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Basis transformations often involve Fierz and other relations that are only valid inD ¼ 4 dimensions. In
general D spacetime dimensions, however, evanescent operators have to be introduced in order to preserve
such identities. Such evanescent operators contribute to one-loop basis transformations as well as to two-
loop renormalization group running. We present a simple procedure on how to systematically change basis
at the one-loop level by obtaining shifts due to evanescent operators. As an example we apply this method
to derive the one-loop basis transformation from the Buras, Misiak and Urban basis useful for next-to-
leading order QCD calculations, to the Jenkins, Manohar and Stoffer basis used in the matching to the
standard model effective theory.
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I. INTRODUCTION

In recent years a lot of progress has been made
concerning next-to-leading order (NLO) analyses, which
involve one-loop matching calculations as well as solving
two-loop renormalization group equations (RGEs) for the
Wilson coefficients of effective field theories. For an up to
date review see [1]. For instance, concerning the standard
model effective theory (SMEFT), the full matching from
the SMEFT onto the weak effective theory (WET) valid
below the electroweak (EW) scale is known at tree level [2]
and since recently also at the one-loop level [3,4].
Furthermore, the one-loop RGEs in the SMEFT [5–7]
and in the WET [8,9] are known.
In the process of performing a NLO analysis, it is often

necessary to perform one-loop transformations between
different operator bases, since, for instance, anomalous
dimension matrices (ADMs) are known only in a particular
basis, whereas the matching conditions are given in a
different one. This is, for example, the case for the WET,
where the two-loop ADMs are known in the Buras, Misiak
and Urban (BMU) basis [10] as elaborated on recently in
[11]. On the other hand, the one-loop matching from
SMEFT onto WET is given in the Jenkins, Manohar and
Stoffer (JMS) basis defined in [2].1

Generally, to translate the results from one basis to
another one at NLO, one-loop basis transformations have

to be taken into account. In this respect particular care has to
be taken if the tree-level [leading order (LO)] transforma-
tions involve Dirac space identities, which are only valid in
four spacetime dimensions. Examples include Fierz iden-
tities or identities involving gamma matrices. When using
dimensional regularization, where the divergent loop inte-
grals are continued to D dimensions, such identities cannot
be used directly, but need to be generalized by introducing
evanescent (EV) operators [10]. Such evanescent operators
vanish in four dimensions to conserve the original identities
but are nonzero in D dimensions. They are therefore
formally speaking proportional to ϵ ¼ ð4 −DÞ=2, which
implies that they give nonzero contributions when inserted
into divergent loop diagrams. These are exactly the con-
tributions that enter basis transformations at the one-loop
order. In this articlewe discuss a simple procedure on how to
obtain these contributions by computing one-loop correc-
tions resulting from the presence of the evanescent oper-
ators.2 To this end the evanescent operators are simply
defined as the difference between operators and their
transformed versions using D ¼ 4 identities. The resulting
contributions will manifest themselves in shifts in the
corresponding Wilson coefficients of the initial operators.
Having a simple algorithm at hand to perform NLO basis

changes is important when performing one-loop matching
calculations or computing two-loop ADMs. In this work
we explain the underlying formal framework and provide
such an algorithm, based on Greek projections [13], which
facilitates the aforementioned calculations. In this manner
this procedure is an important ingredient in the pursuit of a
complete NLO SMEFT analysis.Published by the American Physical Society under the terms of

the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

1We follow here the WCxf convention defined in [12].

2A more formal procedure on how to perform NLO basis
changes can be found in [10].
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The rest of the article is organized as follows: In Sec. II
we outline the general procedure on how to compute one-
loop basis transformations between two operator bases. In
Sec. III we show an explicit example by performing a NLO
change from the BMU to the JMS basis. In Sec. IV we
define and calculate the EVoperators that in turn give us the
transformation matrix between BMU and JMS bases at the
one-loop level. Finally we conclude in Sec. V. Additional
material used in the calculations is collected in the
appendixes.

II. PROCEDURE

In this section we discuss the full NLO basis trans-
formation between general operator bases. However, to
make the subsequent sections more transparent we will dub
the two operator bases JMS (see Table I for the list of
operators considered in this work) and BMU. We start with
the simple LO basis transformation which will also set the
notation used. Then, in the second subsection we discuss
the issue of evanescent operators that become relevant
when performing basis changes at the one-loop level.

A. Tree-level transformation

Let us consider the two bases

O⃗BMU ¼ fQ1; Q2;…; QNg; O⃗JMS ¼ fO1; O2;…; ONg;
ð1Þ

containing N operators each. At tree level each operator is
given by a linear combination of operators from the other
basis:

O⃗JMS ¼ R̂ð0ÞO⃗BMU; ð2Þ

where the N × N matrix R̂ð0Þ denotes the linear transforma-
tion between the two bases. The superindex “(0)” denotes the
tree-level transformation in anticipation of the one-loop
transformation discussed in the next subsection. The matrix
R̂ð0Þ is obtained by applying identities such as Fierz relations
and gammamatrix identities to the operators on the left-hand
side (LHS) ofEq. (2). It is independent of the renormalization
scale and only contains numerical factors.3

As seen in Eq. (2) the BMU operator basis is transformed
via R̂ð0Þ into the JMS basis. This transformation is useful
because the hadronic matrix elements of operators are
usually calculated in the BMU basis and this transformation
allows one to obtain them in the JMS basis. However, the
Wilson coefficients are nowadays calculated in the JMS
basis, since the SMEFT matching results are only available
in that particular basis. Therefore, for Wilson coefficients
the transformation from JMS to BMU is more useful,
which reads

C⃗ð0ÞBMU ¼ ðR̂ð0ÞÞT C⃗ð0ÞJMS; ð3Þ

that is, ðR̂ð0ÞÞT is involved.
Since R̂ð0Þ is invertible by definition, one can easily

express the BMU operators in terms of JMS ones and the
JMS Wilson coefficients in terms of BMU ones. For our

TABLE I. Nonleptonic ΔF ¼ 1 operators (baryon and lepton number conserving) in the JMS basis [2]. Note that
QV1;LR

uddu and QV8;LR
uddu have Hermitian conjugates. The same holds for the operators ðL̄RÞðL̄RÞ. This choice of basis

eliminates all operators with Dirac structures σμν. The class of operators ðL̄RÞðR̄LÞ þ H:c: does not contain
nonleptonic operators, but only semileptonic ones.

ðL̄LÞðL̄LÞ ðR̄RÞðR̄RÞ
½OV;LL

dd �prst ðd̄pLγμdrLÞðd̄sLγμdtLÞ ½OV;RR
dd �prst ðd̄pRγμdrRÞðd̄sRγμdtRÞ

½OV1;LL
ud �prst ðūpLγμurLÞðd̄sLγμdtLÞ ½OV1;RR

ud �prst ðūpRγμurRÞðd̄sRγμdtRÞ
½OV8;LL

ud �prst ðūpLγμTAurLÞðd̄sLγμTAdtLÞ ½OV8;RR
ud �prst ðūpRγμTAurRÞðd̄sRγμTAdtRÞ

ðL̄LÞðR̄RÞ ðL̄RÞðL̄RÞ þ H:c:

½OV1;LR
dd �prst ðd̄pLγμdrLÞðd̄sRγμdtRÞ ½OS1;RR

dd �prst ðd̄pLdrRÞðd̄sLdtRÞ
½OV8;LR

dd �prst ðd̄pLγμTAdrLÞðd̄sRγμTAdtRÞ ½OS8;RR
dd �prst ðd̄pLTAdrRÞðd̄sLTAdtRÞ

½OV1;LR
ud �prst ðūpLγμurLÞðd̄sRγμdtRÞ ½OS1;RR

ud �prst ðūpLurRÞðd̄sLdtRÞ
½OV8;LR

ud �prst ðūpLγμTAurLÞðd̄sRγμTAdtRÞ ½OS8;RR
ud �prst ðūpLTAurRÞðd̄sLTAdtRÞ

½OV1;LR
du �prst ðd̄pLγμdrLÞðūsRγμutRÞ ½OS1;RR

uddu �prst ðūpLdrRÞðd̄sLutRÞ
½OV8;LR

du �prst ðd̄pLγμTAdrLÞðūsRγμTAutRÞ ½OS8;RR
uddu �prst ðūpLTAdrRÞðd̄sLTAutRÞ

½OV1;LR
uddu �prst ðūpLγμdrLÞðd̄sRγμutRÞ þ H:c:

½OV8;LR
uddu �prst ðūpLγμTAdrLÞðd̄sRγμTAutRÞ þ H:c:

3This is true up to possible normalization factors, which can
contain coupling constants or other parameters that depend on the
renormalization scale.
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purposes, however, the transformations in Eqs. (2) and (3)
are more convenient.
It should be stressed that although the procedure outlined

below is general and can be used for any basis trans-
formation, the explicit values of various coefficients are
given in our paper in the NDR-MS scheme as defined
in [14] with evanescent operators entering two-loop cal-
culations defined by the so-called Greek method. The
details in the context of WET and SMEFT are discussed
in Appendix E of [15].

B. One-loop transformation

At the one-loop level special care has to be taken when
identities have been used in the LO transformation that are
only valid in D ¼ 4 spacetime dimensions. Therefore, for
all the lines in Rð0Þ that were obtained using D ¼ 4
relations, evanescent operators have to be introduced to
generalize these identities. In the case of the BMU → JMS
transformation we proceed as follows:
Step 1:
We perform a Fierz transformation on every operator in

the BMU basis Qi and denote the result of this trans-
formation by Q̃i given generally by

Q̃i ¼
X
k

ωikQk; ð4Þ

with operators Qk belonging to the BMU basis and
coefficients ωik determined through the Fierz identities
collected in Appendix B. It should be emphasized that the
relation above and analogous relations below should be
interpreted as effective contributions from this operator in
one-loop diagrams. This means that the calculations
performed in two bases, in our case BMU and JMS, will
give the same results for physical observables when this
transformation is taken into account at all stages, therefore
also when calculating anomalous dimensions. These
relations and analogous relations involving evanescent
operators can also be used for the calculations of two-loop
anomalous dimensions of operators because there the
evanescent operators contributing to two-loop anomalous
dimensions appear in one-loop subdiagrams [14]. To go to

the next order in perturbation theory the shifts should
include corrections of order Oðα2sÞ that can be obtained
through insertions of the operators into two-loop
diagrams.
Step 2:
We insert Qi and Q̃i defined by (4) into current-current

and QCD penguin diagrams of Figs. 1 and 2, respectively.
Because of the presence of evanescent operators that are
simply defined by

Qi ¼ Q̃i þ EVi; ð5Þ

the insertion of Qi and Q̃i into one-loop diagrams will
generally differ at OðαsÞ, leading to the result

Qi ¼ Q̃i þ
αs
4π

X
r

ω̃irQr; ð6Þ

where the operators in the sum can again be written in the
BMU basis but are generally different from the ones in the
definition of Q̃i in (4) and also ωik ≠ ω̃ir. Note that this
can easily be done at the one-loop level because in
transforming the operators entering these corrections
D ¼ 4 Fierz identities can be used as will be explained
below. Expressing the shift in terms of BMU operators

FIG. 1. The QCD current-current insertions at one-loop.

FIG. 2. The QCD-penguin insertions with open-type (left) and
closed-type (right) fermion loops.
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allows one to use these results for transformations of the
BMU basis to any basis, not just the JMS one.
To compute the αs corrections resulting from the

evanescent operator EVi in (5), one simply inserts the
difference Qi − Q̃i into the relevant one-loop diagrams.
Since the evanescent operator is formally OðϵÞ, only the
divergent pieces of the loop integrals will contribute and
consequently the finite pieces can be discarded in the
calculation.
The relation between operators in the JMS basis and

the Fierz transformed operators in BMU are further dis-
cussed in Sec. III B. In particular, the tree-level relations
are given in Eqs. (46)–(49), and the one-loop relations in
Eqs. (50)–(52).
Step 3:
Having the relations in (6) and inspecting which Fierz

transformations had to be performed to find the LO matrix
R̂ð0Þ we can generalize the basis change matrix R̂ð0Þ to the
one-loop order, as follows4:

O⃗JMS ¼ R̂O⃗BMU; R̂ ¼ R̂ð0Þ þ αs
4π

R̂ð1Þ; ð7Þ

where R̂ð1Þ is the one-loop basis transformation matrix
resulting exclusively from the evanescent operators.
When computing the one-loop corrections to the differ-

ence Qi − Q̃i, new Dirac structures can appear, which are
not present in the original basis, in our case the BMU basis.

To reduce these structures to the ones in O⃗BMU it is essential
to use the same projections as in the calculations of two-
loop anomalous dimensions of the operators. Only then are
the evanescent operators entering the two-loop calculations
the same as the ones used in the one-loop matching
between WET and SMEFT, and in particular they corre-
spond to the ones in the basis change. This prescription
guarantees that the renormalization scheme dependence of
two-loop matrix elements can be canceled by the one
present in one-loop contributions so that the physical
amplitudes are renormalization scheme independent.
These issues have been discussed in the context of the

NLO QCD calculations of Wilson coefficients at length
in [14,16,17] and the summary can be found in Sec. 5.2.9
of [1]. There the so-called Greek projection [13], properly
generalized to include evanescent operators in [14], has
been discussed in detail. As pointed out in [17] this is not
the only way to include evanescent operators but, in fact,
the simplest one. It has been used in all two-loop calcu-
lations performed by the second author and will be used in
the following but this time in the context of basis change. It
should be kept in mind that this procedure defines the
evanescent operators in the NDR-MS scheme combined

with the Greek projections as used in [14]. While giving the
same results it is much simpler than the formal method
presented in [10] and used recently in [11].
The NLO transformation in terms of the Wilson coef-

ficients is given as follows:

C⃗BMU ¼ R̂T C⃗JMS: ð8Þ

Writing

C⃗JMS ¼ C⃗ð0ÞJMS þ
αs
4π

C⃗ð1ÞJMS; C⃗BMU ¼ C⃗ð0ÞBMU þ αs
4π

C⃗ð1ÞBMU;

ð9Þ

the transformation for Wilson coefficients reads

C⃗ð0ÞBMU ¼ ðR̂ð0ÞÞT C⃗ð0ÞJMS;

C⃗ð1ÞBMU ¼ ðR̂ð0ÞÞT C⃗ð1ÞJMS þ ðR̂ð1ÞÞT C⃗ð0ÞJMS: ð10Þ

A few remarks concerning the generality of our results
are in order: The procedure laid out in this article is not
limited to the BMU and JMS basis, but is valid for any pair
of operator bases that are related via Fierz transformations.
The full set of relevant evanescent operators is generated by
applying Greek identities or any other identities to reduce
the resulting Dirac structures from the one-loop calculation.
This choice of Dirac reduction, together with the chosen
finite counterterms and the treatment of γ5 fixes the
renormalization scheme [17]. In this article we have chosen
the NDR-MS scheme in combination with the Greek
identities. Choosing a different renormalization scheme
would change the entries of the rotation matrix Rð1Þ in
Eq. (7), but is related via a trivial change of scheme to our
results [18,19]. Furthermore, the procedure is independent
of possible group theory relations between the two bases,
since these are still valid in D ≠ 4 spacetime dimensions,
and therefore do not obtain any one-loop shifts from
evanescent structures. Finally, we note that the operator
shifts presented in this paper can be interpreted as one-loop
corrections to the original Fierz identities. This has been
shown in two recent publications [20,21], in which the
shifts for all possible four-Fermi operators together with the
contributions from dipole operators have been taken into
account. A similar procedure in the SMEFT has been
employed in [22].

