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Basis transformations often involve Fierz and other relations that are only valid in D = 4 dimensions. In
general D spacetime dimensions, however, evanescent operators have to be introduced in order to preserve
such identities. Such evanescent operators contribute to one-loop basis transformations as well as to two-
loop renormalization group running. We present a simple procedure on how to systematically change basis
at the one-loop level by obtaining shifts due to evanescent operators. As an example we apply this method
to derive the one-loop basis transformation from the Buras, Misiak and Urban basis useful for next-to-
leading order QCD calculations, to the Jenkins, Manohar and Stoffer basis used in the matching to the

standard model effective theory.
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I. INTRODUCTION

In recent years a lot of progress has been made
concerning next-to-leading order (NLO) analyses, which
involve one-loop matching calculations as well as solving
two-loop renormalization group equations (RGEs) for the
Wilson coefficients of effective field theories. For an up to
date review see [1]. For instance, concerning the standard
model effective theory (SMEFT), the full matching from
the SMEFT onto the weak effective theory (WET) valid
below the electroweak (EW) scale is known at tree level [2]
and since recently also at the one-loop level [3.,4].
Furthermore, the one-loop RGEs in the SMEFT [5-7]
and in the WET [8,9] are known.

In the process of performing a NLO analysis, it is often
necessary to perform one-loop transformations between
different operator bases, since, for instance, anomalous
dimension matrices (ADMs) are known only in a particular
basis, whereas the matching conditions are given in a
different one. This is, for example, the case for the WET,
where the two-loop ADMs are known in the Buras, Misiak
and Urban (BMU) basis [10] as elaborated on recently in
[I1]. On the other hand, the one-loop matching from
SMEFT onto WET is given in the Jenkins, Manohar and
Stoffer (JMS) basis defined in [2].'

Generally, to translate the results from one basis to
another one at NLO, one-loop basis transformations have

'We follow here the WCx £ convention defined in [12].
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to be taken into account. In this respect particular care has to
be taken if the tree-level [leading order (LO)] transforma-
tions involve Dirac space identities, which are only valid in
four spacetime dimensions. Examples include Fierz iden-
tities or identities involving gamma matrices. When using
dimensional regularization, where the divergent loop inte-
grals are continued to D dimensions, such identities cannot
be used directly, but need to be generalized by introducing
evanescent (EV) operators [10]. Such evanescent operators
vanish in four dimensions to conserve the original identities
but are nonzero in D dimensions. They are therefore
formally speaking proportional to ¢ = (4 — D)/2, which
implies that they give nonzero contributions when inserted
into divergent loop diagrams. These are exactly the con-
tributions that enter basis transformations at the one-loop
order. In this article we discuss a simple procedure on how to
obtain these contributions by computing one-loop correc-
tions resulting from the presence of the evanescent oper-
ators.” To this end the evanescent operators are simply
defined as the difference between operators and their
transformed versions using D = 4 identities. The resulting
contributions will manifest themselves in shifts in the
corresponding Wilson coefficients of the initial operators.

Having a simple algorithm at hand to perform NLO basis
changes is important when performing one-loop matching
calculations or computing two-loop ADMs. In this work
we explain the underlying formal framework and provide
such an algorithm, based on Greek projections [13], which
facilitates the aforementioned calculations. In this manner
this procedure is an important ingredient in the pursuit of a
complete NLO SMEFT analysis.

A more formal procedure on how to perform NLO basis
changes can be found in [10].

Published by the American Physical Society
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TABLE L

Nonleptonic AF = 1 operators (baryon and lepton number conserving) in the JMS basis [2]. Note that

Qx;t‘,ﬁR and QZS&T have Hermitian conjugates. The same holds for the operators (LR)(LR). This choice of basis
eliminates all operators with Dirac structures ¢**. The class of operators (LR)(RL) -+ H.c. does not contain

nonleptonic operators, but only semileptonic ones.

(LL)(LL) (RR)(RR)
[OL‘I/L}LL}prlYT (azyﬂdz)(?;‘yﬂdZ) [OC\I/L}RR prst (ag}/#dlr?)((?[v?y”dﬁi)
OV (i) () (OVIRR] 0 (@0 (i )
[ (@7 y, T up ) (dy ' TAd}) [OV8RR) (@hy, TAuly) (A" TAdy)
p P
(LL)(RR) (LR)(LR) + H.c.
[Oug"" s (45 ;) (dir ) (035 s (@pdy) (@)
(5% LR]pm (d7y, T d;) (dy" TAdY) [OSSRR] (@ T dy) (@3 T )
[0red ™ prs (@] v,y ) (diy"dy) [OSLRR] (] up) ()
(00" pros (@gy, Thuy ) (dpr* T dy) (. (8 T up) (&5 T d)
[01‘1/11 LR]prst ~ (dzy;l )(MR}/”MR) [ igbﬁtR}prst (ﬁzd;?)(‘_i;‘u;t)
(OLSH] (@777 ) (7 T ) O35, (& TAdy) (@ T i)
[Ot‘t/z}dLuR]prst (ﬁfi’udi)(dﬁd’”“fq) +H.ec.
(Ot ) prs (7, TAdy) (dy" TAul) + He.
The rest of the article is organized as follows: In Sec. II Omns = R(O)OBMU, (2)

we outline the general procedure on how to compute one-
loop basis transformations between two operator bases. In
Sec. III we show an explicit example by performing a NLO
change from the BMU to the JMS basis. In Sec. IV we
define and calculate the EV operators that in turn give us the
transformation matrix between BMU and JMS bases at the
one-loop level. Finally we conclude in Sec. V. Additional
material used in the calculations is collected in the
appendixes.

