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We present a study of lattice-QCD methods to determine the relevant hadronic form factors for radiative-
leptonic decays of pseudoscalar mesons. We provide numerical results for D} — #*vy. Our calculation is
performed using a domain-wall action for all quark flavors and on a single RBC/UKQCD lattice gauge-
field ensemble. The first part of the study is how to best control two sources of systematic error inherent in
the calculation, specifically the unwanted excited states created by the meson interpolating field and
unwanted exponentials in the sum over intermediate states. Using a 3D sequential propagator allows for
better control over unwanted exponentials from intermediate states, while using a 4D sequential propagator
allows for better control over excited states. We perform individual analyses of the 3D and 4D methods, as
well as a combined analysis using both methods, and find that the 3D sequential propagator offers good
control over both sources of systematic uncertainties for the smallest number of propagator solves. From
there, we further improve the use of a 3D sequential propagator by employing an infinite-volume
approximation method, which allows us to calculate the relevant form factors over the entire allowed range
of photon energies. We then study improvements gained by performing the calculation using a different
three-point function, using ratios of three-point functions, averaging over positive and negative photon
momentum, and using an improved method for extracting the structure-dependent part of the axial form
factor. The optimal combination of methods yields results for the D} — # vy structure-dependent vector
and axial form factors in the entire kinematic range with statistical plus fitting uncertainties of order 5%,

using 25 gauge configurations with 64 samples per configuration.
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I. INTRODUCTION

In this paper, we develop and test lattice-QCD methods
for computing the hadronic matrix elements describing
radiative-leptonic decays of pseudoscalar mesons, i.e.,
H — ¢~y or H— £7¢"y. Such transitions are of interest
both for soft photons and for hard photons, as discussed in
the following.

Knowledge of the radiative-leptonic decay rate in
the region of small (soft) photon energies is required
to include O(a.,,) electromagnetic corrections to purely
leptonic decays, needed for subpercent precision deter-
minations of Cabibbo-Kobayashi-Maskawa (CKM)
matrix elements. According to the well-known Bloch-
Nordsieck mechanism [1], the integral of the radiative
decay rate in the phase space region corresponding to
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soft photons must be added to the decay rate with
no real photons in the final states (the so-called virtual
electromagnetic contribution to the decay rate, which
has recently been computed on the lattice [2,3]) in order
to cancel infrared divergent contributions appearing
in unphysical quantities at intermediate stages of the
calculations. While for 7~ —u~70,(y) and K~ —u"0,(y),
at the current level of precision it is sufficient to evaluate
the real soft-photon contributions in an effective theory in
which the meson is treated as a pointlike particle,
structure-dependent contributions to the real photon
emission are significant for 7~ — ¢77,(y) and K~ —
e~ 0.(y) [4].

In the region of hard (experimentally detectable) photon
energies, radiative-leptonic decays represent important
probes of the internal structure of the mesons and also
provide sensitive probes of physics beyond the Standard
Model inducing nonstandard currents and/or nonuniversal
corrections to the lepton couplings. For example, the
rare decays BY — #*¢7y and B — £*¢ "y are sensitive
to all operators in the b — s£7¢~ and b — df¢~
effective Hamiltonians, respectively, unlike their purely
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leptonic counterparts [5—11]. There are presently hints of
lepton-flavor-universal new physics contributing to the
Wilson coefficient C5*“¢ [12], to which By — utu~ is
insensitive but which can be probed in a novel way with
B, — u*p~y. In addition, because the hard photon in the
final state removes the helicity suppression, B?S> -y

decays can also be used to test electron-vs-muon lepton
universality [13], which would not be possible with purely
leptonic B(()S) — £T¢~ decays. Radiative-leptonic B~ —
¢~ vy decays at high photon energy can provide novel
determinations of |V, | using light leptons and are also well
suited to constrain the first inverse moment of the B-meson
light-cone distribution amplitude, an important input in
QCD-factorization predictions for nonleptonic B decays
that is presently poorly determined [14-23].

The experimental status for radiative-leptonic decays
(with detected photons of energy above some specified
lower limit) can be summarized as follows. For the kaon
and pion decays K~ — e vy, K- —» u vy, n~ — e Uy, and
n~ — u~ vy, there are already precise measurements of the
differential branching fractions [4,24-29]. For the
charmed-meson radiative-leptonic decays Dt — etvy
and D] —eTvy, the BESIII Collaboration has reported

upper limits on the branching fractions with E§0) >10MeV
of 3.0 x 107 and 1.3 x 1074, respectively [30,31]. In the
bottom sector, the Belle Collaboration reported an upper

limit B(B~ — ¢ vy, E;O) > 1 GeV) < 3.0 x 107, close to
the Standard-Model expectation [32]. It is expected that
Belle II will eventually measure the B~ — ¢~ vy branching
fractions with 3.6% statistical uncertainty [33]. For the
flavor-changing neutral current decays B — £t¢7y,
BABAR reported upper limits for the branching fractions
of order 10~7 in Ref. [34]. More recently, LHCb obtained the
result B(BY— utpy)<2.0x107° for m,,>4.9GeV [35].

In the Standard Model, the hadronic contributions to the
H — ¢~y decay rate at leading order in a,, are the decay
constant f and two form factors F'y and F4 gp, which are
functions of the photon energy in the meson rest frame and
are the focus of this work. The form factors parametrize, in
momentum space, a meson-to-vacuum QCD matrix
element of two currents at different spacetime points: the
flavor-changing quark weak current and the quark electro-
magnetic current.

For low photon energies, the form factors can be
studied using chiral perturbation theory (ChPT), which
has been done for light-meson radiative-leptonic decays in
Refs. [36-40]. Although these ChPT calculations represent
a systematic effective-field-theory approach to the problem,
the low-energy constants entering in the final results at
O(p®) have been estimated in phenomenological analyses
relying in part on model-dependent assumptions. Heavy-
meson radiative-leptonic decays have been studied theo-
retically using quark models [41-50], QCD factorization,
soft-collinear effective theory, perturbative QCD [9,14-23],

light-cone sum rules [51-56], heavy-hadron ChPT [57],
and dispersion relations [58,59]. These approaches again
have various limitations, being either model dependent,
making truncations in the 1/my and a, expansions, or
requiring a large number of external inputs.

All of these limitations can be overcome, at least in
principle, using lattice gauge theory, a nonperturbative
formulation of QCD that does not introduce new param-
eters beyond those of QCD itself and whose precision is
limited only by the available computing resources.
Numerical lattice-QCD calculations based on the path-
integral formulation are performed in Euclidean spacetime,
which may pose challenges for time-dependent matrix
elements. As we showed in Ref. [60] and discuss again
here (and as was also shown independently in Ref. [61]),
for on-shell photons, the hadronic tensor describing radi-
ative-leptonic decays can be obtained directly from a large-
Euclidean-time limit of a Euclidean three-point function.
Nevertheless, in practice, it is necessary to account for the
subleading time dependence when analyzing the simulation
results [62].

While the present work was in progress, an independent
lattice study of radiative-leptonic decays was published in
Ref. [61]. That work used the twisted-mass formulation of
lattice fermions and considered decays of charged pions,
kaons, and D and D, mesons. For the charmed mesons, the
energy of the final-state emitted photon E}(,O) was less than
about 400 MeV in the rest frame of the decaying hadron.
For the pion and kaon radiative-leptonic decays, the results
of Ref. [61] cover the full kinematic range and were
compared to experimental data in Ref. [63]. Significant
deviations between theory and experiment were found, in
particular for K — pvy at large photon energy.

Here we extend our preliminary work [60,62] and present
adetailed study of nonperturbative lattice methods to extract
the structure-dependent form factors contributing to the
amplitudes of radiative three-body decays H — ¢~ vy. For
that purpose, the relevant nonlocal matrix elements are
calculated using two different methods, which we call the
“3D method” and the “4D method,” in order to control the
two major sources of systematic errors related to unwanted
exponentials in the sum over intermediate states and to
unwanted excited states created by the meson interpolating
field (Ref. [61] used only a 4D method and use constant fits
to the data where it had plateaued). To explore a wider range
of photon energies, we perform new calculations using an
infinite-volume approximation technique. We also imple-
ment more sophisticated fits to remove unwanted exponen-
tials. In this study we make use of one of the “24I” RBC/
UKQCD lattice gauge-field ensembles with 2 + 1 flavors of
domain-wall fermions and the Iwasaki gauge action [64],
with inverse lattice spacing a~! = 1.785(5) GeV and pion
mass m, = 340(1) MeV [65]. We consider the process
Dy — ¢~ vy, for which we provide, for the first time, model-
independent determinations of the form factors in the full
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kinematically allowed photon-energy range. This paper
focuses on a detailed investigation of lattice data-generation
and data-analysis methods. Computations at the physical
pion mass and for mesons other than the D, extrapolations
to the continuum limit, and phenomenological studies of the
decay observables are left for future work.

The structure of the remainder of this paper is as follows.
In Sec. I A we review the Minkowski-space hadronic
tensor and in Sec. IIB demonstrate how it is related
to a Euclidean-time three-point correlation function. We
describe the 3D and 4D methods in Sec. III. The details of
the lattice gauge-field ensemble and the lattice actions and
parameters are given in Sec. IV. Section V compares the
statistical precision of the vector form factor using noise
and point sources. The fit methods used to remove
unwanted exponentials from intermediate and excited
states are described in Sec. VI. We compare form factors
calculated from individual analyses of the 3D and 4D
methods, as well as a combined analysis using both
methods, in Sec. VII. The infinite-volume approximation
technique is reviewed in Sec. VIII A. In Sec. VIIIB we
show how the Minkowski hadronic tensor can be calculated
using a different three-point function with the electromag-
netic current instead of the weak current at the coordinate
origin. We explain a number of improvements for deter-
mining the relevant form factors and demonstrate the level
of improvement of each method in Sec. IX. The final
improved analysis procedure, as well as the final form-
factor results, are presented in Sec. X, and we conclude
in Sec. XI. The Appendix contains a discussion of
discretization effects using the lattice vector Ward-
Takahashi identity.

II. THEORETICAL SETUP

A. Decay amplitude and correlation functions
in Minkowski spacetime

In this work, we focus on charged-current decays H —
y¢U mediated by the V — A weak current in the Standard
Model, but most of our methods are also applicable to other
types of currents. Here, H is a pseudoscalar meson
composed of quarks ¢; and g,. Using the weak effective
Hamiltonian, and assuming that H is negatively charged for
concreteness, the amplitude for this process can be written
as [20,66]

AH™ —>y£D)

GrV S .
=——2 (" oyler (L=ys)v-qur,(1=rs)aa|H) (1)

V2

(the decay process for the positively charged pseudoscalar
meson is given by replacing £ — 7 and 7 — v). Note the
appearance of the CKM matrix element V, .. The electro-
magnetic component of the amplitude is computed to first
order in perturbation theory, resulting in

GpV 2
—L b (o )ipyr (1 =15)0 - Tuw(Pus Py)

V2
—ieQufy- ¢ (1-7ys)ul. (2)

A(H™ - ytD) =

where e is the elementary electric charge, ¢, is the photon
polarization vector, Q, is the charge of the lepton in units of
e, and fy is the H meson decay constant. The remaining
hadronic piece is contained in the hadronic tensor

T;w(pvay)
— i / dien / @7 O[T (J 100, 3 T2 (0)) | H (7).

(3)

where the electromagnetic current (EM) is given by
Jm = > p 0,qr,q, and the weak current is given by
J¥eak — g.v,(1 = v5)q,. The hadronic tensor can be written
as the sum 7, = T,;, + T, of the contributions from the
two different time orderings of the currents, corresponding
to the integrals over t.,, from —co to 0 and from 0 to +o0,
respectively. The form-factor decomposition for real pho-

tons, i.e., p; = 0, is given by [20]

Tm/:eﬂpmp;vﬂFV—'—i[_gyy(v'py)+vﬂ(py)y]FA
. v,
+1Q5”—DmeH+(p}/)y<py)pFl+(py)p7)vF27 (4)

(U'py)

where ph; = myv¥. To calculate the decay rate, T, is
contracted with the photon polarization vector €,. Because
€, - pYy = 0, the form factors F; and F, do not contribute to
the decay rate. For a given meson H, the axial form factor
F 4 and vector form factor Fy are functions of v - p,, which
is the photon energy seen in the rest frame of the

pseudoscalar meson, denoted by E](,O). We define a con-

venient dimensionless variable x, = 2EJ(,O) /my, which

takes values 0 < x, < 1 —m2/mj, for physically allowed

values of Eﬁo) .

