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The real time evolution of quantum field theory models can be calculated order by order in perturbation
theory. For λϕ4 models, the perturbative series have a zero radius of convergence which in part motivated
the design of digitized versions suitable for quantum computing. In agreement with general arguments
suggesting that a large field cutoff modifies Dyson’s reasoning and improves convergence properties, we
show that the harmonic digitizations of λϕ4 lattice field theories lead to weak coupling expansions with a
finite radius of convergence. Similar convergence properties are found for strong coupling expansions. We
compare the resources needed to calculate the real-time evolution of the digitized models with perturbative
expansions to those needed to do so with universal quantum computers. Unless new approximate methods
can be designed to calculate long perturbative series for large systems efficiently, it appears that the use of
universal quantum computers with digitizations involving a few qubits per site has the potential for more
efficient calculations of the real-time evolution for large systems at intermediate coupling.
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I. INTRODUCTION

Performing ab initio real-time calculations for quantum
field theory and in particular quantum chromodynamics
(QCD) would have a significant impact for theoretical
predictions related to hadron collider experiments [1]. As
methods based on probabilistic importance sampling rely
on Euclidean time formulations, real-time evolution for
lattice QCD cannot be performed with classical computers
for system sizes comparable to those used for static
problems. For this reason, the use of universal quantum
computers [1–42] or analog quantum simulations using
cold atoms [43–58] has become a very active area of
research. In this context, roadmaps [1,59–62] to implement
sequences of models of increasing complexity and dimen-
sion have been considered, leading to physically relevant
calculations on rapidly evolving noisy intermediate scale
quantum (NISQ) platforms [63].
In one of the first articles discussing real-time evolution

and study of scattering processes using universal quantum
computers [4] for λϕ4 theories, it is stated correctly that
traditional calculations of quantum field theory scattering
amplitudes rely on perturbation theory and that even at
weak coupling, the perturbative series are not convergent.
In other words, including higher-order contributions
beyond a certain point makes the approximation worse.
However, in order to set up a quantum computation,

finite discretizations of the noncompact scalar field ϕ are
used [4,6,11,12,23,26,64] (we call this process “digitiza-
tion”), which implicitly introduces a field cutoff. It has been
argued [65,66] that cutting off the large field contributions

in λϕ4 theories affects the instability at negative λ invoked
by Dyson [67] (see Ref. [68] for more literature on the
subject), and results in modified perturbative series that
are expected to converge to values exponentially close to
exact. Consequently, the question of using perturbative
methods in an efficient way needs to be revisited for
digitized models.
Several questions need to be answered for digitized

models: (i) Do the perturbative series converge? (ii) Are
analytic continuations possible? and (iii) Assuming pos-
itive answers for (i) and (ii), what are the computational
resources needed to perform reasonably accurate
calculations?
In this article we address these questions for lattice

versions of λϕ4 field theory. We start with the standard
field-continuous formulation of lattice λϕ4 in the local field
basis, where ϕ̂x is diagonal and the interactions among
the fields at different lattice sites x are limited to neighbor-
ing sites. For finite local digitizations of these models,
general results guarantee [2] that quantum computers
could deal efficiently with real-time evolution. Several
methods have been used to digitize the local field variables
[4,6,11,12,23,26,64], of which two are discussed here. In
the first, the eigenvalues are equally spaced between�ϕmax
for some field cutoff ϕmax and the conjugate momentum is
nontrivial. In the other [12,64], called the “harmonic” basis,
the field and its conjugate momentum have eigenvalues
which are the zeros of the Hermite polynomial Hnmax

ðxÞ for
some nmax which denotes the size of the finite local Hilbert
space at each lattice site. In the harmonic basis, the standard
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algebraic manipulations involving creation and annihilation
operators hold, with the exception that a†jnmax − 1i ¼ 0.
Because of the simplicity of the conjugate momentum
operator and the preservation of most of the algebraic
relations involving creation and annihilation operators, the
harmonic basis provides easy reformulations of the stan-
dard perturbative tools for digitized models and will be
used almost exclusively hereafter. The construction of the
harmonic basis is closely related to the Gaussian quadrature
method of integration. With nmax sampling points, the
integration of polynomials of 2nmax − 1 order remains
exact and orthogonality relations are preserved. It seems
clear that by taking nmax large enough, we recover the
integration with continuous and noncompact fields as in the
standard formulation.
With a universal quantum computer, we use nq qubits per

lattice site and in the following we take nmax ¼ 2nq . In view
of the limitations of current NISQ devices, we are inclined
to consider economical situations with small nq. The
matching with the target model may not be perfect;
however, if the symmetries are preserved, we expect that
in the limit where the lattice is small compared to the
correlation length, universal properties of the model will be
preserved. For recent discussions related to this question
see e.g., Refs. [14,27,29,30,34,38–40,42].
In the following, we discuss the cases nq ¼ 2; 3; 4, and 5

and show that the digitization leads to converging pertur-
bative series, unlike the original model with continuous and
noncompact fields. For small systems and small couplings,
this allows the practical use of perturbation theory to
calculate the real-time evolution accurately. The main open
question is if this method can be used efficiently when the
system size increases and the coupling constant takes
arbitrary values.
The article is organized as follows. In Sec. II, we present

the lattice models considered and their digitization. In
Sec. III, we describe the calculation of the matrix elements
of the evolution operator in a computational basis using
perturbation theory. In Sec. IV, we discuss the one-site
problem which is a single digitized quantum anharmonic
oscillator. In IVA, we present numerical methods to
calculate perturbative series and determine their radius of
convergence using the simple case of nmax ¼ 4 with one
site which can also be solved exactly. The complex
singularities in the complex λ plane for nmax ¼ 8; 16,
and 32 are presented in Sec. IV B. The complex singular-
ities appear to stay away from the positive real axis. We also
show that similar methods can be applied in the strong
coupling limit. In Sec. V, we consider a 1þ 1 dimensional
model with four sites and nmax ¼ 4. By increasing the
hopping parameter, the complex singularities start pinching
the positive real axis in the complex λ plane in agreement
with the existence of a second-order phase transition.
Higher dimensional studies are in principle possible but
would require optimizations not considered here. In

Sec. VI, we discuss the calculation of the same matrix
elements with a universal quantum computer. We conclude
with a discussion of quantum advantage. In this context, the
recent interest [69–74] in applying tensor network methods
to λϕ4 could also provide relevant elements for the
discussion.