II. PROCEDURE

In this section we discuss the full NLO basis trans-
formation between general operator bases. However, to
make the subsequent sections more transparent we will dub
the two operator bases JMS (see Table I for the list of
operators considered in this work) and BMU. We start with
the simple LO basis transformation which will also set the
notation used. Then, in the second subsection we discuss
the issue of evanescent operators that become relevant
when performing basis changes at the one-loop level.

A. Tree-level transformation

Let us consider the two bases

.On}) Omws =101,0;, ..., 0y},

(1)

containing N operators each. At tree level each operator is
given by a linear combination of operators from the other
basis:

Opmu = {01, s, -

where the N x N matrix R(®) denotes the linear transforma-
tion between the two bases. The superindex “(0)” denotes the
tree-level transformation in anticipation of the one-loop
transformation discussed in the next subsection. The matrix

R is obtained by applying identities such as Fierz relations
and gamma matrix identities to the operators on the left-hand
side (LHS) of Eq. (2). Itis independent of the renormalization
scale and only contains numerical factors.?

As seen in Eq. (2) the BMU operator basis is transformed
via R into the JMS basis. This transformation is useful
because the hadronic matrix elements of operators are
usually calculated in the BMU basis and this transformation
allows one to obtain them in the JMS basis. However, the
Wilson coefficients are nowadays calculated in the JMS
basis, since the SMEFT matching results are only available
in that particular basis. Therefore, for Wilson coefficients
the transformation from JMS to BMU is more useful,
which reads

Con = (RO Cis: (3)
that is, (R)7 is involved.

Since R is invertible by definition, one can easily
express the BMU operators in terms of JMS ones and the
JMS Wilson coefficients in terms of BMU ones. For our

3This is true up to possible normalization factors, which can
contain coupling constants or other parameters that depend on the
renormalization scale.
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d; d; d;

(a) (b)

FIG. 1.

purposes, however, the transformations in Egs. (2) and (3)
are more convenient.

It should be stressed that although the procedure outlined
below is general and can be used for any basis trans-
formation, the explicit values of various coefficients are
given in our paper in the NDR-MS scheme as defined
in [14] with evanescent operators entering two-loop cal-
culations defined by the so-called Greek method. The
details in the context of WET and SMEFT are discussed
in Appendix E of [15].

B. One-loop transformation

At the one-loop level special care has to be taken when
identities have been used in the LO transformation that are
only valid in D = 4 spacetime dimensions. Therefore, for
all the lines in R(®) that were obtained using D =4
relations, evanescent operators have to be introduced to
generalize these identities. In the case of the BMU — JMS
transformation we proceed as follows:

Step 1:

We perform a Fierz transformation on every operator in
the BMU basis Q; and denote the result of this trans-
formation by Q; given generally by

0= Zwikav (4)
k

with operators Q; belonging to the BMU basis and
coefficients w;, determined through the Fierz identities
collected in Appendix B. It should be emphasized that the
relation above and analogous relations below should be
interpreted as effective contributions from this operator in
one-loop diagrams. This means that the calculations
performed in two bases, in our case BMU and JMS, will
give the same results for physical observables when this
transformation is taken into account at all stages, therefore
also when calculating anomalous dimensions. These
relations and analogous relations involving evanescent
operators can also be used for the calculations of two-loop
anomalous dimensions of operators because there the
evanescent operators contributing to two-loop anomalous
dimensions appear in one-loop subdiagrams [14]. To go to

d; d; d;

The QCD current-current insertions at one-loop.

the next order in perturbation theory the shifts should
include corrections of order O(a?) that can be obtained
through insertions of the operators into two-loop
diagrams.

Step 2:

We insert Q; and Q, defined by (4) into current-current
and QCD penguin diagrams of Figs. 1 and 2, respectively.
Because of the presence of evanescent operators that are
simply defined by

0;=0;+EV,, (5)

the insertion of Q; and Q; into one-loop diagrams will
generally differ at O(a;), leading to the result

~ a B
Qi = Qi + Ezr:wirQrv (6)

where the operators in the sum can again be written in the
BMU basis but are generally different from the ones in the
definition of Q; in (4) and also w;; # @;,. Note that this
can easily be done at the one-loop level because in
transforming the operators entering these corrections
D = 4 Fierz identities can be used as will be explained
below. Expressing the shift in terms of BMU operators

d; d; d; dj

(a) (b)

FIG. 2. The QCD-penguin insertions with open-type (left) and
closed-type (right) fermion loops.
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allows one to use these results for transformations of the
BMU basis to any basis, not just the JMS one.

To compute the «, corrections resulting from the
evanescent operator EV; in (5), one simply inserts the
difference Q; — Q; into the relevant one-loop diagrams.
Since the evanescent operator is formally O(e), only the
divergent pieces of the loop integrals will contribute and
consequently the finite pieces can be discarded in the
calculation.

The relation between operators in the JMS basis and
the Fierz transformed operators in BMU are further dis-
cussed in Sec. III B. In particular, the tree-level relations
are given in Egs. (46)—(49), and the one-loop relations in
Egs. (50)—(52).

Step 3:

Having the relations in (6) and inspecting which Fierz
transformations had to be performed to find the LO matrix
R we can generalize the basis change matrix RO to the
one-loop order, as follows™:

N

R=RO 4

Q

@JMS = k@BMU’ . R(l)’ (7)

§
S

where RU is the one-loop basis transformation matrix
resulting exclusively from the evanescent operators.
When computing the one-loop corrections to the differ-
ence Q; — Q;, new Dirac structures can appear, which are
not present in the original basis, in our case the BMU basis.

