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A scenario augmenting the well-known type-X two-Higgs doublet model with an additional inert
doublet is proposed. The type-X two-Higgs doublet model is known to offer a solution to the muon g − 2

anomaly for a light pseudoscalar. We show that the proposed framework can accommodate a heavier
pseudoscalar on account of two-loop Barr-Zee contributions to muon g − 2 stemming from the inert
doublet. We subsequently explore an interesting τþτ−þmissing transverse energy signal that can be used to
probe the present scenario at the 14 TeV LHC.
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I. INTRODUCTION

One of the experimental findings that continues to
advocate dynamics beyond the Standard Model (SM) of
particle physics is the longstanding muon g − 2 anomaly. In
a nutshell, a discrepancy has been noted between the SM
prediction of the anomalous magnetic moment of the
muon [1–11] and its experimental measurements made
at BNL [12] and FNAL [13,14]. The combined excess
reported is

Δaμ ≡ aexpμ − aSMμ ¼ 251ð59Þ × 10−11: ð1Þ

A minimal extension of the SM long known to resolve the
muon g − 2 anomaly is the type-X two-Higgs doubletmodel
(2HDM) [15,16]. The model comprises an additional
SUð2ÞL scalar doublet over and above SM. This entails
an enlarged scalar sector, i.e., twoCP-even neutral scalars h,
H, a CP-odd neutral scalar A and a charged scalar Hþ. A
governing Z2 keeps the flavor changing neutral current at
bay by demanding that a particular fermion interacts with
only one of the two doublets. This leads to several variants
and one such is the type-X 2HDM [16]. One important
feature of the type-X is that quark Yukawa couplings
involving the additional scalars are suppressed while the
leptonic Yukawas are enhanced. It is the enhanced lep-
tonic couplings that potentially give rise to sizeable muon
g − 2 contributions at the one-loop and two-loop levels.
A resolution of the anomaly thus becomes possible for a
light pseudoscalar (MA ≲ 100 GeV) and high tan β

(tan β ≳ 20) [17–25]. As a perk, by virtue of the small
quark couplings, such a parameter region in the type-X
evades stringent constraints from flavor observables and
direct search from the colliders [26], especially the Large
Hadron Collider (LHC). However, recent LHC searches for
h125 → AA → 4τ; 2τ2μ channels have disfavored a large
BRðh125 → AAÞ [27]. This strongly constrains the MA <
62.5 GeV parameter region. Furthermore, the large tan β
region also get restricted by lepton precision observables. A
partial list of collider probes of the type-X2HDMis [28–34].
In this study, we seek to alleviate the aforementioned

shortcoming by extending the scalar sector of the type-X
2HDM so that additional two-loop Barr-Zee (BZ) contri-
butions are encountered.1 The simplest multiplets leading
to additional BZ diagrams are SUð2ÞL singlets with Y ≠ 0.
For instance, let us look more closely at the Y ¼ 1 case that
is basically a singly charged scalar. This scalar can mix with
the like-charge states in the 2HDM through the scalar
potential and therefore can be searched at a collider via the
kþ → lþν. Here, kþ refers to the charged scalar and l ¼ e,
μ, τ. While this is enticing, the scope to directly look for the
scalar via the invariant mass handle is obviated owing to the
presence of the neutrino(s). As for an SUð2ÞL-singlet Y ≥ 2
scalar (that is, Q ≥ 2), there would be no mixing of the
same with the 2HDM sector that features neutral and singly
charged scalars only. Such a case therefore will also not be
attractive from the collider perspective. Neutral scalars
offer the possibility of having opposite-sign lepton final
states at a collider. Thus, while we postulate the existence
of charged scalars to induce BZ diagrams, we also aim to
probe such a framework via decays of neutral scalars. And
the lowest multiplet that features both charged and neutral
scalars is (2, 1

2
). We have therefore augmented the type-X
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1Some studies addressing the same problem using additional
fermionic content over and above the type-X 2HDM are [35,36].
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2HDM with an additional scalar SUð2ÞL doublet. An extra
Z0

2 is imposed under which the new doublet is odd while
all other fields are even. This addition can be deemed
natural since the number of scalar doublets cannot be
limited by the electroweak ρ parameter or other funda-
mental constraints. While the Z2 is allowed to be broken
by the scalar potential, the Z0

2 is exact and therefore
disallows mixing between the third doublet with the first
two. The third doublet thus remains inert. We refer to this
scenario as ð2þ 1ÞHDM and is therefore a generalization
of the popular inert doublet model (IDM) [37]. The
ð2þ 1ÞHDM has generated some interest in the past.
Reference [38] studied in detail the constraints on this
scenario from perturbative unitarity and oblique correc-
tions. Reference [39] computed the strength of the
H�W∓ZðγÞ vertex at one loop with a particular emphasis
of the contribution coming from the inert doublet. A more
recent study is [40] that computed various mono-object
signals that arise as predictions of the model.
In this work, we compute in detail the two-loop BZ

contributions to Δaμ stemming from the inert doublet.
More precisely, we can expect sizeable contributions from
such loops owing to the possibility of large scalar trilinear
couplings involving the inert scalars. We fold in all relevant
theoretical and experimental constraints in the process
including dark matter direct detection. Our aim is to see if
the ð2þ 1ÞHDM can expand the parameter region in the
MA- tan β plane that is compliant with themuon g − 2 excess.
The ð2þ 1ÞHDM also predicts an interesting collider

signal. The CP-even and CP-odd components of the inert
doublet can be pair produced at the LHC with following
which odd component can decay to the even component

and A. Since the A in this scenario can be potentially
heavier than one in the type-X 2HDM and still comply with
Δaμ, a τ� coming from A → τþτ− will accordingly have a
higher transverse momentum in comparison to what is seen
in the case of the type-X 2HDM. Moreover, the final state
will also have a modified missing-transverse energy spec-
trum due to the presence of inert scalars. In all, such
kinematic features of this signal makes the ð2þ 1ÞHDM
discernible from the type-X 2HDM. We have performed
detailed analyses of the signal and backgrounds in this
work using multivariate techniques and estimated the
observability at the 14 TeV LHC.
This study is segmented as follows. We introduce the

ð2þ 1ÞHDM scenario in Sec. II and elaborate all the
constraints in Sec. III. The details of muon g − 2 calcu-
lation can be found in Sec. IV. The collider analysis is given
in Sec. V and we conclude in Sec. VI. Various important
formulas are relegated to the Appendix.

