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We complement a previous work [Fabiola Fortuna et al., Effective field theory analysis of dark matter-
standard model interactions with spin one mediators, J. High Energy Phys. 02 (2021) 223.] using an
effective field theory framework of dark matter and standard model interactions, with spin-one mediators,
exploring a wider dark matter mass range, up to 6.4 TeV. We again use bounds from different experiments:
relic density, direct detection experiments, and indirect detection limits from the search of gamma-ray
emissions and positron fluxes. Additionally, in this paper we add collider constraints by the ATLAS
Collaboration in the monojet analysis. Moreover, here we tested our previous results in the light of the
aforementioned ATLAS data, which turns out to be the most restrictive for light dark matter masses
(as expected), mDM < MZ=2. We obtain a larger range of solutions for the operators of dimension 5, OP1
and OP4, where masses above 43 GeV and 30 GeV [except for the Z-resonance region, ∼ðMZ � ΓZÞ=2],
respectively, are allowed. In contrast, the operator of dimension 6, OP3, has viable solutions for masses
≳190 GeV. For the combination of OP1 and OP3 we obtain solutions (for masses larger than 140 GeVor
325 GeV) that depend on the relative sign between the operators.

DOI: 10.1103/PhysRevD.107.075003

I. INTRODUCTION

Understanding the fundamental nature of Dark Matter
(DM) is one of the most compelling problems in particle
physics and cosmology, yet despite years of searching,
the identity of DM remains a mystery. A favored paradigm
for the particle nature of dark matter is that of weakly
interacting massive particles (WIMPs) [1–3]. In this sce-
nario the DM interactions with the Standard Model (SM)
are sufficiently weak to meet the constraints of direct-
[4–10] and indirect-detection experiments [11–21], but
strong enough to generate the relic abundance inferred
from measurements of the cosmic microwave background
radiation [22]. In absence of any direct DM signal, the
generality of the effective field theory (EFT) approach may
be advantageous [23–29], as it only uses the known SM
symmetries and degrees of freedom, assuming that the
typical energy of all relevant processes lies below the
mediator mass. We will follow such an approach by using
an effective Lagrangian to parametrize the interactions of
the dark sector with the SM, and determine the restrictions
imposed by the experimental/observational constraints. The

Higgs portal (see Ref. [30] and references therein) and
neutrino portal cases [31–47] have received considerably
more attention than the case of spin-one mediators, so we
will focus on the latter both in the Proca or antisymmetric-
tensor representations.
Here we will continue exploring the phenomenological

consequences of the EFT scenario developed in Ref. [48]
for the interactions between SM and DM particles with
heavy mediators. We have already studied the low-energy
region, with DM masses under mZ=2 in Ref. [49]. In that
analysis, we found solutions complying with the con-
straints imposed: Z invisible decay width [50], relic density
[50], direct detection limits from Xenon1T [51], PandaX
[52], LUX [53], DarkSide-50 [54], and CRESST-III [55].
We also employed indirect-detection limits from the search
of gamma-ray emissions [56] and positron fluxes [57]. In
this work we extend the region of DM masses under
analysis, from 50 GeVup to 6.4 TeV (slightly less than half
the LHC c.m. collision energy, as our DM particles need to
be pair produced, accounting for the detection jet-energy
threshold). We use again the restrictions mentioned
above and we add collider constraints by the ATLAS
Collaboration [58]. In fact we also tested our previous
results from the low-energy region against the ATLAS data
and further restricted the space of solutions.
The paper is organized as follows: In Sec. II we introduce

the EFT that we are using [48] and highlight the part
interesting for this study and our conventions. Then in
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Sec. III we analyze several observational limits; in
Sec. III A we check that the observed relic abundance
can be reproduced in the different cases, in Sec. III B we
verify the direct detection bounds are respected, and in
Secs. III C and III D we consider the indirect bounds given
by dwarf spheroidal satellite galaxies and the positron flux,
respectively. After that, in Sec. IV we include the collider
constraints by the ATLAS Collaboration. Finally the
discussion and conclusions are presented in Sec. V.