To reduce these structures to the ones in @BMU it is essential
to use the same projections as in the calculations of two-
loop anomalous dimensions of the operators. Only then are
the evanescent operators entering the two-loop calculations
the same as the ones used in the one-loop matching
between WET and SMEFT, and in particular they corre-
spond to the ones in the basis change. This prescription
guarantees that the renormalization scheme dependence of
two-loop matrix elements can be canceled by the one
present in one-loop contributions so that the physical
amplitudes are renormalization scheme independent.
These issues have been discussed in the context of the
NLO QCD calculations of Wilson coefficients at length
in [14,16,17] and the summary can be found in Sec. 5.2.9
of [1]. There the so-called Greek projection [13], properly
generalized to include evanescent operators in [14], has
been discussed in detail. As pointed out in [17] this is not
the only way to include evanescent operators but, in fact,
the simplest one. It has been used in all two-loop calcu-
lations performed by the second author and will be used in
the following but this time in the context of basis change. It
should be kept in mind that this procedure defines the
evanescent operators in the NDR-MS scheme combined

“In the case JMS <> BMU we will focus on QCD corrections.
The relation in Eq. (7) can easily be generalized to include other
one-loop corrections.

with the Greek projections as used in [14]. While giving the
same results it is much simpler than the formal method
presented in [10] and used recently in [11].

The NLO transformation in terms of the Wilson coef-
ficients is given as follows:

Cemu = R"Cpyss. (8)
Writing
A5 5(1
1ot

CBMU = C](BOI\)/[U + A7
(9)

5 _ 5(0) ﬂé(l) ’
IMS s T 4y M8
the transformation for Wilson coefficients reads
0 A >(0
Cl(al\)/IU = (R<O))TC§N}S’
>(1 A >(1 A >(0
Chmy = (ROYTClus + (RDYTCRY. (10)

A few remarks concerning the generality of our results
are in order: The procedure laid out in this article is not
limited to the BMU and JMS basis, but is valid for any pair
of operator bases that are related via Fierz transformations.
The full set of relevant evanescent operators is generated by
applying Greek identities or any other identities to reduce
the resulting Dirac structures from the one-loop calculation.
This choice of Dirac reduction, together with the chosen
finite counterterms and the treatment of ys fixes the
renormalization scheme [17]. In this article we have chosen
the NDR-MS scheme in combination with the Greek
identities. Choosing a different renormalization scheme
would change the entries of the rotation matrix R") in
Eq. (7), but is related via a trivial change of scheme to our
results [18,19]. Furthermore, the procedure is independent
of possible group theory relations between the two bases,
since these are still valid in D # 4 spacetime dimensions,
and therefore do not obtain any one-loop shifts from
evanescent structures. Finally, we note that the operator
shifts presented in this paper can be interpreted as one-loop
corrections to the original Fierz identities. This has been
shown in two recent publications [20,21], in which the
shifts for all possible four-Fermi operators together with the
contributions from dipole operators have been taken into
account. A similar procedure in the SMEFT has been
employed in [22].

C. How to use this procedure

Having the results in (6) to be presented in the next
section, our goal will be to find the matrix R. To this end
comparing the BMU and JMS bases one has to find those
operators or groups of them for which a Fierz trans-
formation on operators in the BMU basis has to be
performed in order to obtain the operators in the JMS
basis with order a, corrections taken into account.
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Generally the matrix R(”) will have a block structure so
that operators in a given block can be separately considered
from other blocks. In this context the following three
cases arise:

(1) If no Fierz transformations are required in a given
block, the corresponding matrix R will vanish and
tree-level results will be valid also at one-loop. One
can use the corresponding block in R(®) in that case.
If Fierz transformations in a given block are required
but the contributions of evanescent operators will
vanish, the corresponding block in the tree-level
matrix R will again represent the corresponding
block in the full R.

Finally, in certain blocks the necessity of performing
Fierz transformations will introduce evanescent
operators which will contribute to R(!).

In the next section we will present the three step

procedure outlined in this section in explicit terms.

(i)

(iif)

III. BMU TO JMS TRANSLATION AT ONE-LOOP

of the calculation for the one-loop insertions are given in
Appendix C.

With all BMU operators listed in Appendix A the
following items turn out:

(1) For Q; with k = 1-18 these additional contributions
come only from penguin insertions and moreover
only for a few among these operators listed below.
Fierz transformations on QSLR € and QSLR’Q do not

2

generate any evanescent contributions, and conse-
quently in this case D = 4 identities can be used.
For 0;"*? with k = 1-4 and Q}"®” with [ = 1,2
the contributions come only from current-current
operators and involve all operators considered.
However, all these operators do not contribute to
K and B decays being forbidden within SMEFT. For
completeness we list these contributions below
because they could be useful for charm physics.

In the case of the SM operators Q; with k = 1-10 all the
contributions from Fierz transformations for LL (left-left)
operators can be obtained from two properties:

(i)

(iii)

. ~ 1 a;
A. Basic method 0, =0, 0,=0, +§4_p (11)
As outlined above, the transformation of the BMU basis
to the JMS basis requires Fierz transformations on some of .
the BMU operators. This generates then additional con-
tributions to the one-loop matching performed within the 1
JMS basis. To find these one-loop contributions, one has to P =04+ 0¢— 3 (Q3 + 0Os). (12)
insert the difference Q; — Q; into current-current and
penguin diagrams of Figs. 1 and 2, respectively. The details ~ We find
|
0= 0y +28p, 0=, -LE 05=0s. 0s=0 (13)
3= T30, 4T3 an 5 = Us, 6 = s>
~ ~ ~ ~ 1 Ny\ «a
Q=01 Q=05 Q=0y-3 Q1= 010 ~5(Nu=5") 1P (14)
3 2 J4rn
We observe that the Fierz transformations on the VLR ~SRRD _ 1 SRR DL QSRR D
(Vector Left-Right) operators Q; with k = 5-8 do not bring 1 ) ’
any contributions from evanescent operators. ASRR.D _ SRR b SRR.D
In the case of the new physics (NP) operators Q; with 2 ) +3 Q ’ (16)
k = 11-18 only the Fierz transformation on Q;; brings a
contribution from evanescent operators so that
SRRD _ 6QSRRD 4o QSRRD’
2a ~
——P = O k=12 -18.
011 =0n 31, Or = Ok OSRRD _ gOSRRD | QSRRD. (17)
(15)
As this time only current-current diagrams are

