþ mediated
b → c transitions that are not CKM suppressed, and
diagonal lepton coupling ρττ ensures that only semi-
tauonic modes are affected. With the above choice the
Lagrangian in Eq. (3) simplifies to (dropping a Vtd sup-
pressed term)

LHþ ¼ ðρ�tcVtbc̄RbL þ ρ�tcVtsc̄RsL − ρττν̄τLτRÞHþ þ H:c:;

ð6Þ

which together with Eq. (4) defines all the Yukawa
interactions and NP parameters relevant in our setup.
Concerning direct search constraints on Hþ, analyses

in Refs. [76,84], based on experimental results of
Refs. [85–88], find that the mass range mHþ > 400 GeV
for an explanation of the RDð�Þ anomaly is likely ruled out
due to a constraint from the pp → bc → τν process.
However, the low-mass region mHþ < 400 is still not
excluded [76]. It was pointed out recently [77] that the τν
search with an additional b-tagged jet (pp → bH� → bτν)
could be useful in probing this low-mass region of Hþ. In
this article we therefore focus on the mHþ < 400 GeV
region.

2It is worth noting that rates of both the Bþ → Kþμþμ− [31]
and Bþ → Kþeþe− decays in the central q2 bin are now low
compared to the corresponding SM predictions while their ratio
(RK) remains SM-like [34].

3Recently it has been suggested [58] that discrepancies
between different MW measurements could be due to a light
NP particle modifying the missing transverse momentum in the
detector.

4Here we assume, in accordance with the current data [82,83],
that there is very little mixing between the SM Higgs (h) and H
boson.
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III. OBSERVABLES

In this section we discuss Hþ contributions to the
anomalous observables together with the relevant con-
straint on our setup.

A. RD and RD�

The Hþ boson mediates b → cτν̄ transition at tree level
[shown in Fig. 1(a)], the effect of which can be para-
metrized by the following effective Hamiltonian

Heff ¼ 2
ffiffiffi
2

p
GFVcbCS;Lðc̄RbLÞðτ̄RντLÞ; ð7Þ

where the coefficient CS;L at scale μ ∼mHþ is given by

CS;L ¼ ρ�tcρ�ττ
2

ffiffiffi
2

p
GFVcbm2

Hþ
: ð8Þ

The contributions of CS;L to ratios RD and RD� are numeri-
cally parametrized (at scale μ ∼mb) as [89]

5

RD ≃ ðRDÞSM½1þ 1.49ReðCS;LÞ þ 1.01jCS;Lj2�; ð9Þ

RD� ≃ ðRD� ÞSM½1 − 0.11ReðCS;LÞ þ 0.04jCS;Lj2�: ð10Þ

The scalar interaction in Eq. (7) contributes rather
significantly (due to lack of chirality suppression) to the
Bc → τν branching ratio. Numerically, it is given as [89]

BRðBc → τνÞ ≃ 0.02j1 − 4.35CS;Lj2: ð11Þ

This decay is not measured yet. However, based on the
precisely measured lifetime of the Bc meson [92], a
theoretical constraint on maximally allowed BRðBc →
τνÞ can be obtained [93]. Recent estimates [90,94] suggest
that BRðBc → τνÞ as large as 60% to 63% is still possible.
In our analysis we have not considered the con-

straint from the differential decay distributions of
B → Dð�Þτν̄ [3,6], which are known to be sensitive to
scalar NP [95–97]. Compared to ratios RDð�Þ , the decay
distributions are quite sensitive to hadronic form factors
and parametric (e.g., Vcb) uncertainties. Furthermore, the
corresponding experimental analyses [3,6] are model de-
pendent and require the NP model’s contributions to the
background and the signal efficiency in order to obtain the
data. Also, since the correlations among different data bins
are not available, a combined data analysis is difficult. The
improved measurements at Belle II [98] will be helpful in
overcoming these issues (e.g., see discussion in Ref. [95]).