II. MODELS

In this section we introduce the lattice models of λϕ4

field theory considered in the article. These consist of
anharmonic oscillators located at lattice sites with quadratic
nearest neighbor coupling. The target models, before
digitization, and the associated terminology are introduced
in Sec. II A. The truncated (digitized) harmonic basis is
presented in Sec. II B. This includes a discussion of the
basis where the field operators are diagonal. It should be
emphasized that in this “field basis of the truncated
harmonic formulation” the field eigenvalues are not equally
spaced. They are the zeros of some Hermite polynomial.
This field basis should not be confused with the other field
basis mentioned in the Introduction, where the field
eigenvalues are equally spaced.

A. Target models: Lattice ϕ4 Hamiltonians
in D− 1 spatial dimensions

In the following we use a spatial lattice. We use the
notation x for the lattice sites and e for the D − 1
orthogonal unit vectors in positive directions. For instance,
for D ¼ 3 space-time dimensions, this represents a square
spatial lattice. The Hamiltonian Ĥ reads

Ĥ ¼
X
x

Ĥanh
x − 2κ

X
x;e

ϕ̂xϕ̂xþe; ð1Þ

with the local anharmonic part

Ĥanh
x ¼ ωðâ†xâx þ 1=2Þ þ λϕ̂4

x: ð2Þ

Here, ω represents the energy scale of the unperturbed
harmonic oscillators; κ represents the hopping energy, the
energy scale of the nearest-neighbor coupling; and λ
determines the strength of the anharmonic component,
which in the low-λ limit can be interpreted as the strength of
the coupling between free particle states. With the usual
field definition

ϕ̂x ≡ 1ffiffiffiffiffiffi
2ω

p ðâx þ â†xÞ; ð3Þ

and the conjugate momentum

π̂x ≡ −i
ffiffiffiffi
ω

2

r
ðâx − â†xÞ; ð4Þ
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we have the standard commutation relations

½âx; â†y � ¼ δxy; ð5Þ

with the other commutators being zero. The above equa-
tions provide the standard Hamiltonian formulation of λϕ4.
We will now introduce a truncation of the local Hilbert
spaces.

B. The digitized harmonic basis

We now consider the harmonic digitization of âx and â†x
operators at a given site x. As the results are independent
of xwe drop the site index in this subsection. In order to get
a finite-dimensional Hilbert space, we start with the
standard

â†jni ¼ ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p jnþ 1i; for n ¼ 0;…; nmax − 2; ð6Þ

but impose

â†jnmax − 1i ¼ 0: ð7Þ

In addition, we have the standard relations

âjni ¼ ffiffiffi
n

p jn − 1i; for n ¼ 1;…; nmax − 1; ð8Þ

and

âj0i ¼ 0: ð9Þ

This implies that

â†âjni ¼ njni; for n ¼ 0;…; nmax − 1: ð10Þ

For this reason we define the harmonic Hamiltonian Ĥhar as

Ĥhar ≡ ω

�
â†âþ 1

2

�
; ð11Þ

which has the same spectrum as the usual harmonic
oscillator in the truncated subspace. Using the notation

Pnmax−1 ¼ jnmax − 1ihnmax − 1j; ð12Þ

for the projector in the highest energy state, the modified
commutation relations read

½â; â†� ¼ 1 − nmaxPnmax−1: ð13Þ

The traces of both sides of the equation are clearly zero.
Note that

1

2
ðπ2 þ ω2ϕ2Þ ¼ Ĥhar −

nmax

2
Pnmax−1: ð14Þ

Since

â†Pnmax−1 ¼ Pnmax−1â ¼ 0; ð15Þ

we have the standard relations

½â†â; â� ¼ −â; and ½â†â; â†� ¼ â†: ð16Þ

Consequently, we have the standard interaction picture
relation

eiĤ
hartâe−iĤ

hart ¼ e−iωtâ; ð17Þ

and its Hermitian conjugate

eiĤ
hartâ†e−iĤ

hart ¼ eiωtâ†: ð18Þ

C. Local field eigenstates

We now discuss the eigenvectors and eigenvalues of the
local field ϕ̂ in the harmonic basis. In standard wave
mechanics this is called the position basis and the eigen-
vectors can be expressed in terms of Hermite polynomials.
A similar result will be obtained after truncation. The
expression of ϕ̂ in terms of creation and annihilation
operators is the standard one given in Eq. (3).
Given a field eigenstate

ϕ̂jϕi ¼ ϕjϕi; ð19Þ

and using Eq. (3), we find that, as in the untruncated case,
the recursion relation

ϕ
ffiffiffiffiffiffi
2ω

p
hnjϕi ¼ ffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p hnþ 1jϕi þ ffiffiffi

n
p hn − 1jϕi; ð20Þ

can be solved using the Hermite recursion relation

Hnþ1ðxÞ − 2xHnðxÞ þ 2nHn−1ðxÞ ¼ 0 ð21Þ

with x ¼ ffiffiffiffi
ω

p
ϕ as in ordinary quantum mechanics [75]. In

order to terminate the process at level nmax we need to
restrict x to values xj such that Hnmax

ðxjÞ ¼ 0. Combining
these results with those of Gaussian quadrature integration,
we obtain the normalized expression

hnjϕji ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nmax−1nmax!

2nn!n2max

s
Hnð

ffiffiffiffi
ω

p
ϕjÞ

Hnmax−1ð
ffiffiffiffi
ω

p
ϕjÞ

: ð22Þ
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III. STATEMENT OF THE PROBLEM

In the following, we consider the real time evolution in a
computational basis jnð0Þi which corresponds to the eigen-
states of an unperturbed Hamiltonian Ĥ0:

Ĥ0jnð0Þi ¼ Eð0Þ
n jnð0Þi: ð23Þ

We then consider the real-time evolution operator

ÛðtÞ≡ e−itĤ; ð24Þ

for the perturbed Hamiltonian

Ĥ ¼ Ĥ0 þ λV̂: ð25Þ

In the case considered here, Ĥ0 represents the quadratic
part of the Hamiltonian of Eq. (1), while V̂ is the sum of the

quartic terms. The identification of the unperturbed basis
and the computational basis has also been used in pertur-
bative calculations involving arrays of Rydberg atoms and
where the Rabi frequency was treated as a pertubation [58].
In a typical quantum computation, one prepares the

system in an initial state of the computational basis, evolves
for a time t and then measures the probability to end up in a
given state of the computational basis. We want to compare
the computation of this probability