The corresponding results for Q?g‘é’g with D = d; or d;
operators can be obtained by using the results of [23], in
particular the results in Egs. (29)—(32) of that paper. In this

case the QSRR b operators with k = 1-4 are given as follows:

involved, the flavor structure relative to the one consid-
ered in [23] does not matter, and the full calculation of
the matrix elements of Q; operators can readily be
performed in no time using results of [23]. The shifts

075007-5
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caused by evanescent operators involve four operators but
those with k = 1, 3 can be eliminated’ using

SRRD = 6QSRRD + = QSRRD + Fierzev  (18)

1
?RR,D =508 SRRD 4o QSRRD + Fierz ev. (19)
so that the shifts depend only on Q;ER‘D Note that in the
BMU basis SRRD are denoted as SRR’ or QSRR’ i

Ref. [11]; see Appendix A for definltlons.
We find then

SRR.D _ SRR D

> ZA QSRRD’ (20)

gRRD SRRD +_ ZB QSRRD’ (21)

QSRR .D QSRR D 4_ C, QgRR,D’ (22)
k=2.4

ERR,D _ 7 ERR,D + Z_;z Dy QiRR,D’ (23)
k=24

with the coefficients Ay, By, C, D, given as follows®:

AL > Ne 37
272N, 4 1y
11 N, 29
M=TTaN, 16T T a (24)
7m_1_ 5
274 N, 12
3 3 N 5
7716 4N, 8 16° (25)
28 73
C2*36+_—7NC:?,
1 5 3N, 1
= —_-— — ¢ i 2
Ca==3 N, 4 12 (26)
44 1 13 1 43
D,=-21—— 4 14N, = — Dy— >4 %
? N, T INe=7 I
(27)
SRR,Q

The same procedure can be applied to Q7,33 with
QO = uy, dy # d;, d; defined in Eq. (A13). The rules for the
shifts read

Equivalently one could also eliminate any other two operators
but here we follow the conventions used in Ref. [11].
N is the number of colors with N, = 3 in the final results.

SRR .0 _ ASRR Q SRR.Q 28
=0+ 2 ki;ﬁ a2, (28)
a
gRR 0 _ QgRR Q + ﬁ kaSRR Q’ (29)
k=12734
a
§RR 0 _ Q§,RR Q + 4; ckQIfRR,Q’ (30)
k=1273.4
a
FO= 00 Y a1
k=12734

Here the flavor structure of the tilde operators Q?%Rﬂ [see
(16) and (17) for the definition with D replaced by Q] is
(d jFQ)_(QFdi)_and the BMU operators Q?%S’g have the
form (d,°d,)(0T'Q).

The coefficients a;, by, ¢, d; are given as follows:

N, 1 7 1
L =— 2
ap 2N, 6 a R (32)
N, 3 I 1
Syt T w4t 9
1 1
bl_l’ bZZ_N_:_§7 (34)
5 N, 3 1
by=—2,  by=--°¢ -
Ty ! 8§ 4N, 8’ (35)
44 2
CI—SNC——:?g, C2:36, (36)
N, 1 7 1
G="7 N—c:—a €4a=75 (37)
44 82
d1—30, d2:14N0—F:?, (38)
1 1
d3:—1, d4—N—:§ (39)

With these rules we can find the matrix R as defined
in (7).

B. Transformation matrices at one-loop

In this section we present our final result for the trans-
formation matrices between the BMU and JMS bases at the
one-loop level. The details of the calculation are given in
Sec. IV. The calculation can be split into the three discon-
nected sectors VLL, VLR, and SRR (Scalar Left-Left),
which denote the y, P, ® y*Pr, v, P ® y'Pg, and Py ®
Pr Dirac structures of the involved four-Fermi operators,
respectively. For the BMU operator we use the following
reference ordering:

VLL:{QI’ Q21 Q3’ Q4v Q9v QlOv Qll’ Q14}’ (40)
VLR:{Qs. Q6. 07, Q5. Q12. Q13. Oi5, ... Qa},  (41)
SRR:{Q5s. .... Quo}. (42)
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For the JMS basis we use the ordering

. 1, 8, 1, 8,
VLL: {[OXd'LL]njw [OXd LL]njn [OZd LL]zzjw [OZd LL]zzﬁ’

V.LL V.LL V.LL V.LL
(04 ]jikk’ (04 ]jkkiv[odd ]jiii’ [0gq"

1, 8, 1,
Oua™ ik [00g ™ jirio [0

Al

[ jiii» [
[0v1 LR

[0

OV8 LR] OVI LR

l]]’[ /zjj’[ uddu ]ljll’[

Jj
Vl LR];

uddu 12ji2° [

Sl .RR S8,RR S1.RR
0 ]/m’ [0 ]jlii’ {Odd ]jijj’

R

:—|:—||—|r—|

At tree level the transformation matrix R® reads

(0
R(VEL Ogx16  Osxi6
0 0
RO = 016xs Ri’llR Oi6x16 |-
(0
O16x8  Oi6x16 R§R>R
1 0 0O 0 O 0 0 0
11
-1l 0 00 0 0 0 40
-1 0 % 0 % 0 0 0 SRR
I _1 _1 1 _1 1 o o 0252
RO _ | ® 2 1§ 6 9 3 2O _
ML lo o0 2 0 -2 0 -1 0| SRR = | O
0 0 0 3 0 =% -1 0 Oz
1 1
o 0 0 0 o0 o0 1 1 O4s2
0 0 0O 0 O 0 % —%
0 1
1 0 1 _1
1(0) ~(0) 2 6
ASRR_(_i L)’ BSRR: 1 0
12 16 2
1 _1
12 1
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OVS,LR]