II. THEORETICAL FRAMEWORK

The 2HDM, which features two scalar doublets ϕ1;ϕ2, is
augmented by an additional scalar doublet η in this work. A
discrete symmetry Z0

2 is introduced under which ϕ1;2 →
ϕ1;2 while η → −η. The most general scalar potential
consistent with the gauge and the Z0

2 symmetry then reads

V ¼ V2 þ Va
4 þ Vb

4; ð2aÞ

with V2 ¼ −m2
11jϕ1j2 −m2

22jϕ2j2
þm2

12ðϕ†
1ϕ2 þ H:c:Þ þ μ2jηj2; ð2bÞ

Vfϕ1;ϕ2g
4 ¼ λ1

2
jϕ1j4 þ

λ2
2
jϕ2j4 þ λ3jϕ1j2jϕ2j2 þ λ4jϕ†

1ϕ2j2 þ
λ5
2
½ðϕ†

1ϕ2Þ2 þ H:c:�
þ λ6½ðϕ†

1ϕ1Þðϕ†
1ϕ2Þ þ H:c:� þ λ7½ðϕ†

2ϕ2Þðϕ†
1ϕ2Þ þ H:c:�; ð2cÞ

Vfϕ1;ϕ2;ηg
4 ¼ λ0

2
jηj4 þ

X
i¼1;2

�
νijϕij2jηj2 þ ωijϕ†

1ηj2 þ
�
κi
2
ðϕ†

i ηÞ2 þ H:c:

��

þ ½σ1jηj2ϕ†
1ϕ2 þ σ2ϕ

†
1ηη

†ϕ2 þ σ3ϕ
†
1ηϕ

†
2ηþ H:c:�: ð2dÞ

In the above, V2 combines all the dimension-two terms of the scalar potential. The dimension-four terms involving ϕ1;ϕ2

alone are given by Vfϕ1;ϕ2g
4 . Finally, the term Vfϕ1;ϕ2;ηg

4 contains dimension-four terms involving all the three scalar doublets.
All parameters in the scalar potential are chosen real to avoid CP violation. Following electroweak symmetry breaking, the
scalar doublets are parametrized as

Φi ¼
� ϕþ

i
1ffiffi
2

p ðvi þ hi þ iziÞ
�
; ði ¼ 1; 2Þ; η ¼

� ηþ

1ffiffi
2

p ðηR þ iηIÞ
�
; ð3Þ

where v1;2 are the vacuum expectation values and tan β ¼ v2
v1
. The noninert particle spectrum in this case is identical with the

2HDM that consists of the neutral CP-even Higgses h, H, a CP-odd Higgs A, and a charged Higgs Hþ. The 2 × 2 mass
matrices brought into diagonal forms by the action of the mixing angles α and β. Of these, the scalar h is taken to be the
SM-like Higgs with mass 125 GeV. Further details on the 2HDM spectrum are skipped for brevity.
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The inert scalars coming from η do not mix with the ones
from ϕ1;2 on account of the Z0

2. The inert mass eigenstates
are then ηþ; ηR, and ηI that have the following squared
masses:

m2
ηþ ¼ μ2 þ 1

2
fν1c2β þ ν2s2βgv2 þ σ1v2sβcβ; ð4aÞ

m2
ηR ¼ μ2 þ 1

2
fðν1 þ ω1 þ κ1Þc2β þ ðν2 þ ω2 þ κ2Þs2βgv2

þ ðσ1 þ σ2 þ σ3Þv2sβcβ; ð4bÞ

m2
ηI ¼ μ2 þ 1

2
fðν1 þ ω1 − κ1Þc2β þ ðν2 þ ω2 − κ2Þs2βgv2

þ ðσ1 þ σ2 − σ3Þv2sβcβ: ð4cÞ

As for the Yukawa interactions, we take the type-X (or
lepton-specific) Lagrangian where the quarks get their
masses from ϕ2 while the all the leptons do from ϕ1.
The Yukawa Lagrangian can be expressed as

−LY ¼½yuQLϕ̃2uRþydQLϕ2dRþylQLϕ1lR�þH:c: ð5Þ

The Yukawa interactions in terms of the physical scalars
then becomes

LY ¼
X

f¼u;d;l

mf

v
ðξhlhff þ ξHf Hf̄f − iξAfAf̄γ5fÞ

þ
ffiffiffi
2

p

v
½muξ

A
uVudHþūPLdþmdξ

A
dVudHþūPRd

þmlξ
A
lH

þνlPRlþ H:c:�: ð6Þ

The various ξf factors are tabulated in Table I.

III. CONSTRAINTS

A. Theoretical constraints

The scalar potential remains perturbative if jλj < 4π;
jyj < ffiffiffiffiffiffi

4π
p

, where λ and y, respectively, denote a quartic
and Yukawa coupling of the theory. Also, the scalar
potential remains bounded from below along various
directions in field space if the following conditions are
satisfied [40–42]:

λ1 > 0; λ2 > 0; λ0 > 0;

λ3 þ
ffiffiffiffiffiffiffiffiffi
λ1λ2

p
> 0; λ3 þ λ4 − jλ5j þ

ffiffiffiffiffiffiffiffiffi
λ1λ2

p
> 0;

ν1 þ
ffiffiffiffiffiffiffiffi
λ1λ

0p
> 0; ν1 þ ω1 − jκ1j þ

ffiffiffiffiffiffiffiffi
λ1λ

0p
> 0;

ν2 þ
ffiffiffiffiffiffiffiffi
λ2λ

0p
> 0; ν2 þ ω2 − jκ2j þ

ffiffiffiffiffiffiffiffi
λ2λ

0p
> 0: ð7Þ

These conditions are derived assuming that the various
directions in field space lie in planes spanned by two field
axes. A treatment involving more general directions are
computationally hefty to implement and are typically less
restrictive than the two-field conditions. We have therefore
neglected such possibilities in this work.
The framework is also constrained by invoking unitarity

of the S matrix. Electroweak equivalence theorem dictates
that the tree-level scatterings of longitudinal components of
the gauge bosons can be mapped into 2 → 2 tree-level
scatterings involving the scalars of the theory at high
energies [43]. Unitarity demands that the eigenvalues of
the matrices formed in the bases of various 2 → 2 scalar
scattering states must have magnitudes that are bounded
from above at 8π. A detailed analysis on unitarity in three-
Higgs doublet models was presented in [38]. In this study,
we have deduced the scattering matrices for the scalar
potential of Eq. (2), which determined the eigenvalues
numerically and demanded that their magnitudes do not
exceed the stipulated limit of 8π.

