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Senjanović and Tello have analyzed how one could determine the neutrino Dirac mass matrix in the
minimal left-right model, assuming that the mass matrices for the light and heavy neutrinos could be taken
as inputs. They provided an analytical solution for the Dirac mass matrix in the case that the left-right
symmetry is implemented via a generalized parity symmetry and that this symmetry remains unbroken in
the Dirac-Yukawa sector. We extend the work of Senjanović and Tello to the case in which the generalized
parity symmetry is broken in the Dirac-Yukawa sector. In this case, the elegant method outlined by
Senjanović and Tello breaks down and we need to adopt a numerical approach. Several iterative approaches
are described; these are found to work in some cases but to be highly unstable in others. A stable,
prescriptive numerical algorithm is described that works in all but a vanishingly small number of cases.
We apply this algorithm to numerical datasets that are consistent with current experimental constraints on
neutrino masses and mixings. We also provide some additional context and supporting explanations for the
case in which the parity symmetry is unbroken.
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I. INTRODUCTION

The observation of neutrino oscillations [1] proved that at
least two neutrinos are massive particles. However, the origin
of neutrino mass is still an open question; better under-
standing of this fundamental issue could yield key insights
into the nature of physics beyond the Standard Model (SM).
The seesaw mechanism is an appealing possibility that could
account for the smallness of the neutrino mass scale [2–5].
However, there is not one unique seesaw model for neutrino
mass so even confirming that the seesaw mechanism is the
source of neutrino mass does not necessarily lead to a
complete understanding of the underlying model.
Seesaw models generically contain two types of Yukawa

terms that couple the Higgs and lepton fields. The first is
familiar from the SM and couples the left- and right-handed

projections of the lepton fields. In the neutral sector, the
resulting mass matrix is called the Dirac mass matrix and
is denoted by MD. The second couples the left-handed
projections of the lepton fields to their charge conjugates,
and similarly for the right-handed fields, giving rise to so-
called Majorana mass terms. In the seesaw mechanism, the
mass matrix for the light neutrinos results from the inter-
play between these Dirac and Majorana mass terms.
As noted in Ref. [6], it is interesting to compare the

situation for neutrinos to that for the charged fermions. In the
Standard Model, the charged fermions receive their masses
through their Yukawa interactions with the Higgs field. As a
result, the measured values of their masses lead directly to
predictions for the partial widths for Higgs decays into
fermion-antifermion pairs. Measurements made at the Large
Hadron Collider (LHC) have so far been compatible with
the SM predictions [7]. The situation is considerably more
complicated in the neutrino sector if the seesaw mechanism
is at play. In this case, following the analogy from the
charged fermions, one would want to determine the elements
of the Dirac mass matrix MD as a function of the light
neutrino masses and mixings and those of the heavy states.1
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1A reverse path is adopted in Refs. [8–11] where the heavy
neutrino mass matrix is determined from MD and the light-
neutrino mass matrix.
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The former are being carefully investigated at current
neutrino experiments and the latter could possibly be
measured at the LHC or some future collider [6].
In the simplest formulation of the seesaw mechanism,

the Dirac mass matrix MD cannot be uniquely determined
from the light and heavy mass matrices (Mν and MN ,
respectively), since it can always be redefined by an
arbitrary complex orthogonal matrix [12,13]. Within the
context of the left-right symmetric extension of the
SM [14–17], where the seesaw mechanism arises as a
direct consequence of spontaneous left-right symmetry
breaking, the matrix MD is defined only in terms of
physical quantities (see Refs. [6,18–20]). At the level of
the underlying model, left-right symmetry may be imple-
mented by imposing a generalized charge conjugation
symmetry, C, or a generalized parity symmetry, P. The
charge conjugation approach has been analyzed in
Ref. [18]; in this case it is argued that the relation between
MD and the masses and mixings of the light and heavy
neutrino states is significantly simplified due to the fact
that MD is symmetric. As noted in Ref. [6], however, the
generalized parity case is highly nontrivial and contains
two distinct possibilities, depending on whether or not P
remains unbroken in the Dirac-Yukawa sector. If P is
unbroken in the Dirac-Yukawa sector,MD is Hermitian2 and
may be determined analytically, given the masses and
mixings of the light and heavy neutrino states [6,20]. We
shall refer to this as the “parity-conserving” scenario in the
remainder of this work. By way of contrast, in the “parity-
violating” scenario MD is no longer Hermitian3 and the
analytical approach to determining MD breaks down.
Nevertheless, the authors of Ref. [6] develop a phenomeno-
logical analysis that would possibly allow one to determine
MD through the study of specific processes in this scenario.
In summary, the left-right model, in which the parity-
violating nature of the weak interactions follows from the
spontaneous breaking of the left-right symmetry, turns out to
be a theoretical picture that not only results in nonzero
neutrino mass but also elucidates its origin.
In this article we develop a general method to determine

MD in the left-right model in the case that the underlying
model (before spontaneous symmetry breaking) is invariant
under P. Our determination of MD only relies on the
knowledge of Mν and MN , as well as information related
to the VEVs of the bidoublet Higgs field. In this way it is
analogous to the analytical solution found in Refs. [6,19,20]
for the parity-conserving limit, where MD is obtained
directly from these two matrices and the ratio of the
bidoublet Higgs VEVs. What distinguishes our approach

from previous work is that our approach does not assume
that parity is conserved in the Dirac-Yukawa sector after
spontaneous symmetry breaking. That is, we assume that
MD could be non-Hermitian. In previous approaches,
determination of MD in the parity-violating case required
the study of additional specific processes.4

To determine MD from Mν and MN one needs to solve a
system of nonlinear matrix equations. The solution pre-
sented for the parity-conserving case in Refs. [6,19,20] is
obtained through an ingenious procedure that makes use
of the Hermiticity of MD. When parity is broken, MD may
no longer be assumed to be Hermitian and the procedure
breaks down. In this case, the authors show that a solution
can in principle be obtained numerically as an expansion in
a small parameter, although they do not present a specific
numerical algorithm to implement this strategy. A key
feature of their proposed strategy in the parity-violating
case is that the non-Hermitian matrix MD is replaced by a
Hermitian matrix that is a function of MD. The method
presented in the current work extends the approach outlined
in Ref. [6] and provides a systematic prescription to solve
for MD numerically, even in the case that it is non-
Hermitian. In a sense one could say that it adds a piece
to the puzzle of unwinding the seesaw as the origin of
neutrino mass. In the parity-conserving case, the analytical
solution described in Refs. [6,19,20] allows one to resolve
the seesaw by determining MD in terms of Mν and MN . In
the parity-violating case one could use the phenomeno-
logical approach outlined in Refs. [6,19] to determine MD.
Of course, one could also apply that phenomenological
analysis when parity is conserved, which would allow one
to cross-check the values ofMD extracted from experiment
with those corresponding to the analytical solution.
Likewise, in the parity-violating case, the matrix MD that
would result from experiment could also be compared with
the method proposed in this study, allowing one to further
resolve the puzzle.
To illustrate our method and study its performance we

undertake a numerical analysis using several theoretical
datasets that are compatible with the current experimental
constraints on the lepton masses and mixings. We use a
Monte Carlo algorithm to generate these datasets, follow-
ing the framework and approach described in Refs. [28,29].
The Monte Carlo algorithm provides Mν, MN , and MD in
each case, allowing us to take the matrices Mν and MN as
inputs and to determine whether our approach is able to
recover the corresponding matrix MD. Most of the datasets
are of the parity-violating variety, but we also consider one
parity-even dataset so that we can test our method in this
case as well. We find that our method successfully obtains a

2Actually, MD is Hermitian up to multiplication by a diagonal
sign matrix in this case. Please see below for further details.

3To be more precise, in this case the vacuum expectation values
(VEVs) of the bidoublet Higgs field contain a CP-violating phase
that breaks the generalized parity symmetry in the Dirac-Yukawa
sector and leads to MD no longer being Hermitian.

4As noted above, the method proposed in this paper requires
the masses and mixings of the heavy neutrinos contained in MN ,
therefore those processes [21–27] that would allow one to
determine that information are still necessary.
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solution for MD for all of the datasets that we study.
Throughout this analysis we assume the normal ordering
of neutrino masses5 and ignore the possibility of light
sterile neutrinos.
Our paper is organized as follows. In Sec. II we outline

the specific version of the left-right model (LRM) that
we employ, including various details about our notation.
Section III contains a detailed description of our method for
determining MD. This method is then illustrated with three
numerical examples in Sec. IV. In Sec. V we briefly discuss
alternative methods that we had previously used in our
attempts to determine a solution forMD. These approaches
were successful for some of the datasets, but were unstable
for others, illustrating the significant challenge posed by
solving the set of nonlinear matrix equations to determine
MD. Section VI contains a proof of a key mathematical
relation used in Sec. III, as well as derivations of several
mathematical properties for the parity-conserving case
considered in Refs. [6,20]. We conclude with a brief
discussion of our results in Sec. VII. Finally, the appendixes
outline the diagonalization of the charged and neutral mass
matrices, details of the notation and specifics about the
method and also include some mathematical results related
to the parametrization of complex orthogonal matrices.

II. THE MODEL

In this section we provide a brief summary of the LRM,
primarily following the notation and conventions used in
Ref. [28]; the interested reader is referred to Ref. [28] for
more detail.
The underlying symmetry of the LRM is based on the

gauge group SUð2ÞL × SUð2ÞR ×Uð1ÞB−L. The specific
formulation of the LRM considered in Ref. [28] contains
two Higgs triplet fields,

ΔL;R ¼
 
δþL;R=

ffiffiffi
2

p
δþþ
L;R

δ0L;R −δþL;R=
ffiffiffi
2

p
!
; ð1Þ

as well as a bidoublet Higgs field,

ϕ ¼
�
ϕ0
1 ϕþ

1

ϕ−
2 ϕ0

2

�
: ð2Þ

The Yukawa terms for the charged and neutral leptons may
then be written as [28]

−LYukawa ¼ ψ̄ 0
iLðGijϕþHijϕ̃Þψ 0

jR

þ i
2
Fijðψ 0T

iLCτ2ΔLψ
0
jL þ ψ 0T

iRCτ2ΔRψ
0
jRÞ

þ H:c:; ð3Þ

where C ¼ iγ2γ0 and ϕ̃ ¼ τ2ϕ
�τ2, and where ψ 0

iL;R re-
present the left- and right-handed lepton doublets in the
gauge basis,

ψ 0
iL;R ¼

�
ν0iL;R
e0iL;R

�
; ð4Þ

where i is a generation index. The matrices G and H are
taken tobeHermitian,whileFmaybeassumed to becomplex
symmetric without loss of generality.6 The model also
contains an extra left-right parity symmetry, P [6,28,30],
under which

ψ 0
iL ↔ ψ 0

iR; ϕ ↔ ϕ†; ΔL ↔ ΔR: ð5Þ

The neutral Higgs fields obtain VEVs upon spontaneous
symmetry breaking; the Higgs VEVs may be parametrized
as follows7:

hϕi ¼
�
k1=

ffiffiffi
2

p
0

0 −k2e−ia=
ffiffiffi
2

p
�
;

hΔLi ¼
�

0 0

vLeiθL=
ffiffiffi
2

p
0

�
;

hΔRi ¼
�

0 0

vR=
ffiffiffi
2

p
0

�
; ð6Þ

where k1, k2, vL, and vR are all taken to be real and positive.
If the phase a is a multiple of π, then hϕi respects the
generalized parity symmetry even after spontaneous sym-
metry breaking; we refer to this as the “parity-conserving”
case insofar as the Dirac-Yukawa sector is concerned.
Experimental constraints suggest vR ≫ k1; k2 ≫ vL; also,
we have [32]

k21 þ k22 ≃
4m2

W

g2
≃ ð246.2 GeVÞ2: ð7Þ

As noted in Ref. [28], it is natural to assume that the
ratio k2=k1 is of order mb=mt.
The Yukawa terms in the Lagrangian lead to mass terms

for the charged and neutral leptons when the neutral Higgs
fields acquire VEVs. The mass matrix for the charged
leptons in the gauge basis is given by Ref. [28]

Ml ¼ 1ffiffiffi
2

p ð−Gk2e−ia þHk1Þ: ð8Þ

Recalling that G and H are Hermitian, we see that Ml is
Hermitian if the phase a is a multiple of π (i.e., in the
so-called parity-conserving case).