Prðjnð0Þi → jmð0Þi; tÞ ¼ jhmð0ÞjÛðtÞjnð0Þij2; ð26Þ

using a quantum computer and perturbation theory.
The standard methods to calculate the transition prob-

abilities using perturbation theory are reviewed in quantum
mechanics textbooks such as Ref. [75]. They can be applied
to the case of the digitized models. The first one is Dyson’s
chronological series:

hmð0ÞjÛðtÞjnð0Þi ¼ e−iE
ð0Þ
m thmð0Þj

�
1 − iλ

Z
t

0

dt0V̂Iðt0Þ − λ2
Z

t

0

dt0
Z

t0

0

dt00V̂Iðt0ÞV̂Iðt00Þ þ…

�
jnð0Þi; ð27Þ

where

V̂IðtÞ ¼ eiĤ0tV̂e−iĤ0t: ð28Þ

As shown in Eqs. (17) and (18), this can be done in the
standard way for the digitized oscillator.
The second method consists of inserting the identity

formally expressed as the sum of projectors in the perturbed
basis

hmð0ÞjÛðtÞjm0ð0Þi ¼
X
n

hmð0Þjnihnjm0ð0Þie−iEnt: ð29Þ

The perturbed projectors can be calculated using the
resolvent [76],

jnihnj ¼ 1

2πi

I
Γn

dz
1

z −H
; ð30Þ

where Γn is a complex contour encircling En and Eð0Þ
n and

no other energy level of Ĥ and Ĥ0. This can be accom-
plished if the spectra are nondegenerate and the coupling
small enough. The perturbative series for the resolvent has
the Lippmann-Schwinger form

1

z − Ĥ
¼ 1

z − Ĥ0

þ λ
1

z − Ĥ0

V̂
1

z − Ĥ0

þ � � � : ð31Þ

The series expansion for the perturbed energies can be
obtained from

En ¼ TrðĤjnihnjÞ; ð32Þ

or just by solving the characteristic equation order by
order in λ.
One should notice that the computational cost of these

methods appears to grow exponentially with the perturba-
tive order N p. For the calculation of the projector jnihnj
from Eq. (30) and the perturbative expansion (31), each
factor 1=ðz − Ĥ0Þ generates a pole in the complex contour
when acting on jni and outside the contour otherwise.
Consequently, we need to consider 2N p cases. For Dyson’s
series, each VI factor contains 16 terms (product of creation
and annihilation operators) and the apparent cost is 16N p .

IV. NUMERICAL METHODS FOR ONE SITE

In this section, we focus on the one-site problem. In
Sec. IVA, we consider the exactly solvable case of
nmax ¼ 4. We present numerical methods and validate
them with the exact solution. In Sec. IV B, we present
results for nmax ¼ 8; 16, and 32. We also comment about
the relation with the strong coupling expansion. In this
section and the rest of the article, we set ω ¼ 1.

A. nmax = 4

We first note that nmax ¼ 2 is a trivial theory: since the
Hamiltonian is invariant under ϕ → −ϕ, it commutes with
the parity operator and thus decouples states of different
parities. At nmax ¼ 2 there is only one state of each parity
and so the Hamiltonian is diagonal and there is nothing to
investigate.
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For nontrivial cases, the convergence of perturbative
expansions in λ is limited by exceptional points—points in
the complex λ plane where two distinct, coupled energy
levels become degenerate [76]. The nearest such point to
the origin then defines the radius of convergence. In the
case of nmax ¼ 4, the structure of the discretized theory is
particularly simple, and a number of relations between the
location of the limiting exceptional point and features of the
system more accessible to measurement can take a corre-
spondingly simple form. When we then move to larger
operators, the relations so derived no longer give the exact
location of the critical lambda, but continue to provide a
useful approximation.
In nmax ¼ 4, we have

â ¼

0
BBB@

0 1 0 0

0 0
ffiffiffi
2

p
0

0 0 0
ffiffiffi
3

p

0 0 0 0

1
CCCA ð33Þ

and

Ĥanh ¼

0
BBBBBBBB@

3λ
4
þ 1

2
0 3λffiffi

2
p 0

0 15λ
4
þ 3

2
0 3

ffiffi
3
2

q
λ

3λffiffi
2

p 0 27λ
4
þ 5

2
0

0 3
ffiffi
3
2

q
λ 0 15λ

4
þ 7

2

1
CCCCCCCCA
: ð34Þ

The characteristic equation reads

0 ¼ detðĤanh − z1Þ

¼ 1

256
ð9λ2 þ 84λþ 16z2 − 120λz − 48zþ 20Þ

× ð9λ2 þ 300λþ 16z2 − 120λz − 80zþ 84Þ: ð35Þ

The even levels correspond to the solutions for z for the first
factor and can be expressed as

E0;2 ¼
1

4

�
þ15λþ 6 ∓ 2

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27λ2 þ 12λþ 2

p �
: ð36Þ

The odd levels correspond to the solutions for z for the
second factor and can be expressed as

E1;3 ¼
1

4

�
þ15λþ 10 ∓ 2

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27λ2 þ 2

p �
: ð37Þ

These exact solutions can be expanded order by order in λ
and the radii of convergence are the norms of the complex
values of λ for which the arguments of the square root
vanish and consequently, the two eigenvalues become

degenerate. For the even levels these singularities appear at

λ ¼ −
1

9
ð2� i

ffiffiffi
2

p
Þ ≃ −0.222222 − i0.157135; ð38Þ

and the radius of convergence is
ffiffiffiffiffiffiffiffiffiffi
2=27

p
≃ 0.272166. For

the odd levels the singularities appear at

λ ¼ �i
ffiffiffiffiffiffiffiffiffiffi
2=27

p
; ð39Þ

and the radius of convergence is also
ffiffiffiffiffiffiffiffiffiffi
2=27

p
. For larger

nmax, odd and even sectors appear to have different radii of
convergence.
Long series for the energy levels can be calculated by

constructing a solution of the characteristic equation (35)
for z order by order in λ. The unperturbed solutions are
half-integers and exact arithmetic leads to rational coef-
ficients. For the ground state we have

E0ðnmax ¼ 4Þ ¼ 1

2
þ 3

4
λ −

9

4
λ2 þ 27

4
λ3 þ…; ð40Þ

which differs from the usual result [77]