B. Higgs signal strengths

The signal strength for the h → X channel is defined as

μX ¼ σpp→h

σexppp→h

BRðh → XÞ
BRexpðh → XÞ : ð8Þ

We adhere to α ¼ β − π
2
in this work (known as the

alignment limit in the context of 2HDMs) in which case the
couplings of the fermions and gauge bosons to h become
equal to the corresponding SM values. In this limit, the
predicted values for the Higgs signal strength in the
bb̄; τþτ−;WþW−; ZZ; gg channels become consistent with
the measurements at ATLAS and CMS. The only channel
that can still deviate in this limit is γγ where the presence of
the additional charged scalars Hþ; ηþ leads to new one-
loop contributions in the h → γγ amplitude. One then has

MNP
h→γγ ¼

X
ϕþ¼Hþ;ηþ

λhϕþϕ−v

2m2
ϕþ

A0

�
m2

h

4m2
ϕþ

�
: ð9Þ

The total amplitude and the decay width then become

Mh→γγ ¼ MSM
h→γγ þMNP

h→γγ; ð10Þ

Γh→γγ ¼
GFα

2m3
h

128
ffiffiffi
2

p
π3

jMh→γγj2; ð11Þ

TABLE I. Various Yukawa scale factors for the lepton-specific
case.

ξhu ξhd ξhl ξHu ξHd ξHl ξAu ξAd ξAl
cos α
sin β

cos α
sin β − sin α

cos β
sin α
sin β

sin α
sin β

cos α
cos β cot β − cot β tan β
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where GF is the Fermi constant. The pertinent loop
functions are listed here [44,45]:

A0ðxÞ ¼ −
1

x2
ðx − fðxÞÞ; ð12aÞ

with fðxÞ ¼ arcsin2ð ffiffiffi
x

p Þ; x ≤ 1

¼ −
1

4

�
log

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x−1

p

1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x−1

p − iπ

�
2

; x > 1:

ð12bÞ

The charged scalars do not modify the production cross
section of h and the modification to the total width is tiny.
The signal strength in the γγ channel is then

μγγ ≃
Γh→γγ

Γexp
h→γγ

: ð13Þ

The latest 13 TeV results on the diphoton signal strength
from the LHC read μγγ ¼ 0.99þ0.14

−0.14 (ATLAS [46]) and
μγγ ¼ 1.18þ0.17

−0.14 (CMS [47]). Upon using the standard
combination of signal strengths and uncertainties, we
obtain μγγ ¼ 1.06� 0.1 and impose this constraint at 2σ.
The branching ratio of Higgs to invisible states faces

upper limits from the LHC. The most recent constraint is
BRðh → invisibleÞ < 18% [48]. We have implemented this
constraint in our analysis.

C. Oblique parameters

The NP corrections induced to the oblique parame-
ters [49] in this setup are can be split into a contribution
coming from the active doublet (ΔX2HDM) and one from the
inert doublet (ΔXIDM).

ΔX ¼ ΔX2HDM þ ΔXIDM; ð14Þ

where X ¼ S, T, U. The most constraining for scalar
extensions of the SM is the T parameter. The relevant
expressions for α ¼ β − π

2
are given here [50]:

ΔT2HDM ¼ 1

16πs2WM
2
W
½Fðm2

Hþ ; m2
HÞ

þ Fðm2
Hþ ; m2

AÞ − Fðm2
H;m

2
AÞ�; ð15aÞ

ΔTIDM ¼ 1

16πs2WM
2
W
½Fðm2

ηþ ; m
2
ηRÞ

þ Fðm2
ηþ ; m

2
ηIÞ − Fðm2

ηR ; m
2
ηIÞ�: ð15bÞ

In the above,

Fðx; yÞ ¼ xþ y
2

−
xy

x − y
ln

�
x
y

�
for x ≠ y;

¼ 0 for x ¼ y: ð16Þ

The most updated bound reads [11]

ΔT ¼ 0.07� 0.12: ð17Þ

We have imposed the stated bound, which has been at 2σ in
our analysis.

D. Dark matter

The presence of the inert doublet protected by a discrete
symmetry makes its neutral component (ηR or ηI) a
DM candidate. The PLANCK collaboration quotes the
following as the latest measured value of the DM relic
density [51]:

ΩPlanckh2 ¼ 0.120� 0.001: ð18Þ

The other important DM constraint comes from the search
of DM-nucleon scattering cross sections by different
terrestrial experiments such as XENON-1T [52,53] and
PANDA-X [54,55]. The nonobservation of such scatterings
has led to upper limits on the DM-nucleon cross section
with the most stringent bound for mDM < 1 TeV coming
from XENON-1T.
The model is implemented to the publicly available tool

micrOMEGAs [56] in order to compute the relic density and
the spin-independent direct detection (SI-DD) cross sec-
tion. The computed relic density is stipulated to be under-
abundant in this work as presence of other DM candidates
(not accounted for in this work) is assumed. Folding in a
10% experimental error in the measured central value, we
demand

Ωh2 < 0.12� 2 × 0.012 ð19Þ

As for direct detection, we compute the SI-DD cross
section σSI using micrOMEGAs. We subsequently determine
the effective cross section σeffSI ¼ ð Ωh2

ΩPlanckh2
ÞσSI. This ratio

takes care of the fact that the present model accounts for
only a part of the observed relic abundance. We add that the
SI-DD scatterings in this scenario proceeds via t-channel
diagrams involving h and H.

IV. THE MUON g− 2 AMPLITUDE AND ITS
NUMERICAL PREDICTION

We present an elaborate computation of Δaμ in this
section. The electromagnetic interaction of a lepton is
given by
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l̄ðp2ÞΓμlðp1Þ ¼ l̄ðp2Þ
�
γμF1ðq2Þ þ

iσμνqνF2ðq2Þ
2Ml

�
lðp1Þ;

ð20Þ

with F1;2ðq2Þ as some form factors. The lepton anomalous
magnetic dipole moment is then defined as

al ¼ F2ð0Þ: ð21Þ

While giving the expressions for the various Δaμ contri-
butions in the ð2þ 1ÞHDM, we denote the loop order in the
superscript and the particle circulating in the loop in the
subscript. The one-loop amplitudes driven by H;A;Hþ in
the alignment limit are expressed below:

Δaμ
ð1 loopÞ
ðHÞ ¼ M2

μ

8π2v2

�
M2

μ

M2
H

�
ðξHμ Þ2

Z
1

0

dx
x2ð2 − xÞ�

M2
μ

M2
H

�
x2 − xþ 1

;