Unlike the vector form factor, the axial form factor is
composed of two pieces, namely a structure-dependent
contribution and a pointlike contribution. The pointlike
contribution describes the part of the decay amplitude when
the photon does not probe the internal structure of H and is

givenby (—Q,fn/ EJ(,())). Note that this piece is divergent as
E;O) goes to zero. The structure-dependent part of the axial
form factor is finite and can be calculated by subtracting the
pointlike contribution, Fy sp = Fy — (—Qsfu/ Eﬁo)). Note
that in Ref. [61], F4 p is denoted as F 4. Additionally, the
sign convention in Ref. [61] for F4 gp is flipped relative to
the convention used in this work.
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In Sec. II B, we demonstrate how to relate the hadronic ~ we first consider the spectral decomposition of the hadronic
tensor to a Euclidean three-point function. This is done by  tensor in Minkowski spacetime. By inserting a complete set
comparing the spectral decompositions of 7, and T, to  of energy-momentum eigenstates and performing the
the spectral decompositions of the corresponding time  integrals over time, we find
orderings of the Euclidean three-point function. Here,

0 .
T, = —i / e / e (O TY (0) I (1o B) | H (B )
1—ie

-y (0173(0)[n(Pr — B,))(n(Pu — B,) 13" (0)|H(Pr))

n 2E" "PH 17 (E + E" Pﬂ—ﬁy - EHJ;H - lé‘)

and

oo(1—ie) ) . R
T = —i/ dlem/d3x€_"’""<0|12m(fem,X)Jiveak(oﬂH(PH))
0

-y (015" (0)[m(p, )) {m (U)IJW‘”]‘( )IH(Pr))

2E, 3 (E, — E, 5 — i€) (6)

m

Here we use notation appropriate for the case of a finite spatial volume in which the spectrum is discrete. In infinite volume,
the sums >, and >_,, would also contain integrals over the continuous spectrum of multiparticle states.

B. Correlation functions in Euclidean spacetime

In this section, we show how to extract T, from the Euclidean-time three-point correlation function
Cs o (fem r) = / d’x / dPye XS (T (1, X) T3 (0) by (111, 7)), (7)

where the meson interpolating field is given by (/)L = —{»y54, [the momentum arguments of C3 ,,, (fem. fy) are omitted for
brevity]. For a finite integration range 7" > 0, we define the time-integrated correlation functions, for both time orderings, as

I;u(tH’ T) = /T dteme C3 /u/( em» tH>’ I;D(IH’ T) = A dteme C3 ;w(term ) (8)

Inserting two complete sets of energy-momentum eigenstates and performing the integrals over Euclidean time, we find

weak = = = = em = = il
15 1) = 5 OIS OG5 0= P O AT O 1y _ 51,5
. 2E 2El PH(E +En pH_ﬁy_ELﬁH)

Ln npu— 17

5 OV OBy B, S OB ) BI04 -505
2E,;2E;,(E, — E, ;)

I.m m p

I,(t.T) = —1). (10)

We can achieve saturation by the ground state for the initial-state pseudoscalar meson H by taking the limit t;; — —oo. For
large |7y| with 7; < 0, we find

I;u(tH7T) -

(H(Py) |l (0)]0)eFmin'n S 1 e EntEu, ) (0173 (0)|n(pu = P,)) (n(Pu — P,) /™ (0)|H (Prr))
ZEH»ﬁH n 2E" Pr=Py (E +E, Pa=py EH!I;H> ,

(11)

I;v(tHv T) -

(H(Pr) |y (0)|0)e"nn'n S [elBrEna)T (017" (O)lm(P,)) (m (P, )|Jy“* (0) |H (Pu)) (12)

m.py 1]
2Ey ;. 2E,.5 (E, — E,.;)
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Jyek(0)

tg <tem <0 ¢

ol (tm)

tem <tg <0

aNT/2

FIG. 1. Schematic visualization of the different time orderings
for the Euclidean-time three-point function in Eq. (7). The f.,,
coordinate describes the location of the electromagnetic current.
The coordinate ¢, increases in the clockwise direction and forms
a circle due to periodic boundary conditions. The weak current is
at time 7., = 0 and the interpolating field is at time #,,, = 7y. The
orange and blue segments of the circle correspond to the time
orderings f.,, < 0 and f.;, > 0, respectively. The green segment
corresponds to the unphysical situation where the electromag-
netic current is at an earlier time than the interpolating field. The
purple segment is also unphysical. For the 7., < 0 time ordering,
one must use values of the integration range such that T’ < |t].
For the f., > 0 time ordering, on the other hand, one must use
values of the integration range such that 7 < aN;/2 — |ty],
where Ny is the number of lattice sites in the Euclidean-time
direction.

Each term in the sum over intermediate states in Eq. (11)
differs from the desired Minkowski-space result (5) by a
factor of [1 — ¢~ Er=Eupu*Eniy-5)T) and each term in the
sum over intermediate states in Eq. (12) differs from

the desired Minkowski-space result (6) by a factor of

[e'E=Ens)T _ 1], We now argue that these factors become
equal to 1 (i.e., the exponentials vanish) for large 7.
Starting with the 7., < O time ordering, we notice that,
because the electromagnetic-current operator cannot
change the flavor quantum numbers of a state, the low-
est-energy state appearing in the sum over n is the

Jem .
m primary source
seq. prop H

5tem7tH

+
H

time

pseudoscalar meson H. The unwanted exponential will
vanish if |p,|+/m3+ (P —P,)* > \/m} + p3;, which is
always true for |p,| > 0. Looking now at the ., > 0 time
ordering, because the states in the sum over m have mass,
|ﬁ y‘ -
hadronic tensor can therefore be extracted by

\/m2 + P2 <0 is also satisfied for |p,| > 0. The

2Ey 5, ¢ Enn'

T, =-lim lim L,(tg,T), (13
" o= (H(B )¢y (0)]0) wli 7). {139
where 1, (ty,T) = I;,(ty. T) +1,,(ty.T). We denote
linear combinations of I;,(ty.T) and I, (ty.T) that are
used to extract the form factor F'= Fy,Fs, Fyp, fu
as F<(ty,T) and F~(ty,T), respectively, such that
F(ty,T) = F~(ty,T)+ F>(ty, T). For example, in the
rest frame of the meson with photon momentum
p, =(0,0,p,.), for the 7, <O time ordering we
have Fyj (1. T) = (15 (ty. T) — Iy (1. 7))/ (2P, 2)-

Before proceeding, it is worth noting that, on a periodic
lattice, one must be careful however when taking the
T — oo limits. Figure 1 depicts the different time orderings
for the three-point correlation function in Eq. (7) on a
periodic lattice. For the ¢, > 0 time ordering, the largest
possible value of T'is aN;/2 + ty, where N is the number
of lattice sites in the Euclidean-time direction. Integrating
past this time will incur systematic errors from wraparound
effects. For the 7., < 0 time ordering, the largest possible
value of T is —ty. Additionally, as one integrates closer to
the interpolating field, excited-state effects become larger.
We will discuss these effect further in Sec. VI.

III. SEQUENTIAL PROPAGATORS

In this section, we describe two different methods of
calculating the time-integrated correlation function
1,,(ty.T) on the lattice, which are illustrated in Fig. 2.
One method, which we refer to as the 3D method, uses a
three-dimensional (time-slice source) sequential propagator
through the interpolating field gbL. In this way, for a fixed
value of the source-sink separation zg, one calculates the
three-point function in Eq. (7) for all values of ¢.,. The
second method, which we refer to as the 4D method,

Jem )

primary source
H .
seq. prop

-
>

time

FIG. 2. The left (right) figure is a schematic drawing of the 3D (4D) methods. For both methods, the initial noise source is located at
the weak-current time. The sequential propagator for the 3D (4D) method is shown in green (orange) and the sequential source is circled

in green (orange).
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uses a four-dimensional sequential propagator through the
electromagnetic current. The four-dimensional sequential
source is nonzero on the range —7 < t., < T, where T is
the desired integration range, and must be multiplied by the
factor er’m [the details of the four-dimensional sequential
source depend on the specific method used to calculate the
time integrals I, (ty.T) and I;,(ty,T)]. Using the 4D
method, for a flxed value of the integration range 7, one
calculates the time-integrated correlation function
1,,(ty.T), directly on the lattice, for all values of the
source-sink separation fy. From this, we see that the 3D
method is better suited to control unwanted exponentials
from finite integration range 7', while the 4D method is
better suited to control unwanted exponentials from excited
states created by the interpolating field ¢L. The results in
Ref. [61] were calculated using the 4D method, integrating
over the full time extent of the lattice, i.e., T = N7 /2.

One limitation of the 4D method is that, because the
integral over ., is performed directly on the lattice, the two
different time orderings of 7, (7, T) cannot be resolved.
Because the intermediate states of the two time orderings
are not the same in general, at finite 7', one must use a fit
form with multiple exponentials to remove the unwanted
exponentials that come with the intermediate states. It is
possible, however, to modify the 4D method such that one
calculates the two time orderings separately. To do so, one
performs two sequential solves through the electromagnetic
current but limits the extent of the sources in the time
direction to only be nonzero for the desired time ordering.
We will refer to this method as the 4D~"= method.

In this work, in order to control systematic errors from
the unwanted exponentials, we perform the calculation for
multiple values of 75 when using the 3D method and
multiple values of 7 when using the 4D or 4D>"= methods.
To properly compare the methods, it is important to
consider the number of propagator solves required for
each. Table I shows the number of propagator solves
required in terms of the number of meson momenta
N, photon momenta N Py source-sink separations N,,
(for the 3D method), and integration ranges Ny (for the 4D
and 4D”'< methods). Note that these numbers are for a
single source on a single configuration. The factor of 2 in
front of every entry accounts for the two components of the
electromagnetic current. Using point sources allows one to
get all values of p, for free if using the 3D method and all
values of py for free if one uses the 4D or 4D~-< methods.

TABLE I
number of meson momenta N, , photon momenta N ,

In the 4D method, one must perform a sequential solve for
each Yu matrix, which is the source of the factor of 4 in front
of N, . The same is true for the 4D~ method, except one

solve must now be done for each time ordering, resulting in
the factor of 8. The 3D method on the other hand only
requires a single sequential solve for a given py.

IV. LATTICE PARAMETERS

In this section, we describe the properties of the lattice
we perform calculations on as well as the details of our
numerical setup. As previously described in the introduc-
tion, we have performed two sets of calculations. We start
with the common parameters between them and then
discuss the differences.

Both calculations were performed on a single RBC/
UKQCD ensemble [64] (one of the “241” ensembles) which
was generated using the Iwasaki gauge action and 2 + 1
flavors of domain-wall fermions using N5 = 16 lattice sites
in the fifth dimension. The sea-quark masses and gauge
coupling are am,, ; = 0.005, am$* = 0.04, and g = 2.13,
respectively, and the ensemble has an inverse lattice spacing
of a=! =1.785(5) GeV [65]. For the valence strange
quarks, we use the same domain-wall action as used for
the sea quarks [64], except that we use the physical mass
am’™ = 0.0323. The charm valence quark is implemented
using a Mobius domain-wall action with Ls/a=12,
aMs = 1.0, amy; = 0.6, and stout-smeared gauge links
using three iterations with p = 0.1 [67]. The charm-quark
mass obtained from these parameters is close to physical. All
calculations use all-mode averaging [68]. We currently
neglect the disconnected diagrams that correspond to self-
contracting the quark and antiquark in the electromagnetic
current. These contributions are expected to be small due to
combined 1/N, and flavor-SU(3) suppression (the sum of
the up, down, and strange disconnected contributions would
vanish for equal quark masses because the electric charges
sum to zero).

We use local currents in our calculation. The matching
factors of the individual quark components of the electro-
magnetic current were computed nonperturbatively using
charge conservation. We employ “mostly nonperturbative”
renormalization of the weak axial-vector and vector cur-
rents [69,70] and use the tree-level values for the residual
matching factors. For the strange-quark nonperturbative
matching factor, we use the value calculated by the

Number of propagator solves required for a single configuration for a single source in terms of the desired
,number of source-sink separations N,, for the 3D method, and

number of integration ranges Ny for the 4D methods Results for the 3D, 4D, and 4D~ methods are shown.

Source 3D

4D 4D><

Point
Z, wall

2(1 -l—NtHNpH)
2(1 +NfHN!’H +NpHpr)

2(1+4N7N, )
2(1+4NyN, +N, N,,)

2(1+ 8NN, )
2(1+8NyN, +N,N,,)
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TABLE II. The methods, sources, and momenta for which we performed calculations in Secs. V-VII. When only
the z component of the momentum is listed, the other momentum components are zero. For 3D point sources, “all”
indicates these momenta can be calculated for free for a given value of pp, . We did not perform calculations using
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point sources for the 4D or 4D~= methods.

