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We propose a solution to the recent W mass measurement by embedding the Standard Model within Eg
models. The presence of a new U(1) group shifts the W boson mass at the tree level and introduces
a new gauge boson Z' which has been searched for at collider experiments. In this article, we identify
the parameter space that explains the new W mass measurement and is consistent with current experimental
7' searches. As U(1) extensions can be accommodated in supersymmetric models, we also consider
the supersymmetric scenario of Eq models, and show that a 125 GeV Higgs may be easily achieved

in such settings.
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I. INTRODUCTION

Precision measurements have been crucial in testing
physics beyond the Standard Model (SM). In recent years,
tensions between theory and experiment have been build-
ing with the muon g — 2 measurement [1,2], flavor anoma-
lies [3-8], and most recently the W boson mass
measurement by the CDF collaboration [9]. The CDF II
experiment measured the W boson mass to be

MGPY = 80.4335 4 0.0094 GeV, (1)
which deviates from the SM prediction [10] by about 7o,
My, = MGPF — MM ~ 76 + 11 MeV. (2)

This measurement has increased the tension between the
SM and previous Tevatron measurements [11,12], but is
also in tension with the previous world average by more
than 20 [10]. The tension between various experiments can
be from unknown systematic uncertainties, which is
beyond the scope of this study.

In this article, we focus on the compelling possibility
that the deviation of results between the new CDF
experiment, along with previous Tevatron experiments,
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and the SM predictions is a hint of new physics beyond
the SM [13-23,23-34,34—101]. In particular, we focus on
a possible tree-level modification to the W boson mass
coming from an extension the SM gauge group. The
simplest extension is to include a new U(1) gauge group,
which we call U(1). This results in two electrically
neutral gauge bosons, Z and Z', that are linear combina-
tions of the SM Z° boson and the gauge boson of the new
U(1)’ group. Due to the interconnectedness of the electro-
weak sector, these additions alter the W boson mass at the
tree level which can explain the CDF II measurement.

There are many well-motivated theories beyond the
SM that feature at least one extra U(1) group [102,103],
such as grand unified theories (GUT) [104—107], super-
strings [108—111], extra dimensions [112], little Higgs
[113-115], dynamical symmetry breaking [116,116], and
the Stueckelberg mechanism [117-122]. Among the GUT
models, the ones based on rank-6 gauge groups, known
as Eg¢ have been extensively studied for phenomenological
interests [123]. The E4 models can be considered in
both supersymmetric and nonsupersymmetric scenarios.
Extending the minimal supersymmetric Standard Model
(MSSM) with an extra U(1) group also has numerous
advantages. For example, similar to the next-to-minimal
supersymmetric Standard Model (NMSSM), the tree-level
Higgs mass in the U(1)-supersymmetric model (UMSSM)
is increased, and a 125 GeV Higgs can be obtained without
the need of large radiative corrections [124]. Furthermore,
UMSSM scenarios embed the discrete Z; symmetry of
the NMSSM into a continuous one, and therefore, do not
suffer from the cosmological domain walls problems in the
NMSSM [125].

In this article, we discuss supersymmetric £, models
in light of the CDF II My, measurement. We note that

Published by the American Physical Society
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although our analysis is based on Eg, it can easily be
generalized to any new physics scenario, supersymmetric or
not, with at least one additional U(1)" gauge group. This
article is structured as follows. In Sec. II, we show the
contribution to the W mass from the U(1)’ group. In Sec. III
we review the experimental constraints, especially the direct
7' searches. These constraints are then applied to Eq models
containing the U(1)" group. In Sec. IV, we discuss the
predictions of the Higgs mass within supersymmetric Eg
models. Section V is reserved for conclusions.

II. CONTRIBUTION TO My,

Models that extend the SM by an extra U(1) gauge group
introduce a new gauge boson Z’. The Cartan subalgebra
of Eg models contains two additional U(1) generators. We
consider the following breakdown of Eg

Eg — SO(10) x U(1),

- SU(5)x U(1), x U(1),
= SU@), x SU2), x U(1)y x U(1), x U(1),.