5This is an arbitrary choice; an inverted ordering could be
considered as well.

6See the discussion in Ref. [28], as well as Refs. [30,31].
7Reference [28] uses the phase α ¼ π − a; here we follow the

notation of Ref. [6] for the phase.
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The neutral lepton sector is more complicated than the
charged lepton sector, since the Yukawa Lagrangian
generically leads to Majorana mass terms in addition to
the “ordinary” Dirac mass terms. For three lepton gener-
ations, the mass matrix is a 6 × 6 complex symmetric
matrix,

�
M†

LL MLR

MT
LR MRR

�
; ð9Þ

where

MLR ¼ 1ffiffiffi
2

p ðGk1 −Hk2eiaÞ ð10Þ

is a 3 × 3 Dirac mass matrix, and where

MLL ¼ 1ffiffiffi
2

p FvLeiθL ð11Þ

and

MRR ¼ 1ffiffiffi
2

p FvR; ð12Þ

are 3 × 3 Majorana mass matrices for the left- and right-
handed fields, respectively. As is evident from the above
expressions, MLL and MRR are both complex symmetric
matrices;MLR is Hermitian if the phase a is a multiple of π.
Equation (9) may be approximately block diagonalized
(see Ref. [28] for details), which leads to 3 × 3 complex-
symmetric mass matrices for the (mostly) left- and (mostly)
right-handed fields. The mass matrix for the right-handed
neutrinos is simplyMRR, so that the right-handed neutrinos
are generically quite heavy (due to the assumed large value
of vR). The mass matrix for the left-handed neutrinos is

M†
LL −MLRM−1

RRM
T
LR: ð13Þ

The first term is small, since it is proportional to vL. The
second term is suppressed due to the presence of M−1

RR; this
suppression is known as the seesaw mechanism.
We have so far been working in the gauge basis. To make

connections to measurable quantities, one needs to diag-
onalize the mass matrices for the charged and neutral
leptons, which yields the physical lepton masses, as well as
the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix.
These quantities may then be measured or constrained by
various types of experiments. The basis in which the mass
matrices for the charged and neutral leptons are all diagonal
is called the mass basis.
In the remainder of this paper we adopt the notation used

by Senjanović et al. in Ref. [6] and work in a basis that is
part way between the gauge basis and the mass basis [6].
In this basis, which we refer to as the “charged-diagonal”

basis, one diagonalizes the mass matrix for the charged
leptons and implements a corresponding transformation on
the neutrino mass matrices. The neutrino mass matrices are
not generally diagonal in this basis.
Table I shows the correspondence between the mass

matrices in the charged-diagonal basis (of Senjanović et al.)
and those in the gauge basis (described above and in
Ref. [28]). The table does not explicitly include the unitary
matrices that are necessary to go from the gauge basis to the
charged-diagonal basis. The interested reader is referred to
Appendix A for the precise relations between quantities in
these two bases.
It is straightforward to derive the following three

relations between various mass matrices in the charged-
diagonal basis,

MD − UeM
†
DUe ¼ isat2βðeiatβMD þmeÞ; ð14Þ

UemeUe −me ¼ isat2βðMD þ e−iatβmeÞ; ð15Þ

Mν ¼
vLeiθL

vR
UT

eM�
NUe −MT

D
1

MN
MD; ð16Þ

where tan β≡ k2=k1 and where the unitary matrix Ue is
associated with the transformation from the gauge basis to
the charged-diagonal basis [see Eq. (A11) in Appendix A
for a precise definition]. Also, sa, tβ and t2β stand for
sinðaÞ, tan β and tan ð2βÞ, respectively. Note that there is
an overall sign ambiguity for Ue in the sense that
Eqs. (14)–(16) are unchanged under Ue → −Ue.

III. DESCRIPTION OF METHOD

Our primary goal in this work is to describe a method
that can be used to solve Eqs. (14), (15), and (16) for Ue

andMD, takingMN ,Mν, vleiθL=vR, a, and β as inputs. The
authors of Ref. [6] outlined such a procedure in the case
that sat2β ¼ 0. In that case, Eqs. (14) and (15) reduce to the
expressions MD ¼ UeM

†
DUe and me ¼ UemeUe, respec-

tively. Recalling that me is a real, diagonal matrix, we see

TABLE I. Correspondence between various mass matrices in
Senjanović, et al. (Ref. [6]) and those in Kiers, et al. (Ref. [28]).
Senjanović et al. work primarily in a basis in which the charged
lepton mass matrix is diagonal, whereas Kiers et al. work in the
gauge basis, in which neither the charged nor the neutral lepton
mass matrices are assumed to be diagonal. The precise relations
between the various matrices is given in Appendix A.

Senjanović et al. (Ref. [6])
and present work Kiers et al. (Ref. [28])

me (diagonal) ↔ Ml
MD ↔ M†

LR
MN ↔ M�

RR
Mν ↔ ðM†

LL −MLRM−1
RRM

T
LRÞ�
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that Ue ¼ diagð�1;�1;�1Þ in this case, and thatMDU
†
e is

Hermitian (we say that MD is “sign Hermitian”). Armed
with this knowledge, Senjanović et al. were able to work
out an analytical method to solve for MD. They were also
able to classify the solutions into various categories.
When sat2β ≠ 0, the analytical method devised in

Ref. [6] breaks down, since MD is no longer sign
Hermitian. As we shall see, in this case it is possible to
find a solution of Eqs. (14), (15), and (16) by using an
iterative approach. We have applied this approach to
various datasets and it appears to be quite stable (see
Sec. IV for further details).8

The starting point for our method is to define the matrix
M as in Ref. [6],

M ¼ ðMD þ e−iatβmeÞU†
e: ð17Þ

The algorithm described below is designed to determine
M, which allows one to determine Ue (see Appendix B)
and then finally to calculate MD via

MD ¼ MUe − e−iatβme: ð18Þ

A convenient property of M is that it is Hermitian.9

Inspired by the mathematical manipulations that led to
Eqs. (40) and (41) in Ref. [6], we substitute Eq. (18) into
the complex conjugate of Eq. (16), multiply from the left
by 1ffiffiffiffiffiffi

MN
p Ue and from the right by UT

e
1ffiffiffiffiffiffi
MN

p , and simplify,

which yields

vLe−iθL

vR
I−

1ffiffiffiffiffiffiffiffi
MN

p UeM�
νUT

e
1ffiffiffiffiffiffiffiffi
MN

p

¼ 1ffiffiffiffiffiffiffiffi
MN

p ðM−eiatβUemeÞ
1

M�
N
ðM�−eiatβmeUT

e Þ
1ffiffiffiffiffiffiffiffi
MN

p :

ð19Þ

We then define H, B, and H̃ as follows:

H ¼ 1ffiffiffiffiffiffiffiffi
MN

p M
1ffiffiffiffiffiffiffiffi
M�

N

p ; ð20Þ

B ¼ eiatβ
1ffiffiffiffiffiffiffiffi
MN

p Ueme
1ffiffiffiffiffiffiffiffi
M�

N

p ; ð21Þ

H̃ ¼ H − B; ð22Þ

so that

H̃H̃T ¼ ðH − BÞðH − BÞT ¼ S; ð23Þ

where

S≡ vLe−iθL

vR
I −

1ffiffiffiffiffiffiffiffi
MN

p UeM�
νUT

e
1ffiffiffiffiffiffiffiffi
MN

p . ð24Þ

Note that H is Hermitian, sinceM is Hermitian and MN is
complex symmetric. Also, S is complex symmetric. The
reader may note a certain amount of similarity between
Eqs. (20)–(23) (above) and Eqs. (40) and (41) in Ref. [6].
A crucial difference, however, is that H̃ is not generally
Hermitian.
Since S is symmetric, we may write Eq. (23) in

“symmetric normal form” as follows [33]:

H̃H̃T ¼ S ¼ OsOT; ð25Þ

where O is a complex orthogonal matrix. In principle, the
matrix s could be block diagonal; in practice, we assume
that it is diagonal. Note that the elements in s are typically
complex. As shown in Section VI, H̃ itself can be written as

H̃ ¼ O
ffiffiffi
s

p
ẼO†; ð26Þ

where Ẽ is a complex orthogonal matrix. Since H is
Hermitian, we may write

H −H† ¼ 0 ¼ B − B† þO
ffiffiffi
s

p
ẼO† −OẼ† ffiffiffi

s
p �O†; ð27Þ

which may be rearranged to give

Ẽ ¼ 1ffiffiffi
s

p OTðB† − BÞO� þ 1ffiffiffi
s

p Ẽ† ffiffiffi
s

p �: ð28Þ

Denoting the jth element of the diagonal matrix
ffiffiffi
s

p
byffiffiffiffiffiffiffijsjj

p
eiγj , where γj is taken to be real, and defining

ΔB̃≡ 1ffiffiffi
s

p OTðB† − BÞO�; ð29Þ

we see that

Ẽij ¼ ΔB̃ij þ Ẽ�
ji

ffiffiffiffiffiffiffi
jsjj
jsij

s
e−iðγiþγjÞ; ð30Þ

in which there is no implied sum over repeated indices. For
future reference, we also define

Δij ≡ Ẽij − ΔB̃ij − Ẽ�
ji

ffiffiffiffiffiffiffi
jsjj
jsij

s
e−iðγiþγjÞ: ð31Þ

According to Eq. (30), of course, this quantity should be
zero for all i and j. Our numerical procedure seeks to

8We have also devised a number of other iterative approaches
that are stable for some datasets, but not for others. These are
described in Sec. V.

9This follows from Eqs. (14) and (15).
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determine values for the Ẽij such that the Δij are zero,
or very close to zero. Once Ẽ is determined, one can
eventually compute Ue and MD.