Method Source Meson momentum Photon momentum
3D Z,-wall Pp, = (0,0,0) |p,|* € (2n/L)*{1,2,3,4}
3D Point Pp,: € 2z/L{0,1,2} All

4D Z,-wall Pp,: € 2z/L{-1,0,1,2} Py, =2n/L

4D~ Z5-wall Pp, . €2x/L{-1,0,1,2} py. =2n/L

RBC-UKQCD Collaborations [64] of Z{*) =0.71651(46).
We calculated the charm-quark matching factor to be

7\*) = 1.0205(57). Notice that the errors of both Z{*)

and Z&fc) are at the subpercent level and therefore have a
negligible effect on the final values of the form factors
presented in this work.

The results in Secs. V-VII were calculated using either
Z, random-wall sources or point sources on N = 25
configurations, both using one exact and 16 sloppy samples
per configuration. We use gauge-covariant Gaussian smear-
ing for the strange-quark field using a width of ¢ = 4.35
and ng = 30 smearing iterations. For the strange quark, we
combined conjugate gradient (CG) with low-mode defla-
tion where we calculated the lowest 400 eigenvectors of the
domain-wall-fermion operator. The strange-quark sloppy
solves were performed using 110 CG iterations. For the
charm quark, we always performed exact solves and did not
implement low-mode deflation. For all 3D-method data in
these sections, we performed calculations using three
values of the source-sink separation —t5/a € {6,9, 12}.
For all 4D-method and 4D><-method data in these
sections, we performed calculations using three values of
the integration range 7'/a € {6,9, 12}. Further details of
the calculations performed in these sections are shown in
Table II.

The calculations in Secs. VIII-X were performed using
only the 3D method for two values of source-sink
separation —fy/a € {9,12}. We use a combination of
point sources and Z, random-wall sources and perform
calculations on N, = 25 configurations with four and
two exact samples per configuration, respectively. Sixty-
four sloppy samples per configuration were used for
both noise and point sources. As will be described in
Sec. VIII A, using point sources, for a given value of p,
we are able to extract all values of i)'y, even noninteger
multiples of 2z/L. We performed calculations in the
meson rest frame for photon momenta in the Z direction
Py € 2m/L{0.1,0.2,0.4,0.6,0.8,1.0, 1.4,1.8,2.2,2.4}.
Using Z, random-wall sources we performed calculations
in the rest frame of the meson for two values of photon
momenta p, . € 2z/L{0,1}. As explained in Sec. IX A,
the Z, random-wall source data are used to reduce
statistical noise of the point source data.

Another set of questions are the particular details of how
the time integrals I, (15, T) and I;, (¢, T) are calculated—
in particular, how the 7., = 0 contribution is distributed
between the two time orderings and how the time integrals
are approximated. For the 3D method, these details can be
decided during the analysis stage. For the 4D~-< method
however, these details must be decided while calculating
the propagators. Note that, because the 4D method does not
resolve the two time orderings, the question of how to
distribute the #.,, = 0 contribution is irrelevant. The results
shown in Secs. V-VII assign the entire 7., = 0 contribu-
tion to I, (ty.T), approximate I, (ty,T) by summing
from ., = 0 to ¢, = T with equal weights, and approxi-
mate I, (¢4, T) by summing from t.,, = —a to to, = =T
with equal weights. On the other hand, the results shown in
Secs. VIII-X assign half of the 7., = 0 contribution to each
time ordering and approximate I, (¢4, T) and I;,(ty.T)
using the trapezoid rule. These differences lead to discrep-
ancies between some of the results shown in the different
sections. In particular, discrepancies could appear for
intermediate form-factor data as a function of T as well
as form-factor results for individual time orderings. We
found that changing how the time integral is approximated
had no statistically significant effect on the final values of
the form factors.

V. COMPARING STATISTICAL PRECISION
OF NOISE AND POINT SOURCES

In this section, we compare the statistical precision of the
vector form factor calculated using both noise and point
sources.! For both noise and point sources, calculations
were done on the same N, =25 configurations, both
using one exact and 16 sloppy solves per configuration.
Before proceeding, we point out that for N, = 25, the
error on the error is ~15%. Additionally, while we did not
perform calculations using point sources for the 4D and
4D~ = methods, we expect that data to exhibit the same
general behavior as we observe for the 3D method.

'Note that we did not perform the necessary calculations to
extract F'y gp using the improved method presented in Sec. IX C
and therefore do not consider it here.
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Ratio of statistical uncertainties of point to noise sources as a function of summation range. The left and right plots show

F3 (T, ty) and F5, (T, ty), respectively. Lines with different colors and line styles indicate different source-sink separations. For both
noise and point sources, calculations were performed on the same N, = 25 configurations, both using one exact and 16 sloppy samples

per configuration.

Figure 3 compares the statistical uncertainty of
Fy(T,ty) and F5 (T, ty) calculated using the 3D method
for both point and noise sources. Specifically, Fig. 3 shows
the ratio of the statistical uncertainty from using point
sources to using noise sources, as a function of summation
range 7. For the 7., < 0 time ordering, the ratio approaches
a constant value of ~2.5 as T approaches —¢5. The ratio for
the 7., > 0 time ordering decreases as the summation range
is increased. The data shown in Fig. 3 were calculated in the
rest frame of the meson with ﬁy =2x/L(0,1,1); we
observed that these general trends also hold for other
values of 137 given in Table II.

The differences in behavior of the two time orderings can
be understood by considering the maximum Euclidean-
time separation between any of the three operators in the
correlation function. The maximum time separation
between any two operators in the 7., < 0 time ordering
is equal to a constant given by the source-sink separation
ty. For the t., > 0 time ordering, on the other hand, the
maximum separation is given by —ty + T, which grows
with summation range. The relative statistical uncertainty is
generally observed to increase more quickly for noise
sources than point sources as the maximum separation
increases, leading to the behavior observed in Fig. 3.

To determine which source offers the best precision to
computational cost ratio, we need to refer back to Table I and
compare the number of solves required for the 3D method
for both noise and point sources. Using point sources, for a
given meson momentum one calculates all values of photon
momentum for free. The reduction in the number of required
solves per configuration can be used to perform the
calculation on more configurations. Therefore, if the square
root of the ratio of the number of solves for point to noise
sources is larger than the ratio of their statistical uncertain-
ties, point sources will be more cost effective. The number of
photon momenta that should be used in this comparison is
the number of momenta that provide physically allowed
values of x,. In the rest frame of the D; meson with L = 24

and a~' = 1.785(5) GeV, there are four values of p, that
are kinematically allowed. Pluggingin N, =1, N, =4,
and N, = 3, one finds that noise sources require twice as
many solves as point sources. Therefore, looking at Fig. 3,
we observe that noise sources are more cost effective for the
tem < 0 time ordering. For the 7., > 0 time ordering, we
find that noise sources are more cost effective for smaller
values of T, and point sources become more cost effective
for larger values of T.

One additional factor to consider is that noise sources
benefit from volume averaging, while point sources do not.
Because our numerical test was performed on a relatively
small lattice with N; = 24 spatial lattice sites, noise
sources are expected to improve relative to point sources
by a larger margin for lattices with more spatial sites.

VI. FIT METHOD

In this section we describe the fit methods used to
remove unwanted exponentials from the form-factor
results presented here and in Sec. VII. Before proceeding,
it will be useful to introduce the notation I,,(ty.T) =
15, (ty, T) +1),(ty. T), where I}, (ty, T) and I, (15, T) are
the weak vector and axial-vector current components of
1,,(ty, T), respectively.

We start by studying, in continuum QCD, the quantum
numbers of the states that have a nonzero contribution to
the sum over states in the spectral decompositions of
I (ty,T) and I, (ty, T).? For the fo, < 0 time ordering,
the states |n(py — p,)) must have the same quark-flavor

*Note that because we neglect disconnected diagrams in this
present work, certain states will not contribute to the spectral
decomposition of I, (ty, T) and I, (¢, T) that would otherwise.
This is expected to have a more significant effect for the 7., > 0
time ordering, where, for example, a zz-like state will not
contribute as a result of neglecting the disconnected diagrams
for the D, decay.
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quantum numbers as the initial pseudoscalar meson H.
Additionally, parity constrains the J© quantum numbers of
the states that contribute, which are in general different for
the weak axial-vector and weak vector current components.
For I,fy'A(tH, T) one finds that the allowed values are
JP e {07,1%,2% ...}, which implies that the lowest-
energy state that contributes to I (. T) is the pseudo-
scalar meson itself. Moving on to [ jl;v(tH, T), one finds
that the allowed values are J¥ € {0*,17,2%, ...}, which
implies that the lowest-energy state that contributes to
I;;V (ty. T) is the vector meson (H*) associated with the
initial-state pseudoscalar meson; e.g., for H = D, it would
be a (Dj})-like state. We calculate the energies of the D, and
D; states for all necessary combinations of p, — p, by
performing single-exponential fits of the associated
two-point functions projected to definite momenta. The
results of these fits are then used as Gaussian priors in the
form-factor fits, where the prior value and prior width are
set as the central value and uncertainty of the fit results,
respectively. For the 7., > 0 time ordering, the states
|m(p,)) are flavorless and we leave their energies as fit
parameters. Parity constrains the quantum numbers of
the states that contribute to the sum over states in
LAty T) and I,V (14,T) to be JP € {0F,17,2%,...}
and J¥ € {17,2%, ...}, respectively.

From this discussion we also learn that in general, for a
particular momentum and a given time ordering, the same
states contribute to all y, v components of Ijj,,(tH, T) and
similarly for I}, (ty, T). Therefore, while the matrix ele-
ments multiplying the unwanted exponentials will in
general be different for different u, v indices, the energies
appearing in the exponents will be the same. Because only
1,(ty. T) contributes to Fy(ry,T) and only I4,(ty.T)
contributes to Fy (15, T), Fasp(ty.T), and fy(ty. T), one
can fit the form factors directly without mixing unwanted
exponentials. Fitting the form factors directly offers two
advantages over fitting 1, (ty, T). First, fitting the form
factors requires fewer fit parameters, which helps stabilize
the fits. Second, consider the scenario where taking linear
combinations of 1, (ty,T) results in cancellations that
reveal features in the form factors that 7,,(ty,T) is not
sensitive to. If one fits / ,w(tH, T) first, these features could
be missed by the fit and would then propagate as a source of
systematic uncertainty in the form factors. This possibility
is eliminated by fitting the form factors directly.

To help constrain the energy gap AE between the ground
state and the first excited state created by the interpolating
field, we first perform two-exponential fits to the pseudo-
scalar two-point function. The result of the fit for AE is
then used as a Gaussian prior in the form-factor fits, with
the prior width equal to the statistical uncertainty scaled by
afactor 1.5. We extract Fy (ty, T), Fu(ty, T) and fy(ty, T)
from the time-integrated correlation function. We then

calculate the structure-dependent axial form factor by

Fasp(ty.t) = Fo(ty.T) = (=Quf y(ty. T)/E}”). We per-
form simultaneous fits to the form factors Fy(ty,T),
Fu(ty.T), fu(ty.T), and F,gp(ty.t) for all kinematic
points. This takes advantage of the fact that data on a given
ensemble will have common energies, including the
excited-state energy gap, as well as energies that appear
in unwanted exponentials from intermediate states.

We fit our data as a function of both source-sink
separation fyz and integration range 7. Because each
successive value of 7' is a sum of the previous values of
T, the data for a given value of ¢y are highly correlated.
These large correlations manifest as small eigenvalues in
the correlation matrix, which makes correlated fits to this
data unstable. We instead perform uncorrelated fits and use
jackknife to estimate uncertainties of the fit parameters. To
replace the y* as a goodness of fit, we check that the fit
result of an individual form factor at a given momentum is
stable under variations of the fit range. For the 3D method,
we perform simultaneous fits to all values of 7y while
searching for stability in 7. For the 4D and 4D~ = methods,
we perform simultaneous fits to all values of T searching
for stability in #y. The global fits are then performed using
these chosen stable fit ranges.

The fit form used for the 3D method data includes
one exponential to account for the unwanted exponential
from the lowest-energy excited state created by the inter-
polating field and one exponential for the unwanted
exponential that comes with the lowest-energy intermediate
state. The fit forms used for the ., < 0 and ¢,,, > O time
orderings of the 3D method data for a form factor F =
Fy,Fasp, Fa, fy are given by

F<(ty,T) = F= + Bje BEatET | Cretbln (14)
F>(ty.T) = F> + B7e B ET o CrelEmm, (15)

The fit form used for the 7, > 0 time ordering of the 4D~<
data is the same as the 3D method, and the fit form for the
t.m > 0 time ordering of the 4D~ data is the same as the
3D method except with C; = 0. Recall from Sec. II B that
for t., <0, excited-state effects become larger as one
integrates toward the interpolating field. For this reason,
stability tests for the #., < O time ordering are done by
varying both the minimum fit range as well as the distance
from the interpolating field. For 7., > 0, on the other hand,
we only need to check for stability in the minimum
fit range.