The two extra U(1) groups yield two additional gauge
bosons, Z,, and Z,. Upon electroweak symmetry breaking,
they mix to form two gauge bosons Z’ and Z”, with the
mixing parametrized by the Eg mixing angle 0,

7' =2Z7,coslg, +Z,sin0g,
7" = -Z,sin0g, + Z, cos O, (3)

Often, only one of the new gauge bosons is assumed to be
around the TeV scale, leading to an effective rank-5 group.
In this analysis, we will only consider the contributions
from the lighter state of the two. We will also allow for a
kinetic mixing term, Si%B”Z’” [126-130], which has been
studied in the context of a leptophobic Z'. The relevant
Lagrangian terms are given in the appendix.

The presence of a new Z' boson contributes to the W
boson mass at the tree level. The shift in the W boson mass
from the SM prediction can be expressed in terms of the
oblique parameters S, 7, U [131]:

M3y = (Y
2 2

Cw — Sw )
—U] 4
45%4,

2
+%M§(—ls+ AT+

Cy — S 2
where sy and cy are the sine and cosine of the weak
mixing angle, and M is the physical mass of the SM Z°
boson. The oblique parameters may be derived from the
transformation matrix responsible for bringing £ into a
basis of fields with canonical kinetic mixing and diagonal
mass matrices [132]. In the appendix we derive this matrix,
and from that the oblique parameters. Here we express the

oblique parameters in terms of the mixing angle £ between
the new Z’ boson and the SM Z° boson, and the kinetic
mixing angle y between the U(1), and U(1)" gauge
bosons. To first order in &,

as = 4cysyétany, (5)

and U = 0. T is given by the wave function renormalization
A, of the Z boson (found in the transformation matrix)
as well as the shift in the Z boson mass from its SM
prediction. To first order in &, the wave function renorm-
alization is

AZ = Swg tany. (6)

With Z — Z' mass mixing, the tree-level Z boson mass
M is shifted from its SM value m, as

my = M% + [M%, — M%]sin* &, (7)

which is an identical relation between the Z — Z’' mass
matrix and its diagonalized form. For small Z — Z’ mixing

angles of & < M%/M2%,, Eq. (7) is approximately

2
M%zm%[l _52<%_1)] (8)

These changes to the properties of the Z boson are
combined to form the 7 parameter:

al = Z(AZ - &Z)

2
= sy tany + & <]]“/I/I% - 1> 9)

1.5%x1073
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FIG. 1. The solid line shows the solution to Eq. (10) for
oMy, = 76 MeV, which is the central value of the deviation of
the SM from the CDF II experiment. The shaded region contains
solutions for 54 MeV < oMy, < 98 MeV, corresponding to a 20
confidence level of the CDF II measurement.
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where A, is the fractional mass shift of Z from the SM,
given to first order in &.

Neglecting terms of order SM?,, Eq. (4) now yields the
following W boson mass shift:

1 W .
— W (M2, - M), 10
ity ey S0 = M), (10)

5MW ~
which only depends on the Z" mass and Z — Z’ mixing. In
Fig. 1, we plot the solution to Eq. (10) in the M, — & plane.

III. EXPERIMENTAL CONSTRAINTS

In this section, we will discuss various experimental
constraints on a new Z' boson. The Z' may be directly
produced at the Large Hadron Collider (LHC) through
pp — Z' — Il processes, and is therefore subject to current
resonant dilepton searches [133,134]. The results are pre-
sented as the upper limit on the product of the Z’ production
cross section ¢ with the branching ratio of the Z’ to dilepton
pairs for various Z’ masses, 6(pp — Z') x BR(Z' — I17).
Further, the results are used to constrain the sequential
standard model (SSM), and some rank-5 scenarios in the
Es model. In general Eg models, with a possible kinetic
mixing term and Z — Z’ mixing, the neutral current J; of the
heavier mass eigenstate can be written as

Jh = Zgz/fiY”[inLPL + Q2irPrlf i (11)

where g, is the coupling constant of the new gauge group. If
we assume grand unification, g, = 0.46 at the electroweak
scale [103]. Oz ) are found in the appendix to be