A. Iterative procedure to solve for Ue and MD

We now outline an iterative procedure that may be used
to solve forUe andMD. Except for certain edge cases (to be
described below), this procedure appears to be quite robust.
A key to the success of this algorithm is the fact that, in
practice, Eq. (24) is relatively well-approximated by mak-
ing the replacement Ue → Ĩ, where Ĩ is a diagonal matrix
with �1 (as appropriate) down the diagonal.
In the description of the algorithm that follows, we

denote quantities evaluated during the nth iteration of
the algorithm with an “n” subscript. In the first step of
the nth iteration of the algorithm, for example, we insert
Mν;MN; a; β, and Ue;n into Eqs. (21) and (24) and use
those expressions to calculate Bn and Sn. Our shorthand
notation for this is as follows: “Eqs. (21) and (24):
Mν;MN; a; β; Ue;n → Bn; Sn.” Adopting this shorthand
throughout, we summarize the algorithm as follows:

(1) Eqs. (21) and (24): Mν;MN; a; β; Ue;n → Bn; Sn.
(2) Eq. (25): Sn → On; sn.
(3) Eq. (29): Bn;On; sn → ΔB̃n.
(4) Eq. (30): ΔB̃n; sn → Ẽn; if no solution is found for

Ẽ, revise initial guess for Ue (denoted Ĩ) and/or
the sign of the determinant of Ẽ, return to Step 1
and start over.

(5) Eq. (26): On; sn; Ẽn → H̃n.
(6) Eq. (22): H̃n; Bn → Hn.
(7) Eq. (20): MN;Hn → Mn.
(8) Eqs. (B3)–(B10) (and further discussion in

Appendix B): me; Ĩ; a; β;Mn → Ue;nþ1.
(9) Eq. (18): me; a; β;Mn; Ue;nþ1 → MD;nþ1; return

to Step 1.
We note the following:

(i) In the first step of the first iteration it is necessary
to have a starting “guess” for Ue. Since sat2β is
assumed to be small, a reasonable starting point is to
choose one of the eight possibilities

Ĩ ¼ diagð�1;�1;�1Þ: ð32Þ

(ii) In Step 2 we use Eq. (25) to determine On and sn. In
practice, we compute the complex eigenvalues and
eigenvectors of the complex, symmetric matrix Sn
numerically (and assume that the eigenvalues are
non-degenerate). Then we construct the complex
matrix On and check that it is approximately
orthogonal.

(iii) Step 4 is the most challenging part of the algorithm.
We have found in practice that if an incorrect set of
signs has been chosen for Ĩ, it will not be possible

to solve for Ẽn (hence the instruction at the end
of Step 4).

(iv) Once the correct Ĩ has been determined,10 it is
typically sufficient to iterate through Steps 1–9 three
to five times in order to determine Ue and MD to
within a reasonable amount of accuracy. We refer the
reader to Sec. IV for further details regarding the
accuracy of the method.

B. Determination of Ẽ

The most challenging step in the algorithm described
above is Step 4, in which we use Eq. (30) to solve for
the elements of the complex orthogonal matrix Ẽ. In this
subsection we describe how this may be accomplished.
Throughout this subsection we suppress the index n that
denotes the iteration number.
As we show in Appendix C, Ẽ can typically be para-

metrized as follows11:

Ẽ¼

0
B@

cη1cη3 − cη2sη1sη3ξ sη1sη2 cη1sη3 þ cη2cη3sη1ξ

sη2sη3ξ cη2 −cη3sη2ξ
−cη3sη1 − cη1cη2sη3ξ cη1sη2 cη1cη2cη3ξ− sη1sη3

1
CA;

ð33Þ

where cηi ≡ cos ηi and sηi ≡ sin ηi (i ¼ 1, 2, 3), and where
the angles η1, η2, and η3 are assumed to be complex. The
parameter ξ is either þ1 or −1 and is equal to the
determinant of Ẽ. The goal in Step 4 is to determine three
complex angles ηi and the sign of the discrete parameter ξ
such that Eq. (30) is satisfied for all i and j. Parametrizing Ẽ
as in Eq. (33) allows us to solve for the real and imaginary
parts of the ηi in a relatively straightforward, prescriptive
manner.
The real and imaginary parts of the 2-2 element of

Eq. (30) give the following two relations,

cRη2 ¼ ΔB̃R
22 þ cRη2 cosð2γ2Þ − cIη2 sinð2γ2Þ; ð34Þ

cIη2 ¼ ΔB̃I
22 − cRη2 sinð2γ2Þ − cIη2 cosð2γ2Þ; ð35Þ

in which the R and I superscripts refer to the real and
imaginary parts [e.g., cRη2 ≡ Reðcosðη2ÞÞ]. Equations (34)
and (35) are equivalent to each other, as may be seen by
noting that

ffiffiffi
s

p
ΔB̃ is anti-Hermitian [see Eq. (29)]. Rewriting

Eq. (34) in terms of the real and imaginary parts of the
complex angle η2 yields the following expression,

10Recall that there is an overall sign ambiguity in Ue, so one
actually expects two choices for Ĩ that yield solutions for MD.

11As explained in Appendix C, the parametrization in Eq. (33)
does break down in certain edge cases (for example, when the 2-2
element of Ẽ is equal to unity). In most such cases, another
angular parametrization could be used.
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coshðηI2Þ cosðηR2 Þ½1 − cosð2γ2Þ�
¼ ΔB̃R

22 þ sinhðηI2Þ sinðηR2 Þ sin ð2γ2Þ; ð36Þ

which has the two solutions

ηR2 ¼ α − sin−1
�
ΔB̃R

22

G

�
ð37Þ

and

ηR2 ¼ α − π þ sin−1
�
ΔB̃R

22

G

�
; ð38Þ

where

α≡ tan−1
�ð1 − cosð2γ2ÞÞ coshðηI2Þ

sinhðηI2Þ sin ð2γ2Þ
�

ð39Þ

and

G ¼ ½ð1 − cosð2γ2ÞÞ2cosh2ðηI2Þ þ sinh2ðηI2Þsin2ð2γ2Þ�
1
2;

ð40Þ

as long as

sinh2ðηI2Þ ≥
ðΔB̃R

22Þ2 − ½1 − cosð2γ2Þ�2
2ð1 − cosð2γ2ÞÞ

: ð41Þ

The 1-2 and 2-1 elements of Eq. (30) also give redundant
relations, again due to the fact that

ffiffiffi
s

p
ΔB̃ is anti-Hermitian.

The same may be said for the 2-3 and 3-2 elements. As a
result, we are left with the following two complex relations,

sη1sη2 ¼ ΔB̃12 þ s�η2s
�
η3ξ

ffiffiffiffiffiffiffiffi���� s2s1
����

s
e−iðγ1þγ2Þ ð42Þ

cη1sη2 ¼ ΔB̃32 − s�η2c
�
η3ξ

ffiffiffiffiffiffiffiffi���� s2s3
����

s
e−iðγ2þγ3Þ: ð43Þ

The above expressions allow us to express the complex
quantities sη1 and cη1 as follows:

sη1 ¼ Aþ Bs�η3 ; ð44Þ

cη1 ¼ C þDc�η3 ; ð45Þ

whereA, B, C, andD are functions of sη2 and s
�
η2 . Imposing

the constraints s2η1 þ c2η1 ¼ s2η3 þ c2η3 ¼ 1, we have

1 ¼ A2 þ C2 þD2 þ ðB2 −D2Þðs�η3Þ2

þ 2ABs�η3 � 2CD
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðs�η3Þ2

q
; ð46Þ

where c�η3 ≡�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðs�η3Þ2

q
. Multiplying the two expres-

sions in Eq. (46) by each other leads to a quartic equation in
s�η3 , although in practice we typically solve the expressions
in Eq. (46) as stated, since this seems to be more stable
numerically.
To summarize, for a given value of ηI2 satisfying Eq. (41)

there are two solutions for ηR2 [see Eqs. (37) and (38)]. For
both of these we may calculate η2 ¼ ηR2 þ iηI2, and so
compute sη2 and then A, B, C, and D. For each value of η2
we may solve Eq. (46) to obtain a total of four solutions for
s�η3 and the corresponding values of c�η3 . Back substitution
into Eqs. (44) and (45) then yields sη1 and cη1 . Thus, for a
given value of ηI2 satisfying Eq. (41) we generically expect a
total of eight solutions for the sines and cosines of the
complex angles η1, η2, and η3. It remains to ensure that
the 1-1, 1-3 and 3-3 elements of Eq. (30) are satisfied.
Recalling the definition for the quantity Δij in Eq. (31),
we define,

jΔj2 ≡ jΔ11j2 þ jΔ13j2 þ jΔ33j2; ð47Þ

which will generically have eight values for a given value of
ηI2. The goal of our algorithm is to find value(s) of ηI2 (and
corresponding values for the various sines and cosines of
the complex angles) that correspond to a zero (or, numeri-
cally, a minimum) of Eq. (47).
Then the method proceeds as follows:

(4(a)) Choose a value for ξ (either þ1 or −1).
(4(b)) Choose a value for ηI2. Compute the various

combinations of sines and cosines of the complex
angles η1, η2 and η3 that are consistent with the
“central cross” elements of Eq. (30) [i.e., for
ði; jÞ ¼ ð1; 2Þ; ð2; 1Þ; ð2; 2Þ; ð2; 3Þ and (3, 2)], as
described above.

(4(c)) Calculate jΔj2 for the various combinations of
sines and cosines of the complex angles identified
in Step 4(b).

(4(d)) Repeat Steps 4(b) and 4(c), searching for combi-
nations of the complex angles that yield jΔj2 ≃ 0
(in practice, we use an algorithm that searches for a
minimum of jΔj2).

(4(e)) If no solutions are found that satisfy jΔj2 ≃ 0,
return to Step 4(a) and repeat the process for the
opposite sign of ξ.

IV. NUMERICAL RESULTS

For our numerical analysis we implemented a
Monte Carlo algorithm as described in Refs. [28,29] to
generate various datasets. The algorithm scans over random
values of the Yukawa matrices defined in Eq. (3), searching
for sets of parameters that are consistent with experimental
constraints. For each set of Yukawa matrices, we were
then able to compute me, Mν, MN , MD, Ue, and Ẽ.
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We generated, and subsequently analyzed, 16 datasets in this
way; in each case, the neutrino masses and mixings satisfied
the current experimental constraints at the 2σ level as given
in Ref. [34].12 In addition, we verified that the effective
neutrino mass for neutrinoless double-beta decay is always
below the present limit [35]. For every dataset we fixed
tan β ¼ k2=k1 to 3=181 and vR ¼ 50 TeV [28].13 The
remaining independent parameters, sa and jvLj, generally
varied within ranges of Oð10−2–1Þ and Oð10−3–10−1Þ eV,
respectively, whereas the phase of vL took values between 0
and 2π. For one of the datasets we purposely set sa to zero so
that we could test our method on a parity-conserving dataset.
With these choices for the various parameters, the spectrum
of the heavy neutrinos spanned from about 8 TeV to
100 TeV. Our main focus in this section is not on performing
a phenomenological analysis but on showing that the method
described in Sec. III can be successfully applied to datasets
that are consistent with experimental constraints, allowing us
to recover the matrices Ue andMD in each case. It is in this
spirit that we are not particularly interested in a phenom-
enologically inspired spectrum for the heavy neutrinos.14

In the following subsections, we illustrate how the
method described in Sec. III leads to solutions of
Eqs. (14), (15), and (16) for three different scenarios.15

One of the three respects the generalized parity symmetry
in the Dirac-Yukawa sector after spontaneous symmetry
breaking and the other two do not. Of the latter two, one has
a relatively small value of jsaj (and is thus relatively “close”
to the parity-conserving limit), while the other has a larger
value of jsaj. While we only consider these three datasets in

detail, we emphasize that the method was successful for all
16 of the datasets.The calculation takes approximately five
minutes for each dataset on a desktop PC with Intel Core
i7-9700K Processor (8x 3.60 GHz) and 16 GB RAM.
To study these three datasets we show plots of the

quantity jΔj2, defined in Eq. (47), as a function of Imðη2Þ.
Minimizing jΔj2 is a key step in determining the elements
of the matrix Ẽ, which then allows us to determine Ue and
MD. For each value of Imðη2Þ we determine the sines and
cosines of the complex angles in the matrix Ẽ [see Eq. (33)]
that are consistent with the “central cross” elements in
Eq. (30). jΔj2 is a measure of how well the remaining
elements in this equation are satisfied; it is zero for
solutions of Eq. (30). In principle, minima of jΔj2 may
need to be found several times, since the overall method is
iterative. In the following, we show plots of jΔj2 that are
obtained after an appropriate number of iterations have
been performed.