Because the 4D data are a sum of both time orderings,
one possible fit form would be a sum of those in Egs. (14)
and (15). However, we perform fits to regions of the data
that have plateaued in 7y and therefore use the fit form

F(T) =F 4+ B;e—(Ey—EH+E<)T + B?E(EFE))T. (16)
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FIG. 4. Fy data calculated using the 3D method. The left plot shows Fy resulting from a fit for different fit ranges
(Tmins Trmax + tp,)/a. The red square is the chosen stable fit range and is the result of the global fit to all 3D method data. Fit
ranges where —t,, /a = 6 has no data points indicates that dataset was left out of the fit. The right plot shows F; (1, , T) calculated using
the 3D method as a function of T'. The three differently colored, shaped sets of data points correspond to different values of 7, . The red
horizontal band is the one-sigma extrapolated value of F; and corresponds to the red band in the left plot. The blue, orange, and green
bands are the one-sigma global fit results for -5, /a = 6,9, 12, respectively. The error bands are only shown for data included in the fit.
The data were calculated with p, =0 and p, = 2z/L(1,1,1).

To help stabilize the fits to the 4D-method data, we put
a Gaussian prior on the fit parameter £~ centered at the
¢-meson mass with a width of 200 MeV.

Figure 4 shows example D; stability-test-fit plots for the
3D method as well as the result of the fit on top of the data.
For the 3D method we find that, in general, the global fit
does not significantly reduce the statistical errors. Similar
plots for the 4D~= method are shown in Fig. 5. The global
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FIG. 5.

(=tp, min> Ip, max)/a for a fixed choice of
global fit to all 4D~ method data. The right plot shows Fy (1 .

F;, data calculated using the 4D>< method. The left plot shows F7,

fit to this 4D>= method data improves the statistical
precision by a larger factor than for the 3D method data.
One possible explanation for this improvement is that all
4D~= method data were calculated using the same value of
P,- The fit forms for the different momentum combinations
of Fy(tp,,T) included in the global fit therefore all have
the fit parameter E~ in common. This can be seen by
looking at the spectral decomposition in Eq. (10), which

| Fy |

—0.05 1 L T/a=12 !
- i % T;a =9 EI

= ! T/a=06 {

S —0.061 ; % £

A I 1

& | % %% |

—0.07
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tDS/a

resulting from a fit for different fit ranges

—tp_min/@ = 11. The red square is the chosen stable fit range and is the result of the
T) calculated using the 4D>< method as a function of 75, . The three

different colored, shaped data points correspond to different values of 7. The red horizontal band is the one-sigma extrapolated value of
F7, and corresponds to the red band in the left plot. The blue, orange, and green bands are the one-sigma global fit results for 7/a = 6, 9,
12, respectively. The vertical black dashed lines indicate the data included in the fit. The data were calculated with p p, = 2x/L(0,0,1)
and p, = 2z/L(0,0,1).
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indicates that the value of the energy E~ for a given
component of the weak current depends only on p,.

VII. COMPARING 3D AND 4D METHODS

In this section, we compare the 3D, 4D, and 4D~<
methods. Before proceeding, recall that the 3D method
offers better control over taking 7" — oo, while the 4D and
4D>-<= methods offer better control over the tyz — —oo
limit. The 3D and 4D/4D>'< methods therefore comple-
ment each other with regard to control over the two types of
unwanted exponentials appearing in the calculation. To test
if this complementarity can be exploited to improve the
quality of the fits, we also perform simultaneous fits to the
3D and 4D~ methods. As a metric we will compare the
vector form factor as a function of x,. Note that some data
at different x, values are in different little groups of the
cubic group and therefore can have different discretization
errors.

We start by comparing the 4D and 4D~ methods. The
left plot in Fig. 6 shows the results of F'y as a function of x,
calculated using the 4D and 4D~ = methods. We observe
that for all values of x,, the 4D~ method yields smaller
statistical uncertainties than the 4D method. Recall that,
when using the 4D~ = method, the different time orderings
can be resolved. This allows the use of more detailed fit
forms and the fits can be done at earlier values of 7,
resulting in the smaller uncertainties. Looking at Table I,
the computational cost of the 4D>>= method is roughly
twice as much as the 4D method. However, the ability to
resolve the time orderings using the 4D~= method allows
for a more robust control over systematic uncertainties from
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unwanted exponentials. For this reason, we choose to
compare the 4D”< to the 3D method moving forward.

The right plot in Fig. 6 shows Fy as a function of x,
calculated using the 3D and 4D~= methods, as well as
simultaneous fits to all data from both datasets. Focusing
first on the individual fits, we see that for the value of X,
where we have data for both, the fit results agree and are of
similar precision. We find that performing simultaneous fits
to both datasets results in a factor ~2 improvement for this
particular x, value. For values where we have only 3D or
4D~< method data, we find little to no improvement in
statistical precision. Additionally, performing combined
fits to the 3D and 4D>= method data did not have a
significant improvement in the stability of the global fit.
Moving on to the computational cost, looking at Table I, the
3D method generally requires less solves than the 4D~
method. This is due to the number of sequential solves
required, which for the 3D method is N, N, and for the
4D~= method is 8N7N, . As explained in Sec. III, the
factor of 8 results from having to do a solve for each y,
matrix associated with the electromagnetic current, for each
time ordering. From this, if one uses only a single method,
the 3D method offers similar precision and control over the
unwanted exponentials compared to the 4D~ method but
for a significantly cheaper computational cost.

If one uses both methods, however, our results suggest
that a factor of ~2 improvement in precision could be
achieved by performing calculations using both methods
for each x,. This would also allow for more robust control
of both sources of systematic uncertainties from unwanted
exponentials. However, even if one keeps Ny and N,

small, the additional solves required for the 4D~= method

00 02 04 06 08 1.0
Ly

FIG. 6. Comparison of the 3D, 4D, and 4D~-< methods for Fy, plotted as a function of x, (note that these are not our final results for
the form factor; see Fig. 14 for the final results with all improvements). Left: The red diamonds (blue squares) were calculated using the
4D (4D~ <) method. Right: The blue squares (orange circles) show results using only 4D~-< (3D) method data. The green triangles show
results of simultaneous fits to both the 4D~= and 3D data (since all fits include data at multiple x, values, we can obtain results from the
combination of methods even at x, where we do not have both 3D and 4D~ correlation functions). Points at the same x, are shifted

slightly for clarity.
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will be significant relative to using only the 3D method.
One could instead perform the calculation using the 3D
method for more values of 75 and more configurations,
improving both the precision and control over unwanted
exponentials, for less computational cost than using both
methods. For these reasons, we proceed using the 3D
method.

VIII. IMPROVED THREE-POINT
FUNCTION CALCULATION

In the following, we describe our improved methods of
calculating lattice correlators that will be used to extract the
form factors using the 3D method. We begin by discussing
the infinite-volume approximation, which allows us to
calculate the three-point functions at arbitrary photon
momentum (i.e., not subject to the usual restriction from
the periodic boundary conditions) with errors exponentially
small in the lattice volume. Then, in Sec. VIII B we introduce
an alternate three-point function that can be used to extract
the form factors. We demonstrate how it can be extracted for
free by reusing propagators required to calculate the original
three-point correlation function in Eq. (7).

A. Infinite-volume approximation

In this section we describe our approach to estimate
momentum-projected correlation functions at arbitrary
momenta (i.e., not restricted to integer multiples of
27 /L) with exponentially small errors in the finite volume.
We simplify the discussion without loss of generality and
consider the case of one spatial dimension with even integer
extent L (here we use lattice units). Let C(x) be a finite-
volume correlator and C®(x) the corresponding correlator
in the L — oo limit. We assume there exist ¢, d, A, A’ € R™
and L, € N for which

|C®(x) = CE(x)| < ce™ (17)
for all x with —L/2 <x<L/2 and L > L, and
|C®(x)| < de=™N (18)

for all x with |x| > L/2. We now define

L/2-1
Chg)= Y Chx)e (19)
x=-L/2
and
C*(q) = i C=(x)els, (20)

Under the above assumptions, it then follows that there is a
¢ € R* for which

1C*=(q) — CH(q)| < Ee=" (21)

for all g€ [—x,z| and all L > L, with Ay = min(A, A'/2).
In other words, C* (g) is exponentially close to the infinite-
volume version C*(g). In practice, the coordinate x is often
the relative distance between vertices y and z; i.e., we are
interested in

Clg) =) C(y,2)el1=2), (22)

The constraint of Eq. (18) can be satisfied if C(y,z)
eventually decreases exponentially as coordinates y and
z are separated. The implementation of Eq. (19), however,
requires the truncation of the double sum over y and z to
—L/2<y—-z<L/2. We are able to do this with point
sources for either y or z but not if sequential solves and wall
sources are used for both y and z. We therefore develop a
method in Sec. IX A that combines the statistical benefits of
a sequential solve with the improved momentum resolution
offered by a point-source-based setup.

In practice, A = m, but A’ can be substantially larger
such that Ay = m, often holds.

Finally, we would like to point out that the method is
similar in spirit to the QED, method [71]. In Ref. [72] an
extension of this method was presented that allows for the
calculation of QED self-energies with only exponentially
small finite-volume errors.

B. Three-point function with electromagnetic
current at origin

The three-point function in Eq. (7) used to extract the
hadronic tensor has the weak current fixed to the origin. In
this section, we show how TW can be extracted from a
similar correlation function, except with the electromag-
netic current fixed to the origin, given by

CE (tw. 1) = P / o / dye! PP ey
X (Jm(0) Ty (1, ¥l (1. 7). (23)

The superscript EM is used throughout this work to
differentiate between the correlation function with the
weak current at the origin in Eq. (7). The additional factors
ePutw and e~"Prn* are required to shift the interpolating field
in Euclidean time and space, respectively, relative to the
other operators. Note that the phase to project to definite
photon momentum is flipped relative to the three-point
function in Eq. (7). When using point sources, this
correlation function can be calculated for free by reusing
propagators used to calculate the three-point function in
Eq. (7). In particular, two sets of propagator solves must be
performed, one for each component of the electromagnetic
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current J;". For example, when H = D, the sequential
propagator calculated for the strange- (charm-) quark
contribution of Ji™ when the weak current is at the origin
is the same sequential propagator needed for the charm-
(strange-) quark contribution of J;™ when the electromag-
netic current is at the origin.

We define the time integrals of this correlation function
for the different time orderings as

5 (17) = 3 O Ol = 7))~ IO

EM,> r —E,t EM
I/’”’ (tH, T) = o dtwe 4 WC3.}41/<tW’ tH), (24)

0
M= (1, T) = / . dtye 5w CM (ty, 1) (25)

By inserting two complete sets of states and performing the
integrals over time, we find the spectral decompositions

Pu))(1(Pu)|d}10) Frintn[]

— o~ EHEns, iy _EH>T] (26)

il 2B - Dy 2E, ;,(E, +E, Py—Pu —Ey)
and
<1 7) = 5 OB o BN O G UFN) s, 115543507 ), (27
o 2E,, 2E1,;,H(E7 —E,5 + AE;5,)
|
where AE; = E; 5, — Ey 5, 18 the excited-state energy gap This example leads to a clear scenario where having both

for the I/th excited state created by the interpolating field.
Using similar arguments as in Sec. II B, we find that, for
ﬁy # 0, the hadronic tensor can be extracted by

—Ey ;. t
2EH-,1_5H6 fow

T, = —lim

I L' (ty.T). (28
P oo T

> — _i 2B} 5, ¢ o
o = — A1

li M=t T). (29
RN T R TR R

The largest possible integration ranges for the fy, < 0 and
ty > 0 time orderings are —ty and aN¢ + ty, respectively,
where N7 is the number of temporal lattice sites. As before,
as one integrates closer to the interpolating field for #y, < 0,
excited-state effects become larger.