ð22aÞ

Δaμ
ð1 loopÞ
ðAÞ ¼ −

M2
μ

8π2v2

�
M2

μ

M2
A

�
ðξAμ Þ2

Z
1

0

dx
x3

ðM2
μ

M2
A
Þx2 − xþ 1

;

ð22bÞ

Δaμ
ð1loopÞ
ðHþÞ ¼ M2

μ

8π2v2

�
M2

μ

M2
Hþ

�
ðξAμ Þ2

Z
1

0

dx
x2ð1−xÞ�

M2
μ

M2

Hþ

�
xð1−xÞ−x

:

ð22cÞ

One notes that Δaμ
ð1lÞ
ðHþÞ < 0. The corresponding dia-

grams are shown in Fig. 1.
The two-loop BZ contributions arise upon embedding

hγγ; Hγγ; Aγγ, and HþW−γ form factors that themselves
arise at one loop, in a one-loop amplitude. The resulting
topology is thus two loop. We first list out the Feynman
graphs that feature fermions in the one-loop form factors
in Fig. 2.

Δaμ
ð2 loopÞ
ff;Hγγg ¼

X
f

αemM2
μ

4π3v2
Nf

CQ
2
fξ

H
f ξ

H
μ F ð1Þ

�
M2

f

M2
H

�
; ð23aÞ

Δaμ
ð2 loopÞ
ff;Aγγg ¼

X
f

αemM2
μ

4π3v2
Nf

CQ
2
fξ

A
fξ

A
μ F̃

ð1Þ
�
M2

f

M2
A

�
; ð23bÞ

Δaμ
ð2 loopÞ
ff;HþW−γg ¼

αemM2
μNtjVtbj2

32π3s2wv2ðM2
Hþ −M2

WÞ
Z

1

0

dx½QtxþQbð1 − xÞ�½ξAdξAμM2
bxð1 − xÞ þ ξAuξ

A
μM2

t xð1þ xÞ�

×

�
G
�

M2
t

M2
Hþ

;
M2

b

M2
Hþ

; x

�
− G

�
M2

t

M2
W
;
M2

b

M2
W
; x

��
: ð23cÞ

Here, Nf
C ¼ 1ð3Þ for leptons (quarks). Further, αem denotes the fine structure constant and Qt ¼ 2=3; Qb ¼ −1=3. Next to

come are the two-loop amplitudes induced by the 2HDM scalars running in the loops as shown in Fig. 3. The corresponding
amplitudes for α ¼ β − π

2
are expressed below.

Δaμ
ð2 loopÞ
fHþ;ϕγγg ¼

X
ϕ¼h;H

αemM2
μ

8π3M2
ϕ

ξϕμλϕHþH−F ð2Þ
�
M2

Hþ

M2
ϕ

�
; ð24aÞ

Δaμ
ð2 loopÞ
fH;HþW−γg ¼

αemM2
μ

64π3s2wðM2
Hþ −M2

WÞ
ξHμ λHHþH−

Z
1

0

dxx2ðx − 1Þ ×
�
G
�
1;

M2
H

M2
Hþ

; x

�
− G

�
M2

Hþ

M2
W

;
M2

H

M2
W
; x

��
: ð24bÞ

Finally, Fig. 4 depicts the contributions stemming from the inert scalars via the hγγ, Hγγ, and HþW−γ vertices.

Δaμ
ð2 loopÞ
fηþ;ϕγγg ¼

X
ϕ¼h;H

αemM2
μ

8π3M2
ϕ

ξϕμλϕηþη−F ð2Þ
�M2

ηþ

M2
ϕ

�
; ð25aÞ

Δaμ
ð2 loopÞ
fηR;HþW−γg ¼

αemM2
μ

64π3s2wðM2
Hþ −M2

WÞ
ξAμ λHþη−ηR

Z
1

0

dxx2ðx − 1Þ
�
G
�M2

ηþ

M2
Hþ

;
M2

ηR

M2
Hþ

; x

�
− G

�M2
ηþ

M2
W
;
M2

ηR

M2
W
; x

��
; ð25bÞ

Δaμ
2 loop
fηI ;HþW−γg ¼

αemM2
μ

64π3s2wðM2
Hþ −M2

WÞ
ξAμ λHþη−ηI

Z
1

0

dxx2ðx − 1Þ
�
G
�M2

ηþ

M2
Hþ

;
M2

ηI

M2
Hþ

; x

�
− G

�M2
ηþ

M2
W
;
M2

ηI

M2
W
; x

��
: ð25cÞ
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The functions F ð1ÞðxÞ; F̃ ð1ÞðxÞ;F ð2ÞðxÞ, and Gða; b; xÞ are
expressed in the Appendix. To test the relative magnitudes
of the different amplitudes, we compare their numerical
values for the reference parameter point tan β ¼ 50, MH ¼
MHþ ¼ 150 GeV while varying MA. We first plot the one-
loop contributions and the two-loop BZ contribution

Δaμ
ð2 loopÞ
ff;ϕγγg in Fig. 5. One notes that the A-mediated one-

loop amplitude is negative with a sizeable magnitude. In
contrast, the two-loop amplitude Δaμfτ;Aγγg is positive. And
despite the additional loop suppression, it in fact dominates

over the one-loop contribution owing to the M2
τ

M2
μ
enhance-

ment factor. One must remember that though the amplitude

involving A and the t-quark implies multiplication by M2
t

M2
μ
,

the same is proportional to cot2 β due to the Yukawa scale
factors. Therefore, ðA; τÞ two-loop amplitude clearly

beats the one from ðA; tÞ by a factor tan4 β M2
τ

M2
t
≃ 650. An ∼

Oð10−9Þ contribution to Δaμ can therefore be induced for
high tan β and low MA thereby paving way for a resolution
of the anomaly. We mention here that the contributions

Δaμ
ð2 loopÞ
ff;HþW−γg, Δaμ

ð2 loopÞ
fHþ;ϕγγg, and Δaμ

ð2 loopÞ
fH;HþW−γg are sup-

pressed compared to Δaμfτ;Aγγg in the parameter region
of interest. More details about the purely 2HDM contri-
bution can be found in [17–24].
The more important component of the present discussion

is obviously the contribution coming from the inert sector.
The trilinear couplings entering these amplitudes are
expressed in the Appendix. Let us examine the trilinear
coupling λHηþη− more closely. For α ¼ β − π

2
, the dominant

behavior is λHηþη− ≃ σ1ðc2β − s2βÞ ≃ σ1 for tan β ≳ 20.
Therefore, λHηþη− ∼Oð1Þ can lead to large values of

Δaμ
ð2 loopÞ
fη;Hγγg. A similar argument reveals that λHþη−ηR and

λHþη−ηI can also take sizeable values while λhηþη− remains
suppressed for large tan β. Of course, the enhanced Yukawa
scale factors of the μ lepton with H;A;Hþ also play a role
here. We illustrate the strengths of the different g − 2
amplitudes stemming from the inert scalars in Fig. 6 for

FIG. 2. Two-loop contributions to Δaμ from the fermions
through (a) an effective ϕγγ vertex and (b) an effective
HþW−γ vertex.