II. EFFECTIVE LAGRANGIAN

We study interactions between dark matter and standard
model particles using an effective field theory approach,
where we consider that the heavy mediators that generate
the interaction are of spin-one. In the dark sector we can
have scalars Φ, fermions Ψ, and vectors X. The mediators
are weakly coupled to both sectors, dark and standard, and
this information is encoded in the effective coefficients Xeff .
We assume that the dark fields transform nontrivially under
a symmetry group, GDM (that we do not need to specify),
while all SM particles are singlets under this GDM, which
ensures the stability of the DM particle. Also, all dark fields
are singlets under the SM gauge group. The consequence of
interactions generated by a mediator are that our operators
have the form,

O ¼ OSMOdark; ð1Þ

and we know that Odark contains at least two fields because
we have assumed that the dark fields transform nontrivially
under GDM. In the effective Lagrangian, each term has a
factor 1=Λn, n ¼ dimðOÞ-4, where Λ is of the order of the
heavy mediator mass(es). We restricted ourselves to oper-
ators of mass dimension ≤ 6. In this work, we focus on
operators with vector and antisymmetric tensor mediators
because the models with scalar and fermion mediators have
already been studied extensively [24,27,40,59–67].
The Lagrangian we use is conveniently separated into

two parts where ψ stands for SM fermions and Bμν is the
Uð1ÞY field-strength tensor (universal couplings to the SM
fermions are assumed):

(i) Terms involving dark fermions (Ψ),

LΨ
eff ¼

ϒeff

Λ
BμνΨ̄σμνΨþ AL;R

eff

Λ2
ψ̄γμψΨ̄γμPL;RΨ

þ κL;Reff

Λ2
BμνΨ̄ðγμD

↔ν
− γνD

↔μÞPL;RΨ: ð2Þ

(ii) Terms involving dark bosons (X, Φ),

LΦ;X
eff ¼ ζeff

Λ
BμνXμνΦþ ϵeff

Λ2
ψ̄γμψ

1

2i
Φ†D

↔μ
Φ: ð3Þ

III. OBSERVATIONAL LIMITS

We use the following notation for our operators1:

OP1≡ BμνΨ̄σμνΨ;

OP2≡ ψ̄γμψΨ̄γμPL;RΨ;

OP3≡ BμνΨ̄ðγμD
↔ν

− γνD
↔μÞPL;RΨ;

OP4≡ BμνXμνΦ;

OP5≡ 1

2i
ðψ̄γμψÞðΦ†D

↔

μΦÞ: ð4Þ

We also consider the combined contributions from
dimension-5 and dimension-6 operators when they contain
the same DM candidate; in such cases we adopt the
following relationship between the scales Λ and operator
coefficients C:

Λdim 6 ¼ Λdim 5; Cdim 6 ¼ �Cdim 5: ð5Þ

In most combinations, the relative sign between coef-
ficients is irrelevant, with the exception of the combination
between OP1 and OP3, where phenomenology can vary
slightly depending on their relative sign.
We are using Λ ¼ 2mDM when combining operators of

different dimensions.2,3 We consider that equality is a safe
limit for the convergence of the effective theory, as
discussed in [64]. Also in [69], the authors use the same
relationship for their calculations to be meaningful in the
EFT framework. Depending on the UV completion of the
theory, a possible s-channel process in the high-energy
theory might break the EFTwhen the corresponding heavy
mediator resonates. We have checked that our results
change insignificantly, moving slightly away from the
previous equality (Λ≳ 2mDM). Hereafter, we will be
expressing constraints on ratios of effective couplings over
Λð2Þ as bounds on the couplings by using Λ ¼ 2mDM, for

1We note the recent study of Ref. [68] using OP4, in the
context of feebly-coupled vector-boson DM.

2Although all operators that we consider in this work can, in
principle, be generated at tree level by spin-one mediators neutral
under both SM and DM gauge groups [48], a caveat is in order. If
the dimension-5 operators are generated at loop level, the ratio
mDM=Λ could be a few orders of magnitude smaller. This would
depend on the hierarchy between mDM and mloop (the mass of the
inner particle in the loop, not necessarily the mediator or the DM
particle), and that is completely model dependent.