E0ðnmax ¼ ∞Þ ¼ 1

2
þ 3

4
λ −

21

8
λ2 þ 333

16
λ3 þ… ð41Þ

at order λ2. This can be explained from the fact that for
nmax ¼ 4, h0ð0ÞjV̂j4ð0Þi ¼ 0 instead of

ffiffiffi
6

p
=2 in the untrun-

cated case, which modifies the contributions from the
standard perturbative formula at second order. We will
now see that the truncation modifies the asymptotic
behavior of the series.
Our calculation of the expansion coefficients can be

verified by comparing our results at larger nmax (discussed
in Sec. IV B) with the well-established results in the
continuous field limit [77]. The comparison between the
coefficients for nmax ¼ 4; 8; 16, and 32 is given in Fig. 1.
The coefficients for nmax ¼ 32 agree with the tabulated
results of Ref. [77] to at least 5 significant digits and can be
compared with the asymptotic formula, found by the same
authors, for the coefficients am at order m [77]:

jamðnmax ¼ ∞Þj ∼
ffiffiffiffiffi
6

π3

r
3mΓðmþ 1=2Þ: ð42Þ

On the other hand, from the location of the singularities for
nmax ¼ 4 where the argument of the square root vanishes,
we expect

jamðnmax ¼ 4Þj ∝ ð
ffiffiffiffiffiffiffiffiffiffi
27=2

p
Þm; ð43Þ

which implies an approximate slope of logð ffiffiffiffiffiffiffiffiffiffi
27=2

p Þ ≃
1.30134 for the logarithm of the coefficients observed in
Fig. 1. The departure from the linear behavior comes from
the imaginary part of the singularities and 1=m corrections.
As the series is calculated up to large order in λ, these
corrections average out or disappear. For instance, by fitting
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the coefficients between order 50 and 100, we obtain a
slope 1.28493, while using orders between 100 and 200, we
obtain a slope 1.29227. The coefficients for larger nmax
have larger slopes which will be discussed in Sec. IV B.
There are simpler ways to estimate the radius of

convergence and the corresponding complex singularities.
The first one is to study the second derivative of the energy
with respect to λ on the real axis which has a peak at the real
part of the complex singularity and a width at half
maximum W1=2 which is related to the imaginary part of
the singular value λs by the simple relation

W1=2 ¼
�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22=3 − 1

p �
Imλs; ð44Þ

as can be shown from the second derivative of the exact
expression in Eq. (36). Alternatively, the width is encoded
into the magnitude of the fourth derivative, so that we can
instead use

Imλs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−3

E00ðReλsÞ
Eð4ÞðReλsÞ

s
; ð45Þ

which also follows exactly from Eq. (36).
Another method is to directly search for degenerate

eigenvalues of H in the complex λ plane. This is accom-
plished by calculating the eigenvalues zi ofH for a fine grid
in the complex λ plane, and displaying the minimum of
jzi − zjj for every possible pairs i, j of roots in a relevant
region. The results are illustrated in Fig. 2.
From the above discussion, we expect that it is possible

to construct converging weak series for the evolution
operator when jλj < ffiffiffiffiffiffiffiffiffiffi

2=27
p

≃ 0.272166. As an illustration
of convergence, we have calculated the probability for an

initial state j00i to transition to j20i after a time t:

Pð0 → 2; tÞ≡ jh20jÛðtÞj00ij2 ð46Þ

at four successive orders of λ ¼ 0.1 using the projectors
described in Eq. (30). The details of the calculation are
provided in Appendix A. The numerical results are shown
in Fig. 3. The results at fourth order are difficult to
distinguish from the accurate numerical values obtained
from the exact result.
The Dyson series can be calculated independently

and checked by expanding the evolution operator calcu-
lated above using Eq. (29). For the 0 to 2 transition,

FIG. 2. Minimum of jzi − zjj for every possible pairs i, j of
even H eigenvalues in the complex λ plane for nmax ¼ 4. The
zeros appear near the values −0.222� i0.157 expected from the
exact answer from Eq. (38). The dark circle around the origin
represents the boundary of the disk of convergence of the
ground state.

FIG. 1. Logarithms of the absolute value of the perturbative
coefficients for the ground state of the anharmonic oscillator for
nmax ¼ 4 (circles), 8 (triangles), 16 (diamonds), and 32 (squares).
The solid line is the Bender-Wu formula Eq. (42). The dashed line
has a slope logð ffiffiffiffiffiffiffiffiffiffi

27=2
p Þ.

FIG. 3. Four successive approximations of Pð0 → 2; tÞ for
λ ¼ 0.1.
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the result up to order 2 is

h20jÛðtÞj00i ¼ −
3iλeit sinðtÞffiffiffi

2
p þ 9λ2ðie2itt− 9itþ 4e2it − 4Þ

8
ffiffiffi
2

p

þOðλ3Þ: ð47Þ

The expression contains polynomials in t that for large
enough t become poor approximations of the exponentials.
This is illustrated in Fig. 4 at order two. In contrast with the
approximate solutions based on Eq. (29) in Fig. 3, the
approximate energies are inserted in e−iEnt and the phase
factors remain periodic and bounded for any t.
Assuming that for λ small enough, all the (time-

independent) perturbed energies and matrix elements of
the perturbed energy projector converge, does Dyson’s
series converge for arbitrary t? Given that we only have a
finite number of states, this amounts to ask: if λ is small

enough and En ¼
P∞

m¼0 λ
mEðmÞ

n converges to the correct
energy, does e−itEn ≃

Pmmax
m¼0 λ

mbmðtÞ converge to the cor-
rect phase for any t? The analyticity of an energy
eigenvalue implies the analyticity of its exponential, so
the operator series will converge for the smallest radius of
convergence of its eigenvalues. Empirically, for nmax ¼ 4,
λ ¼ 0.1, there is an apparent convergence for t at least up to
100. For λ ¼ 0.3 > 0.272…, the series clearly diverges for
any t. Finding rigorous bounds on Dyson series directly
from its series expansion seems to be nontrivial [78].
It is also possible to set up a strong coupling expansion

for the problems discussed above. Using ϕ̂4 as the
unperturbed Hamiltonian we can define

Ĥstr ¼ ϕ̂4 þ λ̃Ĥhar ¼ Ĥanh=λ; ð48Þ

with λ̃ ¼ 1=λ. It is clear that for a finite and nonzero λ, a
solution zðλÞ of the characteristic equation for Ĥanh gives a

solution z̃ðλ̃Þ ¼ zðλÞ=λ of the characteristic equation
for Ĥstr.
Again, nmax ¼ 4 makes everything simple. Looking at

Eq. (36), for example, we see that by simply pulling a factor
of λ out in front of the parentheses, we get immediately

λEstr
0;2 ¼

λ

4

�
15þ 6λ−1 ∓ 2

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27þ 12λ−1 þ 2λ−2

p �
:

ð49Þ

Setting the polynomial under the root to zero and solving
for λ−1 immediately gives precisely the inverse of our
previous result for λ.
This result can also be understood geometrically. The

radius of convergence is just the distance between the
origin point of the expansion and the exceptional point
nearest to it. Weak coupling picks 0 as its origin; strong
coupling picks ∞. But at nmax ¼ 4, there are only two
exceptional points in the first place, which are equidistant
from the origin; so starting at zero or complex infinity, the
boundary line ends up in the same place.