B. b → sl+l−
The Hþ contributions to b → slþl− processes have

been discussed in several works (for example,
see [69,70,99,100]), most of which have focused on top
quark-Hþ loop diagrams. Such contributions, which are
local in the effective field theory at scale μ ∼mb, are not
present in our setup [see Eq. (6)]. Instead, the typical b →
slþl− contributions arise from the diagrams involving a
charm quark in the loop as shown in Figs. 1(b) and 1(c).
The leading contribution to b → slþl− comes from the

penguin diagram in Fig. 1(b). This contribution in the
effective field theory can be obtained via the penguin
insertion of the four-quark operator ðc̄RbLÞðs̄LcRÞ mediat-
ing the b → scc̄ transition. This four-quark operator is
generated at tree level via a diagram similar to Fig. 1(a)
with the τ̄νHþ vertex replaced by s̄cHþ. For convenience
we make use of a Fierz identity and define the following
b → scc̄ effective Hamiltonian

−Heff ¼
4GFffiffiffi

2
p VtbV�

tsC̃V;LRðs̄αLγμbβLÞðc̄βRγμcαRÞ; ð12Þ

where α, β are the color indices, and the coefficient C̃V;LR at
scale μ ∼mHþ is given as C̃V;LR ¼ −v2jρtcj2=4m2

Hþ . Then,
closing the charm loop of the b → scc̄ operator in Eq. (12)
[diagram shown in Fig. 1(b) withHþ integrated out] effects
a nonlocal NP contribution to the vector operator
ðs̄LγμbLÞðlγμlÞ. Adapting the results of Refs. [101,102]

FIG. 1. Feynman diagrams for b → cτν̄ (a), b → slþl− (b),(c),
Bs − B̄s mixing (d), b → sγ (e), and W-τ-ν vertex (f).

5Similar formulas are also given in Refs. [90,91].
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to our case, we obtain the following NP contribution to the
b → slþl− Wilson coefficient6

C9lðq2; μÞ ¼
�
4

9
þ hðq2; mc; μÞ

�
C̃V;LR; ð13Þ

where the function hðq2; mcÞ is given in Eq. (11) of
Ref. [105]. Equation (13) gives a sufficiently accurate
result7 if the coefficient C̃V;LR arises at a scale close to the
B-meson scale. However, since in our model the four-quark
operator is generated at higher scale μ ∼mHþ , the renorm-
alization group running effects are important. Therefore,
instead of Eq. (13), we use the Wilson package [106] (which
is based on the results of Refs. [107–114]), accounting for
one-loop renormalization group evolution of C̃V;LRðμÞ, to
evaluate the mixing into C9lðμbÞ. Numerically, taking the
NP scale μhigh ¼ 200 GeV as an example case, we find
C9lðμb ¼ 4.8 GeVÞ ¼ 5.17C̃V;LRðμhighÞ. The Z-penguin
diagram [Fig. 1(b) with γ → Z] can be ignored as the
corresponding loop function vanishes in the mc → 0 limit.
Another contribution to b → slþl− comes from the box

diagram in Fig. 1(c), which gives [99]

CNP
9τ ¼ CNP

10τ ¼ −
v2

64παem2
Hþ

jρtcρττj2: ð14Þ

The contributions in Eq. (13) are lepton flavor universal
(due to γll vertex). On the other hand, the contribution in
Eq. (14) in principle introduces τ vs e, μ violation in our
setup. However, this contribution depends on coupling
product jρtcρττj that, as we will see later, is strongly
constrained by the b → cτν̄ processes (and by demanding
a solution to the RDð�Þ anomaly), causing contributions in
Eq. (14) to be completely negligible in the relevant
parameter space. Consequently, NP contributions to b →
slþl− are practically described by Eq. (13) and universal
to all lepton flavors. As a result, in our setup the ratios RKð�Þ

are SM-like in agreement with the observations made by
the LHCb [33,34]. Equally important to note is that since
NP contributions to Wilson coefficients (C10l), related to
axial-vector current, are negligible, the rate of the rare
decay Bs → μþμ− remain SM-like, which is also consistent
with the new CMS result [115] based on 2016–2018 data
corresponding to integrated luminosity of 140 fb−1. The
recent global fit to b → slþl− data [excluding RKð�Þ and
BRðBs → μþμ−Þ, which anyway remain unaffected in the
considered scenario] shows that the NP scenario [116]

C9l ¼ −0.95� 0.13 ð15Þ

is strongly favored over the no NP hypothesis, correspond-
ing to the 6.1σ pull away from the SM (for other NP
scenarios, see Refs. [117,118]8). In our analysis, wewill use
Eq. (15) to explain the current b → slþl− discrepancies.
There are few important flavor constraints on ρtc. The

most stringent constraint comes from the mass difference
(ΔMBs

) in Bs − B̄s mixing. The Hþ-induced box diagram
(diagram with Wþ and Hþ in loop vanishes in the mc → 0
limit), shown in Fig. 1(d), gives rise to the effective
Hamiltonian, Heff ¼ Cbsðs̄γμLbÞðs̄γμLbÞ, where

Cbs ¼
V�2
ts V2

tbjρtcj4
128π2m2

Hþ
: ð16Þ

The current value of the mass differences is ΔMBs
¼

17.741� 0.020 ps−1 [92], which is to be compared with
the SM prediction ΔMBs

¼ 18.4þ0.7
−1.2 ps−1 [129].