ﬂCW[_CW cos & tany]g;
9z

92
Cw3z
+ [cos &/ cos y] 0}, g)- (12)

Qai(L.r) =

[—siné& + sy cos Etan y]Q 7z g)

The first two terms are contributions from the photon and SM
Z° boson components in the new Z’ boson due to the mixing.
g, and g, are the coupling constants of the SM U(1), and
SU(2), gauge groups. g; is the electromagnetic charge of
fermion f;, and

QZi(L.R) = T?(L,m - %’S%v’ (13)

where T?( LR) is the third isospin component of fermion f;.
The last term in Eq. (12) is the contribution due to the new
U(1)" gauge group and Q§< L) are the charges of fermions

under this group.
As noted above, within Eg models the U(1)" group is
taken as an orthogonal mixture of groups U(1), and U(1),,

TABLE I. Eg charges for fermion and scalar fields following

Ref. [103].
Field 2V/100, 2v60,
u -1 1
Up 1 -1
dr -1 1
dg -3 -1
ey 3 1
€R 1 -1
vy 3 1
Uy 5 -1
H, 2 -2
H, -2 -2
S 0 4

such that the group generators Q', Q,, and Q,, are related
through

Q' = Q,cos0g, + Q,sinb,. (14)

The charges for the fermions are listed in Table 1.

Table II lists canonical Eq models which are anomaly-
free without the requirement of additional massless fields.
However, anomalies are present in models for all other 0,
values. In those cases, to cancel the anomalies, one needs to
introduce the complete multiples [135]. Those lighter states
can also contribute to My, through loop effects. In this
article, we only focus on the tree-level effects. Those
models also contain right-handed neutrinos v for anomaly
cancellation. With the right-handed neutrinos, one can
generate small neutrino masses through the YoRLH, +
H.c. interaction, where L is the SM Ieptonic doublet.
However, with the Z’ around the TeV scale, unless the
right-handed neutrinos carry a zero U(1)’ charge, as in the
N model, they cannot obtain the large Majorana mass
needed for the conventional seesaw mechanism. In this
case, small Dirac or Majorana neutrino masses are
possible by invoking alternatives to the conventional see-
saw mechanism [103].

In this analysis, we recast cross-sectional bounds found
by the CMS experiment by considering a ratio of cross

TABLE II. Canonical examples of Eg models.
Model 0,
X 0
v /2
n —tan™' \/5/3
I tan~! \/3/5
N tan~' /15
N tan~' v/15/9
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sections in Eg models and in the SSM. We parametrize the
ratio following Ref. [136],

olpp—>Z'=>171")  pe,+(1=peg
o(pp = Zsgy = I"I7)  peyssm+ (1= p)cassm

(15)

The parameter p is a numerical fit depending on M, /+/s to
account for the parton distribution function:

M
p=0.77-0.17 tan"" (2.6 -95 7?) (16)

with /s being the center-of-momentum energy. The
production cross section and branching ratios are written
with quantities c,, c¢; where

My g,
Cq = WF; (Q%qL + Q%qR)(Q%eL + Q%eR) (17)

c _ M Z'Q%
4SSM T 4nT,

(Q%qL + Q%qR)(Q%eL + Q%eR)' (18)

Here, I'y is the full width of the Z' boson found by
summing partial widths for decays into massless fermion-
antifermion pairs. In Eg models,

M,
I'z = Z!J%—Z( %fL + Q%fR)7 (19)
7 24z

assuming negligible fermion masses. In the SSM, the
couplings gz and charges Qy; g) are replaced by g, =
g>/cw and Qg gy respectively. When calculating the Z’
width, we assume the new E¢ fermions are heavy enough to
be ignored.