FIG. 1. One-loop contributions to Δaμ from (a) H, A, and (b) Hþ.
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MηR ¼ 99 and 199 GeV. We further fix Mηþ ¼ MηR þ
1 GeV and letMηI vary. The magnitudes of λHηþη− , λHþη−ηR ,
and λHþη−ηI are each chosen to be 2π while λhηþη− ¼ 1 is
taken. The rationale behind such a choice is that trilinear
couplings involving H;A;Hþ in one external leg and inert
scalars in the other two can attain the maximum strength of
2π while remaining allowed by perturbative unitarity.
Taking a common value for these couplings enables a
straightforward comparison of the relative magnitudes of
the corresponding g − 2 amplitudes. The largest contributor
is the diagram involving the Hγγ effective vertex. In fact,
this amplitude alone adds ≃1.25 × 10−9 to the muon
magnetic moment when Mηþ ¼ 100 GeV, as seen in
Fig. 6(a). An Oð10−10Þ value is also generated for the
same Mηþ by the diagrams involving the HþW−γ effective
interaction for the shown range ofMηI . The inert sector thus
alone suffices to resolve muon g − 2 at 2σ for

Mηþ ¼ 100 GeV. Figure 6(b) shows that the corresponding
g − 2 amplitudes are though expectedly smaller for
Mηþ ¼ 200 GeV. In all, the two-loop amplitude driven
by the inert scalars is substantial and more importantly,
independent of MA.
We propose a numerical scan to this end to validate the

model against the constraints. And this brings us to a
counting of the independent model parameters. In the
2HDM sector, m11 and m22 are eliminated by the tadpole
conditions: ∂V

∂v1
¼ ∂V

∂v2
¼ 0. The couplings λ1−5 can be

expressed in terms of the physical masses, mixing angles,
and λ6;7. In the inert sector, we define the parameters λL1

and λL2
below in lines similar to the IDM.

λL1
¼ ν1 þ ω1 þ k1; ð26aÞ

λL2
¼ ν2 þ ω2 þ k2: ð26bÞ

FIG. 3. Two-loop contributions to Δaμ from the 2HDM scalars through (a) an effective ϕγγ vertex and (b) an effectiveHþW−γ vertex.

FIG. 4. Two-loop contributions to Δaμ from the inert scalars through (a) an effective ϕγγ vertex and (b) an effective HþW−γ vertex.
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For insight, the ηR − ηR − h and ηR − ηR −H couplings are
linear combinations of λL1

v and λL2
v when σ1; σ2; σ3 ¼ 0.

The parameters μ;ω2; k2; ν1; ν2 can be traded off using the
relations

μ2 ¼ M2
ηR −

1

2
λL1

v2c2β −
1

2
λL2

v2s2β − ðσ1 þ σ2 þ σ3Þv2sβcβ;
ð27aÞ

ω2 ¼
M2

ηR þM2
ηI − 2M2

ηþ þ ω1v2c2β − 2σ2v2sβcβ
v2s2β

; ð27bÞ

k2 ¼
M2

ηR −M2
ηI − k1v2c2β − 2σ3v2sβcβ

v2s2β
; ð27cÞ

ν1 ¼ λL1
− ω1 − k1; ð27dÞ

ν2 ¼ λL2
− ω2 − k2: ð27eÞ

With the alignment limit in place, the independent param-
eters in the ð2þ 1ÞHDM are therefore fm12;MH;MA;
MHþ ;MηR ;MηI ;Mηþ ; tanβ;λ6;λ7;ω1;κ1;σ1;σ2;σ3;λL1

;λL2
g.

We adhere to the same choices forMH;MHþ ;Mηþ ;MηR as in

FIG. 5. One-loop and two-loop fermion-mediated Barr-Zee contributions to Δaμ. The color coding is explained in the legends.

FIG. 6. Two-loop Barr-Zee amplitudes induced by the inert scalars. The left (right) panel corresponds toMηþ ¼ 100 GeV (200 GeV).
The legends indicate the particles running in the loops. All trilinear couplings involving the inert scalars are chosen to be 2π for
illustration.
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the preceding discussion. Additionally, we take λ6 ¼ λ7 ¼
λL1

¼ λL2
¼ 0.01. The choice of the 2HDM masses is

consistent with various exclusion constraints [26] from
the LHC on account of the suppressed couplings to quarks
in the type-X case. The rest of the parameters are varied as
follows:

0 < m12 < 1 TeV; 20 GeV < MA < 1 TeV;

MηR þ 1 GeV ≤ MηI ≤ 500 GeV;

10 < tan β < 100; jω1j; jκ1j < 4π;

jσ1j; jσ2j; jσ3j < 2π: ð28Þ

The (minimum) 1 GeVmass-splitting ηR has with ηI and ηþ
disallows W, Z-mediated inelastic direct detection scatter-
ings [57]. Such mass gaps are also consistent with the ΔT
constraint. The parameter points passing all the constraints
are plotted in theMA- tan β plane in Figs. 7(a) and 8(a). The
most important finding to emerge is that the parameter space
compatible with the observed muon g − 2 excess appreci-
ably expands in the presence of an additional inert scalar
doublet. Figure 7(a) shows that an A as heavy as 800 GeV is
now allowed for tan β ≃ 35 for Mηþ ¼ 100 GeV. This
enhancement is clearly attributed to the BZ contributions
induced by the inert scalars. Though the enhancement is less
in case of Mηþ ¼ 200 GeV, an MA ¼ 250 GeV still com-
plies with Δaμ for tan β ≃ 55 [see Fig. 8(b)].
Figures 7(b) and 8(b) display σeffSI versus tan β for

the same parameter points. The ð2þ 1ÞHDM features

(co)annihilations mediated by the 2HDM scalars. For
instance, ηRηR → ff̄ mediated by an s-channel H is an
important annihilation channel, where f denotes a SM
fermion. This is not encountered in the case where only one
active Higgs doublet is present. Since the Mηþ −MηR ¼
1 GeV in this work, ηþηR → ff0 and ηþη− → ff̄ coanni-
hilations are also triggered mediated by s-channel Hþ and
H, respectively. And the most dominant fermionic co
(annihilations) are to ττ̄ and τντ on account of the tan β-
enhanced Yukawa interactions. The corresponding co(anni-
hilation) cross sections are thus quite large thereby leading
to a small Ωh2. Consequently, σeffSI remains below the
stipulated bound for all the parameter points. This is
confirmed by Figs. 7(b) and 8(b). A more detailed
discussion of DM phenomenology in the ð2þ 1ÞHDM
setup is beyond the scope of this study and can be taken up
as a future endeavor.