Another relevant constraint arises from the radiative
decay B → Xsγ, which gets modified due to the loop
diagram shown in Fig. 1(e). The corresponding dipole
coefficient C7 at scale μ ∼mHþ at the leading order is given
by [99]

C7 ¼ −
7

36

v2

4m2
Hþ

jρtcj2; ð17Þ

while the coefficient related to b → sg is C8 ≃ ð6=7ÞC7.
The current experimental value for the branching ratio of
B → Xsγ is ð3.32� 0.15Þ × 10−4 [2].
There are Hþ contributions to K − K̄ mixing parameters

εK and ΔMK . The corresponding contributions arise from
the box diagram shown in Fig. 1(d) after replacing external
quarks fbsg → fsdg. We calculate the NP contribution to
K − K̄ mixing following Ref. [130] and use experimental
values from Ref. [92]; the resulting constraint however
turns out to be weaker than those from B physics.

C. Shift in MW

As mentioned in Introduction, the CDF value of MW
differs from the corresponding SM prediction by 7σ. This
difference can be attributed to a NP correction to T
parameter in the 2HDM (see, e.g., Refs. [131–145]).
The SM value of MW is calculable as [133]

M2
W ¼ M2

Z

2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4παeð1þ ΔrÞffiffiffi
2

p
GFM2

Z

s �
; ð18Þ

where Δr contains quantum corrections associated with
oblique parameters and renormalization of αe. Within the
SM, ðΔrÞSM ≃ 0.038 [133]. Assuming that modifications in
Δr arise from a NP contribution to T parameter, one can

6We follow notation of Ref. [103] for the b → s operator
basis [104].

7The dominant contribution comes from q2-independent terms
in hðq2; mc; μÞ (see, e.g., Ref. [101]). 8For fits before the newRKð�Þ measurements, seeRefs. [119–128].
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parametrizeNP effects asΔr¼ðΔrÞSM−ðc2W=s2WÞαeðMZÞT,
where T in 2HDM is given by

T ¼ 1

16π2αeðMZÞv2
fFðm2

Hþ ; m2
HÞ þ Fðm2

Hþ ; m2
AÞ

− Fðm2
H;m

2
AÞg; ð19Þ

with loop function

Fða; bÞ ¼ aþ b
2

−
ab

a − b
log

a
b
: ð20Þ

Note that Fða; bÞ vanishes in the limit of a → b, indicating
that at least two of the scalar states should have different
masses in order to obtain a nonzero contribution to the T
parameter. In our setup, the allowed range of mHþ is fixed
from seeking a solution to RDð�Þ and b → slþl− anomalies.
The values ofmH andmA then can be obtained from Eq. (4),
with the quartic couplings Λ4, Λ5 varied within perturbative
limits. We also include a NP contribution arising from S
parameters following Ref. [133]; however these contribu-
tions are subdominant.
If mH, mA, and mHþ are not equal, which is the case to

obtain a finiteT parameter as discussed above, then thevertex
W-τ-ντ correction diagram in Fig. 1(f) gives a constraint on
ρττ coupling. This correction is sensitive to the mass splitting
of physical scalars in 2HDM and can be parametrized by
writing gauge coupling gWτν → gWτνð1þ δgÞ, where δg is

δg ¼ jρττj2
32π2

Iðm2
H=m

2
H� ; m2

A=m
2
H�Þ; ð21Þ

with loop function Iðx; yÞ given by [146,147]

Iðx; yÞ ¼ 1þ 1

4

1þ x
1 − x

log xþ 1

4

1þ y
1 − y

log y: ð22Þ

Note that the function Iðx; yÞ vanishes in the combined limit
x → 1 and y → 1. The correction δgmodifies leptonic decay

rate of τ as Γτ→lντν̄l → ΓSM
τ→lντν̄l

ð1þ 2δgÞ. The LFU test in τ
decays is then given by gτ=ge ¼ 1þ δg, which is to
be compared with the HFLAV value gτ=ge ¼ 1.0029�
0.0014 [2]. We note that the ρττ needed in our setup is very
small (see next section), rendering δg to be completely
negligible ∼Oð10−5Þ. The smallness of ρττ also guarantees
that the NP correction (calculated using the formula given in
Ref. [67]) to the partial leptonic width of Z → ττ is also
negligible.