A. Parity-conserving scenario

We first consider the parity-conserving scenario (sa ¼ 0)
that was noted above. For this example,

Ẽ ¼

0
B@

0 −1 0

−1 0 0

0 0 1

1
CA; Ue ¼

0
B@

−1 0 0

0 1 0

0 0 1

1
CA;

and

MD ¼

0
B@

1.52 × 10−5 3.21 × 10−4 − 3.93 × 10−5i −6.16 × 10−4 þ 1.97 × 10−4i

−3.21 × 10−4 − 3.93 × 10−5i 2.62 × 10−3 1.93 × 10−3 − 1.67 × 10−3i

6.16 × 10−4 þ 1.97 × 10−4i 1.93 × 10−3 þ 1.67 × 10−3i 1.81 × 10−3

1
CA; ð48Þ

inwhichwe have expressedMD in units ofGeV. Thematrices
Ẽ andUe both have a formconsistentwith one of the expected
forms for the parity-conserving case (see Sec. VI, as well as
Ref. [6]). Also, aside from small numerical errors, MDU

†
e is

Hermitian, as is expected from Eq. (14).
Figure 1 shows a plot of jΔj2 as a function of Imðη2Þ.16

As is evident from the figure, the curves approach zero for
Imðη2Þ ≃ 0. We normally expect eight solutions for each
value of Imðη2Þ; to within numerical rounding errors, there
are two sets of degenerate curves in this case [one set for
each value of Re(η2) for a given value of Im(η2)]. We expect
the degeneracies to be removed within parity-violating
scenarios. In the following subsections we consider two
datasets with sa ≠ 0. While both datasets illustrate the

12The charged lepton masses generated by the routine typically
agree with their corresponding experimental values to within a
few parts in 104.

13The authors of Ref. [28] introduce an extra Uð1Þ symmetry
into the left-right model broken by a small dimensionless
parameter ϵ. One of the advantages of this framework is that it
allows scenarios consistent with neutrino phenomenology for a
relatively-low vR scale. Since we followed this work, we also
implemented the Uð1Þ horizontal symmetry in our analysis and
fixed the value of ϵ to 0.3. Note that while the horizontal
symmetry sets hierarchical scales for the Yukawa matrices, it
does not impose relations among their elements. Therefore, the
inclusion of this symmetry does not imply any loss of generality
regarding the original problem of unwinding the seesaw.

14In any case, a lower heavy-neutrino spectrum could in
principle be generated by decreasing the value of vR.

15The computer code that implements the method is written in
Mathematica and is available from the authors upon request.

16As is noted in Sec. VI, our method assumes that Ẽ22 ≠ �1, a
condition that is satisfied for this dataset.
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expected breaking of the degeneracy, one of them has
sa ≪ 1 and exhibits some qualitative similarities to the
parity-conserving scenario.
We note that since this dataset has sa ¼ 0, we could also

use the analytical solution method presented in Sec. III. A
of Ref. [6] in this case. We have analyzed this dataset using
both the approach of Ref. [6] and the method described in
the present work and have verified that they lead to

consistent values of Ue and MD, up to numerical rounding
errors. Applying the method from Sec. III actually required
some care in the parity-conserving scenario. Technically, in
this scenario A and C are both zero in Eq. (46), so the
equation for s�η3 is quadratic. In practice we have found that
small numerical errors lead to small but non-zero values for
A and C. Attempting to solve Eq. (46) as a quartic equation
in this case was not numerically stable, so we resorted to
setting A and C to zero by hand and solving the resulting
quadratic equation.
Finally, we note that in the parity-conserving case, our

routine also returns values forMD that are different than the
original one. When sa ¼ 0, it is clear from Eqs. (14)–(16)
that −MD is also a solution; this is one of the new solutions
that is returned. Interestingly, however, another solution
emerges that has

Ẽ ¼

0
B@

0 1 0

1 0 0

0 0 1

1
CA ð49Þ

and, in units of GeV,

MD ¼

0
B@

−2.63 × 10−4 −3.74 × 10−4 − 2.64 × 10−4i −2.28 × 10−4 − 1.08 × 10−4i

3.74 × 10−4 − 2.64 × 10−4i −2.24 × 10−3 −1.85 × 10−3 þ 6.18 × 10−4i

2.28 × 10−4 − 1.08 × 10−4i −1.85 × 10−3 − 6.18 × 10−4i 1.10 × 10−3

1
CA; ð50Þ

in which we have dropped small numerical errors. The negative of the above expression for MD is also returned. One can
confirm by direct substitution that the new values for MD are also solutions of Eqs. (14) and (16).

B. Parity-violating scenario I

We next consider a scenario with a small degree of parity violation (sa ¼ 0.00187). In this example,

Ẽ ¼

0
B@

−0.0159 − 0.0063i 1.0000þ 0.0002i −0.0134þ 0.0212i

0.9999 − 0.0000i 0.0160þ 0.0065i −0.0056þ 0.0120i

0.0052 − 0.0117i 0.0136 − 0.0214i 1.0002þ 0.0004i

1
CA ð51Þ

with

Ue ¼

0
B@

−1.þ 8.09 × 10−7i −5.20 × 10−9 − 7.33 × 10−8i 2.22 × 10−9 þ 6.69 × 10−9i

−5.20 × 10−9 þ 7.33 × 10−8i 1. − 5.19 × 10−7i 1.41 × 10−8 þ 1.02 × 10−8i

−2.22 × 10−9 þ 6.69 × 10−9i 1.41 × 10−8 − 1.02 × 10−8i −1.þ 5.33 × 10−7i

1
CA ð52Þ

and, in units of GeV,

MD ¼

0
B@

−4.87 × 10−6 þ 1.58 × 10−8i −1.25 × 10−4 þ 8.83 × 10−6i −1.92 × 10−4 þ 6.38 × 10−5i

1.25 × 10−4 þ 8.83 × 10−6i −1.79 × 10−5 þ 3.27 × 10−6i −2.76 × 10−4 þ 3.81 × 10−4i

−1.92 × 10−4 − 6.38 × 10−5i 2.76 × 10−4 þ 3.81 × 10−4i −1.15 × 10−3 þ 5.50 × 10−5i

1
CA: ð53Þ

FIG. 1. jΔj2 vs Imðη2Þ for the parity-conserving scenario.
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Note that the matrix Ẽ in Eq. (51) has a relatively small
value of Ẽ22, whereas Ẽ12 ≈ Ẽ21 ≈ Ẽ33 ≈ 1. All other
elements of Ẽ are small compared to 1. Thus, as one
might expect, Ẽ is “close” to one of the possible parity-
conserving forms. Furthermore, MD is quite close to being
“sign-Hermitian” in this example, andUe is close to being a
diagonal sign matrix.
We applied our method to this dataset and were able to

determine the matrices MD and Ue numerically. The
results are numerically consistent with Eqs. (52) and (53).
Figure 2 shows the corresponding eightfold family of jΔj2
versus Imðη2Þ curves. In this semilogarthmic plot, there
are slower changing curves that correspond to larger
values of jΔj2 and curves that fall and rise abruptly in the
solution region. It is seen that jΔj2 approaches zero
for jImðη2Þj ≈ 0.0065.
This case demonstrates several similarities to the one

shown above in the parity-conserving scenario. The curves
still have relatively low jΔj2 values and two of them
approach jΔj2 ¼ 0 at very small values of Imðη2Þ. New
features compared to the parity-conserving example are
that the degeneracies in jΔj2 have now been broken and that
there are two values of Imðη2Þ (located symmetrically about

zero) that yield solutions. These two values of Imðη2Þ yield
the same solutions forMD, ignoring small numerical errors.
In practice we use the positive root.

C. Parity-violating scenario II

We now consider a scenario with a larger degree of parity
violation (sa ¼ −0.51). For this example,

Ẽ ¼

0
B@

3.467þ 2.494i 2.623 − 0.525i 1.881 − 3.866i

−0.350þ 0.427i 1.052þ 0.148i 0.036 − 0.162i

2.540 − 3.346i −0.465 − 2.628i −3.973 − 1.831i

1
CA ð54Þ

with

Ue ¼

0
B@

1. − 7.82 × 10−4i 6.25 × 10−7 þ 6.63 × 10−5i −9.87 × 10−6 þ 5.69 × 10−7i

5.88 × 10−7 − 6.63 × 10−5i −1. − 2.25 × 10−4i 2.74 × 10−5 þ 2.56 × 10−5i

−9.87 × 10−6 − 5.64 × 10−7i −2.74 × 10−5 þ 2.56 × 10−5i −1. − 1.35 × 10−4i

1
CA ð55Þ

and, in units of GeV,

MD ¼

0
B@

5.45 × 10−5 − 4.32 × 10−6i 4.12 × 10−4 − 3.76 × 10−6i 5.95 × 10−5 þ 1.04 × 10−3i

−4.12 × 10−4 − 3.78 × 10−6i −1.31 × 10−3 − 8.95 × 10−4i 2.85 × 10−3 − 3.05 × 10−3i

−5.94 × 10−5 þ 1.04 × 10−3i 2.85 × 10−3 þ 3.05 × 10−3i −3.09 × 10−3 − 1.50 × 10−2i

1
CA: ð56Þ

The Ẽ matrix possesses larger values in this case and loses
its resemblance to the Ẽ of the parity-conserving case. The
matrices MD and Ue are still relatively close to being sign-
Hermitian and diagonal sign matrices, respectively, but they
are not as close to those forms as were the corresponding
expressions for the “almost” parity-conserving case [see
Eqs. (53) and (52), respectively].
We were able to successfully apply our method to this

example and recover values for Ue andMD consistent with
Eqs. (55) and (56). Figure 3 shows the corresponding jΔj2

versus Imðη2Þ curves, with the solutions evident near
Imðη2Þ ≈�0.45. In general, the curves reach significantly
larger jΔj2 values compared to the previous cases and their
shapes noticeably differ from the curves of the parity-
conserving scenario.
We have analyzed the convergence of the method for all

of the parity-violating datasets and the conclusions are
similar for all of them. As an illustration of that analysis we
show the results obtained for the current scenario. Figure 4
shows two different measures of the relative error between

FIG. 2. jΔj2 vs Imðη2Þ for parity-violating scenario I. Note that
the horizontal and vertical scales are different than those of Fig. 1.
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the output of the method for Ue (MD) and the true matrix
U0

e (M0
D) as a function of the number of iterations. These

measures are defined as

δð1Þl ¼ Max

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðReaijl Þ2 þ ðImaijl Þ2

q �
;

δð2Þl ¼ Maxðjãijl j; jb̃ijl jÞ ð57Þ

for i, j ¼ 1, 2, 3, and l ¼ Ue;MD, with

aijUe
¼ ðUe − U0

eÞij
ðU0

eÞij
; aijMD

¼ ðMD −M0
DÞij

ðM0
DÞij

;

ãijUe
¼ ReðUe − U0

eÞij
ReðU0

eÞij
; b̃ijUe

¼ ImðUe − U0
eÞij

ImðU0
eÞij

;

ãijMD
¼ ReðMD −M0

DÞij
ReðM0

DÞij
; b̃ijMD

¼ ImðMD −M0
DÞij

ImðM0
DÞij

:

ð58Þ

As can be seen from the figure, the convergence is
extremely fast, precise and stable for both matrices.