3A comment on the operator coefficients is pertinent; depend-
ing on the working assumptions (neutral or charged mediators
under SM and DM gauge groups, mediators’ spin, etc.) a given
operator can be generated at tree level or first appears at one loop
(see Sec. 2.1. of [48]). If the underlying physics is weakly
coupled, the coefficient is suppressed by ∼1=ð16π2Þ, which may
require an unnaturally large dimensionless coupling value, that
(on the contrary) would be expected if the underlying physics is
strongly coupled.
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given DM masses. When combining operators, sticking to
the case Λ ¼ 2mDM maximizes the impact of higher-
dimensional operators, through their interference with
the leading ones, while keeping the convergence of the
EFT. Of course, solutions can be found for Λ > 2mDM.
Indeed, as Λ=mDM increases, the subleading operators
become eventually negligible and the results from the
single operators of leading dimension are recovered.

A. Relic density

We use micrOMEGAs code [70] to compute the relic
abundance of dark matter in our EFT. We use the single
operator hypothesis, and we obtain the coefficients in the
Lagrangian—in Eqs. (2) and (3)—such that they reproduce
the observed relic density [71]

ΩDMh2 ¼ 0.1200� 0.0012: ð6Þ

In the calculations below, we will use the effective
couplings that correctly reproduce the relic density
[Eq. (6)].

B. Direct-detection experiments

For themass range that we are studying, themost stringent
limits on spin-independent scattering cross sections
of DM and nucleons come from the LUX-ZEPLIN experi-
ment [72]. However, we also include limits from the
XENON1T [51] and PandaX-4T [73] experiments. Again
we use micrOMEGAs [70] to compute the DM-nucleon cross
sections within our EFT, in the limit where the relative
velocity goes to zero. Figure 1 shows our results for several
operators in our EFT and compares them with the exper-
imental limits. The notation used in this figure is defined in
Eq. (4). We can see that OP2, OP5, and the combinations of
OP1 and OP2, OP2 and OP3, and OP4 and OP5 are
completely ruled out by these experiments. Operators not

FIG. 1. WIMP cross sections (normalized to a single nucleon)
for spin-independent coupling versus mass. The notation in this
figure is defined in Eq. (4). When we combine operators with the
same DM candidate, we use Λ ¼ 2mDM. Operators not shown
here have cross sections many orders of magnitude below the
current limits.

)b()a(

FIG. 2. Restrictions from dSphs on the DM annihilation cross sections into (a) bb̄ and (b) τþτ− for the portals generated by several
operators, defined in Eq. (4). We see in both panels that the entire mass region is allowed by the data.
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shown inFig. 1 haveDM-nucleoncross sectionsmanyorders
of magnitude below the current experimental limits from
direct-detection experiments. Therefore, in the following we
will only consider those operators not plotted in Fig. 1 i.e.,
OP1, OP3, OP4, and the combination of OP1 and OP3.

C. Dwarf spheroidal satellite galaxies

Using the first year of data from the Dark Energy Survey
(DES), eight new dwarf spheroidal satellite galaxies (dSphs)
were discovered recently. The dSphs of the Milky Way are
some of the most DM-dominated objects known. The
dSphs are excellent targets for the indirect detection of
DM due to their proximity, high DM content, and apparent
absence of nonthermal processes. Analyzing Fermi Large
Area Telescope data obtained during six years, Ref. [56]
searched for gamma-ray emissions coincident with the
positions of these eight new objects. No significant excess
of gamma-ray emission was found. Then, in Ref. [56] they
computed individual and combined limits on the velocity-
averaged DM annihilation cross section for these new
targets, assuming that the DES candidates are dSphs with
DM halo properties similar to the known dSphs.
Using micrOMEGAs [70], we computed the nonrelativistic

(mDM ≪ T) thermally-averaged DM annihilation cross
sections hσvi, using our effective operators—those that
are not ruled out by direct-detection experiments, see
Fig. 1—and compared the results with the limits mentioned
above. The results are presented in Fig. 2, and we can see
that these limits do not help us to constrain our mass region.
Note that the combination of operators OP1 and OP3 has a
relative sign between its coefficients, because the one with

the same sign gives velocity-averaged cross sections even
below those shown in the figures.