To establish a parameter space, we calculate the ratio of
Eq. (15) and compare with its upper bound set by CMS
searches at the LHC at /s = 13 TeV, as well as CMS
projections of high luminosity LHC (HL-LHC) at /s =
14 TeV [133,137]. The production and decay of Z’
depends on its mass My and the charges Qy;(; &) contrib-
uting to the neutral current J5. As shown in Eq. (12),
Q2i(r.r) are determined by the Z — Z' mixing &, kinetic
mixing y, and the Es mixing angle g . Additionally,
Eq. (10) fixes & for a given M, to satisfy the CDF II
result Eq. (2), and £ is determined by y and M, reducing
the parameter space by two (using Eq. (Al4) in the
appendix and tang = 10). The /s =13 TeV search
excludes Z' models that explain the CDF II result with

Mz =60 TeV
My +20
Tz >0.32M
HL-LHC

[STE1

My =65 TeV
My 20
Ty >032My,
HL-LHC

(SIS

/

My =70 TeV
My 20
Iy >0.32M,
HL-LHC

_g\—/,//

0
O

“6

| E
91N
1Nk

FIG. 2. Parameter space probeable by HL-LHC resonant
dilepton searches at 14 TeV (blue) and a wide resonance
region of I'y /My > 32% (gray) for M, =6 TeV (top),
6.5 TeV (middle), and 7 TeV (bottom). Regions consistent
with the CDF II W mass measurement are shown in green.
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Mz <5.5 TeV. At higher masses, the resulting space
which may be probed by the /s = 14 TeV CMS search
is shown in Fig. 2 by the blue region.

There exists open parameter space around |y| = x/2
due to the diverging behavior of both M, and the chiral
couplings Qi ) in this region. As the mass and
couplings increase in magnitude, so does the full width
I'y of the Z' boson. This widening of I',, makes it easier
for the Z’ to evade direct LHC searches. We close off these
regions with gray hashing in Fig. 2 where the total Z’
width is more than 32% of the Z' mass following the
ATLAS study in [134]. This study finds that wide
resonances with I', /M, <32% do not significantly
affect search bounds utilizing the narrow width approxi-
mation (NWA) for Z’'s heavier than 4.5 TeV, and those
effects become less significant as M, increases [133,134].
Even so, it should be noted that our use of the NWA
introduces estimated errors of Oy, /My) [138].
Interference effects from SM gauge boson production
also influence the sensitivity of collider searches. We do
not consider these effects, however relative interference at
the LHC can be as low as a few percent for searches that
assume narrow widths [139].

For a sufficiently light Z’, holes may be found in the
probeable parameter space; as shown in the top panel of
Fig. 2. There are two different charge suppressions respon-
sible for the holes near the / and 7 models. For holes along 6,
near the / model, these regions maintain small Z’ charges
for up quarks which suppress Z’ production from proton
collisions. On the other hand, the regions near holes along the
n model maintain small Z’ charges for leptons which in turn
yield small production cross sections in the lepton channels.
These findings are consistent with leptophobic studies within
the # model [126,127]. In either case, the pp — Z' — 71T
production inside these holes is small enough to evade the
cross-sectional upper bounds found by CMS.

In addition to direct searches, a Z’ gives rise to various
corrections to the properties of the Z boson through
Z — 7' mixing parameter £ which is tightly constrained
by precision Z boson measurements. As shown in Fig. 1,
the Z—Z7' mixing required to explain the W mass
measurement is well below 1073 for Z’' bosons heavier
than 4 TeV. The combined fit for Z—pole observables put
an upper bound on the Z — Z' mixing parameter around
3 x 1073 [140-143]. We have checked that the kinetic
mixing introduced here did not lead to modifications
beyond the current precision. For instance, a 6 TeV Z’
that explains the current W mass measurement in the #
model has a deviation in the leptonic decay width of the
Z boson of 0.0029%, which is within experimental
uncertainties [10].

IV. HIGGS MASS

In SUSY models, the mass m, of the Higgs boson is
precisely predicted by a few relevant parameters, and can

be calculated through fixed-order calculations, effective
field theory (EFT) calculations, and a hybrid calculation.
Dominant three-loop contributions to m,, are known in the
MSSM. (For m;, calculation in SUSY models, see [144]
and references therein.) At the tree-level, the Higgs mass
has an upper bound of M, cos 2§ in the MSSM. It receives
substantial radiative corrections with the dominant contri-
butions coming from loops involving the top, and its scalar
partner, the stop, along with gluon and gluino exchanges. In
particular, when the SUSY scale My is around 2 TeV and
the stop mixing parameter is X, ~ —/6Ms, a 125 GeV
Higgs can be achieved with |HY|/|HY| = tan 8 > 10 where
|HY| is the vacuum expectation value (VEV) of the electri-
cally neutral component of the doublet Higgs field H,,.
M is predicted to be at least 10 TeV from m;, = 125 GeV
with a vanishing stop mixing parameter [144]. The current
theoretical uncertainties in calculating m; are around
2-3 GeV for the MSSM [144].