C. How to use this procedure

Having the results in (6) to be presented in the next
section, our goal will be to find the matrix R̂. To this end
comparing the BMU and JMS bases one has to find those
operators or groups of them for which a Fierz trans-
formation on operators in the BMU basis has to be
performed in order to obtain the operators in the JMS
basis with order αs corrections taken into account.

4In the case JMS ↔ BMU we will focus on QCD corrections.
The relation in Eq. (7) can easily be generalized to include other
one-loop corrections.
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Generally the matrix R̂ð0Þ will have a block structure so
that operators in a given block can be separately considered
from other blocks. In this context the following three
cases arise:

(i) If no Fierz transformations are required in a given
block, the corresponding matrix R̂ð1Þ will vanish and
tree-level results will be valid also at one-loop. One
can use the corresponding block in R̂ð0Þ in that case.

(ii) If Fierz transformations in a given block are required
but the contributions of evanescent operators will
vanish, the corresponding block in the tree-level
matrix R̂ð0Þ will again represent the corresponding
block in the full R̂.

(iii) Finally, in certain blocks the necessity of performing
Fierz transformations will introduce evanescent
operators which will contribute to R̂ð1Þ.

In the next section we will present the three step
procedure outlined in this section in explicit terms.

III. BMU TO JMS TRANSLATION AT ONE-LOOP

A. Basic method

As outlined above, the transformation of the BMU basis
to the JMS basis requires Fierz transformations on some of
the BMU operators. This generates then additional con-
tributions to the one-loop matching performed within the
JMS basis. To find these one-loop contributions, one has to
insert the difference Qi − Q̃i into current-current and
penguin diagrams of Figs. 1 and 2, respectively. The details

of the calculation for the one-loop insertions are given in
Appendix C.
With all BMU operators listed in Appendix A the

following items turn out:
(i) ForQk with k ¼ 1–18 these additional contributions

come only from penguin insertions and moreover
only for a few among these operators listed below.

(ii) Fierz transformations on QSLR;Q
1 and QSLR;Q

2 do not
generate any evanescent contributions, and conse-
quently in this case D ¼ 4 identities can be used.

(iii) For QSRR;Q
k with k ¼ 1–4 and QSRR;D

l with l ¼ 1, 2
the contributions come only from current-current
operators and involve all operators considered.
However, all these operators do not contribute to
K and B decays being forbidden within SMEFT. For
completeness we list these contributions below
because they could be useful for charm physics.

In the case of the SM operatorsQk with k ¼ 1–10 all the
contributions from Fierz transformations for LL (left-left)
operators can be obtained from two properties:

Q1 ¼ Q̃1; Q2 ¼ Q̃2 þ
1

3

αs
4π

P; ð11Þ

with

P ¼ Q4 þQ6 −
1

3
ðQ3 þQ5Þ: ð12Þ

We find

Q3 ¼ Q̃3 þ
2

3

αs
4π

P; Q4 ¼ Q̃4 −
Nf

3

αs
4π

P; Q5 ¼ Q̃5; Q6 ¼ Q̃6; ð13Þ

Q7 ¼ Q̃7; Q8 ¼ Q̃8; Q9 ¼ Q̃9 −
1

3

αs
4π

P; Q10 ¼ Q̃10 −
1

3

�
Nu −

Nd

2

�
αs
4π

P: ð14Þ

We observe that the Fierz transformations on the VLR
(Vector Left-Right) operatorsQk with k ¼ 5–8 do not bring
any contributions from evanescent operators.
In the case of the new physics (NP) operators Qk with

k ¼ 11–18 only the Fierz transformation on Q11 brings a
contribution from evanescent operators so that

Q11 ¼ Q̃11 þ
2

3

αs
4π

P; Qk ¼ Q̃k; k ¼ 12 − 18:

ð15Þ

The corresponding results for QSRR;D
1;2;3;4 with D ¼ di or dj

operators can be obtained by using the results of [23], in
particular the results in Eqs. (29)–(32) of that paper. In this
case the Q̃SRR;D

k operators with k ¼ 1–4 are given as follows:

Q̃SRR;D
1 ¼ −

1

2
QSRR;D

2 þ 1

8
QSRR;D

4 ;

Q̃SRR;D
2 ¼ −

1

2
QSRR;D

1 þ 1

8
QSRR;D

3 ; ð16Þ

Q̃SRR;D
3 ¼ 6QSRR;D

2 þ 1

2
QSRR;D

4 ;

Q̃SRR;D
4 ¼ 6QSRR;D

1 þ 1

2
QSRR;D

3 : ð17Þ

As this time only current-current diagrams are
involved, the flavor structure relative to the one consid-
ered in [23] does not matter, and the full calculation of
the matrix elements of Q̃i operators can readily be
performed in no time using results of [23]. The shifts
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caused by evanescent operators involve four operators but
those with k ¼ 1, 3 can be eliminated5 using

QSRR;D
3 ¼ 6QSRR;D

2 þ 1

2
QSRR;D

4 þ Fierz ev ð18Þ

QSRR;D
1 ¼ −

1

2
QSRR;D

2 þ 1

8
QSRR;D

4 þ Fierz ev; ð19Þ

so that the shifts depend only on QSRR;D
2;4 . Note that in the

BMU basis QSRR;D
2;4 are denoted as QSRR;i

1;2 or QSRR;j
1;2 in

Ref. [11]; see Appendix A for definitions.
We find then

QSRR;D
1 ¼ Q̃SRR;D

1 þ αs
4π

X
k¼2;4

AkQ
SRR;D
k ; ð20Þ

QSRR;D
2 ¼ Q̃SRR;D

2 þ αs
4π

X
k¼2;4

BkQ
SRR;D
k ; ð21Þ

QSRR;D
3 ¼ Q̃SRR;D

3 þ αs
4π

X
k¼2;4

CkQ
SRR;D
k ; ð22Þ

QSRR;D
4 ¼ Q̃SRR;D

4 þ αs
4π

X
k¼2;4

DkQ
SRR;D
k ; ð23Þ

with the coefficients Ak, Bk, Ck, Dk given as follows6:

A2 ¼
1

2
þ 5

Nc
−
7Nc

4
¼ −

37

12
;

A4 ¼ −
1

2
þ 1

4Nc
−
Nc

16
¼ −

29

48
; ð24Þ

B2 ¼ −
17

4
−

1

Nc
¼ −

55

12
;

B4 ¼ −
3

16
þ 3

4Nc
−
Nc

8
¼ −

5

16
; ð25Þ

C2 ¼ 36þ 28

Nc
− 7Nc ¼

73

3
;

C4 ¼ −
1

2
−

5

Nc
þ 3Nc

4
¼ 1

12
; ð26Þ

D2 ¼ −21 −
44

Nc
þ 14Nc ¼

19

3
; D4 ¼

13

4
þ 1

Nc
¼ 43

12
:

ð27Þ

The same procedure can be applied to QSRR;Q
1;2;3;4 with

Q ¼ uk; dk ≠ di; dj defined in Eq. (A13). The rules for the
shifts read

QSRR;Q
1 ¼ Q̃SRR;Q

1 þ αs
4π

X
k¼1;2;3;4

akQ
SRR;Q
k ; ð28Þ

QSRR;Q
2 ¼ Q̃SRR;Q

2 þ αs
4π

X
k¼1;2;3;4

bkQ
SRR;Q
k ; ð29Þ

QSRR;Q
3 ¼ Q̃SRR;Q

3 þ αs
4π

X
k¼1;2;3;4

ckQ
SRR;Q
k ; ð30Þ

QSRR;Q
4 ¼ Q̃SRR;Q

4 þ αs
4π

X
k¼1;2;3;4

dkQ
SRR;Q
k : ð31Þ

Here the flavor structure of the tilde operators Q̃SRR;Q
1;2;3;4 [see

(16) and (17) for the definition with D replaced by Q] is
ðd̄jΓQÞðQ̄ΓdiÞ and the BMU operators QSRR;Q

1;2;3;4 have the
form ðd̄jΓdiÞðQ̄ΓQÞ.
The coefficients ak, bk, ck, dk are given as follows:

a1 ¼
Nc

2
−

1

Nc
¼ 7

6
; a2 ¼

1

2
; ð32Þ

a3 ¼ −
Nc

4
þ 3

4Nc
¼ −

1

2
; a4 ¼ −

1

2
; ð33Þ

b1 ¼ 1; b2 ¼ −
1

Nc
¼ −

1

3
; ð34Þ

b3 ¼ −
5

8
; b4 ¼ −

Nc

8
þ 3

4Nc
¼ −

1

8
; ð35Þ

c1 ¼ 8Nc −
44

Nc
¼ 28

3
; c2 ¼ 36; ð36Þ

c3 ¼ −
Nc

2
þ 1

Nc
¼ −

7

6
; c4 ¼ −

1

2
; ð37Þ

d1 ¼ 30; d2 ¼ 14Nc −
44

Nc
¼ 82

3
; ð38Þ

d3 ¼ −1; d4 ¼
1

Nc
¼ 1

3
: ð39Þ

With these rules we can find the matrix R̂ as defined
in (7).

B. Transformation matrices at one-loop

In this section we present our final result for the trans-
formation matrices between the BMU and JMS bases at the
one-loop level. The details of the calculation are given in
Sec. IV. The calculation can be split into the three discon-
nected sectors VLL, VLR, and SRR (Scalar Left-Left),
which denote the γμPL ⊗ γμPL, γμPL ⊗ γμPR, and PR ⊗
PR Dirac structures of the involved four-Fermi operators,
respectively. For the BMU operator we use the following
reference ordering:

VLL∶fQ1; Q2; Q3; Q4; Q9; Q10; Q11; Q14g; ð40Þ
VLR∶fQ5; Q6; Q7; Q8; Q12; Q13; Q15;…; Q24g; ð41Þ

SRR∶fQ25;…; Q40g: ð42Þ
5Equivalently one could also eliminate any other two operators

but here we follow the conventions used in Ref. [11].
6Nc is the number of colors with Nc ¼ 3 in the final results.
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For the JMS basis we use the ordering

VLL∶f½OV1;LL
ud �11ji; ½OV8;LL

ud �11ji; ½OV1;LL
ud �22ji; ½OV8;LL

ud �22ji;
½OV;LL

dd �jikk; ½OV;LL
dd �jkki; ½OV;LL

dd �jiii; ½OV;LL
dd �jijjg; ð43Þ

VLR∶f½OV1;LR
du �ji11; ½OV8;LR

du �ji11; ½OV1;LR
du �ji22; ½OV8;LR

du �ji22;
½OV1;LR

dd �jikk; ½OV8;LR
dd �jikk; ½OV1;LR

dd �jiii; ½OV8;LR
dd �jiii;

½OV1;LR
dd �jijj; ½OV8;LR

dd �jijj; ½OV1;LR
uddu �†1ji1; ½OV8;LR

uddu �†1ji1;
½OV1;LR

uddu �†2ji2; ½OV8;LR
uddu �†2ji2; ½OV1;LR

dd �jkki; ½OV8;LR
dd �jkkig; ð44Þ

SRR∶f½OS1;RR
dd �jiii; ½OS8;RR

dd �jiii; ½OS1;RR
dd �jijj; ½OS8;RR

dd �jijj;
½OS1;RR

ud �11ji; ½OS8;RR
ud �11ji; ½OS1;RR

uddu �1ij1; ½OS8;RR
uddu �1ij1;

½OS1;RR
ud �22ji; ½OS8;RR

ud �22ji; ½OS1;RR
uddu �2ij2; ½OS8;RR

uddu �2ij2;
½OS1;RR

dd �jikk; ½OS8;RR
dd �jikk; ½OS1;RR

dd �jkki; ½OS8;RR
dd �jkkig: ð45Þ

At tree level the transformation matrix R̂ð0Þ reads

R̂ð0Þ ¼

0
BBB@

R̂ð0Þ
VLL 08×16 08×16

016×8 R̂ð0Þ
VLR 016×16

016×8 016×16 R̂ð0Þ
SRR

1
CCCA; ð46Þ

R̂ð0Þ
VLL ¼

0
BBBBBBBBBBBBBBB@

1 0 0 0 0 0 0 0

− 1
6

1
2

0 0 0 0 0 0

−1 0 1
3

0 2
3

0 0 0

1
6

− 1
2

− 1
18

1
6

− 1
9

1
3

0 0

0 0 2
3

0 − 2
3

0 −1 0

0 0 0 2
3

0 − 2
3

−1 0

0 0 0 0 0 0 1
2

1
2

0 0 0 0 0 0 1
2

− 1
2

1
CCCCCCCCCCCCCCCA

; R̂ð0Þ
SRR ¼

0
BBBBBBBB@

Âð0Þ
SRR 02×2 02×4 02×4 02×4

02×2 Âð0Þ
SRR 02×4 02×4 02×4

04×2 04×2 B̂ð0Þ
SRR 04×4 04×4

04×2 04×2 04×4 B̂ð0Þ
SRR 04×4

04×2 04×2 04×4 04×4 B̂ð0Þ
SRR

1
CCCCCCCCA
; ð47Þ

Âð0Þ
SRR ¼

�
1 0

− 5
12

1
16

�
; B̂ð0Þ

SRR ¼

0
BBBBB@

0 1 0 0
1
2

− 1
6

0 0

− 1
2

0 1
8

0

1
12

− 1
4

− 1
48

1
16

1
CCCCCA
; ð48Þ
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R̂ð0Þ
VLR ¼

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
6

0 1
3

0 0 0 0 0 0 1
2

0 0 0 0 0 0

− 1
36

1
12

− 1
18

1
6

0 0 0 0 1
4

− 1
12

0 0 0 0 0 0

1
6

0 1
3

0 0 0 0 0 0 − 1
2

0 0 0 0 0 0

− 1
36

1
12

− 1
18

1
6

0 0 0 0 − 1
4

1
12

0 0 0 0 0 0

2
3

0 − 2
3

0 0 −1 0 0 0 0 0 0 0 0 0 0

− 1
9

1
3

1
9

− 1
3

− 1
2

1
6

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1
2

0 1
2

0 0 0 0 0 0 0 0

0 0 0 0 1
4

− 1
12

1
4

− 1
12

0 0 0 0 0 0 0 0

0 0 0 0 0 1
2

0 − 1
2

0 0 0 0 0 0 0 0

0 0 0 0 1
4

− 1
12

− 1
4

1
12

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1
3

−1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1
3

−1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
3

−1

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

: ð49Þ

At the one-loop level the corrections due to the EV operators are given by the matrix R̂ð1Þ