Notice that the spectral decompositions of the #y > 0
time ordering of /5) and the #,,, < 0 time ordering of /,,
are equal up to excited-state effects; the same is true for the
tw <0 and ., > 0 time orderings of /i)' and I,,. This
implies that one can perform simultaneous fits to the I,];%vL>
and I,f,/ data using common fit parameters and similarly for
the 1’1;:;\/1,< and [, data. As an example of the different
behavior of the two datasets with 7, Fig. 7 shows the
weak axial-vector component of both I5(7y.7) and
10" (T, ty), calculated in the rest frame of the meson
with p, = 27/L(0,0,0.6) using —ty/a = 9. Looking at
the blue triangles, for T < |ty|, the I, (¢, T) data begin to
plateau as T is increased up until the maximum value of
T = —ty. For the I,];:,IJVL< (ty, T) data, on the other hand, it is
possible to integrate past T = —ty because one is integrat-
ing away from the interpolating field in this case.

sets of data would be crucial for the analysis. In particular,
consider the possibility where the results of the fits to the
I, (ty, T) data were not stable for all allowed values of
T < |ty|. To get around this problem, one option would be
to extend the allowed values of T by increasing the source-
sink separation f;. However, because increasing ¢y gen-
erally results in noisier data, it might not be practical to
extend 7y large enough to observe stability in the fit range
for 7. Another option would be to add additional expo-
nential terms in the fit form, but because fits with multiple
exponentials are generally unstable, this might not be
possible without introducing priors on the energies of
the intermediate state, which could bias the results.
A better solution to the problem would be to perform

the calculation for IEEA’> (ty, T), which would allow one to

EM
0.8 § I,,,,> mmmmmmmmm
’ i I o= ®
pv o
]ngﬁﬁlﬁﬁﬁﬁllﬁﬁlﬁ
E S
0.6 1 =
=
e T/a=—tp,/a
0.41 =
-
021 *
-“®
0 3 6 9 12 15 18 21 24
Summation range T'/a
FIG. 7. I;(T.ty) and IELI)/D(T ty) as a function of T for
—ty/a = 9 Notice that I, (T, t4) can only be evaluated up to
T = —ty, while IE,I,\A (T, tH) can be evaluated for larger values of

T. Both were calculated in the rest frame of the meson with
P, =2x/L(0,0,0.6). The indices shown are y = v = 0.
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extend the fit range in 7 while keeping ¢y constant. A
similar situation can occur for zy < 0 and ., > 0 data,
except that now I5"<(r4.T) has a limited range of
T < |ty|, and I, (ty, T) can be evaluated for larger values
of T.

Considering instead the opposite scenario where one
observes stability for both time orderings of both
IEM (1, T) and 1,,,(ty, T), having both sets of data provides
improvements to the extracted form factors beyond simply
extra statistics. This can be understood by considering the
maximum Euclidean-time separation of the three operators
in the correlation functions. The maximum separation for
the 7., <O time ordering is fy, while for ty, > 0 the
maximum separation is 7 + |7y]|. It is therefore expected

that, for the same value of 7, the I, data will be more

precise than the IEBA’> data; using similar arguments, the

1 ;1;:11/\/1< data are expected to be more precise than the 7, data.

In Sec. IXD we compare the form factors extracted the
individual datasets, as well as the improvements achieved
by performing simultaneous fits to both datasets.

IX. IMPROVED FORM-FACTOR
DETERMINATION

In this section we describe improvements to the original
3D method calculation presented in Secs. VI and VII. In
particular, the four improvements we make are

(1) Section IX A shows improvements by taking ratios

of the point source data to noise source data.

(i1) Section IX B shows improvements from averaging
over positive and negative photon momentum.

(iii) Section IX C shows improvements by extracting
F4 sp using a method that removes contact terms
that diverge at small x,.

(iv) Section IXD shows improvements by doing a
combined analysis of both data calculated using
the original three-point function in Eq. (7) and the
alternate three-point function in Eq. (23).

As each improvement is presented, we also present
numerical studies that demonstrate the level of the improve-
ments. Note that, when doing comparisons of different
methods, we still implement all the other improvements not
being studied. So, in any given analysis, three of the four
improvements are being used.

Another modification to the analysis is that we now fit
the contributions to the form factors from the separate
quark components of the electromagnetic current sepa-
rately. This is done for two reasons. First, these separate
contributions are well-defined QCD form factors and are
therefore of phenomenological interest. The second is that,
in general, the intermediate states that contribute to the
different quark contributions are different. Fitting them
separately therefore reduces the possible number of expo-
nential that contribute at finite integration range 7', which
stabilizes the fits. We denote the charm- and strange-quark

components of the form factors with superscripts (¢) and

(s), respectively, such that, e.g., Fy, = F gf) + F if). The
details of the final analysis methods are presented in Sec. X.

A. Ratio methods

To be able to use the infinite-volume approximation in
Sec. VIII A, one must use point sources. In our analysis in
Sec. V, we found that noise sources generally perform
better than point sources for the same statistics. Because of
this, we would like a way to improve the precision of point
sources to be similar to that of noise sources. In this section,
we present a method that achieves this which works by
taking ratios of correlation functions calculated using both
point and noise sources.

Specifically, suppose we calculate a three-point function
[either in Eq. (7) or Eq. (23)] using point sources in the rest
frame of the meson at photon momentum ﬁy, denoted as

Cgf’;‘;t(ﬁy, t,ty). Here t could be either f, or ty. Using
noise sources, we calculate the same correlation function

but at a photon momentum p* that is allowed by periodic
i, z

boundary conditions, denoted as C3} (p*,f ty). The

improved estimator is calculated using the ratio

i i CZZ (ﬁ* .1 [H)
Cgmproved(ﬁy’t’ tH) — gomt(ﬁy’t’ tH) 3,;.w . (30)
. o Chon (P 1.1y)

where it is understood that one must first calculate the
expectation values of the individual correlation functions
before taking the ratio. Note that the value of p* must be
chosen such that the expectation value of the denominator
is nonzero. In our analysis, we perform calculations for ﬁy
in the z direction and calculate two values of p* =
27/L(0,0, pt) with pt € {0,1}.

When deciding what ratio to take for the weak axial-
vector component of the three-point function, for each
value of Z)'],, t, and g, we try four ratios, calculate the
statistical uncertainty for each of the four possible ratios,
and choose to implement the method with the smallest
statistical uncertainty. The four ratios we consider are

(1) no ratio,

(2) ratio using p; =0,

(3) ratio using p; =1, and

(4) ratio using the two values of p; linearly interpolated

to the value of p,.

Because the expectation value of the weak vector compo-
nent of the three-point correlation function is zero when
both the meson and photon momentum are zero, we only
consider methods 1 and 3 in this case. Additionally, when
calculating F'4 5p by subtracting the correlation function at
zero photon momentum as described in Sec. IX C, we take
ratios after subtracting.

To test the improvements gained using this ratio method,
we compare the form factors as a function of x, both using
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FIG. 8. Left (right) compares F, g5, (Fy) as a function of x, using the ratio method and without using the ratio method. The ratio
method results in a more significant improvement for F, gp. Points at the same x, have been shifted slightly for clarity.

the improved correlation function in Eq. (30) and using the
original correlation function without multiplying by the
ratio. The analysis of a specific component of a given form
factor was performed using the same fit forms and fit ranges
for both the original and improved data. The fit forms and
fit ranges were chosen by performing a stability analysis to
the improved data. The results for both F, s and Fy are
shown in Fig. 8.

Looking first at F'4 sp, we observe a ~4 times reduction
in the statistical error for small x,, with the improvements
generally decreasing as x, increases. More specifically, the
time orderings f,, <O and fy >0 see the greatest
improvement in precision. The time orderings t., > 0
and ty < 0 for the charm-quark component of the EM
current sees a factor ~2 improvement, while the strange-
quark component of the EM current sees little to no
improvement. We observe only modest reductions in
statistical noise for the vector form factor Fy,.

B. Averaging over +p,

One advantage of our improved method is the ability to
average over the positive and negative photon momenta for
free. In this section, we compare the precision of the form
factors calculated by performing this average to form
factors calculated using only positive photon momentum.
As in Sec. IX A, the analysis of a specific component of a
given form factor was performed using the same fit forms
and fit ranges for the analysis of both data. The fit forms
and fit ranges were chosen by performing a stability
analysis to the data averaged over photon momentum.

Looking at Fig. 9, we see that at small x,, averaging over
+ ﬁy results in anywhere from a factor of 3 to factor of 9

improvement in precision for F if), F Ef) and Fy. The
dramatic improvement in precision at small x, can be
understood by first noting that the form-factor decompo-
sition of 7', in Eq. (4) implies the weak vector component
of the three-point correlation function is purely real. This
information can be used to show that F'y receives a pure
noise contribution, which is exactly canceled out by

averaging over positive and negative photon momentum,
leading to the dramatic improvement. On the other hand,
the weak axial-vector component of the three-point corre-
lation function is purely imaginary and does not receive a
pure noise contribution. For this reason, averaging over
+ ﬁy has only a modest improvement in precision for F'y sp.

Another observation from Fig. 9 is that there is a strong
cancellation between the strange- and charm-quark con-
tributions of Fy, (similar cancellations were also observed
in the D Dy couplings [73,74], which correspond to pole
residues in the D, — vy form factors). Additionally,

although results for F gf) and F i,s ) agree between averaging
and not averaging, there is a slight tension for Fy, at small
x,. Recall that our updated analysis method involves first

fitting the F§f>(tH, T) and Fg}v)(tH, T) data and then taking
linear combinations of the fit results to extract Fy. To
ensure that fitting F g/c) (ty,T)and F g/s) (ty, T) first and then
taking linear combinations does not introduce systematic
uncertainties in the results for F'y, we also did the analysis
performing fits to Fy(tzy,T) directly. We found that the
results for Fy between the two analysis methods were
consistent within errors, and from this conclude that the
tension in Fig. 9 is the result of a statistical fluctuation.

Furthermore, we also found that fitting F (VC)(IH,T) and

F if)(tH,T) first resulted in slightly smaller statistical
uncertainties than fitting Fy (1, T) directly.

C. Comparing different methods to calculate F, g

In this section, we compare three different methods for
calculating F'4 ¢p, denoted using the superscripts I, II, and
101, as in F) ¢, Fi gp, and Fii's,), to differentiate between
them. We use method III in the final analysis presented
in Sec. X.

Using method I, the structure-dependent part of the axial
form factor is first calculated as a function of 75 and 7,
denoted F, gp(ty.T). It is calculated as Fu gp(ty.T) =

FA(tHvT)_(_foH(tH’T)/EJ(/O))’ where F(ty,T) and

074507-15



GIUSTI, KANE, LEHNER, MEINEL, and SONI

PHYS. REV. D 107, 074507 (2023)

0.041
¥ only +(p,)-
0.031 II $  ave of +(p,).
5 t
<=%0.021 1 ¥
& ¥ 3 -
0.011 L
0.00{_pzzozmmmmmososmmmososmmosssm oo os B
0.00 025 050 075 100 125
Ly
T e ——
:[ Only +(p7)z
—0.0251 t  ave of £(p,).
Q
Eﬁ—@.%@« : ¢ ii
£ F
—0.0751 F
+*
&
—0.100{_* ,
0.0 0.5 1.0
Ly
0 e
I Onl§’+(pw)z
—0.021 $  ave of £(p,).
2)" i{ i[ f
LL —0.04‘ %
—0.061 Ii i
0.0 0.5 1.0
Ly

0.6 ? f only +(p,).
i + ave of £(p,)-
3>0.4 -
~ -
B
0.21 - -
- - o
U i
0.00 0.25 0.50 0.75 1.00 1.25
Ly
0.0 =
S - -
—0.21 .
&
Py £ 3
Zn —04
& -
—0.67 L] ¥ only +(p,).
—0.81 E {4 ave. of £(p,).
0.00 025 050 075 1.00 1.25
Ly
0.0 ] T -
e W = - = -
= =
3
—0.11 ¢ +
N
£ t
—0.21
+  only +(py)-
{4 ave. of £(p,).
—0.31-, . . . .
0.00 0.25 0.50 0.75 1.00 1.25

Ly

FIG.9. Left (right) column compares F 4 s (Fy) calculated using only positive (p, ), to F gp (Fy) calculated averaging over positive
and negative (p,),. The different rows show the full form factors, as well as the individual charm- and strange-quark current

z

components. For Fy, F {,C), and F i,s), dramatic improvements in precision are observed for small x,, with the improvement generally

(c)

decreasing with x,. Only modest improvements are observed for all F gp, F¥ 1(:)5 p» and F ¢, data. Points at the same x, have been shifted

slightly for clarity.

fu(ty, T) are extracted from appropriate linear combina-
tions of the time-integrated correlation function. We then fit
Fyusp(ty,T) to take the T — oo and 7; — —oo limits. To
understand how the fits to F 4 gp (. T) are performed, we
must first understand what intermediate states contribute in
the spectral decomposition. In particular, subtleties appear
when considering the time ordering 7., < 0 and tyy > 0. As
explained in Sec. VI, the lowest-energy intermediate state
that contributes to the weak axial-vector component of the
time-integrated correlation function for these time order-
ings is the initial-state pseudoscalar meson H. Looking at

the form of the spectral decomposition in Egs. (9) and (26),

for py = 5 each term in the sum is proportional to
(0]73<%(0)[n(—p,)). In this case the state is n = H, and
this matrix element is the definition of the pseudoscalar
decay constant, i.e., (0J3**(0)|H(-p,)) ~ i(p,),fn- This
implies that the state n = H only contributes for indices v
with (p,), # 0. Our analysis uses p, in the Z direction, and
so this state only contributes in the v =0, 3 matrix
elements. The axial form factor F4 is extracted using the
indices (u,v) € {(1,1),(2,2)}, and the decay constant
is extracted using the indices (u,v) € {(0,0),(3,0)}.
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Therefore, when fitting Fu5p(ty,T) = Fu(ty, T) —

(=Qsfu(ty, T)/ E}(,())), the lowest-energy state that appears
for the 7., < 0 and ¢,y > O time orderings is n = H. The
unwanted exponential in this case decays in 7 according to
the combination of energies E, + Ep 5, — Mp, which
approaches zero as p, — 0. An example of the behavior
in T for p,, = 0.6 x 2z/L is given in Fig. 7. Looking at
Fig. 10, F}; ¢, is precise at large x,, and the error increases
dramatically for x, < 0.1. Part of the increase in error is due
to the long extrapolation in 7" performed for the ¢, < 0 and
tw > 0 data. Another factor is that, for smaller x,, we did
not observe stability in the ., < O data for any of the
possible values of T < |75|. Specifically, stability was not

observed for F\{%, with p,. € 2x/L{0.1,0.2} and for

F(%p with p,. €27/1{0.1,0.2,0.4,0.6,0.8,1.0}. For
these cases, we used only the ty > 0 data. Lastly, we
observe that as x, decreases, there are cancellations as
large as 98% between the two time orderings for the
smallest x,.