We propose extending the SM gauge group to explain the
latest My, measurement. Expanding into SUSY scenarios,
when the MSSM is extended by an extra U(1) group there
are additional contributions to the D-term [124],

9%
2

(O |HS)> + O [HO> + Q4IS12)% (20)

in which H, and H, are the Higgs doublets from the
MSSM, and S is the singlet scalar field that breaks the new
U(1)" symmetry. Q , Oy , and Q are their corresponding
charges under the U(1)" group. We impose the charge-
conserving relation Q% + Qp + Q) =0, coming from
the ASH,H ,; term in the superpotential. E¢ charges for the
scalar fields are given in Table I. In addition to the new
D-term contribution, the ASH,H; term in the superpoten-
tial increases the upper bound of the Higgs mass as in the
NMSSM [145,146]. Combining both contributions, the
upper bound of the Higgs mass becomes [124]

m; = M% cos? 28 + 22v? sin® 23
+ g5 v*(Q)y, cos* f+ Oy sin* )% (21)

The increased tree-level Higgs mass implies that the stop
sectors are much less constrained in the MSSM case.

To account for loop effects and the effects of the
running couplings, we use FlexibleSUSY for our numerical
analysis. FlexibleSUSY [147,148] is a Mathematica and C++
package for generating mass spectra of SUSY models. It
includes 2-loop renormalization group equations (RGEs),
it calculates m,, at the full 1-loop level, and it includes
dominant corrections up to 3-loop, next to leading loga-
rithms. The theoretical uncertainty in the UMSSM scenario
calculated in FlexibleSUSY was estimated to be as large as
+10 GeV [149]. The large uncertainty compared to the
MSSM case is due to the altered RGEs in the E¢ scenarios.
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tanf

FIG. 3. Masses my, of the lightest scalar mass eigenstate in
different E¢ models for the benchmark point in Section IV
(mog =179 TeV,my;, =1.2TeV, Ag=—-8TeV, pr = 200 GeV,
m, = 2 TeV) which satisfy the CDF II measurement.

For the MSSM-like parameters, we adopt a benchmark point
motivated by the natural SUSY scenario [150], in which
my =19 TeV, my;, =1.2TeV, tanf=10, Ay = —8 TeV,
Uerr = 200 GeV, and my =2 TeV. With the new U(1)
gauge group, there are two more free parameters: the gauge
coupling g which we fix to be 0.46 from grand unification,
and the VEV of the singlet field S, |S| = /2 /4. For some
0k, , Mz, and kinetic mixing y, |S| is specified, and therefore
A is specified. As seen in Fig. 2, for a given Z' mass and 0,
there are two solutions in the range —7 < y < 7 that explain
the new W mass measurement. We choose the solution for
which |y| — z/2 is maximized to avoid the diverging full
width of the Z’' boson at |y| = 7/2.

Shown in Fig. 3 are predictions calculated by FlexibleSUSY
for my,, the mass of the lightest mass eigenstate within the
model’s scalar sector. We fix M, = 6 TeV and vary tan j.
As expected, m;, is increased compared to the MSSM case
(125 GeV for the benchmark we chose), and it is reduced
as tan  decreases. In particular, for all E4 scenarios we
consider, m; is about 125 GeV for tanff~7 in this
benchmark. Conversely, m,; depends very weakly on
M, due to the following. The dependence of myj; on
My is through A = v/2pu./|S|, which is suppressed by
sin? 23. Furthermore, M, only depends on |S| weakly. The
dominant contribution to the Z’' mass is

M7, =~ g3, (Qff v*sin® f + Qf v* cos® f+ QF|S|?)/ cos® y
(22)

(the full result is presented in the appendix). We found that
heavier a Z' requires a larger kinetic mixing y to explain the
CDF II W mass measurement. This increase in y yields a
heavier Z' without requiring a large |S].