B. nmax = 8; 16, and 32

All the numerical methods developed for nmax ¼ 4 can
be used for larger values of nmax. For instance, the
logarithms of the absolute values of the coefficients also
show a linear behavior. The finite radii of convergence can
be estimated using a linear fit of the asymptotic behavior.
This is illustrated for the even sector for nmax ¼ 8 in Fig. 5.
For a linear fit aþ bmwithm the order, the estimate for the
radius of convergence is expð−bÞ. The estimates based on

FIG. 4. Comparison of Pð0 → 2; tÞ for λ ¼ 0.1 calculated at
order 2 using Eq. (29) and Dyson series.

FIG. 5. Logarithms of the absolute value of the perturbative
coefficients for the ground state (circles), second excited state
(squares), and fourth exited state (diamonds) of the anharmonic
oscillator for nmax ¼ 8. The straight lines represent linear fits of
the last hundred coefficients. The estimates of the radius of
convergence based on the series, given in the second column of
Table I, are the inverse of the exponentials of these slopes.
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linear fits between 100 and 200 are given in Table I. The
estimate for the radius for E6 is the same as for E4.
It is also possible to get reasonable estimates of the

radius of convergence by studying the second derivative of
the energy. As there are now several singularities, the
relation between the width-at-half-max of the peak of
the second derivative and the imaginary component of the
radius of convergence no longer exactly obeys Eq. (44),
which was derived in the simpler context of nmax ¼ 4
where the spectrum can be obtained in closed form by
solving quadratic equations. However, Eq. (44) continues
to provide good estimates and a simple picture that the
singularities come in pairs: 0–2, 2–4, and 4–6, and the pairs
share extrema of ∂2E=∂λ2. This is illustrated in Fig. 6. As
we consider higher energy levels, the curve broadens and
the imaginary component becomes important. For the
degeneracy between E4 and E6, the direct search in
Fig. 7 shows that the estimate 0.033 of the radius of
convergence from the series is accurate. When the peak is
narrow, accurate estimates can be obtained from Eq. (44).
For instance, for the degeneracy between E0 and E2,
Eq. (44) provides a value of −0.0648 for the real part
and 0.00399 for the imaginary part which are in reasonable
agreement with the more accurate values −0.06473 and
0.00391 obtained by direct search. When the energy level
increases, the second derivative curve broadens and

estimating the width by fitting becomes less accurate.
On the other hand, Eq. (45) remains local and is more
reliable. The results are provided in Table I.
The direct search for degeneracies in the complex λ plane

provides a more holistic view of the position of the
singularities [76]. Figure 7 shows that within a circle of
radius 0.033, the expansions for all the energy levels should
converge. Furthermore, everything we have done in the
even sector can be repeated for the odd sector. The results
are shown in Fig. 8 and obey the same qualitative pattern.

TABLE I. Estimates of the radius of convergence for E0, E2,
and E4 using the perturbative series and Eqs. (44) and (45) for
nmax ¼ 8.

Level n
jλsj

(series)
jλsj

[Equation (45)]
jλsj

[Equation (44)]

0 0.0651 0.0649 0.0649
2 0.0454 0.0456 0.0443
4 0.0329 0.0330 0.0237

FIG. 6. Second derivatives of E0, E2, E4, and E6 with respect to
λ on the real axis for nmax ¼ 8. The vertical lines are located at the
minima and the horizontal lines represent the width at half
maximum.

FIG. 7. Minimum of jzi − zjj for every possible pair i, j of even
H eigenvalues for nmax ¼ 8 in the complex λ plane. The dark
circle around the origin represents the circle of convergence of the
fourth and sixth excited states and has radius 0.033.

FIG. 8. Minimum of jzi − zjj for every possible pair i, j of odd
H eigenvalues for nmax ¼ 8 in the complex λ plane. The dark
circle around the origin represents the circle of convergence of the
fifth and seventh excited states and has an approximate radius
of 0.032.
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The direct search is also possible for nmax ¼ 16 and 32.
The results are shown in Fig. 9. Additional layers appear
but the patterns closest to the origin can be recognized. For
nmax ¼ 16, the fits of perturbative coefficients between 50
and 100 provide estimates of the radii of convergence given
in Table II.
They approximately correspond to the seven pairs of

complex conjugate singularities observed in Fig. 9. Note
that for the ground state, the imaginary parts are very small
(�0.000015) and cannot be resolved in the figure. For
nmax ¼ 32, the fits of perturbative coefficients between 50
and 100 provide estimates of the radii of convergence
which are between 0.0103 for the ground state and 0.00132
for the 28th and 30th excited states which also seem

consistent with Fig. 9. Note that as nmax increases, the
radius of convergence of the perturbative series decreases
approximately as C=nmax for some constant C. This
observation can be justified under the assumption that
there is a rather sudden transition at negative λ when
the harmonic and anharmonic terms have the same magni-
tude but opposite signs for the largest eigenvalue of the
field xmax (which scales like n1=2max). In other words, the
transition occurs when jλjx4max ≃ ð1=2Þx2max, and we
expect jλcj ≃ 1=ð2x2maxÞ ∝ 1=nmax.
Almost everything done for the weak coupling expan-

sion can be done for the strong coupling expansion. The
eigenstates of the unperturbed Hamiltonian are the field
eigenstates discussed in Sec. II C. For nmax even, all the
unperturbed eigenstates of ϕ̂4 are doubly degenerate;
however, if we project into the independent odd and even
sectors of the Hilbert space, the degeneracy disappears in
each sector. The eigenvalues of the unperturbed
Hamiltonian are the fourth power of the zeros of the
Hermite polynomial of degree nmax and they need to be
calculated numerically. The recursive calculation of the
perturbative coefficients cannot efficiently be done by exact
arithmetic (due to the presence of products of long
summations) and one needs to control the error propagation
by using an appropriate working precision. Linear fits can
be performed, and the second derivatives can be calculated
as before.
Again the main results can be summarized using the

minimum of jz̃i − z̃jj to identify the singular points and
estimate the radii of convergence. The results near λ̃ ¼ 0 for
nmax ¼ 8 are shown below in Fig. 10. They are qualitatively
similar to the results at weak coupling. If we extend the
range, we find the singular points already identified at weak
coupling. The quantitative correspondence is discussed in
Appendix B. Note also that the questions of singularities
can also be investigated by purely algebraic methods [79].
This is discussed in Appendix C.
The conclusion of this section is that in the three cases

considered, there is a disk in the complex λ plane where all
the perturbative series converge. In addition, analytical