V. ALTERNATIVE METHODS

In this section we describe some other numerical
methods that we explored in our attempt to solve for Ue
and MD. It is worth noting from the beginning, however,
that these alternative methods were not successful in
finding solutions for all 15 of the parity-violating datasets.
Only the method described in Sec. III (or slight variations
on that method) was successful in this regard.
It is perhaps useful to restate the goal of our analysis. The

equations that define the original problem are Eqs. (26),
(27), and (31) in Ref. [6]; these are stated here as Eqs. (14),
(15), and (16). Equations (14) and (15) come from the
relations between MD, me and the Yukawa matrices, and
Eq. (16) is the seesaw formula for the light neutrino mass
matrix. These equations constitute a system of coupled
complex matrix equations for which we assume MN and

Mν as experimental inputs and Ue andMD as unknowns to
be solved for.
In the following we briefly describe two alternative

methods that implement different numerical approaches to
solve Ue and MD: A) a least squares minimization method
and B) a fully iterative method.

A. Least-squares minimization method

In our first attempt we employed a least-squares min-
imization technique to solve the three coupled matrix
equations [Eqs. (15) and (16), together with an equation
expressing the unitarity condition for Ue

17]. In this method
the system of 3 × 3 complex matrix equations is trans-
formed into a system of 51 equations for 36 unknown
matrix elements. The quantity to minimize is the sum of the
squared differences between the left- and right-hand sides
of those 51 equations when the solved values for the matrix
elements of MD and Ue are substituted. The least-squares
minimization was achieved employing a variant of the
Newton method [36].
One complication in this approach is that the equations

that we are attempting to solve have different dimensions—
two of the matrix equations have dimensions of mass, while
the third (expressing the unitarity of Ue) is dimensionless.
Moreover, the order of magnitude of the matrixMν is 10−11

or 10−12 in units of GeV compared to 1 in the case of the
unitarity condition. In view of this, we employed three
normalization strategies: 1) no dimensional normalization
was applied, but Eq. (16) was multiplied by a dimension-
less numerical factor to compensate for the smallness of
the matrix Mν; 2) the three equations of the system were
transformed so that they have a unit matrix on their right-
hand side; and 3) the three equations were transformed so
that they have meMνm−2

e on their right-hand side. We also
considered a hybrid approach in which we first applied the
third strategy and then used the output for Ue from that
approach as a starting point when using the second strategy.
This approach improved the accuracy in several cases. We
analyzed these four strategies on the 15 datasets.
The least squares minimization approach to our problem

attempts to minimize a particular sum of squares while
traversing a 36-dimensional space of unknowns. This
approach depends on the initial values chosen for the
various unknowns. In our calculations we set the initial
values for the matrix Ue to be Ue ¼ diagð�1;�1;�1Þ.
These are reasonable starting points, since the actual Ue
matrices for the parity-violating datasets are still somewhat
well approximated by parity-conserving ones with a
particular choice of signs. We found that this method does
not converge when an incorrect combination of signs in
diagð�1;�1;�1Þ is used. In general, we found that while it

FIG. 3. jΔj2 vs Imðη2Þ for parity-violating scenario II.

17If sat2β ≠ 0, Eqs. (14) and (15) are redundant. Since we are
assuming the parity-violating case here, Eq. (14) can be removed
from the system.
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was possible to achieve a solution for all of the datasets
using some of the above-mentioned strategies, none of
these strategies worked for the entire collection of datasets.
This illustrates the considerable difficulty in solving the
problem at hand. By way of contrast, the method described
in Sec. III does yield a solution for all of the datasets that
we studied.
For the cases where the least squares minimization

method leads to a solution, we compared the accuracy
achieved to that achieved by the method in Sec. III, using

δð1ÞUe
as a measure. The accuracy obtained by the method in

Sec. III turns out to be two orders of magnitude higher on
average. That method also ensures safer control over the
solution search since it reduces the multidimensional space
of unknown variables to lower-dimensional regions at each
stage of the procedure, whereas the least-squares minimi-
zation method attempts to find all unknown variables at the
same time.

B. Fully iterative method

Given the relatively low accuracy and the instability of
the least-squares minimization method described in the
previous subsection, we have also investigated iterative
approaches that are based on the analytical solution for the
parity-conserving case (see Ref. [6]). In this subsection we
describe various attempts along these lines. The goal of
these approaches is to overcome the limitation imposed by
the fact that MD is not Hermitian when parity is violated.
We take as our starting point Eqs. (25) and (26). Noting

that H̃ can also be written as

H̃ ¼ 1ffiffiffiffiffiffiffiffi
MN

p UeM
†
D

1ffiffiffiffiffiffiffiffi
M�

N

p ; ð59Þ

we find

UeM
†
D ¼

ffiffiffiffiffiffiffiffi
MN

p
O

ffiffiffi
s

p
ẼO†

ffiffiffiffiffiffiffiffi
M�

N

p
; ð60Þ

from which it follows that

Ẽ ¼ ð
ffiffiffiffiffiffiffiffi
MN

p
O

ffiffiffi
s

p Þ−1UeM
†
DðO†

ffiffiffiffiffiffiffiffi
M�

N

p Þ−1: ð61Þ

We also note that we may write a Riccati equation for Ue
that is derived from Eq. (15),

UemeUe ¼ BRiccati;

BRiccati ¼ isat2βðMD þ e−iatβmeÞ þme: ð62Þ

A solution of this equation is given by

Ue ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BRiccatime

p
m−1

e ; ð63Þ

where by the notation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BRiccatime

p
we mean the principal

root of the matrix BRiccatime. Equation (62) actually has
eight solutions, which can be constructed by multiplying
the principal root by diagonal matrices diagð�1;�1;�1Þ.
The first algorithm that we designed consists of the

following steps:
(1) Set initial values for the matricesUe and Ẽ (we take

random complex matrices).
(2) Use Eqs. (24) and (25) to calculate the orthogonal

matrix O and diagonal matrix s.
(3) Use Eq. (60) to calculateMD using Ue and Ẽ set in

Step 1, and O and s from Step 2.
(4) Calculate Ue by solving Eq. (62) [we perform

the calculation assuming 8 possibilities for the
roots of the Riccati equation as indicated under
Eq. (63)].

(5) Use Eq. (61) to calculate Ẽ [after correcting O andffiffiffi
s

p
with the updated Ue using Eqs. (24) and (25)],

where the matrix UeM
†
D is calculated from

Eq. (14).
(6) Orthogonalize Ẽ by iterating Ẽ → 1

2
ðẼT þ Ẽ−1ÞT

repeatedly.
(7) Return to Step 2.

FIG. 4. Convergence plot for Ue (left panel) and MD (right panel) for parity-violating scenario II. See Eq. (57) for the definitions

of δð1Þl and δð2Þl , with l ¼ Ue;MD.
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We can write this more succinctly using the shorthand
notation adopted in Sec. III:

(1) Eq. (16): Uei ; Ẽi → MDi
(i stands for the ith

iteration).
(2) Eq. (15): MDi

→ Ueiþ1
.

(3) Eq. (14): MDi
; Ueiþ1

→ Ẽiþ1.
(4) Orthogonalize Ẽiþ1; back to Step 1.

Unfortunately, this algorithm ended up being stable for
only about the half of the 15 parity-violating datasets (in
some cases we found that even when starting from the
solution the algorithm diverges, leading to very distant
regions in the parameter space). We also tried two different
variations, setting instead the initial values for Ue and MD
as random complex matrices. These variations can be
summarized as follows:

(1) Eq. (16): MDi
; Uei → Ẽi.

(2) Orthogonalize Ẽi.
(3) Eq. (15): MDi

→ Ueiþ1
.

(4) Eq. (14): Ẽi; Ueiþ1
→ MDiþ1

; back to Step 1.
and

(1) Eq. (16): MDi
; Uei → Ẽi.

(2) Orthogonalize Ẽi.
(3) Eq. (14): Ẽi; Uei → MDiþ1

.
(4) Eq. (15): MDiþ1

→ Ueiþ1
; back to Step 1.

However, both variations led to results similar to those of
the first algorithm, finding solutions for only about half of
the datasets.
We also designed an alternative algorithm that did not

use the Riccati equation. For this algorithm we only set
the initial value for Ue as a random complex matrix. The
algorithm proceeded as follows:

(1) Eq. (15): Uei → MDi
.

(2) Eq. (14): MDi
; Uei → Ẽi.

(3) Orthogonalize Ẽi.
(4) Eq. (16): MDi

; Ẽi → Ueiþ1
; back to Step 1.

One might expect this algorithm to be more stable, since
all four of the steps use the ith iteration (instead of both
the ith and (iþ 1) th iterations at a given same step, as in
the previous algorithms) and because it depends only on the
initial value of Ue. However, this algorithm did not find a
solution for any of the datasets.
Finally, we modified one of these algorithms using an

approach inspired by the difference-map algorithm [37].
The difference-map algorithm is known to be able to find
solutions to iterative mapping algorithms that are unstable.
Unfortunately, while this approach seemed to show some
promise, our attempts along these lines were also not
successful for all of the datasets.
In summary, the fully iterative algorithms were not

successful for all of the datasets. Our experience with
these algorithms underscores the considerable difficulty
of solving this system of complex, nonlinear matrix
equations in order to unwind the seesaw mechanism in
the parity-violating case. Fortunately, the prescriptive
method described in Sec. III and illustrated in Sec. IV

does appear to be able to solve these equations, at least for
all of the datasets considered.