V. LHC SIGNATURES

We discuss in this section a prospective collider signature
of the ð2þ 1ÞHDM framework at the 14 TeV LHC. For
MA < Mh

2
, a useful channel to look for the A in the pure

type-X is pp → h → AA → τþτ−τþτ−; τþτ−μþμ− [28,29].
The large h-production cross section through gluon fusion
leads to a healthy event rate. However, the primary focus of
this work is on a heavier A for which h → AA is
kinematically closed. Hence, the aforementioned channel
is not suited to our case. The channel pp → H → AA,
though kinematically open in principle, is also not

FIG. 7. (a) Parameter space in theMA- tan β plane compatible with the observed Δaμ at 2σ forMηþ ¼ MηR þ 1 GeV ¼ 100GeV. The
region to the left of the vertical line is tightly constrained by BRðh → AAÞ measurements. (b) Prediction of σeffSI versus tan β for the
parameter points in the ð2þ 1ÞHDM compatible with Δaμ at 2σ forMηþ ¼ MηR þ 1 GeV ¼ 100GeV. The color coding is explained in
the legends.
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promising for a couple of reasons. First, this channel
mandates MH > 2MA. Such a heavy H would diminish
the relevant BZ amplitudes accordingly. Secondly, the
pp → H production cross section is small owing to the
suppressed Yukawa couplings involved here. The selection
of LHC signals for the ð2þ 1ÞHDM is guided by the two
expectations: (i) the most promising fermionic decay
channel is A → τþτ− on account of the enhanced
Yukawa coupling. Further, the τ pair will be more boosted
in case of an heavier A. (ii) Involving the inert scalars in the
signals should ultimately lead to a modified =ET spectrum
with respect to the SMwhich in turn could be a distinguish-
ing kinematical feature. In view of this, we propose to look
at the pp → ηRηA → ηRηRA → τþτ− þ =ET signal. We give
the details of the analysis below.
The ηRηI pair is dominantly produced via an s-channel

exchange of Z. A small contribution also comes from A
exchange. Following an ηI → ηRA decay, the A sub-
sequently decays to a τþτ− pair. The lightest inert scalar
ηR registers as missing transverse momentum (=ET). Thus, a
modified =ET spectrum with respect to the SM can be a
potential handle to discern the signal from the background.
We also look for completely hadronic decays of the τ pair,
thereby leading to a 2τh þ =ET signature. Instead of a
conventional cut-based analysis, we intend to analyse this
signal using the more advanced multivariate techniques. A
few benchmark points (BPs) are put forth in Table II. The
BPs satisfy all the applied constraints and predict the
requisite value of Δaμ, as can be read from Table II. All
the three BPs are characterized by MηI > MηR þMA. For
these BPs, appropriate values of the quartic couplings

ensure that ηI → ηRA is the leading decay mode. The
subleading one is in fact ηI → ηRZ. When it comes to
the decay of A, it is observed that A → ZH;W�H∓
can compete with A → τþτ− for the choice of
MH ¼ MHþ ¼ 150 GeV. This is found true especially
for BP3. However, the A → τþτ− branching fraction in
still Oð10%Þ nonetheless.
The relevant interactions of the model have been

incorporated in FeynRules [58]. We next discuss the
possible background processes. The largest background
comes from pp → jjþ =ET (j denotes a light jet) when
both js are misidentified as τhs. As the jjþ =ET cross
section is ∼106 fb, even a small misidentification rate leads
to a large 2τh þ =ET cross section. Another important
background is pp → τþτ− þ =ET that mainly comes from
pp → WþW−; ZZ production. Owing to the large pp → tt
cross section, the pp → tt̄ → τþτ−bb̄þ =ET process can
also lead to a sizeable background when both the b jets are
missed. A small contribution also comes from pp →
W�Z → τþτ−τ� þ =ET when one τ is missed. The cross
sections of the signal BPs and the backgrounds are given in
Table III. We have used MG5aMC@NLO [59] to generate the
signal and background events at the leading order. The
CTEQ6L parton distribution function set and default
hadronization and factorization scales are used. The parton
level events are passed on to PYTHIA8 [60] for showering
and hadronization and subsequently to Delphes-3.4.1 [61]
for detector simulation. Specifically, we have throughout
used the default CMS detector simulation card that comes
with Delphes-3.4.1. For an integrated luminosity L, the
number in a signal or background sample of events is

FIG. 8. (a) Parameter space in theMA- tan β plane compatible with the observed Δaμ at 2σ forMηþ ¼ MηR þ 1 GeV ¼ 200GeV. The
region to the left of the vertical line is tightly constrained by BRðh → AAÞ measurements. (b) Prediction of σeffSI versus tan β for the
parameter points in the ð2þ 1ÞHDM compatible with Δaμ at 2σ forMηþ ¼ MηR þ 1 GeV ¼ 200GeV. The color coding is explained in
the legends.
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determined as L × σ × ϵ with σ and ϵ, respectively,
referring to the cross section and cut efficiency. The
signal significance is computed using the formula

S¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½ðNSþNBÞlogðNSþNB

NB
Þ−NS�

q
[62], where NS (NB)

denotes the number of signal (background) events.
Events are selected by demanding exactly two τh and

zero b jets. Sizeable background fractions are eliminated at
this level itself since the background processes in this case
mostly lead to flavor-democratic leptons. In addition to this
demand, the following trigger-level cuts are also applied:

pl
T > 10 GeV; jηj;lj < 2.5;