IV. RESULTS

In our numerical analysis, theoretical predictions of the
flavor observables are obtained using FLAVIO [148]. Our
main results are shown in Fig. 2. In the first plot, we show
results for RDð�Þ and b → slþl− together with relevant
constraints in the (jρtcj, jρττj) plane formHþ ¼ 200 GeV. In
the plot, the phase ϕ (≡ argðρtcρττÞ)9 is fixed by maxi-
mizing the global log-likelihood function10 in the space of
NP parameters. This is performed using IMINUIT [149,150],
which gives the best fit values jρtcj ¼ 0.659, ρττ ¼ 0.052,
ϕ ≃ 2π=3. The green band shows the region consistent
(within 1σ) with the current data on RD and RD� . The
vertical yellow band corresponds to value C9l ∼ −1 [1σ
range of Eq. (15), to be exact]. The individual 95% C.L.
exclusion bounds from ΔMBs

, BRðB → XsγÞ, and εK are
also shown as vertical lines. The constraint BRðBc →
τν̄Þ < 0.63 is shown as a dash-dotted orange curve (sitting
just on top of 1σ solution of RDð�Þ), which rules out the
region above it. We note that the RDð�Þ solution (green band)
only constrains the product jρtcρττj, so the sizes of
individual couplings remain unresolved. Including the data
on b → slþl− decays, which are essentially sensitive to
jρtcj, a far better constraint on the parameter space is

FIG. 2. First and second plots show results of fits to RD and RD� (1σ) and b → slþl− (1σ) for mHþ ¼ 200 GeV and 250 GeV,
respectively. The dark and light magenta color contours are the global 1σ and 2σ allowed regions. The third plot shows the results of the
parameter scan where the red points correspond to MW values that are within 1σ of Eq. (2). See the text for other details.

9We take ρtc real so that ϕ corresponds to the phase of ρττ.
10We assume that experimental uncertainties follow Gaussian

distribution, and for the BRðBc → τν̄Þ constraint we assume that
it has a uniform probability within limits [0, 0.63] and zero
elsewhere.
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achievable. The contours in magenta color show the 1σ and
2σ region where both RDð�Þ and b → slþl− data can be
explained together. We also show smaller values C9l ¼
−0.5;−0.3 as solid yellow lines, illustrating the impact of
ρtc variation on NP in b → slþl−. In the second plot, we
show the results formHþ ¼ 250 GeV. The constraints from
B → Xsγ and εK are relaxed and lie outside the plot range.
The best fit point now reads jρtcj ¼ 0.784, ρττ ¼ 0.068, and
ϕ same as before. In this case we note that ΔMBs

constraint
(dash-dotted blue line) already covers most of the 1σ range
of Eq. (15), but there is still some allowed region left. Our
results therefore indicate that for mHþ > 250 GeV it
becomes difficult to obtain C9l ¼ −1, but smaller (but
appreciable) values such as C9l ∼ −0.5 are still possible.
In the third plot, we show parameter scan in the plane of

mass differences mHþ −mH and mHþ −mA, where the red
points corresponds to MW values within 1σ of the CDF
measurement [Eq. (2)]; the light (dark) green points show
MW values which are below (above) 1σ range. In our setup,
as mentioned earlier, the prediction ofMW depends onmHþ

and quartic couplings Λ4, Λ5. To obtain scan results, we
vary mHþ uniformly in the range (180, 300 GeV) and Λ4,
Λ5 in the range (−

ffiffiffiffiffiffi
4π

p
;

ffiffiffiffiffiffi
4π

p
). To select allowed points, we

require m2
H, m

2
A > 0, and reject mH;A ≤ 100 GeV. We note

that the significant population of red points is when bothH,
A are heavier than Hþ. There are a few red points in the
region whenHþ is heavier than bothH, A. However, we do
not find any solution when only one of the H, A is heavier
or lighter than Hþ; this is because in these corners of the
parameter space, the NP correction to T parameter
[Eq. (19)] is negative, whereas a positive correction is
needed to obtain a positive shift inMW value. In the special
case Λ5 ¼ 0, the second relation in Eq. (4) implies
mH ¼ mA, which in Fig. 2 (right) corresponds to the
positive diagonal. So, even though the parameter space
is reduced a lot, a W-boson mass consistent with the CDF
measurement can still be obtained. On the other hand, in the
case of vanishing Λ4, Eq. (4) gives m2

Hþ−m2
H¼m2

A−m2
Hþ ,

from which one can deduce that both H, A cannot be
simultaneously heavier or lighter than Hþ, and therefore
from the arguments presented above we find that the CDF
value of MW will not be explained in this case.