VI. DETAILED ANALYSIS OF THE
EQUATION HHT = S

In our efforts to extend the ideas of Ref. [20] to the
parity-nonconserving case, we found it quite helpful to
first understand the justification for every step in the
analytical solution proposed in Ref. [20] for the parity-
conserving case. It became clear to us how essential it is
that H be Hermitian in order to derive an analytical
solution. Yet, in case H is not Hermitian, it nonetheless
proved beneficial to factor H ¼ O

ffiffiffi
s

p
EO† and concen-

trate on solving for the entries of the complex orthogonal
matrix E (which will no longer be a simple signed
permutation matrix).
In this section, we thus provide additional context

and supporting explanations for the analytical deriva-
tion carried out in Sec. III of Ref. [20]. Specifically, we
will show how to derive the matrices in Eq. (37) of
Ref. [20] under mild assumptions. We also discuss
which of these assumptions are necessary and which
can be removed.
The mathematical context is the following: we assumeH

is an unknown, Hermitian 3 × 3 matrix and that S ¼ HHT

is known. The goal is to solve for H given S. As in Eq. (27)
of Ref. [20], we assume that S ¼ OsOT has been placed in
“symmetric normal form”; here O is a complex orthogonal
matrix and s is block diagonal with symmetric Jordan
blocks. Precise details can be found in Sec. XI.3 of
Ref. [33]; we will only consider the case when s is diagonal
for the sake of simplicity.
The central claim is that H ¼ O

ffiffiffi
s

p
EO†, where E is a

signed permutation matrix whose form is determined by s.
In fact, even in the parity-violating case (when H is not
Hermitian), one can decompose H as H ¼ O

ffiffiffi
s

p
EO† for

some complex orthogonal matrix E, as the next lemma
shows. Any further specification of E is precisely linked to
the assumption that H is Hermitian.
Lemma 1. Suppose that H is an invertible complex

square matrix (not necessarily Hermitian), O is a complex
orthogonal matrix, and s is a diagonal matrix such that
HHT ¼ OsOT . Then for any choice of square root

ffiffiffi
s

p
,

there exists a complex orthogonal matrix E such that
H ¼ O

ffiffiffi
s

p
EO†.

Proof.— We begin by observing that

HHT ¼ O
ffiffiffi
s

p ðO ffiffiffi
s

p ÞT ;

therefore

I ¼ ðH−1O
ffiffiffi
s

p ÞðH−1O
ffiffiffi
s

p ÞT;
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so H−1O
ffiffiffi
s

p
is some complex orthogonal matrix, say P−1.

Rearranging, we have

H−1O
ffiffiffi
s

p ¼ P−1

O
ffiffiffi
s

p
P ¼ H:

Note that O† is a complex orthogonal matrix since O is.
Thus if we define E ¼ PðO−1Þ†, E is once again complex
orthogonal and P ¼ EO†. Thus, H ¼ O

ffiffiffi
s

p
EO† for a

complex orthogonal matrix E.
In addition to the assumption that s is diagonal [which is

made in Sec. III. D(i) of Ref. [20] ], we further assume that
(1) s has nonzero eigenvalues,
(2) s has distinct eigenvalues.

All of the above assumptions are mild in a probabilistic
sense; they hold with probability 1 in the space of all
possible matrices H. Later we will show that assumption
(2) is necessary for the analytical solution described in
Ref. [20], for otherwise one can exhibit infinitely many
matrices H with HHT ¼ S. In contrast, we show that
assumption (1) is not necessary.

A. Determination of EI, EII

The number of nonreal eigenvalues of s is even;
moreover such eigenvalues come in complex conjugate
pairs. As mentioned in Eq. (24) and following of
Ref. [20], this is due to the characteristic polynomial
of S ¼ HHT having real coefficients whenever H is a
Hermitian matrix.
Under the assumption that s is of size 3 × 3, there are

thus only two cases:
(I) All eigenvalues are real: s ¼ diagðs0; s1; s2Þ, each

si ∈ R.
(II) There is one pair of complex conjugate eigenvalues:

s ¼ diagðz; s0; z�Þ, s0 ∈ R.
In either case, one can find a diagonal matrix

ffiffiffi
s

p
such thatffiffiffi

s
p ffiffiffi

s
p ¼ s. Moreover, one may assume that the complex

entries of
ffiffiffi
s

p
come in conjugate pairs.

Proposition 1. Assume that s is diagonal, satisfies (1)
and (2), and has eigenvalues ordered as in (I) or (II) above.
Then H must be equal to one of the matrices

O
ffiffiffi
s

p
EO†;

where E comes from the finite list of possibilities:

E ¼

0
B@

�1 0 0

0 �1 0

0 0 �1

1
CA

in case (I) and

E ¼

0
B@

0 0 ϵ

0 �1 0

ϵ 0 0

1
CA

in case (II); here ϵ ¼ �1 and we are just emphasizing that
the two corner entries must be equal.
Proof.—By Lemma 1, we can write H ¼ O

ffiffiffi
s

p
EO† for

some complex orthogonal matrix E. Now we observe the
following:

H ¼ O
ffiffiffi
s

p
EO†

H† ¼ Oð ffiffiffi
s

p
EÞ†O†;

therefore H is Hermitian if and only if
ffiffiffi
s

p
E is. Since we

assumedH was Hermitian, we get the following equations:

ffiffiffi
s

p
E ¼ E† ffiffiffi

s
p �ffiffiffi

s
p

E
ffiffiffi
s

p �−1 ¼ E†:

The last equation can be rewritten as

ffiffiffi
s

p
E
ffiffiffi
s

p �−1 ¼ E�−1 ð64Þ

since ET ¼ E−1. Conjugating Eq. (64) yields

ffiffiffi
s

p �E� ffiffiffi
s

p −1 ¼ E−1;

and now taking the inverse of both sides we get

ffiffiffi
s

p
E�−1 ffiffiffi

s
p �−1 ¼ E: ð65Þ

Combining Eqs. (64) and (65), we have

sEs�−1 ¼ ffiffiffi
s

p ð ffiffiffi
s

p
E
ffiffiffi
s

p �−1Þ ffiffiffi
s

p �−1 ¼ ffiffiffi
s

p
E�−1 ffiffiffi

s
p �−1 ¼ E:

Therefore E commutes with s, but up to a conjugation.
But this can be remedied, for we know that s� is a
diagonal matrix whose entries are just a permutation of
the diagonal entries of s. In other words, there exists a
permutation matrix Q (possibly the identity matrix) such
that s� ¼ QsQ−1, which implies s�−1 ¼ Qs−1Q−1 by tak-
ing the inverse of both sides. As with all permutation
matrices, Q is (real) orthogonal; QT ¼ Q−1. Putting this all
together, we have

sEQs−1Q−1 ¼ E;

sðEQÞs−1 ¼ EQ;

so the complex orthogonal matrix EQ commutes with s.
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Since s has distinct eigenvalues, EQ must be diagonal.
The only diagonal 3 × 3 complex orthogonal matrices A are
the eight possibilities for

A ¼

0
B@

�1 0 0

0 �1 0

0 0 �1

1
CA;

because of the requirement that A2 ¼ AAT ¼ I.
Finally, to establish the form of the matrix E, and thus

find all solutionsH, we just analyze whatQwas in cases (I)
and (II), respectively.

(I) If s ¼ diagðs0; s1; s2Þ with each si ∈ R, then s ¼ s�
already, so Q ¼ I. Therefore E itself must be one of
the 8 possibilities

E ¼

0
B@

�1 0 0

0 �1 0

0 0 �1

1
CA:

Moreover, all of these possibilities are realizable—
that is, O

ffiffiffi
s

p
EO† is Hermitian in each case.18

(II) If s ¼ diagðz; s0; z�Þ, then

Q ¼

0
B@

0 0 1

0 1 0

1 0 0

1
CA;

so

E ¼

0
B@

0 0 �1

0 �1 0

�1 0 0

1
CA:

However, only half of these are valid possibilities
yielding O

ffiffiffi
s

p
EO† Hermitian. Indeed, let us write

E ¼

0
B@

0 0 ϵ1

0 ϵ2 0

ϵ3 0 0

1
CA;

where each ϵi ¼ �1. Then

ffiffiffi
s

p
E ¼

0
B@

0 0 ϵ1
ffiffiffi
z

p

0 ϵ2
ffiffiffiffiffi
s0

p
0

ϵ3
ffiffiffi
z

p � 0 0

1
CA;

which is Hermitian if and only if ϵ1 ¼ ϵ3. So E must
take on the form

E ¼

0
B@

0 0 ϵ

0 �1 0

ϵ 0 0

1
CA;

where ϵ ¼ �1.

B. Distinct eigenvalues are necessary

We want to point out that the assumption (2) of
Proposition 1 concerning distinct eigenvalues is necessary
in order to find only finitely many solutions for H.
Proposition 2. If s is a diagonal matrix of dimension

at least 2 with a repeated eigenvalue, then the equation
HHT ¼ OsOT has infinitely many solutions (given O,s)
with Hermitian H.
Proof.—It suffices to consider only the equation

H0HT
0 ¼ s by performing the change of variables

H0 ¼ O−1HðO−1Þ†. Indeed, H0 is Hermitian if and only
if H is. Moreover, seeing as

H0HT
0 ¼ O−1HðO−1Þ†ðO−1Þ�HTðO−1ÞT
¼ O−1HHTðO−1ÞT;

we find that H0HT
0 ¼ s if and only if HHT ¼ OsOT .

First suppose s has a repeated real eigenvalue s0; up to
permutations assume

s ¼ diagðs0; s0; s1; � � �Þ

(the later eigenvalues may be real or come in complex
conjugate pairs). We already know we can find a Hermitian
matrix H1 such that H1HT

1 ¼ diagðs1; � � �Þ (so H1 has
dimension 2 smaller). Therefore it suffices to show that
there are infinitely many Hermitian 2 × 2 matrices A such
that

�A 0

0 H1

��A 0

0 H1

�T

¼ s;

i.e., such that AAT ¼ ðs0
0

0
s0
Þ.

Set

A ¼
�

a ib

−ib a

�
;

with both a; b ∈ R. Then as long as a2 − b2 ¼ s0, A is
such a solution. The equation a2 − b2 ¼ s0 has infinitely
many solutions for a, b (graphically, the points on that
hyperbola); for example, if s0 is nonnegative, then a ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s0 þ b2

p
for any choice of b gives a distinct solution.

18Note that this relies on the entries of s being nonnegative.
Indeed, one can show (through a somewhat technical case-by-
case argument) that if s has at least one negative eigenvalue, then
this eigenvalue is repeated, violating assumption (2).
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Second, suppose s has a repeated complex (not real)
eigenvalue z. Up to permutations assume

s ¼ diagðz; z; z�; z�; s0; � � �Þ:

Once again it suffices to find infinitely many Hermitian
matrices A such that AAT ¼ diagðz; z; z�; z�Þ.
Set

A ¼

0
BBB@

0 0 x y

0 0 −y x

x̄ −ȳ 0 0

ȳ x̄ 0 0

1
CCCA:

A straightforward calculation reveals that, as long as
x2 þ y2 ¼ z, AAT ¼ diagðz; z; z�; z�Þ. Again there are in-
finitely many solutions to the equation x2 þ y2 ¼ z (pick
any x ∈ C and there is at least one solution for y).