ΔRll > 0.2; ΔRlj > 0.2; ΔRjj > 0.4: ð29Þ

In the above, ΔRmn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δη2mn þ Δϕ2

mn

p
and Δηmn;Δϕmn

are the differences between pseudorapidity and azimuthal
angles of mth and nth particles, respectively. In addition,
l ¼ e, μ. It is reminded that light jets come only from
showering for the signal and backgrounds for this analysis.
We denote the two leading τ-tagged jets by j1 and j2 in the
decreasing order of their pT. The following kinematic

variables of interest are identified: pj1
T , the transverse

momentum of the leading tau jet; =ET , the missing transverse
energy; Mj1j2 , invariant mass of the τhτh pair; and
Mvis

trans, transverse mass of the τhτh pair. The normalized
distributions of these four variables are shown in
Figs. 9 and 10. A brief discussion on the kinematic features
is in order. The distribution ofpj1

T is shown in Fig. 9(a) for the
signal BPs and the backgrounds. Thepj1

T spectrum is seen to
be harder in case of the signals than the backgrounds. In fact,
the heavier the pseudoscalar, the more boosted are the τhτh
pair and hence, the harder is the pj1

T spectrum. One inspects
that the distribution peaks around ≃100, 120, and 120 GeV
for BP1, BP2, and BP3, respectively. On the other hand,
the backgrounds have their peaks below 100 GeV. Next,
Figs. 9(b) and 10(a) show that the spectra of the invariant
mass and transverse mass of the τhτh pairs share a corre-
lation. That is, the larger the MA, the higher is the value
where these distributions peak. One must however note that
the peak of the Mj1j2 distribution cannot coincide with MA

on account of the =ET component in τ decays.
We briefly discuss the sources of =ET in the signal

and backgrounds. In case of the pp → WþW−; ZZ

TABLE II. BPs used to study the discovery prospects of an A in the ð2þ 1ÞHDM (lepton specific). The values for
the rest of the masses are MH ¼ MHþ ¼ 150 GeV, Mηþ ¼ MηR þ 1 GeV ¼ 100GeV.

BP1 BP2 BP3

m12 24.0 GeV 20.4 GeV 21.6 GeV
tan β 38.71 53.83 47.98
MA 206.2 GeV 253.24 GeV 301.26 GeV
MηI 346 GeV 397 GeV 450.5 GeV
k1 −0.992743 −2.07345 −0.55292
ω1 −2.94053 −0.125664 0.13823
σ1 −5.00142 −5.70513 −6.09469
σ2 5.7554 −0.263894 1.29434
σ3 4.05894 5.44124 5.90619
Δaμ 1.48646 1.51138 1.64289
σeffSI 5.28 × 10−48 cm2 3.81 × 10−50 cm2 4.42 × 10−49 cm2

BRðηI → ηRAÞ 0.844604 0.822958 0.748021
BRðA → τþτ−Þ 0.99 0.7983 0.341914

TABLE III. Signal and background cross sections at the 14 TeV LHC.

Signal=Backgrounds Process Cross section (fb)

Signal
BP1 7.904
BP2 pp → ηRηI → ηRηRA → τþτ− þ =ET 3.867
BP3 0.965

Backgrounds
pp → jjþ =ET 1.11 × 106

pp → τþτ− þ =ET 5.80 × 102

pp → tt̄ → bb̄WþW− → τþτ−bb̄þ =ET 8.092 × 103 (next-to-next-to-leading order)
pp → W�Z → τþτ−τ� þ =ET 4.31 × 101
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backgrounds, for instance, neutrinos coming from W� →
τ�ν and Z → ν̄ν majorly decide the shape of the =ET
distribution. The pp → tt̄ production leads to neutrinos
via the W� decays. A subleading effect for these back-
grounds also comes from the neutrinos emerging from τ
decays. In case of the signals, however, the main source of
=ET is in fact the inert scalar ηR. The shape of the =ET
distribution for the signals thus depends on the transverse
momentum of ηR. And the masses of ηI and A are such for
the BPs that the distribution is harder than the backgrounds.
The background distributions all peak below 100 GeV as
opposed to the signals that peak at ≳100 GeV, as seen in
Fig. 10(b).
We now turn to the multivariate analysis using decorre-

lated boosted decision tree (BDTD) algorithm as imple-
mented within the toolkit for multivariate data analysis
(TMVA) [63] framework. A brief overview of the method
is as follows. To classify an events as signal-like or

backgroundlike, decision trees are used as classifiers.
One discriminating kinematic variable with an optimized
cut value applied on it is associated with each node of the
decision tree, to make the best possible distinction between
the signal-like and backgroundlike events. The handle to do
this within TMVA is to tune the BDTD variable NCuts. The
training of the decision trees starts from a zeroth node and
continues till a particular depth specified by the user is
reached. This particular depth is termed as MaxDepth.
Finally from the final nodes or the leaf nodes, an event
can be specified as signal or background according to their
purity. An event can be tagged as signal (background) when
p > 0.5 (p < 0.5).
The decision trees are considered weak classifiers as they

are prone to statistical fluctuations of the training sample.
To circumvent this problem, one can combine a set of weak
classifiers into a stronger one and create new decision trees
by modifying the weight of the events. This procedure is

FIG. 9. The distributions of pj1
T and Mj1j2 in panels (a) and (b),

respectively. The color coding is given in the legends.

FIG. 10. The distributions ofMvis
trans and =ET in panels (a) and (b),

respectively. The color coding is given in the legends.
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referred to as boosting. In this analysis, we choose adaptive
boost with the input variables transforming in a decorre-
lated manner, since this is very useful for weak classifiers.
It is implemented as decorrelated adaboost in TMVA.
To avoid over training of the signal and background
samples, the result of the Kolmogorov-Smirnov test, i.e.,
Kolmogorov-Smirnov (KS) score is demanded to be always
>0.01 and stable.
Now the BDTD algorithm orders the kinematic variables

that are fed into the algorithm by their importance in
discriminating the signal from the background. The follow-
ing kinematic variables are proposed in this analysis:

pj1
T ; p

j2
T ; ηj1 ; ηj2 ;ϕj1 ;ϕj2 ;

Δϕj1=ET
;Δϕj2=ET

;Δϕj1j2 ;Δηj1j2 ;ΔRj1j2 ;

=ET;Meff ; p
j1j2
T ;Mj1j2 ;M

vis
trans:

In the above, pj1j2
T straightforwardly refers to the vector

transverse momentum of the τhτh system, i.e.,

pj1j2
T ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpj1

x þ pj2
x Þ2 þ ðpj1

y þ pj2
y Þ2

q
. The variables that

turn out to be the most important in BDT ranking are
pμ1
T ; p

μ2
T ; ημ1 ; ημ2 ; p

μ1μ2
T ;ΔRμ1μ2 ;M

μμ
inv; =ET . The relevant BDT

TABLE IV. Tuned BDT parameters for BP1, BP2, BP3.