V8,LR1T
Ouddu ]

03

o O

o=

jijit

1, 8, 1, 8,
OZu LR]/:II’ [OV LR]jtll’ [021/14 LR]jiZZ’ [OZMVLR]jiZZ’

jiiis

1jil>

8, 1, 8,
deI;AR]2]12 [OV LR]Jkkl?[OV LRkai}’

jiji
Sl R S8 RR S1,RR S8,RR
]lljl’ [ ud ]llji’ [Ouddu ]lijl’ [Ouddu ]11’]17
S] RR S8 RR S1,RR S8,RR
]22/!’ [ ]22ji’ [OMddu ]2ij2’ [Ouddu ]2ij2?
S] R

R S8,RR S1,RR S8,RR
]jlkk’ {0 ]jtkk’ [Odd ]jkkl’ [0 ]jkki}'

022
Agir
0452
)

04><2

o O O

I
3
—_
[N

024
024
B
044

04><4

0214
024
044
Bk

04><4

02><4
02><4
04><4

04><4
~(0
B

(43)

(44)

(45)

(46)

(47)

(48)
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At the one-loop level the corrections due to the EV operators are given by the matrix R

- S - ©

=)

W=

oS O O O o o o o
S O O o o o o o
|
)

o O

A
022
k(s]R)R = | Ou2
0452

04><2

S

]
N—

S O = O o=

0252
Agin
0452
0452

04><2

S O O O o o o o

S O O O o o o o

0254
0254
B
e

O4><4

SO O O O o o o o

S O O O o o o o

0254
0214
044
B

04><4

(1 1

Ryl Ry

0 R(l)
16x8 VLR

O16><8 O16><16

02><4
02><4
04><4 ’

04><4
~(1)
B(SRR

Here, we have used Nf =5 Ny;=3,and N, =2.
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IV. EVANESCENT OPERATORS

In this section, we define and calculate the EV operators,
which in turn gives us the matrix R(V.

A. Definition of EV operators in the VLL sector

At the one-loop level, we need to add an EV contribution
to a tree-level basis transformation rule if it involves a Fierz
transformation. On the other hand, we do not need an EV
contribution for the cases in which no Fierz is required for
the tree-level basis change. In the VLL (Vector Left-Left)
sector, there are total eight independent operators where
only five of them involve Fierz relation (B3) for the change
of basis. The corresponding EV operators EYL, I = 1-5
are defined by the following relations:

F
[OXdl’LL]nﬁ =Q, +E/™, (53)
r 1 1
[OXE’LL]uji: —ng +§Q2 + EY't, (54)

F 1 2
[OZJ’LL]zzﬁ =-0+ §Q3 + §Q9 + EX*, (55)

[OXS’LL]zzji - %Q1 —%Qz - 1_18Q3 +éQ4 —éQ9
+ % 0o + EJ'*, (56)
[OZI/L}LL]ﬁkk = §Q3 - % Q9 — 011 (57)
[0 juaa z §Q4 —ngo - Oy +EYM, (58)
[OZQLLLM = %Qll + % Qua, (59)
[OZQLL]jijj = %Qn —%Qm- (60)

Here F indicates that the Fierz identity (B3) is needed for
the change of basis.

B. Calculation of the EV operators in the VLL sectors

Now we are in position to use the rules presented in Sec. II1.
A to obtain EY""~EYM-, which contribute to R("). To use the
rules of Sec. II1. A, first we need to express the JMS operators
on the LHS in terms of the Q; operators. In general, there are
three categories of operators as discussed in Sec. II C.

1. Operators requiring no Fierz

Since the following set of operators in the VLL sector do
not require Fierz transformations for the basis change

[OL‘J/z’lLL]jikk’ [Oc‘l/élLL]jiii’ [O:J/&LL]jijja (61)
there are no EV operator contributions at the one-loop level
basis transformation given by (57), (59), and (60). Hence,

the corresponding entries in the matrix RY vanish.

2. Operators requiring Fierz but no EV shifts

There are two operators in the JMS basis that require
Fierz transformation but the EV contributions still vanish.
The tree-level transformations for these operators are given
by (53) and (55). To see this, one has to express the JMS
operators on the LHS in terms of the Q, operators, and
doing so we obtain

EYY = [OX;’LL]nﬁ -01=01-0,=0, (62)

1 2
EJ* = [OX;'LL]zzji - <_Q1 +§Q3 + §Q9>
=0,-0,=0. (63)

Here the shift in O, — Q, is given by rule (11).

3. Operators requiring Fierz and EV shifts

Finally, we turn to the cases for which Fierz transformation
atthe tree level as well as the EV contributions at the one-loop
level are necessary for the basis transformation. The tree-
level transformations can be read from Egs. (54), (56), and
(58). The EV operators are then given by

1 1
E;LL = [OXS’LL]HJ',' - <_6Q1 +§Q2>

1 ~

:E(Ql -0) -

V8,LL
EXLL - [OMd ]22]1‘

1 oy

(0, - 0y) = _EEP’ (64)

N =

1 1 1 1 1 1
- <6Q1 _§Q2_EQ3 +6Q4—§Q9+§Q10>

~ 1 1 a

(O —Q1)+§(Q2—Q2) = 6ar

P, (65)

AN =

2 2
E;’LL = [OZ,;LL}jkki - (g 04— ngO - Q“)

2 - 2 .
:g(Q4—Q4)—§(Q10—Q10)
2N+ Ng-2N,

N 9 4r"

(66)

Here the one-loop shifts are given by the rules in (11),
(13), (14), and (15), respectively.