Results for the ¥ model are not shown in Fig. 3 because
Q' = 0 in this model. Equation (22) shows that a heavy Z’

cannot be achieved with a vanishing Q’, unless the gauge
coupling ¢/, is very large. In the above numerical analysis,
we do not include the kinetic mixing contribution to the
D-term in the m,, calculation. We have checked that it can
lead to an up to £2 GeV shift in the Higgs mass at the tree-
level. As discussed, when we adopt the benchmarks from
the natural SUSY scenarios, in general, the predicted m;, is
larger than 125 GeV. With the same set of parameters,
we found the Higgs mass to be closer to 125 GeV with
tan# 2 10 and A ~ 0 across all E¢ models discussed in this
work. The possibility to accommodate a 125 GeV Higgs
with small mixing in the stop sector is an encouraging
feature, as the stop mixing is naturally small in minimal
anomaly mediated SUSY models [151-161] and gauge
mediated SUSY models [162-168].

In Table III, we present four benchmark points motivated
by the natural SUSY scenario with various Z' masses. For
each point, the W mass is at the central value of the CDF Il
measurement, and the Z’ mass is allowed by current CMS
results. We provide in Table III other SUSY parameters, the
Higgs mass, and the particle spectrum of the benchmark
points. For all four benchmarks, the gluino mass is
3.03 TeV, which is near the projected sensitivity of the
HL-LHC [169,170]. In the first three benchmarks, a Higgs
mass near 125 GeV is achieved by having a small A. In this
case, BM1 shows that a reasonable Higgs mass can be
achieved with large tan 8. BM4 represents the possibility of
accommodating a 125 GeV Higgs by having a small tan j
and large mixing in the stop sector. For the electroweakino
sector, as in the natural SUSY scenarios, the lightest
chargino and the two lightest neutralinos are Higgsino-
like. Those electroweakinos are produced with sizable rates
at the LHC and can be searched for with a soft dimuon
trigger, or a hard initial state radiation jet, or through the
monojet channel [171-178]. The Higgsinos may also be

TABLE III. Four benchmark points with predicted My,
consistent with the CDF II measurement. For all four
points, my = 7.9 TeV, m;;, = 1.2 TeV, py = 200 GeV, and
my =2 TeV.

BMI () BM2 (5 BM3 (N) BM4 (y)
0, (rad) -0.91 ~0.91 1.32 1.57
My (TeV) 6 6.5 6.5 7
Ay (TeV) 0 ) 0 -8
tan B 50 8 10 7

¥ (rad) 2.03 1.99 ~1.24 -1.23
m;, (TeV) 4.86 4.76 4.65 3.39
my: (GeV) 193 244 253 254
my (GeV) 187 236 245 247
my (GeV) 198 250 259 261
my, (GeV) 12651 12520 12603 12495
BR(Z - I*I")  160%  16.1% 10.5% 12.5%
Ty /My 10.0%  12.1%  20.7% 18.1%
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accessible at lepton colliders [179]. Additionally, widths
and leptonic branching ratios for the Z’ are listed at the
bottom of Table III with / being an electron or a muon.

V. CONCLUSION

In summary, we point out a tree-level contribution to the
W mass in supersymmetric Eq models with kinetic mixing.
The precision of the latest CDF II mass measurement of the
W boson tightly restricts Z — Z' mixing to be & ~ 0(1073)
for Z' masses in the TeV range. When combined with the
direct dilepton resonance searches at the LHC, further
constraints are placed on the Eg models. For example, we
have checked that for My <5.5 TeV, 6, models are
excluded at the 20 level by the CDF II measurement
and CMS searches at /s = 13 TeV [133]. Moreover, we
show how the HL-LHC run at 14 TeV is projected to further
probe Eg models for more massive Z’ bosons. Additional
calculations are made for the Higgs boson mass within a
UMSSM. We find that a 125 GeV Higgs is possible within
the reasonable parameter space allowed by experiments.