C. Handling an unrepeated eigenvalue 0

Suppose HHT ¼ OsOT as before with s diagonal
and having distinct eigenvalues (assumption (2)). Now
suppose that s has 0 as one of its eigenvalues. Without
loss of generality, we assume that HHT ¼ s (using a
change-of-basis as before) and that s ¼ diagða; b; 0Þ,
where a ≠ 0, b ≠ 0.
Proposition 3. Under the above assumptions, H must

be of the form

� H̄ 0

0 0

�
:

Proof.—Let e3 denote the standard column vec-
tor ð0; 0; 1ÞT.
Note that the nullspace of s� is spanned by e3. Set

v ¼ HTe3. Then Hv ¼ 0 since se3 ¼ 0, so HTHv ¼ 0 as
well. Recalling that s� ¼H�H¼HTH, we see that s�v ¼ 0.
Thus v ¼ ce3 for some scalar c. Now observe that

H�e3 ¼ ce3

He3 ¼ c�e3: ð66Þ

Since 0 ¼ Hðce3Þ ¼ jcj2e3, we must have c ¼ 0. Eq. (66)
together with c ¼ 0 implies that H is a Hermitian matrix
whose last column is all 0’s. In other words,

H ¼
� H̄ 0

0 0

�

for some Hermitian 2 × 2 matrix H̄.

Therefore, the problem of solving for H reduces to
solving for H̄, and the smaller system

H̄H̄T ¼ diagða; bÞ

can be solved as before.

VII. DISCUSSION AND CONCLUSIONS

It is well known that at least two neutrinos are light
massive particles. However, it remains crucial to understand
the origin of neutrino mass. The seesaw mechanism is a
compelling possibility but it needs to be probed as a
consistent explanation. For the charged fermions, experi-
ments support the SM explanation that ties the particles’
masses to the correspondingYukawa terms in the underlying
theory. In the case of neutrinos, one would want to be able to
determine the Dirac mass (MD) between the left-handed
neutrinos and the new neutral lepton singlets (N) in terms of
the light neutrino masses and mixings (Mν) and the mass
matrix of the heavy states (MN). Therefore, probing the
seesaw requires themeasurement of these twomatrices and a
scheme that allows the determination of MD from them.
Within the context of minimal extensions of the SM,MD

is not unambiguously determined in terms of Mν and MN .
This problem can be overcome, however, by including
more structure in the theory. This is precisely the case for
the left-right symmetric model, where the seesaw is a
natural outcome of spontaneous symmetry breaking. In this
paper we have studied the scenario in which the left-right
symmetry is implemented via a discrete generalized
parity, P. In this scenario one can solve forMD analytically
using the approach described in Refs. [6,20] as long as the
bidoublet Higgs field has a real vacuum expectation value.
In contrast, for a complex VEV, which induces P parity
violation in the Dirac-Yukawa sector, the problem is more
difficult to handle and an analytical solution is lacking.
Although this case can in principle be addressed numeri-
cally, we are not aware of any defined numerical procedure
in the literature. With the intention of filling this gap, the
goal of this paper has been to design and test a prescriptive
numerical method that allows one to determine MD only
from the physical information contained in the matricesMν

and MN .
For the parity-violating case, we have found that the

problem of determining MD is inherently tied to the
knowledge of Ue, the unitary matrix associated with
the transformation from the gauge basis to the charged-
diagonal basis. Therefore, both matrices need to be solved
simultaneously. The method proposed in this paper, as
described in Sec. III, fulfills this goal through an iterative
procedure that has proven to be stable and has led to
solutions for all of the tested datasets. We illustrated the
procedure explicitly in Sec. IV for three different datasets
that had varying degrees of parity violation.
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Finally, it is worth stressing the difficulty of the problem
faced in this article. As a matter of fact, in Sec. V we
presented alternative iterative methods that were stable
for some datasets while not for others. The problem of
probing the seesaw mechanism when parity is violated is
important and challenging enough to require a robust
solution method.
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APPENDIX A: CONNECTION TO NOTATION
IN REF. [28]

In this appendix we outline the procedure for diagonal-
izing the charged and neutral mass matrices and we also
specify the relations between the charged-diagonal basis
(used in Ref. [6] and in the present work) and the gauge
basis (used in Ref. [28] and summarized at the beginning
of Sec. II).
Equations (8), (10), (11), (12), and (13) give the explicit

expressions forMl,MLR,MLL,MRR, and the light-neutrino
mass matrix, respectively, in terms of Yukawa coupling
matrices in the gauge basis. The charged lepton mass
matrix may be diagonalized using a biunitary transforma-
tion as follows:

me ≡Mdiag
l ¼ Vl†

L MlVl
R; ðA1Þ

where the elements of me are taken to be real and positive.
The light- and heavy-neutrino mass matrices may also be
diagonalized using unitary matrices,

Mdiag
ν ¼ Vν†

L ðM†
LL −MLRM−1

RRM
T
LRÞVν�

L ; ðA2Þ

Mdiag
R ¼ VνT

R MRRVν
R: ðA3Þ

The unitary matrices used to diagonalize the charged and
neutral lepton mass matrices are then used to construct the
left- and right-handed PMNS matrices,

VL ¼ B†
ϕV

l†
L Vν

LSL; ðA4Þ

VR ¼ B†
ϕV

l†
R Vν

RSR; ðA5Þ

where Bϕ is a diagonal phase matrix and SL and SR are
diagonal sign matrices; these diagonal matrices are used to
bring VL and VR into their conventional forms. Defining
νL;R and eL;R to be the neutral and charged lepton fields in
the mass basis (i.e., in the basis in which the mass matrices
are diagonal), we have

νL;R ¼ S†L;RV
ν†
L;Rν

0
L;R; ðA6Þ

eL;R ¼ B†
ϕV

l†
L;Re

0
L;R; ðA7Þ

where ν0L;R and e0L;R are the corresponding fields in the
gauge basis. The left- and right-handed PMNS matrices
appear in the charged-current Lagrangian when it is written
in terms of the fields in the mass basis,

LCC ≃ −
gffiffiffi
2

p ēLVLγμνLW
μ−
L −

gffiffiffi
2

p ēRVRγμνRW
μ−
R þ H:c:

ðA8Þ

Finally, we note that the left-handed PMNS matrix is
parametrized as follows in Ref. [31] (and in Ref. [28]),

VL ¼ Uð0Þðθ12; θ23; θ13; δLÞAL; ðA9Þ

where AL is a diagonal matrix that may be written in terms
of two Majorana phases, AL ¼ diagðeiα1=2; eiα2=2; 1Þ. The
matrix Uð0Þ may be written as

Uð0Þðθ12; θ23; θ13; δLÞ ¼

0
B@

c12c13 s12c13 s13e−iδL

−s12c23 − c12s23s13eiδL c12c23 − s12s23s13eiδL s23c13
s12s23 − c12c23s13eiδL −c12s23 − s12c23s13eiδL c23c13

1
CA; ðA10Þ

where sij and cij refer to the sines and cosines,
respectively, of the (real) angles θ12, θ13, and θ23. The
interested reader is referred to Ref. [28] for a parametriza-
tion of VR.
Reference [6] works in a basis in which the charged

lepton mass matrix is diagonal, but the neutrino mass

matrices are not; we have called this basis the “charged-
diagonal” basis. The diagonalization of the charged-
lepton mass matrix was shown above, in Eq. (A1).
Equations (14)–(16) also include the matrix Ue; this matrix
is defined in terms of the matrices Vl

L and Vl
R that are used

to diagonalize Ml,
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Ue ¼ B†
ϕV

l†
R Vl

LBϕ: ðA11Þ

It is straightforward to work out the relations between
Mν, MN and MD (which are defined in the charged-
diagonal basis) and M†

LL −MLRM−1
RRM

T
LR, MRR and MLR

(which are defined in the gauge basis). The specific
relations are as follows:

Mν ¼ BϕðVl
LÞTðM†

LL −MLRM−1
RRM

T
LRÞ�Vl

LBϕ; ðA12Þ

MN ¼ B†
ϕV

l†
R M�

RRV
l�
R B†

ϕ; ðA13Þ

MD ¼ B†
ϕV

l†
R M†

LRV
l
LBϕ: ðA14Þ

APPENDIX B: NUMERICAL DETERMINATION
OF Ue FOR A GIVEN M

In this appendix we describe a procedure that can be used
to determine Ue with a high degree of accuracy once an
approximate expression for M has been determined in
Step 7 of the procedure described in Sec. III A; the
procedure described here is used in Step 8 in that section.
Our approach assumes that sat2β is somewhat small, in
which case Ue is close to diagonal.

19 One potential point of
confusion is that the method described in this appendix is
an iterative one that is itself used in the context of another
iterative procedure (i.e., the one described in Sec. III A). In
this appendix we will suppress the index for the “Step #” in
the larger iterative process. The index m that is used here
refers to the mth step in the iterative process used to
determine Ue for a given (i.e., fixed) step of the procedure
described in Sec. III A.
We start by recalling the definition of M in Eq. (17),

which allows us to reexpress Eq. (15) as follows:

Ueme −meU
†
e ¼ isat2βM; ðB1Þ

whereme is a diagonal matrix containing the charged lepton
masses. In the limit that sat2β goes to zero, the unitary matrix
Ue becomes a diagonal matrix whose nonzero entries are

�1. With this in mind, we define the matrixUðmÞ
e in terms of

a product of mþ 1 unitary matrices UðjÞ,

UðmÞ
e ¼

Ym
j¼0

UðjÞ ¼ UðmÞUðm−1Þ � � �Uð1ÞUð0Þ; ðB2Þ

where Uð0Þ ¼ Ĩ is the diagonal sign matrix defined in
Eq. (32). The matrix Ue is taken to be the limit of
Eq. (B2) as m approaches infinity,

Ue ¼ lim
m→∞

UðmÞ
e ¼

Y∞
j¼0

UðjÞ: ðB3Þ

Each of the unitary matrices UðjÞ may be expressed as
follows:

UðjÞ ¼ exp

�X9
i¼1

iαðjÞi

2
λi

�

¼ 1þ
�X9

i¼1

iαðjÞi

2
λi

�
þ 1

2!

�X9
i¼1

iαðjÞi

2
λi

�2

þ � � � ;

ðB4Þ

where λi, i ¼ 1;…; 8, are the usual Gell-Mann matrices, λ9
is the unit matrix, and the αðjÞi are real parameters that are to
be determined.20 The idea of the procedure is to determine
matrices Uð1Þ, Uð2Þ, Uð3Þ;…, in such a way that UðmÞ
approaches the identity matrix for largem [i.e., in such a way

that the αðmÞ
i approach zero for large m]. This allows one to

truncate the infinite product in Eq. (B3), so that UðmmaxÞ
e (for

some mmax) is used as a suitable approximation to Ue.
In the first step of the procedure we substitute

Uð1Þ
e ¼ Uð1ÞĨ ðB5Þ

into Eq. (B1), in place of Ue, and then expand the
expression for Uð1Þ [see Eq. (B4)] to linear order in the

αð1Þi . This gives us the defining expression for the nine

unknowns αð1Þi ,

�
1þ
X9
i¼1

iαð1Þi

2
λi

�
Ĩme−meĨ

�
1−
X9
i¼1

iαð1Þi

2
λi

�
¼ isat2βM:

ðB6Þ

Defining m̃ð0Þ
e ≡ Ĩme and rearranging, we have

X9
i¼1

iαð1Þi

2
ðλim̃ð0Þ

e þ m̃ð0Þ†
e λiÞ ¼ isat2βM − m̃ð0Þ

e þ m̃ð0Þ†
e :

ðB7Þ

To solve for the αð1Þi , we multiply the above expression by
λk and take the trace,

X9
i¼1

iαð1Þi

2
Tr½ðλim̃ð0Þ

e þ m̃ð0Þ†
e λiÞλk�

¼ Tr½ðisat2βM − m̃ð0Þ
e þ m̃ð0Þ†

e Þλk�; ðB8Þ
19The authors of Ref. [6] outlined an alternative approach for

estimating Ue, which is to express it in terms of a series
expansion in powers of sat2β.