R̂ð1Þ ¼

0
BBB@

R̂ð1Þ
VLL Rð1Þ

8×16 08×16

016×8 R̂ð1Þ
VLR 016×16

016×8 016×16 R̂ð1Þ
SRR

1
CCCA; ð50Þ

R̂ð1Þ
VLL ¼

0
BBBBBBBBBBBBB@

0 0 0 0 0 0 0 0

0 0 1
18

− 1
6

0 0 0 0

0 0 0 0 0 0 0 0

0 0 − 1
18

1
6

0 0 0 0

0 0 0 0 0 0 0 0

0 0 − 1
3

1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1
CCCCCCCCCCCCCA

; R̂ð1Þ
8×16 ¼

0
BBBBBBBBBBBBB@

0 0 � � � 0
1
18

− 1
6

� � � 0

0 0 … 0

− 1
18

1
6

� � � 0

0 0 � � � 0

− 1
3

1 � � � 0

0 0 � � � 0

0 0 � � � 0

1
CCCCCCCCCCCCCA

; R̂ð1Þ
VLR ¼ 016×16; ð51Þ

R̂ð1Þ
SRR ¼

0
BBBBBBBB@

Âð1Þ
SRR 02×2 02×4 02×4 02×4

02×2 Âð1Þ
SRR 02×4 02×4 02×4

04×2 04×2 B̂ð1Þ
SRR 04×4 04×4

04×2 04×2 04×4 B̂ð1Þ
SRR 04×4

04×2 04×2 04×4 04×4 B̂ð1Þ
SRR

1
CCCCCCCCA
;

Âð1Þ
SRR ¼

�
0 0

− 37
24

− 29
96

�
;

B̂ð1Þ
SRR ¼

0
BBBBB@

0 0 0 0

0 0 0 0

− 7
12

− 17
4

− 5
48

− 3
16

− 55
36

− 13
12

− 11
144

− 1
48

1
CCCCCA
:

ð52Þ

Here, we have used Nf ¼ 5, Nd ¼ 3, and Nu ¼ 2.
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IV. EVANESCENT OPERATORS

In this section, we define and calculate the EVoperators,
which in turn gives us the matrix R̂ð1Þ.

A. Definition of EV operators in the VLL sector

At the one-loop level, we need to add an EV contribution
to a tree-level basis transformation rule if it involves a Fierz
transformation. On the other hand, we do not need an EV
contribution for the cases in which no Fierz is required for
the tree-level basis change. In the VLL (Vector Left-Left)
sector, there are total eight independent operators where
only five of them involve Fierz relation (B3) for the change
of basis. The corresponding EV operators EVLL

I ; I ¼ 1–5
are defined by the following relations:

½OV1;LL
ud �11ji ¼F Q1 þ EVLL

1 ; ð53Þ

½OV8;LL
ud �11ji ¼F −

1

6
Q1 þ

1

2
Q2 þ EVLL

2 ; ð54Þ

½OV1;LL
ud �22ji ¼F −Q1 þ

1

3
Q3 þ

2

3
Q9 þ EVLL

3 ; ð55Þ

½OV8;LL
ud �22ji ¼F

1

6
Q1 −

1

2
Q2 −

1

18
Q3 þ

1

6
Q4 −

1

9
Q9

þ 1

3
Q10 þ EVLL

4 ; ð56Þ

½OV;LL
dd �jikk ¼

2

3
Q3 −

2

3
Q9 −Q11; ð57Þ

½OV;LL
dd �jkki ¼F

2

3
Q4 −

2

3
Q10 −Q11 þ EVLL

5 ; ð58Þ

½OV;LL
dd �jiii ¼

1

2
Q11 þ

1

2
Q14; ð59Þ

½OV;LL
dd �jijj ¼

1

2
Q11 −

1

2
Q14: ð60Þ

Here F indicates that the Fierz identity (B3) is needed for
the change of basis.

B. Calculation of the EV operators in the VLL sectors

Nowwe are in position to use the rules presented in Sec. III.
A to obtain EVLL

1 –EVLL
5 , which contribute to R̂ð1Þ. To use the

rules of Sec. III. A, first we need to express the JMS operators
on the LHS in terms of the Q̃I operators. In general, there are
three categories of operators as discussed in Sec. II C.

1. Operators requiring no Fierz

Since the following set of operators in the VLL sector do
not require Fierz transformations for the basis change

½OV;LL
dd �jikk; ½OV;LL

dd �jiii; ½OV;LL
dd �jijj; ð61Þ

there are no EVoperator contributions at the one-loop level
basis transformation given by (57), (59), and (60). Hence,
the corresponding entries in the matrix R̂ð1Þ vanish.

2. Operators requiring Fierz but no EV shifts

There are two operators in the JMS basis that require
Fierz transformation but the EV contributions still vanish.
The tree-level transformations for these operators are given
by (53) and (55). To see this, one has to express the JMS
operators on the LHS in terms of the Q̃I operators, and
doing so we obtain

EVLL
1 ¼ ½OV1;LL

ud �11ji −Q1 ¼ Q̃1 −Q1 ¼ 0; ð62Þ

EVLL
3 ¼ ½OV1;LL

ud �22ji −
�
−Q1 þ

1

3
Q3 þ

2

3
Q9

�

¼ Q̃1 −Q1 ¼ 0: ð63Þ

Here the shift in Q̃1 −Q1 is given by rule (11).

3. Operators requiring Fierz and EV shifts

Finally,we turn to the cases forwhich Fierz transformation
at the tree level aswell as theEVcontributions at theone-loop
level are necessary for the basis transformation. The tree-
level transformations can be read from Eqs. (54), (56), and
(58). The EVoperators are then given by

EVLL
2 ¼ ½OV8;LL

ud �11ji −
�
−
1

6
Q1 þ

1

2
Q2

�

¼ 1

6
ðQ1 − Q̃1Þ −

1

2
ðQ2 − Q̃2Þ ¼ −

1

6

αs
4π

P; ð64Þ

EVLL
4 ¼ ½OV8;LL

ud �22ji
−
�
1

6
Q1 −

1

2
Q2 −

1

18
Q3 þ

1

6
Q4 −

1

9
Q9 þ

1

3
Q10

�

¼ 1

6
ðQ̃1 −Q1Þ þ

1

2
ðQ2 − Q̃2Þ ¼

1

6

αs
4π

P; ð65Þ

EVLL
5 ¼ ½OV;LL

dd �jkki −
�
2

3
Q4 −

2

3
Q10 −Q11

�

¼ 2

3
ðQ̃4 −Q4Þ −

2

3
ðQ̃10 −Q10Þ

¼ 2Nf þ Nd − 2Nu

9

αs
4π

P: ð66Þ

Here the one-loop shifts are given by the rules in (11),
(13), (14), and (15), respectively.

C. Definition of EV operators in the SRR sector

In this case, in addition to the color identity (B7), we need
the Fierz relations given in (B1) and (B5).7 The one-loop
basis transformations including the EVoperators ESRR

I read

7Note that here we have used the definition σμν ¼ i
2
½γμ; γν�.