TABLE II. Estimates of the radii of convergence for E0 to E14 at
nmax ¼ 16 using the perturbative series.

Level n jλsj (series)
0 0.0245
2 0.0205
4 0.0191
6 0.0144
8 0.0113
10 0.00864
12 0.00621
14 0.00621

FIG. 9. Minimum of jzi − zjj for every possible pair i, j of even
H eigenvalues for nmax ¼ 16 (top) and nmax ¼ 32 (bottom) in the
complex λ plane. The dark circle around the origin represents the
circle of convergence of the 12th and 14th excited states for
nmax ¼ 16 and the radius is approximately 0.0060. For
nmax ¼ 32, the dark circle represents the circle of convergence
of the 28th and 30th excited states and the radius is approximately
0.0013.
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continuations in the positive real direction seempossible. As
shown in Fig. 12 fornmax ¼ 8 and 32, the singularities do not
seem to pinch the positive real axis and it seems possible to
cover the entire positive real axis by analytic continuation.
TheMollweide projection [80]where the positive real axis is
mapped into the central vertical line was used.
It seems plausible that for the single site Hamiltonian in

general there exists a finite radius of convergence for the
weak and strong coupling expansions and no singular
points pinching the positive real axis. This suggests that
analytic continuation could be carried out between 0 and
þ∞ along the positive real axis (or between the north and
south poles on the Riemann sphere) at every even nmax,
perhaps allowing a meaningful limit to be taken as
nmax → ∞. A possible approach for such a continuation
is depicted in Fig. 11, using the singularity structure at
n ¼ 32 as an example.

V. ϕ4 IN 1 + 1 DIMENSIONS

In this section, we consider Ns coupled oscillators with
a given nmax in one spatial dimension. The dimension of
the Hilbert space is nNs

max and the symbolic calculation of
the determinant appearing in the characteristic equation
becomes rapidly impossible as we increase Ns. In addi-
tion, when the hopping term κ introduced in Eq. (1), which
couples neighboring fields, is set to zero, the spectrum
becomes degenerate and the method to identify singular-
ities needs to be reconsidered. Nevertheless, the calcu-
lation of the second derivative of the energy levels on the
real λ axis seems to remain a robust way to estimate the
radius of convergence, even at higher energy levels.
Though the size of the operator H grows exponentially
(n2Ns

max), the actual number of nonzero matrix elements
grows at a significantly slower rate [ðn1.3Ns

max Þ], making this
a problem well suited to the use of sparse GPU algorithms.
In particular, if only the few smallest eigenvalues are
desired, algorithms such as the thick-restart Lanczos
method [81] can be used to extract them without diagonal-
izing the entire matrix.
For small κ, the minimum appears at values close to the

single site value as illustrated in Fig. 13. As we increase κ,
the location of the minimum increases and the width
decreases as shown for κ ¼ 0.5. Estimates of the real

FIG. 10. Minimum of jz̃i − z̃jj for every possible pair i, j of
even Hstr eigenvalues for nmax ¼ 8 in the complex 1=λ plane.

FIG. 11. Minimum of jzi − zjj for every possible pair i, j of
even H eigenvalues for nmax ¼ 32 in the complex λ plane. The
dark circle around the origin represents the circle of convergence
of the 28th and 30th excited states and the radius is approximately
0.0013. The bright circles with the same radius illustrate a
possible route for analytic continuation.

FIG. 12. Mollweide projections of contour plots of
mini;j jzi − zjj on the Riemann sphere for n ¼ 8 (top) and
n ¼ 32 (bottom). The left and right edges of each ellipsoidal
outline are identified and represent the negative real axis, while
the positive real axis runs—apparently without obstruction—
down the middle.
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and imaginary part of the singularity using the
method developed for the single site are shown in
Fig. 14. The imaginary part seems to decreases mono-
tonically as κ increases. If in the large volume limit, the
imaginary becomes zero for a set of values of κ, this
would signal a phase transition which is expected to be of
the Ising universality class. Nevertheless, the perturbative
series could have a finite radius of convergence on
both sides.

VI. UNIVERSAL QUANTUM COMPUTING

In this section, we discuss the practical steps to imple-
ment the real-time evolution described above with a
universal quantum computer. From recent work on this
question [4,6,11,12,23,26], it is clear that for an ideal
universal quantum computer with many qubits, the time

evolution can be calculated efficiently. In the following, we
focus on practical implementations with currently available
NISQ devices and the presentation is focused on one site
with nmax ¼ 4 and nq ¼ 2, but this can be extended easily
for larger systems.

A. The quantum circuit

Following [12], we can express the Hamiltonian by using
a representation of the operators in a tensor product basis
where elements of the Pauli group act on each of the qubits.
The Pauli group f⊗nq

i σai j∀ i; ai ∈ ½0; 3�g of nq-fold
tensor products of Pauli matrices forms an orthonormal
basis for Hermitian matrices under the inner product
defined by hA;Bi ¼ trðB†AÞ. This permits a Trotter
reduction of a unitary 2nq × 2nq matrix U written in the
form eiG by reducing the Hermitian matrix G into a sum of
Pauli gates and then using the Suzuki-Trotter expansion
to write the resulting exponential into a power of
products of coupled rotation gates. For example, Ĥanh

FIG. 13. Second derivatives of E0 with respect to λ on the real
axis for nmax ¼ 4 and Ns ¼ 4, for κ ¼ 0.1 (top) and κ ¼ 0.5
(bottom). The vertical line is located at the minima and the
horizontal line represents the width at mid depth. PBC means that
energies were calculated under the assumption of periodic
boundary conditions on the spatial lattice.