D. Limits from AMS-02 positron measurements

The AMS-02 Collaboration has presented high-quality
measurements of positron fluxes as well as the positron
fraction. In Ref. [57] the authors used measurements of the
positron flux to derive limits on the dark matter annihilation
cross section and lifetime for various final states, and extracted
strong limits on DM properties. They worked under the well-
motivated assumption that a background positron flux exists
from spallations of cosmic rays with the interstellar medium
and from astrophysical sources. We again computed the DM
annihilation cross sections, now into eþe− and μþμ−, using
micrOMEGAs [70] and compare themwith the bounds derived in
Ref. [57]. They also derived limits for the τþτ− and bb̄ final
states, but these are weaker than those from dSphs data. In
Fig. 3 we see that our results are below the experimental limits
andwe cannot rule out anymass region.Note that in this figure
we again show the combinations of OP1 and OP3 with a
relative sign between their coefficients, while their combina-
tion with the same sign gives even smaller values for the
velocity-averaged cross sections.
We refine our calculation of the DM annihilation cross

sections done previously in Ref. [49]4 and the region of

)b()a(

FIG. 3. Restrictions from AMS-02 data on the DM annihilation cross sections into (a) eþe− and (b) μþμ− for the portals generated by
several operators, defined in Eq. (4). We see that the entire mass region is allowed by the data. The limits shown as solid lines were
derived from sampling over various energy windows, while the dashed lines are from considering those windows including only data
with energies above 10 GeV [57].

4Before, we used the first two terms of a series expansion of
hσvi as a function of x ¼ m=T, where m stands for the DM mass
and T is the temperature. In this work we used micrOMEGAs to
compute hσvi more accurately (the updated values are shown in
Fig. 4). This change explains the small difference in the low-mass
region of OP4, between the results summarized in Tables I and II.
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masses allowed was slightly modified. This change is
only noteworthy in the case of the OP4, because the
collider constraints exclude masses in the region mψ <
mZ=2 for OP1, OP3, and the combinations of OP1 and
OP3, as we will see below. The data constraining DM
annihilation into the final state eþe− is the most stringent,
therefore it is the one we present here, in Fig. 4. We see
that masses smaller than ∼30 GeV are ruled out, while
masses in the range [30, 50] GeV are allowed.

E. Is the EFT perturbative?

We want our EFT to be in the perturbative regime,
which imposes an upper limit in the dimensionless
effective couplings of Eqs. (2) and (3). We bind it using
that the corresponding α ¼ g2=ð4πÞ, where g2 stands for
any coupling in Eqs. (2) and (3), should be at most ∼1=2
to keep perturbativity. As before, we took the effective
couplings that correctly reproduce the relic abundance.
We found that, for the OP4 with mX ≠ mΦ, if the smaller
mass is < 1 TeV then the relationships such as
mX ¼ 3mΦ, and mΦ ¼ 3mX are allowed. While if the
smaller mass is 1 TeV < m < 3.2 TeV, the other particle
can only be twice as heavy. The quantities that we
obtained for the rest of the operators satisfy this criterion
of perturbativity.

IV. COLLIDER CONSTRAINTS

The effective operators we are working with allow for
the pair production of WIMPs (χ) in the proton-proton
collisions at the LHC. If one of the incoming partons
radiates a jet through initial-state radiation (ISR), one can
observe the process pp → χχj as a single jet associated
with missing transverse energy (=ET). In this study, we

include the ATLAS [58] monojet analysis based on
139 fb−1 of data from Run II. ATLAS has performed
a number of further searches for other types of ISR,
leading for example to monophoton signatures, but these
are known to give weaker bounds on DM EFTs than
monojet searches [74–76].
Starting from UFO files generated using LanHEP v4.0.0

[77], we have then generated the process pp → χχj with
MadGraph_aMC@NLO v3.4.0 [78] for the ATLAS analysis,
interfaced to PYTHIA v8.3 [79] for parton showering and
hadronization. The detector response is simulated using
the ATLAS detector configuration [80] in FastJet v3.3.3