As for future directions, it will be interesting to study the
associated phenomenology of the SUSY particles. With
precision W boson and Higgs mass measurements, the scale
and mixing of the stop sector can be predicted. Motivated by
the natural SUSY scenario (in which the Higgsinos are
light) we also expect rich phenomenology in the electro-
weakino sector. Thus, there is a complementarity between
direct Z’ searches, direct stop and electroweakino searches,
and precision My, and m; measurements as they work
together toward revealing new physics beyond the SM.
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APPENDIX

1. Lagrangian
There are three scalar fields in our model: two Higgs
doublets from the MSSM, and a singlet scalar field that
breaks the new U(1)" symmetry. Their SU(2), x U(1)y x
U(1)" group representations are
H,~(2,1/2,04)
Hd ~ (29 _1/27 Q/Hd)
S~ (1,0, Q%).

The covariant derivative is

D, =0, —i[pWiT* + ¢,B,Y + g, Q']

where: Wi, B,, Z, are the SU(2),, U(1)y, U(1)" gauge
bosons; 7%, Y, Q' are the group generators; a runs from 1
to 3.

After the electrically neutral components of the scalar
fields acquire VEVs, their kinetic terms (D,H)"D*H in the
Lagrangian will yield mass terms for vector fields Z, =
CWWZ —swB, and Z, shown below. The weak mixing
angle Oy, is defined by sy /cy = sinfy/ cosOy = g,/ g
The SM values for these parameters [10] are used through-
out this study.

The relevant Lagrangian terms are given by

LD 'Cmass + 'Ckinetic + 'Ccurrentﬂ

1 1
‘cmass = _Emézﬂzﬂ - EmérZLZW - A2Z”Z/”

1 1 1
[’kinetic = - Z W;’:VW?’#V - Z BMVB”D - ZZ;M/Z/IW

_sm;(B i
2 W

Leuwens = —J4W, — J4B, — J"Z,,

where F,, is the field strength tensor for a gauge field F,.
The fermion currents are

Jy = 92Zfi7”[T?LPL + TirPrlf i (A1)
Ty = QIZfi}’”[YiLPL + YirPrlfi (A2)
Jh = gZ’Zfiyﬂ[Q;LPL + QirPrlfi- (A3)

A group generator indexed by iL (iR) gives the corre-
sponding charge of the left-handed (right-handed) compo-
nent of fermion field f;. P; and Py are the left- and right-
projection operators.

The terms in £ which are absent from the SM all involve
the new Z, gauge field. In particular, Lyneic and Ly
contain mixing terms which must be negotiated to find the
proper mass eigenstates within £y e

2. Kinetic mixing

Before diagonalizing the mass matrix, we must diago-
nalize the kinetic mixing between the U(1) and U(1)’
gauge bosons. This can be done through the following
GL(3,R) transformation:

w3 Wi 10 0
B,|=V|B,|. V=|0 1 -—tany (A4)
Z, Z;; 0 0 1/cosy
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where the hats indicate fields with canonical kinetic mixing
terms. We redefine fields in an analogous way to the
(neutral) electroweak sector of the SM:

A, w3 A, Vi
Z,| =W| B, |, Z,| =W|B, |,
Z, Z, L Z, Z,
sw oy 07
W= |cy -sy O (AS)
0o 0 1]

Equation (A4) may now be rewritten with the redefined
fields:

Ay Ay
Z,| =WVYW |z,
Z, 7,
1 0 —cytany ;\ﬂ
=10 1 sytany ||Z, (A6)
0 0 1/cosy A;{
3. Mass mixing
Linass admits a Z, — Z, mass matrix of
5 m% A?
m= = A2 w2 |
m,
1
my = 7 9z ([Hul* + |Hgl) (A7)
my, = g, (Qf |Hul* + QF [Hol> + 0FIS]*)  (A8)
1
A’ =2 9797 (O, [HIP = Oy JHYP) — (A9)