C. Definition of EV operators in the SRR sector

In this case, in addition to the color identity (B7), we need
the Fierz relations given in (B1) and (BS).7 The one-loop
basis transformations including the EV operators ESRR read

"Note that here we have used the definition O =51 1)
Also we define the operators QSRR‘i and Q§RR'Q, QERR‘Q with an
additional negative sign as compared to Ref. [11].
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[Ojb'RR]jiii = gRRvi , (67)  Similar relations hold for 1 — 2 and u — ¢ on the LHS and
RHS, respectively. Finally,
5 5 1 , .
(03] ji = 715 O3+ T3 Q% + ESRRI_ - (68) (05 R jikk = SRR, (73)
1 1
Similar relations hold for jiii — jijj. We note that a separate [ng’RR]ji,{k =5 QR — 3 SRR (74)
evanescent operator ESRR4 is needed for this relation. | |
For the SRR,Q operators we find [thl[RR]jkki L_ 5 O} RRA 3 O3B  ERRA (75
[Oicl[RR]nji =03, (69) [OSSRR, F 1 srra;, 1 srra, iQSRR,dk
dd ) jkki = 1 3
[OSSRR) lQSRR,u _ 1 srru (70) 12 4 48
ud I11ji = 51 622 n 1_16 QiRR,dk n E;RR,dk' (76)

1 1
[Oiéﬁﬂliﬂ x -3 ?RR,u +§Q§RR.M + E?RR.u, (71)

D. Calculation of EV operators in the SRR sector

[058.RR] F 1 SRR,u_l SRRu _ | SRR

uddu J1ij1 = 75 21 472 4873 1. Operators requiring no Fierz

+ L QSRR 4 pSRRu (72) In the SRR sector, the following operators do not require
164 2 Fierz transformations for the basis change at the tree level:
|
S1,RR S1,RR S1,RR S8,RR S1,RR
(044 ]jiii’ [0, ]jijj? (044 ]llji’ [0 ]llji’ (044 ]22ji’
S8,RR S1,RR S8,RR
[0 ]221'1" [0, ]jikk’ (0,4 ]jikk' (77)

Therefore, for the basis change at the one-loop level no EV contributions are required.

2. Operators requiring Fierz but no EV shifts

In this sector there are no such operators that require Fierz without having nonvanishing EV shifts at the one-loop level.

3. Operators requiring Fierz and EV shifts

The SRR operators that require the Fierz relation and nonvanishing EV operators for the basis transformation are given by
(68), (71), (72), (75), and (76). The EV operators are then given by

. 5 | : 1, . . ;
ESRR,l — [Oii,RR]ﬁii _ <_12 QgRR.l + R QERR,1> _ _5( ?RRJ _ ?RR.[)

o (37 srri | 29 sRRi
- 47z<24 2 g ’ (78)

1 1
SRR, . . SRR,
EIRR u [Oiclhff] it < 5 ?RR u o Q3RR u>

1 - u u l > u u
— Lo L - g
aS
=5 > mat (19)
T =1234

1 1 1 1
SRR, 8, SRR,u SRR,u SRR, u SRR, u
EzRRu = [OidzﬁR}lijl - (E 1RR - Z 2RR - @ 3RR + EQ4RR )

1 SRR oSRRuy _ 1 2SRRu _ SRRuy _ 1 2SRRu _ SRRuy |, 1 2SRRu _ SRR
( )= ( 0;") — 2 (03 057") + —( ;")

TR ! 4\*?2 48 16 <4
aS u
=0 2w (80)
k=1234
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The coefficients p; and g, are found to be

7 17
P1:—E’ Pzz—z’
B 55 _ 13
"= T

The evanescent operators ESRRI and ETSR< E}SR%
follow from the corresponding ESRRY and EYS%" by the
corresponding flavor replacements.

In the above calculation, the shifts SRR b_ ?RRD and

QSRRQ QSRR € for Q = u or d; are obtamed using the
rules (20) and (28)—(31), respectively. It is worth noting at the
one-loop QCD only current-current insertions are involved
for the SRR operators in obtaining these rules. Therefore, the
flavor structure of the operators is immaterial. For instance,
|

5 3
TR TS (81)
11 1
= —-— =—-— 2
q3 142’ q4 48 (82)

the operators [O°LFF] . ;1 and QSRR having the same color
and Lorentz structures can be treated on the same footing
even though they have different flavor structures.

E. Definition of EV operators in the VLR sector

In this subsection we turn our attention to the VLR sector
and define the corresponding evanescent operators. Using
the Fierz relation in Eq. (B4) as well as color relations
one finds

[OZJ'LRLM Qs +3 Q7 +5 Q18 + EY™R,
[ng’LR}jmé——Qs +—Q6 _EQ7 +6Q8 +%Q17 —le + EYIR,
[OX;’LRLQQ Qs += Q7 Q18 + EYR,
[OZS’LRLzzz Qs + Q6 Q7 + % Os — % 07 + 1—12 Q5 + EY™R,

2
[OZC}’LR]/zkk Q ——Q7 013,
1

[OZS’LR]ﬂkk Qs +39%+5 Q7
[OZ;'LR]jiii = ;QIS + é Q16

[0V8 LR]/iii = ‘llle ! Q13 +£Q15 -
[OZJ/dI'LRLW ;Qm = Qe
[OZS’LRLW inz 1 Q13
[Oxz}léiﬁRHjil = _2Q197
[OdeﬁRh,,l Q19 = 02,
[Oﬁdl;REjiZ - —2Q217
[OngﬁR}zpz Q21 = 0,
[OZJ’LR]jkki = —2Q23,

[OZE’LR]jkki = %QZS — 0.