Also we define the operators QSRR;i
2 and QSRR;Q

3 , QSRR;Q
4 with an

additional negative sign as compared to Ref. [11].
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½OS1;RR
dd �jiii ¼ QSRR;i

2 ; ð67Þ

½OS8;RR
dd �jiii ¼F −

5

12
QSRR;i

2 þ 1

16
QSRR;i

4 þ ESRR;i: ð68Þ

Similar relations hold for jiii → jijj.We note that a separate
evanescent operator ESRR;j is needed for this relation.
For the SRR,Q operators we find

½OS1;RR
ud �11ji ¼ QSRR;u

2 ; ð69Þ

½OS8;RR
ud �11ji ¼

1

2
QSRR;u

1 −
1

6
QSRR;u

2 ; ð70Þ

½OS1;RR
uddu �1ij1 ¼F −

1

2
QSRR;u

1 þ 1

8
QSRR;u

3 þ ESRR;u
1 ; ð71Þ

½OS8;RR
uddu �1ij1 ¼F

1

12
QSRR;u

1 −
1

4
QSRR;u

2 −
1

48
QSRR;u

3

þ 1

16
QSRR;u

4 þ ESRR;u
2 : ð72Þ

Similar relations hold for 1 → 2 and u → c on the LHS and
RHS, respectively. Finally,

½OS1;RR
dd �jikk ¼ QSRR;dk

2 ; ð73Þ

½OS8;RR
dd �jikk ¼

1

2
QSRR;dk

1 −
1

6
QSRR;dk

2 ; ð74Þ

½OS1;RR
dd �jkki ¼F −

1

2
QSRR;dk

1 þ 1

8
QSRR;dk

3 þ ESRR;dk
1 ; ð75Þ

½OS8;RR
dd �jkki ¼F

1

12
QSRR;dk

1 −
1

4
QSRR;dk

2 −
1

48
QSRR;dk

3

þ 1

16
QSRR;dk

4 þ ESRR;dk
2 : ð76Þ

D. Calculation of EV operators in the SRR sector

1. Operators requiring no Fierz

In the SRR sector, the following operators do not require
Fierz transformations for the basis change at the tree level:

½OS1;RR
dd �jiii; ½OS1;RR

dd �jijj; ½OS1;RR
ud �11ji; ½OS8;RR

ud �11ji; ½OS1;RR
ud �22ji;

½OS8;RR
ud �22ji; ½OS1;RR

dd �jikk; ½OS8;RR
ud �jikk: ð77Þ

Therefore, for the basis change at the one-loop level no EV contributions are required.

2. Operators requiring Fierz but no EV shifts

In this sector there are no such operators that require Fierz without having nonvanishing EV shifts at the one-loop level.

3. Operators requiring Fierz and EV shifts

The SRR operators that require the Fierz relation and nonvanishing EVoperators for the basis transformation are given by
(68), (71), (72), (75), and (76). The EV operators are then given by

ESRR;i ¼ ½OS8;RR
dd �jiii −

�
−

5

12
QSRR;i

2 þ 1

16
QSRR;i

4

�
¼ −

1

2
ðQ̃SRR;i

1 −QSRR;i
1 Þ

¼ −
αs
4π

�
37

24
QSRR;i

2 þ 29

96
QSRR;i

4

�
; ð78Þ

ESRR;u
1 ¼ ½OS1;RR

uddu �1ij1 −
�
−
1

2
QSRR;u

1 þ 1

8
QSRR;u

3

�

¼ −
1

2
ðQ̃SRR;u

1 −QSRR;u
1 Þ þ 1

8
ðQ̃SRR;u

3 −QSRR;u
3 Þ

¼ αs
4π

X
k¼1;2;3;4

pkQ
SRR;u
k ; ð79Þ

ESRR;u
2 ¼ ½OS8;RR

uddu �1ij1 −
�
1

12
QSRR;u

1 −
1

4
QSRR;u

2 −
1

48
QSRR;u

3 þ 1

16
QSRR;u

4

�

¼ 1

12
ðQ̃SRR;u

1 −QSRR;u
1 Þ − 1

4
ðQ̃SRR;u

2 −QSRR;u
2 Þ − 1

48
ðQ̃SRR;u

3 −QSRR;u
3 Þ þ 1

16
ðQ̃SRR;u

4 −QSRR;u
4 Þ

¼ αs
4π

X
k¼1;2;3;4

qkQ
SRR;u
k : ð80Þ
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The coefficients pk and qk are found to be

p1 ¼ −
7

12
; p2 ¼ −

17

4
; p3 ¼ −

5

48
; p4 ¼ −

3

16
; ð81Þ

q1 ¼ −
55

36
; q2 ¼ −

13

12
; q3 ¼ −

11

144
; q4 ¼ −

1

48
: ð82Þ

The evanescent operators ESRR;j and ESRR;c
1;2 ; ESRR;dk

1;2

follow from the corresponding ESRR;i and ESRR;u
1;2 by the

corresponding flavor replacements.
In the above calculation, the shifts QSRR;D

1 − Q̃SRR;D
1 and

QSRR;Q
I − Q̃SRR;Q

I for Q ¼ u or dk are obtained using the
rules (20) and (28)–(31), respectively. It is worth noting at the
one-loop QCD only current-current insertions are involved
for the SRR operators in obtaining these rules. Therefore, the
flavor structure of the operators is immaterial. For instance,

the operators ½OS1;RR
uddu �1ij1 and QSRR;u

2 having the same color
and Lorentz structures can be treated on the same footing
even though they have different flavor structures.

E. Definition of EV operators in the VLR sector

In this subsection we turn our attention to the VLR sector
and define the corresponding evanescent operators. Using
the Fierz relation in Eq. (B4) as well as color relations
one finds

½OV1;LR
du �ji11¼F

1

6
Q5 þ

1

3
Q7 þ

1

2
Q18 þ EVLR

1 ;

½OV8;LR
du �ji11¼F −

1

36
Q5 þ

1

12
Q6 −

1

18
Q7 þ

1

6
Q8 þ

1

4
Q17 −

1

12
Q18 þ EVLR

2 ;

½OV1;LR
du �ji22¼F

1

6
Q5 þ

1

3
Q7 −

1

2
Q18 þ EVLR

3 ;

½OV8;LR
du �ji22¼F −

1

36
Q5 þ

1

12
Q6 −

1

18
Q7 þ

1

6
Q8 −

1

4
Q17 þ

1

12
Q18 þ EVLR

4 ;

½OV1;LR
dd �jikk ¼

2

3
Q5 −

2

3
Q7 −Q13;

½OV8;LR
dd �jikk¼F −

1

9
Q5 þ

1

3
Q6 þ

1

9
Q7 −

1

3
Q8 −

1

2
Q12 þ

1

6
Q13 þ EVLR

5 ;

½OV1;LR
dd �jiii ¼

1

2
Q13 þ

1

2
Q16;

½OV8;LR
dd �jiii ¼

1

4
Q12 −

1

12
Q13 þ

1

4
Q15 −

1

12
Q16;

½OV1;LR
dd �jijj ¼

1

2
Q13 −

1

2
Q16;

½OV8;LR
dd �jijj ¼

1

4
Q12 −

1

12
Q13 −

1

4
Q15 þ

1

12
Q16;

½OV1;LR
uddu �†1ji1 ¼ −2Q19;

½OV8;LR
uddu �†1ji1 ¼

1

3
Q19 −Q20;

½OV1;LR
uddu �†2ji2 ¼ −2Q21;

½OV8;LR
uddu �†2ji2 ¼

1

3
Q21 −Q22;

½OV1;LR
dd �jkki ¼ −2Q23;

½OV8;LR
dd �jkki ¼

1

3
Q23 −Q24: ð83Þ
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In the VLR sector, the following set operators do not require Fierz transformations for the basis change at the tree level

½OV1;LR
dd �jikk; ½OV1;LR

dd �jiii; ½OV8;LR
dd �jiii; ½OV1;LR

dd �jijj; ½OV8;LR
dd �jijj; ½OV1;LR

uddu �†1ji1;
½OV8;LR

uddu �†1ji1; ½OV1;LR
uddu �†2ji2; ½OV8;LR

uddu �†2ji2; ½OV1;LR
dd �jkki; ½OV8;LR

dd �jkki: ð84Þ
Therefore, for the basis change at the one-loop level no EV contributions are required. The rest of the operators in the VLR
sector requiring Fierz are