V. CONCLUSIONS

At present there are hints of LFU violation in b → clν̄
data, reinforced further by the recent LHCb result on the
combined measurement of RD and RD� . On the other hand,
no such effect is seen in b → slþl−, and LFU ratios RKð�Þ

are now SM-like. However, the discrepancies in the
branching fractions and optimized observables related to
b → slþl− decays still remain. In this article we show that
aHþ boson, of few hundred GeVmass, can simultaneously
explain anomalies in RDð�Þ and b → slþl− data. That a Hþ

boson can explain the former is already known in literature.

Here we uncover a nice correlation between Hþ effects in
the charged- and neutral-current B decays: the enhanced
rates of B → Dð�Þτν̄ imply a destructive NP contribution in
the Wilson coefficient C9l. We show that the current
constraints allow for C9l ∼ −1, a preferred solution to
address discrepancies in the b → slþl− decays.
Additionally, we also show that the discrepancy observed
in MW by CDF II can also be explained by allowing the
splitting among the physical scalars masses; the solution
prefers the neutral states H, A heavier than Hþ.
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APPENDIX: SCALAR POTENTIAL
AND MASS SPECTRUM

Here we provide details about the scalar potential of a
general 2HDM and the relations of its parameters with the
masses of the scalars in the model. With H1, H2 denoting
Higgs doublets, the scalar potential is given by [80]

VðH1; H2Þ ¼ M2
11jH1j2 þM2

22jH2j2 − ðM2
12H

†
1H2 þ H:c:Þ

þ Λ1

2
jH1j4 þ

Λ2

2
jH2j4 þ Λ3jH1j2jH2j2

þ Λ4jH†
1H2j2 þ

�
Λ5

2
ðH†

1H2Þ2 þ ½Λ6jH1j2

þ Λ7jH2j2�H†
1H2 þ H:c:

�
; ðA1Þ

where parameters M2
12, Λi (i ¼ 5, 6, 7) in general can have

complex phases. In this paper, we have taken VðH1; H2Þ to
be CP invariant for simplicity, and therefore all the
potential parameters are real.
Working in the Higgs basis [153–155] where only one of

the Higgs doublets receives a vacuum expectation value, we
define doublets H1, H2 as

H1 ¼
� Gþ

1ffiffi
2

p ðvþH0
1 þ iG0Þ

�
;

H2 ¼
� Hþ

1ffiffi
2

p ðH0
2 þ iAÞ

�
; ðA2Þ
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so that hH1i ¼ v=
ffiffiffi
2

p
and hH2i ¼ 0. In the above notation,

Gþ,G0 are the goldstone bosons,Hþ and A are the charged
scalar and CP-odd scalar, respectively, while the physical
CP-even neutral scalars h and H are given by

h ¼ H0
1 sin γ þH0

2 cos γ;

H ¼ H0
1 cos γ −H0

2 sin γ; ðA3Þ

with γ denoting the h-H mixing angle [analogous to (β − α)
in type-II 2HDM notation].
Minimization of the potential gives conditions:

M2
11 þ Λ1ðv2=2Þ ¼ 0, M2

12 − Λ6ðv2=2Þ ¼ 0. The relations
between potential parameters and the scalar masses, which
we are mainly interested in, are given as [80]

m2
Hþ ¼ M2

22 þ
v2

2
Λ3; ðA4Þ

m2
A −m2

Hþ ¼ −
v2

2
ðΛ5 − Λ4Þ; ðA5Þ

m2
H þm2

h −m2
A ¼ v2ðΛ1 þ Λ5Þ; ðA6Þ

ðm2
H −m2

hÞ2 ¼ ½m2
A þ ðΛ5 − Λ1Þv2�2 þ 4Λ2

6v
4; ðA7Þ

sin γ cos γ ¼ −
Λ6v2

m2
H −m2

h

: ðA8Þ

In case of very small mixing angle, i.e., cos γ → 0,
which we have taken in this paper, the simplified rela-
tions for the scalar masses are m2

h ≃ Λ1v2, m2
A ¼ M2

22 þ
ðv2=2ÞðΛ3 þ Λ4 − Λ5Þ, and the ones given in Eq. (4).
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