FIG. 14. Estimates of the real and imaginary part of the
singularity for Ns ¼ 4, nmax ¼ 4, and different values of κ.
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for nmax ¼ 4 given in Eq. (34) can be broken down into
the sum

Ĥanh ¼
�
15

4
λþ 2

�
1 ⊗ 1þ 3λ

4
ð

ffiffiffi
2

p
þ

ffiffiffi
6

p
Þσx ⊗ 1

−
�
3λ

2
þ 1

�
σz ⊗ 1 −

1

2
1 ⊗ σz −

3λ

2
σz ⊗ σz

þ 3λ

4
ð

ffiffiffi
2

p
−

ffiffiffi
6

p
Þσx ⊗ σz: ð50Þ

Upon exponentiation via the simplest Trotter approxima-
tion, it can be compiled into the circuit depicted in Fig. 15.
Examples of related circuits with nq ≥ 3 are depicted
in Ref. [12].
Since the number of basis operators increases exponen-

tially (as 4nq , with nq ¼ lg nmax the number of qubits), it is
reasonable to ask if nnz, the number of nonzero components
in the expansion of Ĥanh into Pauli gates does as well. The
numerical results—neglecting the identity term because it
exponentiates into an unobservable global phase—are
shown in Table III. Figure 16 indicates that nnz grows
slower than 4nq .
We may then estimate Nϕ4—the compiled gate depth, the

largest number of elementary gates actually implemented on
hardware on any one qubit by the circuit—by noting that the

coupled phase gate on nq qubits σ
⊗nq
z requires nq − 1 pairs

of CNOT gates, plus a single-qubit phase gate. Turning such
a gate into any other rotation gate with the same arity—that
operates on the same number of qubits—requires an addi-
tional pair of basis-change gates per qubit, all of which
however can be done in parallel as long as W ¼ ffiffiffiffi

X
p

is
implemented on hardware. Thus, the gate depth of a single
coupled-rotation gate is at most 2nq þ 1, and

Nϕ4 ≤ nnzð2nq þ 1Þ: ð51Þ

(We indicate that this is a pessimistic upper bound by the
notation ⌈Nϕ4⌉, for example in Table III.)

This is estimated using a pessimistic assumption of
fundamental complexity, where the average gate depth
per logical coupled-rotation gate cannot be meaningfully
reduced below 2nq þ 1. However, as demonstrated in
Fig. 15 (which has a gate depth of 8, compared to an
unoptimized depth of 5 × 5 ¼ 25), dramatic savings in gate
depth are often possible as a result of creative reordering
and optimization, so the true gate depth is likely to differ
significantly from the upper bound in practice. In any case
this only brings a linear factor in nq compared to nnz.

B. Circuit execution

Now that we have a concrete circuit to try, we can
perform time evolution simulations. We will first ignore the
noise from the circuit itself, and consider only the error due
to using the Trotterized circuit as an approximation to the
true exponential operator. Since we are simulating the
smallest meaningful model at nmax ¼ 4, we imagine an
equally minimal computer, with two communicating
qubits, a universal operation set (

ffiffiffiffi
X

p
, H, CNOT, and

RZ) and zero gate noise. A plot of the resulting simulations
at various Trotter step sizes can be found in Fig. 17. A time
step δt of 0.1 gives a graph very close to the exact result, but
at the large cost of 80 gate depth per simulation time unit; if
moderate errors (of up to 10% in magnitude) are accept-
able, that number can be halved, though it is still rather high
in the context of existing computers. Larger steps than
depicted are largely only useful for estimating frequency, as

FIG. 15. One Trotter step in the evaluation of Ĥanh at ω ¼ 1 and nmax ¼ 4 (two qubits). The Trotter step size is given by δ, and the
following abbreviations are used for brevity: α� ¼ ffiffiffi

2
p � ffiffiffi

6
p

, θ ¼ −3λ
2
.

TABLE III. Resources required to implement Ĥanh at nq from 2
to 8 (nmax from 4 to 128). ⌈Nϕ4⌉ provides a pessimistic upper

bound on the number of gates required to implement Ĥanh on a
universal quantum computer.

nq 2 3 4 5 6 7 8
nnz 5 19 55 143 347 831 1920
⌈Nϕ4⌉ 25 133 495 1573 4511 12465 32640 FIG. 16. Plot of ln nnz, the logarithm of the number of nonzero

components in the expansion of Ĥanh into Pauli gates.
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they quickly become unstable. Note that the Trotter errors
in Fig. 17 can be compared with the perturbative errors in
Fig. 3 and that approximate correspondences can be drawn
in that they both become larger when λ increases.
We have started experimenting with IBMQ Qiskit

simulators and public devices. For δt ¼ 0.2, it is possible
to carry simulations for eight steps with reasonable accu-
racy assuming a noise model corresponding to a Falcon 8.
When run on a real machine—specifically, IBM Manila, a
Falcon r5.11L machine featuring a simple chain of five
qubits—the number of steps corresponding to reasonable
accuracy appears to be much shorter. After only five steps,
more than a sixth (17.5%) of trials starting in the ground
state ended up in parity-forbidden odd states.

VII. CONCLUSIONS

In conclusion, we have provided numerical evidence that
the process of digitization of lattice λϕ4 theories results in
finite nonzero radius of convergence for weak and strong

coupling expansions. For quantum mechanics (single site
anharmonic oscillator), analytical continuation appears to
be possible on the positive real axis. For field theory in
1þ 1 dimensions, it seems plausible that singularities
pinch the positive real axis and that separate expansions
converge in the two phases. The radius of convergence
shrinks as nmax increases and the results described here
suggest that one should first focus on nq ¼ 2 and 3. The
Trotter and perturbative errors both increase with λ and with
the current NISQ universal computers, the two approaches
(perturbation theory and universal quantum computing)
seem quite complementary.
So far we have explored small systems with up to eight

qubits. Going beyond this scale and in particular exploring
larger dimensions would require optimizations. For inter-
mediate couplings long perturbative series are needed and
their computational cost appears to grow exponentially
with the order. Unless efficient sampling methods [82] can
be developed for the perturbative series, it seems that there
is a quantum advantage for large systems at intermediate
couplings. We are planning to pursue the two “competing”
directions and compare the efficiencies with optimized
methods. We also plan to use Gaussian quadrature methods
and the corresponding algebraic constructions for scalar
models with Oð2Þ symmetry.
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APPENDIX A: PERTURBATIVE CONSTRUCTION
OF PROJECTORS