Method IT improves upon the first by exactly subtracting
the unwanted exponential contribution from the n = H
state to the ¢, <0 and ty > 0 time orderings using a
technique put forth in Ref. [75]. The procedure follows
from the observation that, when the energy of the lowest-
energy intermediate state contributing to the spectral
decomposition of the time-integrated correlation function

|

method I
method 1T
4 method III

0.10 A ]

—0.05 T

0.00 {
I ¥ = Il - - ;
s = " ¥ E

0.0 02 0.4 06 0.8 1.0 1.2
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FIG. 10.  F, gp as afunction of x, calculated using methods I-IIL.
Method 11T is significantly more precise at small x,. Methods I
and 1T disagree with method TIT at smaller x,, due to O(a"/x,)
discretization effects.

is known, e.g., when determined by fitting to a two-point
function, this information can be combined with the three-
point correlation function to exactly subtract the unwanted
exponential associated with that state. As a concrete

example, consider the spectral decomposition for Iﬁ(’f with

7y =0 and p, =(0,0,p,.). In this case, assuming
ground-state saturation has been achieved for the interpo-
lating field, the lowest-energy unwanted exponential when
n = H takes the form

_ (O O)[H(=5,))(H (=) OHO)H OO0} 6,557
2Ey5,2my(E, + Ey 5, — my) '

where J2(0) is the axial-vector component of the weak
current. Because /4" is the integral of C4 0(tH: Tem) OVEr
f.m» the spectral decompositions are equal up to the factor
(E, + Eyp, —my) in the denominator. Therefore, the
unwanted exponential in Eq. (31) can be exactly subtracted
by taking the combination

e ET

145 (T, ty) + C4 (=T, (32
o (o) + €5, ( H)EyJFEHﬁV_mH (32)

A similar procedure can be done for data with the
electromagnetic current at the origin. Note that, for
tw > 0, this combination subtracts the unwanted exponen-
tial corresponding to n = H for the ground state as well as
excited states created by the interpolating field. For
tem < 0, however, the cancellation only occurs for the
ground-state contribution. One must use a modified fit form
to account for this given by

(31)

|
Fasp(T.tg) = Figp + Be~(E;=mu+ES)T

- Ayl SET410) = (E g, T

+ CebEin, (33)

where the term proportional to A.,. accounts for the
imperfect cancellation when excited states contribute.
Because the unwanted exponential with the smallest
energy has been subtracted, the data plateau more quickly
with 7. This allows one to fit earlier in 7 to the more
precise data and also results in a shorter extrapolation in 7.
Additionally, fits to all 7., < O data were stable for the
allowed values of T < |ry|. The results for F} g, are
shown in Fig. 10. As expected, the data agree for larger x,,
and the error bars are significantly reduced for small x,.
However, because the large cancellation between the
two time orderings is still present, the error bars using
this method also increase dramatically as one goes to
smaller x,.
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The third method, originally put forth in Ref. [61],
calculates F'4 s by exploiting properties of the weak axial-
vector three-point function at zero photon momentum.
Further details and comments are given in the Appendix.
To summarize, one can extract the structure-dependent part
of the axial form factor by replacing the original correlation
function

/ Px / ByePrE (I (10, DIA0) (111, 5))  (34)

/d3 /d3 TP 1) (I (e, )T (0) (111.7)) - (35)

fory = v € {1,2} (herewe set py = 0) and similarly for the
case in which the electromagnetic current is fixed at the
origin. By applying the same steps previously used to extract
F,(ty, T) from Egs. (34) and (35) instead, one directly
obtains F, gp(ty, T). One advantage of this method is that
F,sp is extracted only using the (u,v) € {(1,1),(2,2)}
indices, and so the state n = H does not contribute to 7., < 0
and ty > 0 data. This implies that the data for these time
orderings will plateau more quickly in 7, and a shorter
extrapolation is required. Additionally, using this method
results in at most a 50% cancellation between the time
orderings at the smallest x,. Looking at Fig. 10, these factors
lead to significantly more precise results at small x,. One
downside to this method was that stability was not observed
for the ty < O time ordering for any photon momentum, and
we only used the 7., > 0 data. For this reason, the results for
FIil¢, atlarge x, are less precise than the other two methods.

Another advantage of method III has to do with
discretization effects. It was shown in Ref. [61] that
subtracting the pointlike contribution to F, using the decay
constant f5 calculated in the usual way from a two-point
function results in O(a"/x,) discretization effects, in spite
of the naive expectations based on the lattice Ward identity.
Calculating F 4 sp using method III, however, was shown to
avoid this problem [61], with only discretization errors of
the form O(a?). While methods I and II extract f5 using
the time-integrated three-point function and not the two-
point function, we observe that those procedures still result
in discretization errors of the form a"/ x,. In fact, since the
axial form factor F, and the decay constant fy are
computed from different combinations (see above) of the
time-integrated-correlation-function components, which,
we note, are not related by H(3) symmetry and have their
own lattice artifacts, residual discretization effects that scale
as ~1/x, will survive in F4 5 once the pointlike part of the
axial form factor is subtracted. On the contrary, in method
IIT a unique combination of the time-integrated-correlation-
function components is involved, leading to a complete can-
cellation of the unphysical, infrared-divergent contribution

to F'4 sp at finite cutoff. This is corroborated by the findings
of Fig. 10, where the results for Fl{'s, agree with methods I
and II at large x, but disagree for x, < 0.6. In the light of
the above considerations we choose to use method III in our
final analysis presented in Sec. X.

D. Comparing the different three-point
function analyses

In this section, we compare form-factor results calculated
using the three-point functions in Egs. (7) and (23). For the
comparison, we perform fits to the individual datasets, as
well as simultaneous fits to both sets of data. Note that, for
the strange-quark electromagnetic-current contribution to
the tyy < O time ordering of F, sp, we found that the fit
results were not stable for any allowed values of integration
range 7. For that particular dataset we therefore only used
tem > 0 data. We begin this section by providing theoretical
arguments for which method will be more precise at
extreme values of x, and conclude by discussing the
form-factor results.

Starting with the 7., < 0 data, as the integration range T
is increased, the maximum distance between any of the
three operators is fixed by the source-sink separation ?.
For the try > 0 data, however, the maximum distance is
given by T + |#5|, which increases with 7. This implies that
the signal for the ¢y, > 0 data will decrease with T, while
the signal for the 7., < O data will be relatively constant
with T. Because the unwanted exponentials for the 7., < 0
and ty > 0 data decay more quickly as p, is increased, one
must fit larger values of 7' for small p,. Taken together,
these facts imply that the 7., < 0 data will be more precise
than the ty > 0 data, with a larger relative improvement for
small p,. Similar arguments can be made for the 7., > 0
and ty <0 data, except that as ﬁy is increased, the
unwanted exponentials decay more slowly with 7', and
the roles of the 7., > 0 and ty, < 0 are flipped with regards
to the minimum distance between the operators. Therefore,
the improvement in precision of the #y; < 0 data over the
fem > 0 data will be more significant at large x,.

Figure 11 shows the different time orderings of
Fysp and Fy as a function of x, determined using each
method separately, as well as from a combined analysis. As
expected, at small x,, results using f.,, < O data are more
precise than using fy > 0 data for both F'y and F, gp.
Looking at the vector form factor, for larger x,, we observe
that the ¢y, < 0 result is more precise than the 7., > O result.
While we cannot perform the same comparison for £y sp, we
observed a similar trend for the charm-quark-current con-
tribution to the tyy < 0 and ., > 0 time ordering of F4 ¢p.

To summarize, data calculated using either of the three-
point functions in Eq. (7) or Eq. (23) have inherent
limitations to the precision that can be achieved at the
extreme values of x,. However, we found that performing
combined fits to both sets of data allows us to achieve
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Left (right) column compares F4 s, (Fy) calculated using only the three-point function in Eq. (7) (labeled “weak”), only the

three-point function in Eq. (23) (labeled “em”), and a simultaneous fit of both datasets (labeled “combined”). The different rows show
the full form factors, as well as the individual-time-ordering contributions. The vertical axis label F; indicates the f.,, < 0 and ty > 0
data, and the label F}; indicates the f.,, > 0 and ¢, < 0 data; similar labels are used for F 4 gp. The f.,, < 0 data are more precise than the
ty > 0 data for small x,, and the 7, < 0 data are more precise than the f.,, > 0 data for large p,.

a high precision for both small and large x,. Additionally,
for intermediate x, values, we see an overall improvement
compared to a single method. Lastly, because we had to
discard the fy <0 data for the strange-quark-current
contribution for F, gp, it was crucial to the analysis that
we performed the calculation using both methods.

X. FORM-FACTOR RESULTS USING
ALL IMPROVEMENTS

In this section we summarize the improved methods used
to extract the form factors.

Using the 3D method, we calculate the three-point
functions with the weak and electromagnetic currents at
the origin using the infinite-volume approximation method
described in Sec. VIII A. Calculations are performed in the
rest frame of the meson for photon momenta in the Z direction
Py €27/L{0.1,0.2,0.4,0.6,0.8,1.0,1.4,1.8,2.2,2.4}. The
three-point functions are averaged over positive and neg-
ative photon momentum. We also calculate the three-point
function using Z, random-wall sources for photon momen-
tum p,. € 27/L{0,1} and take ratios with the point
source data as explained in Sec. IX A. We then extract the
form factors as a function of 75 and T by taking linear
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combinations of the improved time-integrated correlation
functions.

Contrary to the analysis methods outlined in Sec. VI, in
the final analysis we perform stability-test fits to the two
individual quark components of the electromagnetic-
current contributions to the form factors; the full form
factors are obtained by summing the fit results of these
contributions. As before, we check that the fit result of an
individual dataset is stable under variations of the fit range.
This stability analysis is first performed to the data with the
weak and EM currents at the origin separately. For the
tem < 0 and ty < 0 data, we search for stability under

variations of the minimum fit ranges 7, and T;;EM, as
well as the distances from the interpolating field T, + 5
and TrM + 1. For the t.,, > 0 and y > 0 data, on the
other hand, stability is only checked under variations of the
minimum fit ranges 77, and T_;*™. The stable fit ranges
determined from these individual fits are then used to
perform simultaneous fits to the 7., <0 (f,n > 0) and
tw > 0 (ty < 0) data. To check that the combined fits are
also stable, we perform fits to a number of different fit
ranges varied about these chosen fit ranges. In particular,
we vary each of the three possible fit ranges individually by
—1, 0, and +1, resulting in 27 total fits. For simultaneous
fits to the ¢, < 0 and tyy > 0 data, the three fit ranges we
vary are T, , ToioM, and Ti5,, + ty, and for simultaneous
fits to the ¢, > 0 and tyy < O data, the three fit ranges we
vary are 75, TrtM, and Tra” + 1. Because we found
that performing global fits to all x, did not significantly
improve the precision of the extrapolated values for the
form factors when using the 3D method, we now take the
stable fit range to the fits at a single x, as the final value.
The most detailed fit forms used in the analysis for the

tem < 0 and 1y, > 0 data are given by

F(‘i)-<(tH,T) —Fla).<

< < AE(T+t —(Ey—Ey+E7 )T
+BF(4) (1 +Bp(q)‘exce ( H>)e Fla)

+Cr, et (36)
F(q>’>'EM(tH, T) _ F(q),< 4 B;(q)e—(Er_EH-‘rE;(q))T
+ CeMenEn, (37)

where F' = Fy, F, gp. Note that these fit forms have the
parameters F’ (@).< B;@, Ey, E;(q) and AE in common. The
fit forms for the 7., > 0 and ty < 0 data are given by

F(‘/>*>(IH, T) = Fla)> 1 B;(q)e(EV_E;w)T
+Chy b, (38)

Fl-<BM(z, T) = Fl)>

+ B;@ (1+ B;(q) AE(T+1)) o ErEr )T

,EXC

+ oM ebE, (39)

which have the parameters F (@)> B;W E;w and AFE in

common. In the cases where the data plateau quickly in T

we use a fit form with B;fq))’(>> =0.