1 1
Qg - §Q12 + 6Q13 + EYIR,

1
EQm,

1 1
ZQIS +EQ16’

(83)

075007-11



AEBISCHER, BURAS, and KUMAR

PHYS. REV. D 107, 075007 (2023)

In the VLR sector, the following set operators do not require Fierz transformations for the basis change at the tree level

1, 1, 8,
[OZJ/d LR] jikks [Ol‘i/d LR] jiii» [Ogd LR]

V8,LR1t V1,LR7t V8,LR1t
[Ouddu ]ljil’ [OMddu bjiZ’ [Ouddu ]2j1'2’

jiiis

O

8,
[Ozi/d LR]jijj’

[OZS'LR}jkki-

V1,LR\T
Jijj° [Ouddu Ljil’

[OZ;'LR]jkkia (84)

Therefore, for the basis change at the one-loop level no EV contributions are required. The rest of the operators in the VLR

sector requiring Fierz are

VI.LR
[Odu ]jill7

However, as discussed in Sec. IIT A the corresponding EV
vanish:

EYIR — EYIR — EVIR — EVIR — EVIR _ ),

(86)

V. CONCLUSIONS

We have presented a simple recipe to perform one-loop
basis transformations involving evanescent operators. The
procedure consists of computing the commutator of a one-
loop (L) correction using dimensional regularization and a
Fierz (F) transformation of a given operator Q, which in all
generality is nonvanishing:

[L.F]Q #0. (87)

The presented method has already been used success-
fully in several contexts such as NLO basis transformations
[11,15,24], one-loop matching calculations [25], as well as
in several two-loop calculations [10]. But it has not been
presented in any detail and, in particular, in this generality in
the literature so far. The present paper should help to clarify
possible issues involving evanescent operators. In the coming
years one-loop matching and two-loop running effects will
become more important in NP analyses than they are now.

We illustrated the outlined procedure by computing
explicitly the complete one-loop basis change from the
BMU to the JMS basis at O(a;), and this example should
allow the reader to perform the transformation between
different bases. In this context our method will serve as a
simple tool to perform one-loop basis transformations.
One particular example would be the basis change to the

|

Q3 = (d%y,PLd?)> (@'v"PLdP),
q

0s = (dy,PLd?)> (@7 Prd’),
q

3 ]
Q7 = 5(d77uPLd?)ZQq(qﬁ7”PRqﬁ),
q

3 . ]
Q9 = 3 (d?yuPLd;‘l)ZQq(qﬁy#PLq/})v
q

V8,LR V1,LR
[Odu ]jil 1 [Odu ]ji227

[0(‘1/5 ] ji22s [OZS’LR] Jikk: (85)

|
CMM (Chetyrkin, Misiak and Munz) basis [18], which is
most suited for multiloop computations.

Since the one-loop basis change consists of a series of
simple algebraic manipulations, it would be interesting to
automate this procedure. After having computed all one-
loop corrections to the operators in question, a simple
algorithm might be included in codes such as ABC-EFT [26].
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APPENDIX A: AF=1 BMU BASIS FOR N;=5

In this appendix we collect the full set of BMU operators.
We start the list with the vector operators, where the first
ten operators are the well-known SM operators Q7 — Q-

Q=" = (dSy, PLul) @y PLdy),

0, =0 = (377MPL”a)<ﬁﬂV”PLd€)7 (A1)
Q4 = (dy,PLd))> (@r"Prg"),
q
Q6 = (a?}/MPLdlﬁ")Z(éﬁyﬂqua)7 (A2)
q
3 )
Qg = 5(d?}’ﬂPLdf)ZQq(qﬁV”PRqa)’
q
3 - _
Qi =35 (d57,Prd])d 0, (a"r"PLg"). (A3)
q
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The NP vector operators in the BMU basis are given by

0, = VLL it (da}/ﬂPLda)KdﬁyﬂPLdﬁ) + (dﬁyﬂPLd/})]
0, = VLR i+j _ (d“yﬂPLdﬂ)[(d/ yFPrd?) + (dfyﬂPRd?)],
Q13 _ VLR1+] (da}/ﬂPLda)[(dﬂV”PRdﬂ) (afy”PRdf)]’ (A4)

014 = QY = (dy,PLd®) @y PLdl) — @y PLdl)],

Q15 = 0™ = (d%,PLd))|(d)y" Prd?) — (dy"Prd?)].
Q16 = Oy ' = (d%y,PLd?)[(dly* Prd]) — (dy" Prd))). (AS)

Q17 = QY™ = (d%y, PLd)) (@ y" Pru®) — (P Pre?)],

le _ VLRu c _ (c_i?y”PLd?)[(ﬁﬂ]/MPRMﬁ) — (Eﬁ]/”PRC/})]- (Aﬁ)

Finally, we introduce the scalar sector of the BMU basis. In the SRL sector we use the structures
10 = (d§Prd]) (Q"PLOY), >0 = (dsPrd?)(0PPLOP), (A7)
which define the operators

(Q19. Q29) = (SRL" gRL’u>»
(021, 0n) = (O, 05%), Q3. 04) = (O7"%, O3F-%). (A8)

In the SRR sector with three equal quarks we introduce for completeness the redundant structures

T = (d3Prd])(d] Prdf), Q3 = ~(dfo,, Prd])(d] " Prdf), (A9)

jCn

together with the operators

o5 = O3 = (d9PRdf)(d]Prd]), Qa6 = O3 = —(d%0,, Prdy)(d] 0" Prd)), (A10)

JOm

and similar for the SRR, j sector

Oy = SRRJ (daP da)(dﬂpkdﬁ) O = SRRJ (dao’ PRda)(dﬂC’””P dﬂ) (Al1)
together with
TS = (dePrd))(d Prd?), 30 = —(d%,, Prd!) (0" Prd?). (A12)

Note that we choose the operators Q,¢ and Q,g with an opposite sign, compared to the basis in [11]. For the SRR sector with
four different quarks we define the structures

SRR.Q _ (c_l'qPRd/-})(QﬁPRQa) QSRR Q0 _ (dj’GﬂyPRd,ﬁ)(QﬁmeRQ“),

FRC = (d1PRd?)(QPPRQP). Q%€ = —(d%,,Prd?)(QPc" PROP). (A13)

where the tensor structures have again opposite signs compared to the convention adopted in [11]. With these definitions we
define the operators Q»,9—Q.o
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(Q29. @30. Q31 Q32) = (QT*"
(033, Q34 035, Q36) = (OT°F°
(O3, Oss. Oso. Ou) — (QSFRA: QSRR SRRy SRRl

Finally, as far as the chirality-flipped operators are
concerned, their numbering in the BMU basis is given by

Quori = Qi[PL < Pgl;

i.e., they are found by interchanging P; <> P in the
“nonflipped” operators.