½OV1;LR
du �ji11; ½OV8;LR

du �ji11; ½OV1;LR
du �ji22; ½OV8;LR

du �ji22; ½OV8;LR
dd �jikk: ð85Þ

However, as discussed in Sec. III A the corresponding EV
vanish:

EVLR
1 ¼ EVLR

2 ¼ EVLR
3 ¼ EVLR

4 ¼ EVLR
5 ¼ 0: ð86Þ

V. CONCLUSIONS

We have presented a simple recipe to perform one-loop
basis transformations involving evanescent operators. The
procedure consists of computing the commutator of a one-
loop (L) correction using dimensional regularization and a
Fierz (F ) transformation of a given operatorQ, which in all
generality is nonvanishing:

½L;F �Q ≠ 0: ð87Þ

The presented method has already been used success-
fully in several contexts such as NLO basis transformations
[11,15,24], one-loop matching calculations [25], as well as
in several two-loop calculations [10]. But it has not been
presented in any detail and, in particular, in this generality in
the literature so far. The present paper should help to clarify
possible issues involving evanescent operators. In the coming
years one-loop matching and two-loop running effects will
become more important in NP analyses than they are now.
We illustrated the outlined procedure by computing

explicitly the complete one-loop basis change from the
BMU to the JMS basis at OðαsÞ, and this example should
allow the reader to perform the transformation between
different bases. In this context our method will serve as a
simple tool to perform one-loop basis transformations.
One particular example would be the basis change to the

CMM (Chetyrkin, Misiak and Munz) basis [18], which is
most suited for multiloop computations.
Since the one-loop basis change consists of a series of

simple algebraic manipulations, it would be interesting to
automate this procedure. After having computed all one-
loop corrections to the operators in question, a simple
algorithm might be included in codes such as ABC-EFT [26].
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APPENDIX A: ΔF= 1 BMU BASIS FOR Nf = 5

In this appendix we collect the full set of BMU operators.
We start the list with the vector operators, where the first

ten operators are the well-known SM operators Q1 −Q10:

Q1 ¼ QVLL;u
1 ¼ ðd̄αj γμPLuβÞðūβγμPLdαi Þ;

Q2 ¼ QVLL;u
2 ¼ ðd̄αj γμPLuαÞðūβγμPLd

β
i Þ; ðA1Þ

Q3 ¼ ðd̄αj γμPLdαi Þ
X
q

ðq̄βγμPLqβÞ; Q4 ¼ ðd̄αj γμPLd
β
i Þ
X
q

ðq̄βγμPLqαÞ;

Q5 ¼ ðd̄αj γμPLdαi Þ
X
q

ðq̄βγμPRqβÞ; Q6 ¼ ðd̄αj γμPLd
β
i Þ
X
q

ðq̄βγμPRqαÞ; ðA2Þ

Q7 ¼
3

2
ðd̄αj γμPLdαi Þ

X
q

Qqðq̄βγμPRqβÞ; Q8 ¼
3

2
ðd̄αj γμPLd

β
i Þ
X
q

Qqðq̄βγμPRqαÞ;

Q9 ¼
3

2
ðd̄αj γμPLdαi Þ

X
q

Qqðq̄βγμPLqβÞ; Q10 ¼
3

2
ðd̄αj γμPLd

β
i Þ
X
q

Qqðq̄βγμPLqαÞ: ðA3Þ
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The NP vector operators in the BMU basis are given by

Q11 ¼ QVLL;iþj
1 ¼ ðd̄αj γμPLdαi Þ½ðd̄βi γμPLd

β
i Þ þ ðd̄βjγμPLd

β
j Þ�;

Q12 ¼ QVLR;iþj
1 ¼ ðd̄αj γμPLd

β
i Þ½ðd̄βi γμPRdαi Þ þ ðd̄βj γμPRdαj Þ�;

Q13 ¼ QVLR;iþj
2 ¼ ðd̄αj γμPLdαi Þ½ðd̄βi γμPRd

β
i Þ þ ðd̄βj γμPRd

β
j Þ�; ðA4Þ

Q14 ¼ QVLL;i−j
1 ¼ ðd̄αj γμPLdαi Þ½ðd̄βi γμPLd

β
i Þ − ðd̄βjγμPLd

β
j Þ�;

Q15 ¼ QVLR;i−j
1 ¼ ðd̄αj γμPLd

β
i Þ½ðd̄βi γμPRdαi Þ − ðd̄βjγμPRdαj Þ�;

Q16 ¼ QVLR;i−j
2 ¼ ðd̄αj γμPLdαi Þ½ðd̄βi γμPRd

β
i Þ − ðd̄βjγμPRd

β
j Þ�; ðA5Þ

Q17 ¼ QVLR;u−c
1 ¼ ðd̄αj γμPLd

β
i Þ½ðūβγμPRuαÞ − ðc̄βγμPRcαÞ�;

Q18 ¼ QVLR;u−c
2 ¼ ðd̄αj γμPLdαi Þ½ðūβγμPRuβÞ − ðc̄βγμPRcβÞ�: ðA6Þ

Finally, we introduce the scalar sector of the BMU basis. In the SRL sector we use the structures

QSRL;Q
1 ¼ ðd̄αjPRd

β
i ÞðQ̄βPLQαÞ; QSRL;Q

2 ¼ ðd̄αjPRdαi ÞðQ̄βPLQβÞ; ðA7Þ

which define the operators

ðQ19; Q20Þ ¼ ðQSRL;u
1 ; QSRL;u

2 Þ;
ðQ21; Q22Þ ¼ ðQSRL;c

1 ; QSRL;c
2 Þ; ðQ23; Q24Þ ¼ ðQSRL;dk

1 ; QSRL;dk
2 Þ: ðA8Þ

In the SRR sector with three equal quarks we introduce for completeness the redundant structures

QSRR;i
1 ¼ ðd̄αjPRd

β
i Þðd̄βi PRdαi Þ; QSRR;i

3 ¼ −ðd̄αjσμνPRd
β
i Þðd̄βi σμνPRdαi Þ; ðA9Þ

together with the operators

Q25 ¼ QSRR;i
2 ¼ ðd̄αjPRdαi Þðd̄βi PRd

β
i Þ; Q26 ¼ QSRR;i

4 ¼ −ðd̄αjσμνPRdαi Þðd̄βi σμνPRd
β
i Þ; ðA10Þ

and similar for the SRR, j sector

Q27 ¼ QSRR;j
2 ¼ ðd̄αjPRdαi Þðd̄βjPRd

β
j Þ; Q28 ¼ QSRR;j

4 ¼ −ðd̄αjσμνPRdαi Þðd̄βjσμνPRd
β
j Þ; ðA11Þ

together with

QSRR;j
1 ¼ ðd̄αjPRd

β
i Þðd̄βjPRdαj Þ; QSRR;j

3 ¼ −ðd̄αjσμνPRd
β
i Þðd̄βjσμνPRdαj Þ: ðA12Þ

Note that we choose the operatorsQ26 andQ28 with an opposite sign, compared to the basis in [11]. For the SRR sector with
four different quarks we define the structures

QSRR;Q
1 ¼ ðd̄αjPRd

β
i ÞðQ̄βPRQαÞ; QSRR;Q

3 ¼ −ðd̄αjσμνPRd
β
i ÞðQ̄βσμνPRQαÞ;

QSRR;Q
2 ¼ ðd̄αjPRdαi ÞðQ̄βPRQβÞ; QSRR;Q

4 ¼ −ðd̄αjσμνPRdαi ÞðQ̄βσμνPRQβÞ; ðA13Þ

where the tensor structures have again opposite signs compared to the convention adopted in [11]. With these definitions we
define the operators Q29–Q40
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ðQ29; Q30; Q31; Q32Þ ¼ ðQSRR;u
1 ; QSRR;u

2 ; QSRR;u
3 ; QSRR;u

4 Þ;
ðQ33; Q34; Q35; Q36Þ ¼ ðQSRR;c

1 ; QSRR;c
2 ; QSRR;c

3 ; QSRR;c
4 Þ;

ðQ37; Q38; Q39; Q40Þ ¼ ðQSRR;dk
1 ; QSRR;dk

2 ; QSRR;dk
3 ; QSRR;dk

4 Þ: ðA14Þ

Finally, as far as the chirality-flipped operators are
concerned, their numbering in the BMU basis is given by

Q40þi ¼ Qi½PL ↔ PR�; ðA15Þ
i.e., they are found by interchanging PL ↔ PR in the
“nonflipped” operators.