BP NTREES MINNODESIZE MAXDEPTH NCUTS KS score for signal (background) BDT score

BP1 120 2.5 2 55 0.487 (0.035) 0.3521
BP2 150 3 2 40 0.439 (0.016) 0.4047
BP3 120 3 2 50 0.038 (0.105) 0.5336

FIG. 11. The KS scores for the chosen lepton-specific benchmarks. The top-left, top-right, and bottom panels correspond to BP1, BP2,
and BP3, respectively.
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parameters are tabulated in Table IV. The signal and
background distributions along with their KS scores are
depicted in Fig. 11. The degree of background rejection for
each BP can be gauged from the receiver’s operative
characteristic curves as shown in Fig. 12. The efficiency
of background rejection is seen to improve sequentially
from BP1 to BP3. And this trend is only expected on
account of the progressively smaller overlap recorded
between the signal BPs and the background upon going
from BP1 to BP3, as also concurred by Fig. 11. The yields
at an integrated luminosity 3000 fb−1 for the signal bench-
marks and the backgrounds after optimization through
BDTD analysis are given in Table V.
Table V shows that the jjþ =ET background can

be hugely reduced and even eliminated through a multi-
variate analysis. The largest contribution comes from
τþτ−bb̄þ =ET . However the corresponding number of
events reduces with the improvement of background
rejection as MA increases. Figure 13 displays the variation
of the statistical significance with respect to the integrated
luminosity for the BPs. It is seen that a 5σ discovery of a
pseudoscalar of mass ≃200 GeV (BP1) is possible at
around 1500 fb−1 integrated luminosity. BP1 is thus clearly
within the discovery reach of the high luminosity Large
Hadron Collider (HL-LHC). BP2 requires ≃3200 fb−1 for
the same indicating that the maximum MA that can be
discovered at 5σ at the HL-LHC is somewhere between 200
and 250 GeV. And BP3 is beyond such a reach.
Therefore, the success of the present analysis lies in

predicting a 5σ observability for MA ≳ 200 GeV through a
τhτh þ =ET signal where the bulk of the missing transverse
energy comes from an invisible scalar. In hindsight, pp →
HA → τþτ−τþτ−; τþτ−μþμ− can also be promising in for
the scalar mass ranges of interest in this study. While such a

FIG. 12. The receiver’s operative characteristic curves for the
chosen benchmarks.

TABLE V. The signal and background yields at 3000 fb−1 for
BP1, BP2, and BP3 for the τhτh þ =ET channel as obtained from
the BDTD analysis.

BP1

Process Yield at 3000 fb−1

Background jjþ =ET 671
τþτ− þ =ET 557

τþτ−bb̄þ =ET 3276
τþτ−τ� þ =ET 45

NBDT
B 4548

NBDT
S 481

BP2

Process Yield at 3000 fb−1

Background jjþ =ET ∼0
τþτ− þ =ET 128

τþτ−bb̄þ =ET 1266
τþτ−τ� þ =ET 12

NBDT
B 1405

NBDT
S 177

BP3

Process Yield at 3000 fb−1

Background jjþ =ET ∼0
τþτ− þ =ET 21

τþτ−bb̄þ =ET 273
τþτ−τ� þ =ET 3

NBDT
B 297

NBDT
S 19

FIG. 13. Variation of the statistical significance with the
integrated luminosity.
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signal warrants a separate investigation, it remains com-
pletely agnostic of the particle sector leading to the
requisite Δaμ even for the heavier A. Therefore, this signal
was not analyzed in the present study and can be taken up
for further scrutiny in the near future.

VI. CONCLUSIONS

The type-X 2HDM is long known to accommodate the
observed excess in muon g − 2 for high tan β and low MA.
However, nonobservation of h → AA at the LHC seriously
limits the parameter region. We have augmented the type-X
2HDM by an additional inert doublet in this work that is
endowed with an additional Z0

2 symmetry. We have taken
into account all constraints that are mandated by such a
construct and thereafter compute the two-loop Barr-Zee
contributions from the inert scalars to Δaμ. With these
additional contributions, we demonstrate that a pesudosca-
lar mass as large as MA ∼ 850 GeV becomes compatible
with the observed Δaμ. The otherwise constrained para-
meter region in the MA- tan β plane obtained in case of
the standalone 2HDM thus expands to include much
higher MA.
We have probed the scenario at the 14 TeV LHC through

the signal pp → ηRηA → ηRηRA → τþτ− þ =ET . We have
considered a fully hadronic τ pair. Since the τ jets in this
case originate from the heavier A, certain kinematic features
such as pT of the leading τ jet and the invariant and
transverse masses of the pair are different compared to the
SM and even the pure type-X 2HDM. In addition,
involvement of the inert scalar in the final state modifies
the =ET spectrum too. We have exploited such a modified
kinematics through a multivariate analysis of the signal and
backgrounds using the BDTD algorithm. We subsequently
predict a 5σ discovery for MA ≳ 200 GeV at the HL-LHC.
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APPENDIX

1. Trilinear couplings

λhηþη− ¼ ðσ1cαþβ − ν1sαcβ þ ν2cαsβÞ; ðA1aÞ

λHηþη− ¼ ðσ1sαþβ þ ν1cαcβ þ ν2sαsβÞ; ðA1bÞ

λAηRηI ¼ 2ðσ3c2β þ ð−κ1 þ κ2ÞcβsβÞ; ðA1cÞ

λHþη−ηR ¼ ððσ2 þ σ3Þc2β þ ð−κ1 þ κ2 − ω1 þ ω2ÞsβcβÞ;
ðA1dÞ

λHþη−ηI ¼ ððσ2 − σ3Þc2β þ ðκ1 − κ2 − ω1 þ ω2ÞsβcβÞ:
ðA1eÞ

2. Two-loop functions

F ð1ÞðzÞ ¼ z
2

Z
1

0

dx
2xð1 − xÞ − 1

z − xð1 − xÞ ln

�
z

xð1 − xÞ
�
; ðA2aÞ

F̃ ð1ÞðzÞ ¼ z
2

Z
1

0

dx
1

z − xð1 − xÞ ln
�

z
xð1 − xÞ

�
; ðA2bÞ

F ð2ÞðzÞ ¼ 1

2

Z
1

0

dx
xð1 − xÞ

z − xð1 − xÞ ln
�

z
xð1 − xÞ

�
; ðA2cÞ

Gðza; zb; xÞ ¼
lnðzaxþzbð1−xÞ

xð1−xÞ Þ
xð1 − xÞ − zax − zbð1 − xÞ : ðA2dÞ
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