The matrix elements of P0 ≡ j0ih0j in the unperturbed
basis for nmax ¼ 4 are

0
BBBBB@

1
64
ð−1701λ4 þ 432λ3 − 72λ2 þ 64Þ 0 3λ

8
ffiffi
2

p ð27λ3 − 27λ2 þ 12λ − 4Þ 0

0 0 0 0
3λ
8
ffiffi
2

p ð27λ3 − 27λ2 þ 12λ − 4Þ 0 9
64
λ2ð189λ2 − 48λþ 8Þ 0

0 0 0 0

1
CCCCCA ðA1Þ

and those of P2 ≡ j2ih2j

FIG. 17. Time evolution of the unperturbed second excited state
when the system begins in the unperturbed ground state. The
dashed line is calculated exactly; the other three lines, top to
bottom, are using the quantum circuit from Fig. 15 with Trotter
step δt ¼ 0.2; 0.15; 0.1, as calculated on an ideal quantum
computer.
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0
BBBBB@

9
64
λ2ð189λ2 − 48λþ 8Þ 0

3λð−27λ3þ27λ2−12λþ4Þ
8
ffiffi
2

p 0

0 0 0 0
3λð−27λ3þ27λ2−12λþ4Þ

8
ffiffi
2

p 0 1
64
ð−1701λ4 þ 432λ3 − 72λ2 þ 64Þ 0

0 0 0 0

1
CCCCCA: ðA2Þ

These imply

E0 ¼ −
567λ4

32
þ 27λ3

4
−
9λ2

4
þ 3λ

4
þ 1

2
ðA3Þ

and

E2 ¼
567λ4

32
−
27λ3

4
þ 9λ2

4
þ 27λ

4
þ 5

2
ðA4Þ

The successive approximations for the four elements
relevant for the calculation of h20jÛðtÞj00i are given in
Table IV.

APPENDIX B: FROM STRONG TO WEAK
COUPLING

The correspondence between the singularities in the
strong vs weak coupling limit can be made precise. For
instance the strong coupling singularity at approximately
−8.8þ i29.45 shown in Fig. 18 becomes −0.0093 −
i0.032 seen in Fig. 19 after the z → 1=z map.

APPENDIX C: ALGEBRAIC EQUATIONS FOR
THE SINGULARITIES

Double roots of the characteristic equation for z, when
the coupling λ is extended to the complex plane, can be
found by solving simultaneously the characteristic equation
fðz; λÞ ¼ 0 and its derivative with respect to z, f0ðz; λÞ ¼ 0
for z. It can be shown [79] that this will yield a determinant
equation for λ, that we now discuss. We assume that nmax is
even and that the characteristic polynomial for a
given parity sector has a degree nmax=2. In order to
have a common root for the two equations we need to
show that there is some linear relation between the two
polynomials:

rðzÞfðz; λÞ þ sðzÞf0ðz; λÞ ¼ 0; ðC1Þ

TABLE IV. Successive approximations up to order 4.

Order 0 1 2 3 4 ∞

E0 0.50000 0.575 0.5525 0.55925 0.557478 0.557806
E2 2.5000 3.175 3.1975 3.19075 3.19252 3.19219
h20jP0j00i 0 −0.106066 −0.0742462 −0.0814057 −0.0806897 −0.0805242
h20jP2j00i 0 0.106066 0.0742462 0.0814057 0.0806897 0.0805242

FIG. 18. Minimum of jz̃i − z̃jj for every possible pair i, j of
even Hstr eigenvalues for nmax ¼ 8 in the complex 1=λ plane.
(Top: larger scale; bottom: focus on singularity farther away from
origin.).
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with rðzÞ and sðzÞ of degree less or equal than nmax=2 − 2
and nmax=2 − 1, respectively. In other words, since f and f0
have degree nmax=2 and nmax=2 − 1 in z, respectively, and
have one common root, f0=f can be written as the ratio of
polynomials of degrees nmax=2 − 2 and nmax=2 − 1, respec-
tively. These degrees can be reduced if additional common
roots are present. We now have to show that at least one of
the following list L ¼ znmax=2−2f;…; f; znmax=2−1f0;…; f0 is

a linear combination of the others. This condition can be
written as a determinant [79].
For instance, in the even sector for nmax ¼ 4, using

Eq. (35), we have

fðz; λÞ ¼ 16z2 þ ð−120λ − 48Þzþ 9λ2 þ 84λþ 20; ðC2Þ

and

f0ðz; λÞ ¼ 32z − 120λ − 48: ðC3Þ

The linear dependence of one of the elements of L can be
expressed as a discriminant condition detðDÞ ¼ 0 for [79]

D ¼

0
BB@

9λ2 þ 84λþ 20 −120λ − 48 16

−120λ − 48 32 0

0 −120λ − 48 32

1
CCA: ðC4Þ

This is now a polynomial equation in λ and the singularity
condition reads

detðDÞ ¼ −8192ð27λ2 þ 12λþ 2Þ ¼ 0; ðC5Þ

in agreement with the discriminant of the quadratic
equation (36). It is possible to write similar equations
for nmax ¼ 8 and 16. This results in lengthy expressions of
order 12 and 56 in λ, respectively, which appear to be
numerically compatible with the direct search method. For
nmax ¼ 8, we have

fðz; λÞ ¼ 256z4 þ ð−23296λ − 3584Þz3 þ ð332640λ2 þ 201600λþ 16256Þz2
þ ð−529200λ3 − 1468320λ2 − 448832λ − 25984Þz
þ 11025λ4 þ 629160λ3 þ 810936λ2 þ 186144λþ 9360

and

detðDÞ ¼ 1152921504606846976½828875955639375λ12 þ 2446821666009000λ11

þ 4112778331991700λ10 þ 2315977875333360λ9 þ 729625498514388λ8

þ 156815960599872λ7 þ 23876641218976λ6 þ 2408867895168λ5

þ 157100611648λ4 þ 6739041792λ3 þ 194833408λ2 þ 3698688λþ 36864�:

FIG. 19. Minimum of jzi − zjj for every possible pair i, j of
even H eigenvalues for nmax ¼ 8 in the complex λ plane. The
vertical line is located at −0.0093 and the horizontal line at 0.032.
The dark circle around the origin represents the circle of
convergence of the fourth and sixth excited state and has radius
0.032.
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