(A15)

APPENDIX B: FIERZ IDENTITIES

In the process of transforming from one operator
basis to another one requires the Fierz identities [27]
|

_ _ 1
(W1 Pays) (W3 Ppws) = )

(W17, Pav) W3y Ppys) =

SRR,u SRR,u SRR,u

’ 2 ’ 3 ’ 4 )5
SRR, c SRR,c SRR,c

’ 2 k) 3 9 4 )7

(A14)

that allow one to transfer a given chain of spinors
into another one. We list here the usual Fierz iden-
tities valid in D =4 dimensions that we used in our
analysis.

All Fierz identities used are of the type (12)(34) —
(14)(32) in which the exchange of fermion fields 2 <> 4 (or
equivalently 1 <> 3) takes place. In the formulas below P,
and Py stand for the usual projectors P; p but in a given
relation P4 # Pg. This means that if P, = P;, then
Py = Py, and vice versa.

We have then

_ — 1 — - 1 7 7/ v

(W1 Pay2) (F3Pays) = _§<W1PAW4)(W3PAW2) ~3 (W16, P aws) (W30 P ayrs), (B1)
(@17, Pwa) W3y Pay), (B2)
(@17, Pay2) Wsr' Paws) = (@17, Paywa) W3y Pawa), (B3)
=2(1 Pgys) (3P aw>). (B4)

Y7 ¥y v yy ¥y 1 ¥ Y7 v
(W10, Paw) (W30 Paws) = —6(Wr1 Pays) (W3 Payr) + 3 (W16, Paws) (W30 Payrs), (BS)
(W10, P aw>) (W30 Pgyy) = 0. (B6)

For more Fierz identities involving charge conjugated
fields see Appendix A.3 in [1].
Apart from this we also need the color identity

1/ 1
"I =-(T-—1).
or =5 (i-%)

c

APPENDIX C: MASTER FORMULAS
FOR ONE-LOOP OPERATOR INSERTIONS

In this section, we present master formulas for the one-
loop operator insertions. These can be used to obtain the
shifts given in Sec. III. A. Consider a four-fermion operator

(7:1ViT142)(33V2T24q4). (C1)

where ‘71.2 and I'| , represent the color and Dirac structures.
There are two types of penguin insertions: an open penguin
and the closed penguin. In the next two subsections we
evaluate the corresponding amplitudes.

1. Open penguin insertion

The open penguin insertion of the operator (C1) gives

. —ig"”
Pop = W/1<_lgsTb7/1’)< qgj )7 (C2)

W, = iV, (=ig,T*)V, " T*

Hv

(C3)

where T4, =T7,7,7,I> and
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» Ak K (k - q)* i 1/1 1, i /5 2,
= D12 _ 2 qe2a\edudy T 599w | —7 2\ 74wy T4 G )
! 2P R(k=q? 1622 e \6 Wt T 1279w ) T g \1g e T 99

Therefore, the finite and infinite parts of P,, can be written as

1/ 1
P, (infinite) = —C,, 2 ( 1y

1
Pare\6 & +Egﬂp>rl7ﬂhhr2 /7,

i, ay (5 4uqy 2
P,,(finite) = —C,,, ﬁr (R 22,, + §gﬂy>r17ﬂ}’ﬂ’pr2 ® 7.

Here C,, = V,T"V, ® T".

2. Closed penguin insertion

The closed penguin insertion of the operator (C1) gives

, —ig”
P = W/l(_lgsTby}/)< 7 >,
W,= (_1)(i2)(_i9.s)Tf(VlTh)‘A/zTr(Flhhh)rz .

Here the I*¥ is given by (C4).
Therefore, the finite and infinite parts of P,.; can be written as

e a1 (1q,q 1
P_,(infinite) = Cdﬁ; (6 gzb + Egﬂy> Tr(Tyy,7:7,)T2 ® rh
. a; (5 9.4y 2 y)
P(finite) = Cclﬂ (EF + NG Tr(Tyy,7.7,)T2 ® 1.

Here C,; = Tr(V,T")V, @ T".

3. Special Cases

(C4)

In Tables IT and III we give the finite and singular parts for the penguin operators insertions with various Dirac structures.

TABLE II.  Finite and infinite parts of the open penguin insertion. C,, = VTV, ® T*.

Dirac structure P,, (infinite) P,, (finite)

Fl = ]//,PL, FZ = }/PPL C()p Z_,;Y/IPL ® y}L _Cop Z_,‘,%}//lPL ® yl
[y =y,P, I =y"Pg 0 0

F] == PL’ Fz - PL 0 0
[y=P;, T, =Pg —Copt7 PR ® 7 Cop R7,Pr ® 1
Fl = U(Z/JPL’ Fz = UaﬁPL 0 0

TABLE III.  Finite and infinite parts of the closed penguin insertion. C,; = Tr(V,T?)V, ® T®.

Dirac structure P, (finite) P, (infinite)
Iy =y,P, I =y'P —Ca2:8r,PL @7 CaiirPL® 7
Iy =y,PL, I =y"Pg —Ca2:87,Pr ® 7 Co:37.Pr ® v
r=pP,T,=P, 0 0
=P, 1, =P 0 0

1—‘1 = (1/3PL’ FZ = o-aﬂPL 0 0
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