[81]. We apply the following kinematic cuts from
Ref. [58]: Emiss

T > 200 GeV, a leading jet with pT >
150 GeV and jηj < 2.4, and up to three additional jets
with pT > 30 GeV and jηj < 2.8.
We validated our analysis by reproducing the green

dash-dotted line in Fig. 5, using a simplified DM model
where Dirac fermion WIMPs (χ) are pair produced from
quarks via the s-channel exchange of a spin-one mediator
particle (ZA) with axial-vector couplings [58].
In this analysis we only include the operators (and

combinations of them) that still had mass regions with
suitable solutions—OP1, OP3, OP4, and the combinations
of OP1 and OP2, and OP1 and OP3,—allowed even after
all the constraints imposed by noncollider experiments that
we have considered. The results reported by ATLAS were
obtained using proton-proton collision data at a center-of-
mass energy of

ffiffiffi

s
p ¼ 13 TeV. Events were required to

have at least one jet with transverse momentum above
200 GeV and no reconstructed leptons or photons. Due to
the

ffiffiffi

s
p ¼ 13 TeV c.m. energy, the maximum mass we

considered in our simulations was 6.4 TeV. We use the data
points in Fig. 5 of the measured distributions of precoil

T .

FIG. 4. Restrictions from AMS-02 data on the DM annihilation
cross sections into eþe− for the portal generated by OP4, defined
in Eq. (4). This plot tests the mass regionmψ < mZ=2, and we see
that masses larger than ∼30 GeV are allowed.

FIG. 5. Measured distributions of precoil
T for precoil

T > 200 GeV
selection [58] compared with the SM predictions in the signal
region.
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Renormalization group effects can produce a sizable
running of the Wilson coefficients between the low-energy
scales probed in direct detection experiments and the high
energies of the LHC (see [82–85] and references therein),
which depend on OSM, see Eq. (1). For our operators in
Eqs. (2) and (3), QCD effects are negligible. We disre-
garded QED mixing affecting AL=R

eff (its corresponding
operator, OP2, is excluded in the entire region studied).

V. DISCUSSION AND CONCLUSION

We recall that operators OP2, OP5, and the combinations
OP1þ OP2, OP2þ OP3, and OP4þ OP55 were already
excluded in the range [50 GeV, 6.4 TeV] by direct-detection
experiments data. We show below the results obtained by
comparing the data from ATLAS [58] (see Fig. 5) with the
simulated results for each operator. When we combined
operators, for every benchmark point evaluated in the
simulations, the relation Λ ¼ 2mDM was used.
We also complemented our previous results from

Ref. [49],6 shown in Table I, so we tested the solutions
found according to the experimental data analyzed there, in
the region mDM < mZ=2. We show below the comparison
of the simulated events, for masses previously allowed,
with the ATLAS data.

(i) OP1. In Fig. 6 we evaluatedmψ ¼ 50, 100, 200, and
300 GeV and we observe that all these masses are
allowed. In Fig. 7 we use the benchmark points
(a) 0.0025, 0.01, 0.1, and 2 GeV, and (b) 41, 42, 43,

and 44.5 GeV. We see that masses smaller than
43 GeV are ruled out for this operator.

(ii) OP3. We evaluated the masses 175, 190, and
225 GeV in Fig. 8(a) and 35, 40, and 44.5 GeV
in Fig. 8(b). We see in Fig. 8(a) that masses larger
than 190 GeV are allowed. For this operator the
region mψ < MZ=2 is now entirely excluded.

(iii) OP4. In Fig. 9 we use the benchmark points: (a) 50,
100, 150, 200, and 300 GeV and (b) 36, 40, and
44.5 GeV. We see in both figures that all values are
allowed by the data.

(iv) OP1 and OP2. We use benchmark points for 0.0025,
0.01, 0.1, and 2 GeV in Fig. 10. We see that all these
masses are excluded by the data.

(v) OP1 and OP3.We evaluated the masses (a) 200, 300,
325, and 350 GeV, and (b) 50, 100, 140, 150, and
200 GeV. In Fig. 11(a) we use the same sign for
the effective couplings and in Fig. 11(b) we use a
relative sign between the operators. The masses

FIG. 6. pT distributions simulated using OP1 of Eq. (4) vs
ATLAS data (Fig. 5). We use benchmark points for 50, 100, 200,
and 300 GeV. We see that all these masses are allowed.

TABLE I. Summary of results obtained in Ref. [49] considering the Z invisible decay width, relic density, direct-
detection experiments and indirect-detection results from dSphs and positron-flux measurements. It is very
important to note that we are considering masses of the dark particles below the mass of the Z boson
(MZ=2–45.5 GeV, as they appear in charge conjugated pairs).