APPENDIX B: FIERZ IDENTITIES

In the process of transforming from one operator
basis to another one requires the Fierz identities [27]

that allow one to transfer a given chain of spinors
into another one. We list here the usual Fierz iden-
tities valid in D ¼ 4 dimensions that we used in our
analysis.
All Fierz identities used are of the type ð12Þð34Þ →

ð14Þð32Þ in which the exchange of fermion fields 2 ↔ 4 (or
equivalently 1 ↔ 3) takes place. In the formulas below PA
and PB stand for the usual projectors PL;R but in a given
relation PA ≠ PB. This means that if PA ¼ PL, then
PB ¼ PR, and vice versa.
We have then

ðψ̄1PAψ2Þðψ̄3PAψ4Þ ¼ −
1

2
ðψ̄1PAψ4Þðψ̄3PAψ2Þ −

1

8
ðψ̄1σμνPAψ4Þðψ̄3σ

μνPAψ2Þ; ðB1Þ

ðψ̄1PAψ2Þðψ̄3PBψ4Þ ¼ −
1

2
ðψ̄1γμPBψ4Þðψ̄3γ

μPAψ2Þ; ðB2Þ

ðψ̄1γμPAψ2Þðψ̄3γ
μPAψ4Þ ¼ ðψ̄1γμPAψ4Þðψ̄3γ

μPAψ2Þ; ðB3Þ

ðψ̄1γμPAψ2Þðψ̄3γ
μPBψ4Þ ¼ −2ðψ̄1PBψ4Þðψ̄3PAψ2Þ; ðB4Þ

ðψ̄1σμνPAψ2Þðψ̄3σ
μνPAψ4Þ ¼ −6ðψ̄1PAψ4Þðψ̄3PAψ2Þ þ

1

2
ðψ̄1σμνPAψ4Þðψ̄3σ

μνPAψ2Þ; ðB5Þ

ðψ̄1σμνPAψ2Þðψ̄3σ
μνPBψ4Þ ¼ 0: ðB6Þ

For more Fierz identities involving charge conjugated
fields see Appendix A. 3 in [1].
Apart from this we also need the color identity

TA ⊗ TA ¼ 1

2

�
1̃ −

1

Nc
1

�
: ðB7Þ

APPENDIX C: MASTER FORMULAS
FOR ONE-LOOP OPERATOR INSERTIONS

In this section, we present master formulas for the one-
loop operator insertions. These can be used to obtain the
shifts given in Sec. III. A. Consider a four-fermion operator

ðq̄1V̂1Γ1q2Þðq̄3V̂2Γ2q4Þ; ðC1Þ

where V̂1;2 and Γ1;2 represent the color and Dirac structures.
There are two types of penguin insertions: an open penguin
and the closed penguin. In the next two subsections we
evaluate the corresponding amplitudes.

1. Open penguin insertion

The open penguin insertion of the operator (C1) gives

Pop ¼ Wλð−igsTbγλ0 Þ
�
−igλλ0

q2

�
; ðC2Þ

Wλ ¼ i2V̂1ð−igsTaÞV̂2IμνTλ
μν; ðC3Þ

where Tλ
μν ¼ Γ1γνγλγμΓ2 and
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Iμν ¼
Z

dDk
ð2πÞD

kνðk − qÞμ
k2ðk − qÞ2 ¼ −

i
16π2

1

ε

�
1

6
qμqν þ

1

12
q2gμν

�
−

i
16π2

�
5

18
qμqν þ

2

9
q2gμν

�
: ðC4Þ

Therefore, the finite and infinite parts of Pop can be written as

PopðinfiniteÞ ¼ −Cop
αs
4π

1

ε

�
1

6

qμqν
q2

þ 1

12
gμν

�
Γ1γμγλγνΓ2 ⊗ γλ; ðC5Þ

PopðfiniteÞ ¼ −Cop
αs
4π

�
5

18

qμqν
q2

þ 2

9
gμν

�
Γ1γμγλγνΓ2 ⊗ γλ: ðC6Þ

Here Cop ¼ V̂1TbV̂2 ⊗ Tb.

2. Closed penguin insertion

The closed penguin insertion of the operator (C1) gives

Pcl ¼ Wλð−igsTbγλ0 Þ
�
−igλλ0

q2

�
; ðC7Þ

Wλ ¼ ð−1Þði2Þð−igsÞTrðV̂1TbÞV̂2TrðΓ1γμγλγνÞΓ2 Iμν: ðC8Þ

Here the Iμν is given by (C4).
Therefore, the finite and infinite parts of Pcl can be written as

PclðinfiniteÞ ¼ Ccl
αs
4π

1

ε

�
1

6

qμqν
q2

þ 1

12
gμν

�
TrðΓ1γμγλγνÞΓ2 ⊗ γλ; ðC9Þ

PclðfiniteÞ ¼ Ccl
αs
4π

�
5

18

qμqν
q2

þ 2

9
gμν

�
TrðΓ1γμγλγνÞΓ2 ⊗ γλ: ðC10Þ

Here Ccl ¼ TrðV̂1TbÞV̂2 ⊗ Tb.

3. Special Cases

In Tables II and III we give the finite and singular parts for the penguin operators insertions with various Dirac structures.

TABLE II. Finite and infinite parts of the open penguin insertion. Cop ¼ V̂1TbV̂2 ⊗ Tb.

Dirac structure Pop (infinite) Pop (finite)

Γ1 ¼ γρPL, Γ2 ¼ γρPL Cop
αs
4π γλPL ⊗ γλ −Cop

αs
4π

13
9
γλPL ⊗ γλ

Γ1 ¼ γρPL, Γ2 ¼ γρPR 0 0
Γ1 ¼ PL, Γ2 ¼ PL 0 0
Γ1 ¼ PL, Γ2 ¼ PR −Cop

αs
4π

1
6
γλPR ⊗ γλ Cop

αs
4π

13
8
γλPR ⊗ γλ

Γ1 ¼ σαβPL, Γ2 ¼ σαβPL 0 0

TABLE III. Finite and infinite parts of the closed penguin insertion. Ccl ¼ TrðV̂1TbÞV̂2 ⊗ Tb.

Dirac structure Pcl (finite) Pcl (infinite)

Γ1 ¼ γρPL, Γ2 ¼ γρPL −Ccl
αs
4π

13
9
γλPL ⊗ γλ Ccl

αs
4π

1
3
γλPL ⊗ γλ

Γ1 ¼ γρPL, Γ2 ¼ γρPR −Ccl
αs
4π

13
9
γλPR ⊗ γλ Ccl

αs
4π

1
3
γλPR ⊗ γλ

Γ1 ¼ PL, Γ2 ¼ PL 0 0
Γ1 ¼ PL, Γ2 ¼ PR 0 0
Γ1 ¼ σαβPL, Γ2 ¼ σαβPL 0 0
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