For fits to Fy, we calculate the vector-meson (D7)
energies for all values of 130,. — P, using a lattice dispersion
relation of the form

Ey = my- + a|p|* + B|pI*. (40)

The parameters mpy-, a and f are determined by
performing fits to vector-meson energies determined from
the associated vector-meson two-point functions for
|p|> € (2x/L)*{0,1,2,3,4}. For reasons explained in
Sec. VIII' A, this lattice dispersion relation is valid for
momenta at noninteger multiples of 2z/L up to errors
suppressed exponentially in the volume. The vector-meson
energies are used as priors in fits for the 7., < Oand tyy > 0
time orderings of Fy, with the prior equal to the central
value and the prior width equal to the uncertainty of the fit
result. The D, mass determined from fits to the associated
two-point function is used as a prior in the fits, with the
prior value and prior width equal to the central value and
the uncertainty of the fit result, respectively. The excited-
state energy gap AE between the ground state and the first
excited state created by the interpolating field is extracted
by performing two-exponential fits to the two-point func-
tion. The fit result for AE is used as a prior in the form-
factor fits, with the prior equal to the central value and the
prior width equal to the uncertainty of the fit result scaled
by a factor 1.5.

The vector-form-factor fits are performed using the meth-
ods outlined in Sec. VI. Figure 12 shows examples of the
error bands from fits to Fy, with p, = 2z/L(0,0,0.6). We
calculate the structure-dependent part of the axial form
factor using the improved method in Sec. IX C, and the fits
to Fugp(ty,T) must be modified accordingly. The
improved method involves taking combinations of corre-
lation functions for the same u, v indices of 7, at both
nonzero photon momentum and zero photon momentum.
This combination will receive contributions from two sets
of intermediate states, each with different momentum.
Fitting each of these states is in general difficult. To get
around this, we perform fits accounting only for the
unwanted exponential that is expected to be dominant.
For the 7., > 0 and #;y < O data, the unwanted exponen-
tials decay more slowly as p, is increased. The states with
p, = 0 are therefore subleading, and the fits to the 7., > 0
and ry < 0 data only include the p, # 0 states. On the
other hand, the unwanted exponentials for the 7., < 0 and
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FIG. 12. Fit results for Fy with p, = 2z/L(0,0,0.6). The green horizontal band is the one-sigma region of the desired constant term
in the fit form. The blue and red bands are the one-sigma bands of the fits as a function of T for t5/a = —9 and ty/a = —12,
respectively. For the 7., > 0 and #; > 0 time orderings, the black vertical dashed lines indicate the fit range used. For the 7., < 0 and
ty < 0 time orderings, the error bands are only shown for data included in the fit.
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FIG. 13. Fit results for F, gp with p, = 27/L(0,0, 1.4). The green horizontal band is the one-sigma region of the desired constant
term in the fit form. The blue and red bands are the one-sigma bands of the fits as a function of 7 for 15 /a = =9 and 15 /a = —12,
respectively. For the 7., > 0 and #;; > 0 time orderings, the black vertical dashed lines indicate the fit range used. For the 7., < 0 and

ty < 0 time orderings, the error bands are only shown for data included in the fit. Fits to F EI,\;D
fit ranges, and these data were not included in the final analysis.
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FIG. 14. Results of F4 sp and F'y, as a function of x, calculated using the complete analysis method. Also shown are the contributions
from the individual quark flavors in the electromagnetic current. The data shown in these plots are also provided in machine-readable
files [76]. Note that these results are from a single gauge-field ensemble and thus not yet extrapolated to the continuum limit and physical

pion mass.

tw > 0 data decay more quickly as p, is increased, and so
the fits to these data only include the states with p, = 0.
Figure 13 shows examples of the error bands from fits
to Fygp with p, =27/L(0,0,1.4). Note that fits to

F/E]’\;[’lgs)K(tH,T) were not stable for any allowed values

of the fit ranges for all values of p,; these data were
therefore not included in the final analysis.

The results of Fy g and Fy, as well as the individual
quark electromagnetic-current contributions to the form
factors, are shown in Fig. 14 as a function of x,. Note that
these results are from a single ensemble and still contain
nonzero-lattice-spacing and unphysical-pion-mass system-
atic errors.

XI. CONCLUSIONS

In this work, we presented a study of lattice-QCD
data-generation and analysis methods to determine the
form factors describing radiative-leptonic decays of pseu-
doscalar mesons. We calculated the relevant nonlocal
matrix elements using the 3D, 4D, and 4D~= methods
and performed fits to the data to remove unwanted
exponentials in the sum over intermediate states and from
excited states created by the meson interpolating field. We
demonstrated that the 3D method offers good control over
both types of unwanted exponentials for a significantly
reduced number of propagator solves compared to the 4D
and 4D~ methods.

074507-23



GIUSTI, KANE, LEHNER, MEINEL, and SONI

PHYS. REV. D 107, 074507 (2023)

From there, we further improved upon the 3D method by
calculating the three-point function using the infinite-
volume approximation method, which allows us to access
the full range of kinetically allowed photon momenta
without having to perform calculations in the moving
frame of the meson. We then showed that the hadronic
tensor could be extracted using an alternate three-point
function with the electromagnetic current at the origin
rather than the weak current at origin. The alternate three-
point function can be calculated by reusing propagators
required for the original three-point function. Performing
simultaneous fits to both datasets resulted in reductions in
statistical noise for both F, gp and Fy, with the largest
improvements at small and large x,. Furthermore, having
both datasets increases the maximum possible fit range in T
for data used to calculate a given time ordering of the
hadronic tensor. Calculating both datasets and exploiting
this property were found to be crucial for extracting 4 sp.

Further improvements in the statistical precision were
achieved by multiplying the desired three-point function by
ratios of three-point functions calculated using noise and
point sources. This procedure resulted in significant
improvements in precision for F'4 s and modest improve-
ments for F. We also averaged the three-point functions
over positive and negative photon momentum, which
resulted in significant improvements in precision for Fy
at small x, and modest improvements for F 4 gp. Lastly, we
extracted F'4 g using a subtraction method that utilizes the
properties of the three-point function as p, — 0. This
method has a number of advantages, including an increased
precision at small x,, data plateauing more quickly in 7,
and removal of O(a"/x,) lattice artifacts that diverge for
x, = 0. The optimal combination of methods yields results
for the DF — #*vy structure-dependent vector and axial
form factors in the entire kinematic range with statistical
plus fitting uncertainties of order 5%, using 25 gauge
configurations with 64 samples per configuration.

Using the improved lattice methods developed in this
work, we plan to perform calculations on more ensembles
and perform extrapolations to the physical pion mass and
the continuum for the pion, kaon, Dy, and B radiative-
leptonic-decay form factors. For the By decays, using the
domain-wall action will require extrapolating in the mass.
Alternatively, one could perform calculations at the physi-
cal b-quark mass using the “relativistic heavy-quark action”
[77]. In that context, a new nonperturbative method to tune
the parameters of the relativistic heavy-quark action has
been developed in Ref. [78] from which extensions of the
present study to B-meson physics could benefit. We also
plan to calculate the contributions from the quark-discon-
nected diagrams.

Precise determinations of the QCD form factors for
radiative-leptonic decays are relevant for a number of
phenomenological reasons. At small photon energies, a
calculation of the radiative-leptonic decay rate is needed in

order to include O(a.,,) corrections to purely leptonic
decays. At large photon energies, radiative-leptonic decays
are useful probes of the internal structure of the mesons as
well as sensitive probes of physics beyond the Standard
Model. Additionally, the methods and main outcomes
presented in this study could be relevant for the lattice
calculation of transition form factors describing the inter-
action between pseudoscalar mesons and two off-shell
photons, since similar Euclidean correlation functions
are involved. From such form factors, important informa-
tion can be extracted on parton distribution amplitudes in
hadrons (see, e.g., Ref. [79]), as well as on the hadronic
light-by-light contribution to the muon anomalous mag-
netic moment (see, e.g., Ref. [80] and references therein).
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APPENDIX: THE WEAK AXIAL-VECTOR
THREE-POINT FUNCTION AT ZERO
PHOTON MOMENTUM

In the following, we discuss the nontrivial limit of the
three-point axial-vector correlation function Cg‘w as the
momentum of the photon, p,, goes to zero. This is a key
element in the subtraction of the pointlike contribution
from the relevant hadronic matrix element. To this end we
retrace the main steps of the study put forth in Ref. [61].
The starting point is to scrutinize the electromagnetic Ward
identity (WI) that connects the three-point axial correlation

function Cg‘w with the axial-pseudoscalar correlation

function and, consequently, the matrix element Tﬁb with
the decay constant fy of the meson. As discussed in
Ref. [61], a careful analysis of the cutoff effects reveals
that the WI does not exclude the possibility of different
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artifacts appearing in the decay constant extracted from the
three-point function and that from the two-point function.
However, thanks to a proper change to the kernel of C4 w1t
is possible to nonperturbatively subtract 1nfrared-d1vergent
O(a"/x,) discretization effects which can jeopardize the
extraction of F, gp at small values of x,.

In general, the lattice vector WI at finite lattice spacing

reads
< 00 >—<0 oS¢ >:0, (A1)
Saty (X) g, (x)=0 Say (%) 4 (x)=0

where S is the lattice fermion action, O is a generic
operator, and (---) represents the matrix element of
the operators on the vacuum, which is invariant under
vectorlike rotations controlled by the continuous para-
meter ay (x).

In the case of the correlation function C?.ﬂl/’ defined as

C?,;w(tem’ tH;ﬁyvﬁH)
=a®)y e PP T (1o, 2T (0)p

xy

H(tn.Y)).  (A2)

the WI, at fixed lattice spacing, related to the conserved
electromagnetic current Jhy is given by

Ze_iﬁ,-;ﬂﬁy»i<v;j;m(;em, X)J2A(0) i 1y, 5))

— —45 —ip, X+ipyy -
=a e {5 Fems 05* em lyéx»y}

x <Jy( Vbi (1. 3)) (A3)
where VJ, is the backward discretized derivative and bl a
pseudoscalar interpolating operator having the flavor
quantum numbers of the incoming meson.

To implement method 11T describeg in Sec. IX C, we are
interested in studying the limit ﬁy — 0. This can be done by
using the exact WI satisfied by Cg‘,ﬂy(tematH; Py.Dy) at
finite lattice spacing; in particular we aim to understand the
structure of the correlation function C4 o (Tems i3 Dy Pry) @t

f)y = 6 To this end, we consider the two-point correlation
functions on the right-hand side of Eq. (A3) when v is a
spatial index (the case v = 0 is similar). From the spectral
decomposition we get

azzeiﬁ-wg (0)¢y (111, 3))

_ PefuP)Gu(P) 5,5

2E4(7) o

(A4)

where the dots represent subleading exponentials. In the
previous expression fy(p), Gy(p), and Ey(p) are,

respectively, the decay constant, the matrix element of
the pseudoscalar density used as interpolating operator, and
the energy of the meson.

By differentiating Eq. (A3) with respect to the compo-
nent (p,); of p,, using the previous expression and the
symmetries of the lattice hypercubic group and then setting

Py = 0, one gets

C?,jk(tem,tﬁ;o Pu)

g SaPa)Gu(Br) i)
@ 2E ()

x{(sjk PPy g5 4 ol )]}

Ey(Pu)
(A5)
where the ellipsis represents subleadlng exponentials.