Operator Dimension DM candidate Allowed DM mass (GeV)

1.- BμνΨ̄σμνΨ 5 Ψ fermion ≈0.0025–2, ≈33–44.5
2.- ðψ̄γμψÞðΨ̄γμPL;RΨÞ 6 Ψ fermion none

3.- BμνΨ̄ðγμD
↔ν

− γνD
↔μÞPL;RΨ 6 Ψ fermion ≈33–44.5

4.- BμνXμνΦ 5 vector X, scalar Φ ≈0.11–2, ≈36–44.5
5.- ðψ̄γμψÞ 1

2iΦ
†D
↔μ

Φ 6 scalar Φ none
1� 2 5þ 6 Ψ fermion ≈0.0025–2
1� 3 5þ 6 Ψ fermion ≈0.0025–2, ≈33–44.5
2� 3 6 Ψ fermion none

5The combinations of OP1 and OP2, and OP2 and OP3, are
ruled out mainly due to the contribution of OP2 to the spin-
independent DM-nucleon cross sections, which does not exclude
OP1 or OP3 alone. Similarly, the combination of OP4 and OP5 is
excluded mostly due to the contribution of OP5 to the SI DM-
nucleon cross sections, which does not exclude OP4 alone.

6In Ref. [49] we select benchmark values for Λ
(230 GeV < Λ < 1 TeV), but when we combined operators,
its value was irrelevant.
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FIG. 7. pT distributions simulated using OP1 of Eq. (4) vs ATLAS data (Fig. 5). We use benchmark points for (a) 0.0025, 0.01, 0.1,
and 2 GeV, and (b) 41, 42, 43, and 44.5 GeV. We see that masses smaller than 43 GeV are excluded by the data.

FIG. 8. pT distributions simulated using OP3 of Eq. (4), vs ATLAS data (Fig. 5). We use benchmark points for (a) 175, 190, and
225 GeV, and (b) 35, 40, and 44.5 GeV. The plot in (a) shows that masses above 190 GeV are allowed, while in (b) we see that all the
region is excluded.

FIG. 9. pT distributions simulated using OP4 of Eq. (4), vs ATLAS data (Fig. 5). We use benchmark points for (a) 50, 100, 150, 200,
and 300 GeV, and (b) 36, 40, and 44.5 GeV. We see that all these masses are allowed.
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allowed are (a) larger than 325 GeV, and (b) larger
than 140 GeV. Finally, for DM masses below
MZ=2, we tested the benchmark points: Fig. 12(a)
0.0025, 0.01, 0.1, and 2 GeV and Fig. 12(b) 35,
40, and 44 GeV. We see that in both figures
the whole mass range is ruled out by the data
(mDM ∈ ½44 GeV;MZ=2� was already excluded by
analysis of positron measurements, see Table I).

We present a summary of our results in Table II.
The constraining power of ATLAS results forbids mostly

light DM particles with masses below MZ=2. For OP1 and
OP4, we still have solutions below MZ=2, while for OP3
and the combination of OP1 and OP3 we need larger
masses to satisfy the ATLAS constraints. Future LHC
analyses will set even tighter constraints on DM, particu-
larly within our EFT and, specifically, for the subset of

FIG. 10. pT distributions simulated usingOP1 andOP2 of Eq. (4)
vs ATLAS data (Fig. 5). We use benchmark points for 0.0025, 0.01,
0.1, and 2 GeV. We see that all these masses are ruled out.

FIG. 11. pT distributions simulated using (a) OP1þ OP3 and (b) OP1–OP3 of Eq. (4), vs ATLAS data (Fig. 5). We use benchmark
points for (a) 200, 300, 325, and 350 GeV, and (b) 50, 100, 140, 150, and 200 GeV. The masses allowed are (a) above 325 GeV and
(b) above 140 GeV.

FIG. 12. pT distributions simulated usingOP1 andOP3 of Eq. (4) vs ATLAS data (Fig. 5).We use benchmark points for (a) 0.0025, 0.01,
0.1, and 2GeV, and (b) 35, 40, and 44GeV. In (a) all themasses are ruled out by the data, while in (b)masses larger than 44GeVare allowed.
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operators (those with spin-one mediators) considered in
this work.
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