20Note that we cannot assume that the UðjÞ are special unitary,
which is why we need to include a ninth matrix in our basis.
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which yields nine equations (for k ¼ 1; 2;…; 9) in the nine

unknowns. Once we have determined the αð1Þi , we use the
series expansion of Eq. (B4) to determine the matrix Uð1Þ
(summing up enough terms so that the result is very close to
unitary). While the linearized version of Uð1Þ was an exact
solution of Eq. (B6), the “reunitarized” version of the
matrix [i.e., Uð1Þ] is no longer a solution when Eq. (B5) is
substituted into Eq. (B1). This brings us to the next step in
the procedure.
In the second step we substitute

Uð2Þ
e ¼ Uð2ÞUð1ÞĨ; ðB9Þ

into Eq. (B1) and expand Uð2Þ to linear order in the

coefficients αð2Þi , while keeping the matrix Uð1Þ in its
exactly unitary form. Performing the same manipulations
as in the previous step, we obtain the following expression

for the αð2Þi ,

X9
i¼1

iαð2Þi

2
Tr½ðλim̃ð1Þ

e þ m̃ð1Þ†
e λiÞλk�

¼ Tr½ðisat2βM − m̃ð1Þ
e þ m̃ð1Þ†

e Þλk�; ðB10Þ

where m̃ð1Þ
e ≡Uð1ÞĨme ¼ Uð1Þm̃ð0Þ

e . This allows us to solve

for the αð2Þi and to exponentiate the corresponding sum to
determine Uð2Þ.
We continue in this manner, linearizing UðmÞ at the mth

step in order to determine the coefficients αðmÞ
i (while using

the exactly unitary versions of the matrices determined in
the previous steps) and then “reunitarizing” at the end to
obtain UðmÞ. After several iterations, the coefficients
become vanishingly small and we terminate the process,
having obtained an approximation to Ue that is unitary and
satisfies Eq. (B1) to a high degree of accuracy.
We conclude with two comments:
(1) The matrix M that is produced in Step 7 of the

iterative process described in Sec. III A is actually
only an approximation to the exact expression and
may not be exactly Hermitian. In practice, there-
fore, we replace M by 1

2
ðMþM†Þ wherever it

appears in the expressions in this Appendix.21

(2) Equations (B8) and (B10) and the analogous
expressions for the subsequent steps in the process

guarantee that the αðjÞi will be real if M is
Hermitian and if unique solutions exist. When

the αðjÞi are determined numerically they generi-
cally include small imaginary parts. We dis-
card these.

APPENDIX C: ANGULAR PARAMETRIZATION
OF SOð3;CÞ

In this appendix, we show that almost all 3 × 3 complex
orthogonal matrices of determinant 1 can be realized as

0
B@

cη1cη3 − cη2sη1sη3 sη1sη2 cη1sη3 þ cη2cη3sη1
sη2sη3 cη2 −cη3sη2

−cη3sη1 − cη1cη2sη3 cη1sη2 cη1cη2cη3 − sη1sη3

1
CA;

where sηi ¼ sinðηiÞ and cηi ¼ cosðηiÞ, for suitable choices
of complex angles ηi ∈ C. This generalizes the well-known
parametrization of SOð3;RÞ using Euler angles (see for
example Ref. [38]).
We start with a lemma that we will need later.
Lemma 2. Suppose v2 þ w2 ¼ 1 for complex numbers

v, w. Then there exists a complex angle η such that
v ¼ cos η; w ¼ sin η.
Proof.—Note that ðvþ iwÞðv − iwÞ ¼ 1, so vþ iw ≠ 0.

Find any complex angle η such that vþ iw ¼ eiη. This is
possible since vþ iw ≠ 0, and the range of ez is all nonzero
complex numbers.
Then e−iη ¼ 1=ðvþ iwÞ ¼ v − iw. Therefore,

cos η ¼ eiη þ e−iη

2
¼ 2v

2
¼ v

and

sin η ¼ eiη − e−iη

2i
¼ 2iw

2i
¼ w:

1. Recovering a 3 × 3 special orthogonal matrix
from the middle cross

Proposition 4. Let

0
B@

a p x

b q y

c r z

1
CA

21Even after coercing M into a Hermitian form it is not
guaranteed that a unitary matrix Ue exists such that Eq. (B1) is
satisfied. To see that this is the case we only need consider the
1 × 1 case, in which Ue is a pure phase and M is a real number.
ForM larger than a certain value there is no longer a solution for
Ue. Our method implicitly assumes that the expressions produced
for M are sufficiently close to the “true” expression that a
solution exists for Ue.
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be an arbitrary element of SOð3;CÞ. Suppose q2 ≠ 1. Then

a ¼ −ry − bqp
1 − q2

; x ¼ br − qpy
1 − q2

;

c ¼ py − bqr
1 − q2

; z ¼ −bp − qry
1 − q2

:

Proof.—If p and r were both equal to 0, then the
normalization of the second column would imply
q2 ¼ 1, which cannot be. So we may assume p ≠ 0 (up
to symmetry). Likewise, we will assume y ≠ 0, following a
similar argument for the second row.
From the orthogonality of the first two columns, i.e.,

apþ bqþ cr ¼ 0, we get

ap ¼ −bq − cr; ðC1Þ
which we may substitute in the normalization condition for
the first column, namely a2p2 þ b2p2 þ c2p2 ¼ p2, to
obtain

b2q2 þ c2r2 þ 2bcqrþ b2p2 þ c2p2 ¼ p2;

which is a quadratic equation in c,

ð1 − q2Þc2 þ ð2bqrÞcþ b2ðq2 þ p2Þ − p2 ¼ 0.

The discriminant of this equation is

4b2q2r2 − 4ð1 − q2Þðb2ðq2 þ p2Þ − p2Þ
¼ 4ðb2q2r2 − ð1 − q2Þðb2 − b2r2 − p2ÞÞ
¼ 4ð−b2 þ b2r2 þ p2 þ q2b2 − q2p2Þ
¼ 4ðb2ðr2 þ q2 − 1Þ þ p2ð1 − q2ÞÞ
¼ 4ð−b2p2 þ p2ð1 − q2ÞÞ
¼ 4ðp2y2Þ
¼ ð2pyÞ2:

Thus,

c ¼ −2bqrþ ϵ · 2py
2ð1 − q2Þ ¼ −bqrþ ϵpy

1 − q2
; ðC2Þ

where ϵ is either 1 or −1 (to be determined).
Since p ≠ 0, we may divide Eq. (C1) by p and substitute

Eq. (C2) for c to obtain

a ¼ bqr2 − ϵpyr
pð1 − q2Þ −

bq
p

¼ bqr2 − ϵpyr − bqðp2 þ r2Þ
pð1 − q2Þ

¼ −ϵyr − bqp
1 − q2

:

In similar fashion, since y ≠ 0, we obtain

x ¼ −pqyþ ϵbr
1 − q2

and

z ¼ −qry − ϵbp
1 − q2

:

By a straightforward calculation, one finds that

det

0
BB@

−ϵyr−bqp
1−q2 p −pqyþϵbr

1−q2

b q y
−bqrþϵpy

1−q2 r −qry−ϵbp
1−q2

1
CCA

reduces simply to ϵ. Therefore ϵ ¼ 1 and we are done.

2. Complex Euler angles

Theorem 1. Let

A ¼

0
B@

a p x

b q y

c r z

1
CA

be an element of SOð3;CÞ such that q2 ≠ 1. Then there
exist complex angles η1, η2, η3, such that

A ¼

0
B@

cη1cη3 − cη2sη1sη3 sη1sη2 cη1sη3 þ cη2cη3sη1
sη2sη3 cη2 −cη3sη2

−cη3sη1 − cη1cη2sη3 cη1sη2 cη1cη2cη3 − sη1sη3

1
CA

(where cηi ¼ cosðηiÞ and sηi ¼ sinðηiÞÞ.
Proof.—Find a complex number u such that

u2 ¼ 1 − q2. By Lemma 2, there is a complex angle η2
such that cosðη2Þ ¼ q; sinðη2Þ ¼ u. Note that u ≠ 0;
moreover

�
p
u

�
2

þ
�
r
u

�
2

¼ p2 þ r2

1 − q2
¼ 1;

so there exists a complex angle η1 such that sη1 ¼ p=u and
cη1 ¼ r=u. Thus p ¼ sη1sη2 and r ¼ cη1sη2 .
Similarly, there exists a complex angle η3 such that

b ¼ sη2sη3 and −y ¼ cη3sη2 (here we apply Lemma 2 to the
pair b=u, −y=u.)
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Now we apply Proposition 4,

a ¼ −ry − bqp
u2

¼ cη1cη3s
2
η2 − sη3sη1cη2s

2
η2

s2η2
¼ cη1cη3 − cη2sη1sη3 :

Similarly,

c ¼ −cη3sη1 − cη1cη2sη3
x ¼ cη1sη3 þ cη2cη3sη1
z ¼ cη1cη2cη3 − sη1sη3 :

3. Other cases

If it happens that q2 ¼ 1 in the above orthogonal matrix
A, then there are other “Euler angles” that may be used to
parametrize its entries. The easiest way to obtain this is to
replace A by A0 ¼ PAQ for suitable permutation matrices P
and Q, such that the (2, 2) entry of A0 is not �1. In other
words, even if q2 ¼ 1, there must be some other entry of A
that does not square to 1. Permute rows and columns of A
until that entry is now in the (2, 2) position, and then apply
Theorem 1.

[1] Super-Kamiokande Collaboration, Evidence for Oscillation
of Atmospheric Neutrinos, Phys. Rev. Lett. 81, 1562 (1998).

[2] P. Minkowski, μ → eγ at a rate of one out of 109 muon
decays?, Phys. Lett. 67B, 421 (1977).

[3] R. N. Mohapatra and G. Senjanovic, Neutrino Mass and
Spontaneous Parity Nonconservation, Phys. Rev. Lett. 44,
912 (1980).

[4] T. Yanagida, Horizontal gauge symmetry and masses of
neutrinos, in Proceedings: Workshop on the Unified The-
ories and the Baryon Number in the Universe: Tsukuba,
Japan, 1979, edited by O. Sawada and A. Sugamoto
(National Laboratory High Energy Physics, Tsukuba, Japan,
1979).

[5] S. L. Glashow, The future of elementary particle physics, in
Proceedings: Quarks and Leptons, Cargése, 1979, edited
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