2

where g7 = g7 + ¢35 and |HY|, |HY|, |S| are the VEVs of the
electrically neutral components of the scalar fields, which
we parametrize as |HY| = vsinf, |[HY| = vcos with v =
246 GeV. Anomaly cancellation requires Qp + Qp +

s =0. A

In the new basis (A,, Zﬂ, Z;) of canonical kinetic terms,
the mass matrix m? is transformed according to the
(Z,.Z,) subspace in Eq. (A6). The transformation from

this subspace to the (ZMZ;,) subspace is given by

|:1
R—
O

Sw tan;(} (A10)

1/cosy

so that in this basis, m? becomes

(Al1)

where the elements of M2 are

M3, = m3
M3, = M3, = A%/ cos 2
12 21 X +mzsy tany
M3, = m%,/ cos® y + m% s}, tan’ y
+ 2A%sy tany/ cos y.

This new mass matrix M?> may be diagonalized by an
orthogonal matrix

cosé —sin
0= [ ) ; 5] (A12)
siné  cosé
and the Z — Z' mixing angle £ is given by
2M?
tan (2¢) = ——12 (A13)
Mt — M5,

or, in terms of the eigenvalues M% and M2, of the matrix M?,

2M3,

2 2
Mll _M22
M%_M%/’

. (Al4)
M% - M%/

sin (2€) = cos (28) =

The nonzero entries of the diagonal mass matrix
O"M?20 are the tree-level squared masses of the observed
Z boson and a new Z/,

1
M3 =5 (M3 + 33, = o, =+ v,

1
M%/ :E

<M%1 + M3, + \/(M%l - M3,)? +4M%2>-

4. Mass eigenstates

After symmetry breaking, Lo becomes
Leurrent = —JZmA” - J’éZﬂ — J’”Z//l

where these new currents are given by
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Jem = glcwzqz'}i}’”fi (Al5)

J7 = Cg_jvzi:fi}’”[QZiLPL + OzirPrlfi  (A16)

We identify the Z,, eigenstate with the observed Z boson
and the Z,, eigenstate with a hypothetical Z’ boson. The

currents coupled to these mass eigenstates are found
through Egs. (A15), (A16) as

with -
T = Zfi?’”[QniLPL + QuirPrlfi (A19)
QZi(L,R) = Tf(L.R) - %’S%v (A17) l
Where Aﬂ = SWW;, + CWBﬂ and qi = T?L + YiL = T?R + Wlth
Yr is the electromagnetic charge of fermion f; divided by
the positron’s charge.
Section A2 transforms £ into a basis of fields with 0, — grew[—cyw sin Etany]g;
canonical kinetic mixing terms through the matrix H(LR) = Jrewl=Cw 414
WVW-! It is then illustrated in Sec. A 3 how to transform + 92 [cos & + sy sin & tan y] Ozi(Lr)
L into a basis with a diagonal mass matrix using O. Here, Cw
we combine both of these transformations, allowing us to + gz [sin&/ cosy| Qg( LR) (A20)
find the mass eigenstate basis: "
Ay
—Lcurrent = [ng Jlé J/”} Z# Q2i(L,R) = QICW[_CW Cosétan)(]%
Z 92
1 —I—Cf [—sin& + sy cos & tan x| Qi g
w
1 0 :
= [Jem Jy JHIWVW! o Zy, + gz[cos &/ cos y] 0y - (A21)
Zyy,
= ngAﬂ + Jlleﬂ + ng2ﬂ‘ (A18) The full transformation matrix of Eq. (A18) is
|
‘RI‘]‘N]_1 |:0 O:| — AZA 1 + AZ AZZ/
L Aza Azz 1+Az
1 —cy sinétany —cy cos Etan y
=10 cosé+sysinétany —siné + sy cosétany
| 0 siné/ cosy cos&/ cosy
apd, following Ref. [132], the oblique parameters are aU = —852 |—cyswhny + 53 A, + A (A23)
given by
al =2(A; —Ay) (A24)

aS = dcyswl—(s3 — %) Auz — 2cwswAs + 2cyswlAy]
(A22)

where A is the Z boson’s fractional mass shift from its SM
value, derived in Sec. II.
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