As can be seen, the structure of Cg k( ems tH,O D) is
highly nontrivial. Note in particular the term linear in tg
that arises as a manifestation of the singular behavior at
large distances of the correlation function. In the rest frame

of the meson (py = 6), which we use in our study, the
terms in square brackets of Eq. (A5) disappear leading to

Cg‘,jk(temv tys 6’ 6)
£11(0)Gy (0)

et ...
2mH

= jka_l(stem~tH (A6)

Therefore, we conclude that Cg‘. jk(tem, tys 6 6) can be
analyzed to extract the coefficient of the leading exponen-
tial, viz. the decay constant appearing in the lattice matrix
element of the axial current.

We observe that the use of a nonconserved electromag-
netic current J3™ does not induce the presence of contact
terms which could spoil the enforcement of the correct WI
in the continuum limit. By dimensional analysis, the
coefficient of the leading term in the operator product
expansion of JE™(x)JA(0) scales as ~1/[x|* at small
distances, leading to discretization terms after summation
over x. The use of an improved estimator to extract the
structure-dependent form factor F, gp(E,) makes it pos-
sible to nonperturbatively subtract those lattice artifacts.
This can be achieved by computing the subtracted corre-
lation function

62 T Oy (14.9)

DTS (tem, X) for j =k,

(A7)

whose kernel sufficiently suppresses short-distance con-
tributions. In this way we are able to use less computa-
tionally costly, nonconserved, local lattice vector currents.
Note that, by construction, the estimator (A7) vanishes
identically at x, = 0 with vanishing noise.

074507-25



GIUSTI, KANE, LEHNER, MEINEL, and SONI

PHYS. REV. D 107, 074507 (2023)

[1] E. Bloch and A. Nordsieck, Note on the radiation field of the
electron, Phys. Rev. 52, 54 (1937).

[2] D. Giusti, V. Lubicz, G. Martinelli, C.T. Sachrajda, F.
Sanfilippo, S. Simula, N. Tantalo, and C. Tarantino, First
Lattice Calculation of the QED Corrections to Leptonic
Decay Rates, Phys. Rev. Lett. 120, 072001 (2018).

[3] M. Di Carlo, D. Giusti, V. Lubicz, G. Martinelli, C.T.
Sachrajda, F. Sanfilippo, S. Simula, and N. Tantalo, Light-
meson leptonic decay rates in lattice QCD + QED, Phys.
Rev. D 100, 034514 (2019).

[4] R.L. Workman et al. (Particle Data Group), Review of
particle physics, Prog. Theor. Exp. Phys. 2022, 083CO01
(2022).

[5] F. Kruger and D. Melikhov, Gauge invariance and form-
factors for the decay B — y["[~, Phys. Rev. D 67, 034002
(2003).

[6] D. Melikhov and N. Nikitin, Rare radiative leptonic decays
B, — II7y, Phys. Rev. D 70, 114028 (2004).

[7] F. Dettori, D. Guadagnoli, and M. Reboud, BY — utu~y
from B? — u*u~, Phys. Lett. B 768, 163 (2017).

[8] J. Albrecht, E. Stamou, R. Ziegler, and R. Zwicky,
Flavoured axions in the tail of B, —» u*u~ and B — y*
form factors, J. High Energy Phys. 09 (2021) 139.

[9] M. Beneke, C. Bobeth, and Y.-M. Wang, B, — y£¢ decay
with an energetic photon, J. High Energy Phys. 12 (2020)
148.

[10] S.-L. Chen, A. Dutta Banik, Z. Kang, Q. Qin, and Y.
Shigekami, Signatures of a flavor changing Z’ boson in
B, — yZ', Nucl. Phys. B962, 115237 (2021).

[11] A. Carvunis, F. Dettori, S. Gangal, D. Guadagnoli, and C.
Normand, On the effective lifetime of B, — uuy, J. High
Energy Phys. 12 (2021) 078.

[12] A. Greljo, J. Salko, A. Smolkovi¢, and P. Stangl, Rare b
decays meet high-mass Drell-Yan, arXiv:2212.10497.

[13] D. Guadagnoli, M. Reboud, and R. Zwicky, B? T yas
a test of lepton flavor universality, J. High Energy Phys. 11
(2017) 184.

[14] G.P. Korchemsky, D. Pirjol, and T.-M. Yan, Radiative
leptonic decays of B mesons in QCD, Phys. Rev. D 61,
114510 (2000).

[15] M. Beneke, G. Buchalla, M. Neubert, and C. T. Sachrajda,
QCD Factorization for B — zz Decays: Strong Phases and
CP Violation in the Heavy Quark Limit, Phys. Rev. Lett. 83,
1914 (1999).

[16] S. Descotes-Genon and C. T. Sachrajda, Factorization, the
light cone distribution amplitude of the B meson and the
radiative decay B — ylv;, Nucl. Phys. B650, 356 (2003).

[17] E. Lunghi, D. Pirjol, and D. Wyler, Factorization in leptonic
radiative B — yev decays, Nucl. Phys. B649, 349 (2003).

[18] V.M. Braun and A. Khodjamirian, Soft contribution to
B — y?v, and the B-meson distribution amplitude, Phys.
Lett. B 718, 1014 (2013).

[19] Y.-M. Wang, Factorization and dispersion relations for radi-
ative leptonic B decay, J. High Energy Phys. 09 (2016) 159.

[20] M. Beneke, V. Braun, Y. Ji, and Y.-B. Wei, Radiative
leptonic decay B — yZv, with subleading power correc-
tions, J. High Energy Phys. 07 (2018) 154.

[21] Y.-M. Wang and Y.-L. Shen, Subleading-power corrections
to the radiative leptonic B — yZv decay in QCD, J. High
Energy Phys. 05 (2018) 184.

[22] Y.-L. Shen, Z.-T. Zou, and Y.-B. Wei, Subleading power
corrections to B — ylv decay in PQCD approach, Phys.
Rev. D 99, 016004 (2019).

[23] Y.-L. Shen, Y.-B. Wei, X.-C. Zhao, and S.-H. Zhou,
Revisiting radiative leptonic B decay, Chin. Phys. C 44,
123106 (2020).

[24] S. Adler et al. (E787 Collaboration), Measurement of
Structure Dependent K* — u*v,y Decay, Phys. Rev. Lett.
85, 2256 (2000).

[25] M. Bychkov et al., New Precise Measurement of the Pion
Weak Form Factors in zt — eTvy Decay, Phys. Rev. Lett.
103, 051802 (2009).

[26] F. Ambrosino et al. (KLOE Collaboration), Precise meas-
urement of I'(K — ev(y))/T'(K — uv(y)) and study of
K — evy, Eur. Phys. J. C 64, 627 (2009).

[27] V. A. Duk et al. (ISTRA+ Collaboration), Extraction of
Kaon formfactors from K~ — u~v,y decay at ISTRA+
setup, Phys. Lett. B 695, 59 (2011).

[28] V.I. Kravtsov et al. (OKA Collaboration), Measurement of
the K™ — u*v,y decay form factors in the OKA experi-
ment, Eur. Phys. J. C 79, 635 (2019).

[29] A. Kobayashi et al., New determination of the branching
ratio of the structure dependent radiative K™ — etv,y
decay, arXiv:2212.10702.

[30] M. Ablikim et al. (BESIII Collaboration), Search for the
radiative leptonic decay Dt — ye'v,, Phys. Rev. D 95,
071102 (2017).

[31] M. Ablikim et al. (BESIII Collaboration), Search for the
decay DY — yeTv,, Phys. Rev. D 99, 072002 (2019).

[32] M. Gelb et al. (Belle Collaboration), Search for the rare
decay of BT — #Tuv,y with improved hadronic tagging,
Phys. Rev. D 98, 112016 (2018).

[33] W. Altmannshofer et al. (Belle-II Collaboration), The Belle
II physics book, Prog. Theor. Exp. Phys. 2019, 123C01
(2019); 2020, 029201(E) (2020).

[34] B. Aubert et al. (BABAR Collaboration), Search for the
decays B" — ete”y and B® — u*u~y, Phys. Rev. D 77,
011104 (2008).

[35] R. Aaij et al. (LHCb Collaboration), Measurement of the
BY — 'ty decay properties and search for the B® — u*pu~
and B? — utu~y decays, Phys. Rev. D 105, 012010 (2022).

[36] J. Bijnens and P. Talavera, # — £vy form-factors at two
loop, Nucl. Phys. B489, 387 (1997).

[37] C.Q. Geng, L.-L. Ho, and T.H. Wu, Axial vector form-
factors for K, and 75, at O(p®) in chiral perturbation
theory, Nucl. Phys. B684, 281 (2004).

[38] V. Mateu and J. Portoles, Form-factors in radiative pion
decay, Eur. Phys. J. C 52, 325 (2007).

[39] R. Unterdorfer and H. Pichl, On the radiative pion decay,
Eur. Phys. J. C 55, 273 (2008).

[40] V. Cirigliano, G. Ecker, H. Neufeld, A. Pich, and J. Portoles,
Kaon decays in the Standard Model, Rev. Mod. Phys. 84,
399 (2012).

[41] D. Atwood, G. Eilam, and A. Soni, Pure leptonic radiative
decays B'~,D, — lvy and the annihilation graph, Mod.
Phys. Lett. A 11, 1061 (1996).

[42] P. Colangelo, F. De Fazio, and G. Nardulli, On the decay
mode B~ — u~p,y, Phys. Lett. B 386, 328 (1996).

[43] C.-H. Chang, J.-P. Cheng, and C.-D. Lu, Radiative leptonic
decays of B, meson, Phys. Lett. B 425, 166 (1998).

074507-26


https://doi.org/10.1103/PhysRev.52.54
https://doi.org/10.1103/PhysRevLett.120.072001
https://doi.org/10.1103/PhysRevD.100.034514
https://doi.org/10.1103/PhysRevD.100.034514
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1103/PhysRevD.67.034002
https://doi.org/10.1103/PhysRevD.67.034002
https://doi.org/10.1103/PhysRevD.70.114028
https://doi.org/10.1016/j.physletb.2017.02.048
https://doi.org/10.1007/JHEP09(2021)139
https://doi.org/10.1007/JHEP12(2020)148
https://doi.org/10.1007/JHEP12(2020)148
https://doi.org/10.1016/j.nuclphysb.2020.115237
https://doi.org/10.1007/JHEP12(2021)078
https://doi.org/10.1007/JHEP12(2021)078
https://arXiv.org/abs/2212.10497
https://doi.org/10.1007/JHEP11(2017)184
https://doi.org/10.1007/JHEP11(2017)184
https://doi.org/10.1103/PhysRevD.61.114510
https://doi.org/10.1103/PhysRevD.61.114510
https://doi.org/10.1103/PhysRevLett.83.1914
https://doi.org/10.1103/PhysRevLett.83.1914
https://doi.org/10.1016/S0550-3213(02)01066-0
https://doi.org/10.1016/S0550-3213(02)01032-5
https://doi.org/10.1016/j.physletb.2012.11.047
https://doi.org/10.1016/j.physletb.2012.11.047
https://doi.org/10.1007/JHEP09(2016)159
https://doi.org/10.1007/JHEP07(2018)154
https://doi.org/10.1007/JHEP05(2018)184
https://doi.org/10.1007/JHEP05(2018)184
https://doi.org/10.1103/PhysRevD.99.016004
https://doi.org/10.1103/PhysRevD.99.016004
https://doi.org/10.1088/1674-1137/abb6df
https://doi.org/10.1088/1674-1137/abb6df
https://doi.org/10.1103/PhysRevLett.85.2256
https://doi.org/10.1103/PhysRevLett.85.2256
https://doi.org/10.1103/PhysRevLett.103.051802
https://doi.org/10.1103/PhysRevLett.103.051802
https://doi.org/10.1140/epjc/s10052-009-1177-x
https://doi.org/10.1016/j.physletb.2010.10.043
https://doi.org/10.1140/epjc/s10052-019-7145-1
https://arXiv.org/abs/2212.10702
https://doi.org/10.1103/PhysRevD.95.071102
https://doi.org/10.1103/PhysRevD.95.071102
https://doi.org/10.1103/PhysRevD.99.072002
https://doi.org/10.1103/PhysRevD.98.112016
https://doi.org/10.1093/ptep/ptz106
https://doi.org/10.1093/ptep/ptz106
https://doi.org/10.1093/ptep/ptaa008
https://doi.org/10.1103/PhysRevD.77.011104
https://doi.org/10.1103/PhysRevD.77.011104
https://doi.org/10.1103/PhysRevD.105.012010
https://doi.org/10.1016/S0550-3213(97)00069-2
https://doi.org/10.1016/j.nuclphysb.2003.12.039
https://doi.org/10.1140/epjc/s10052-007-0393-5
https://doi.org/10.1140/epjc/s10052-008-0584-8
https://doi.org/10.1103/RevModPhys.84.399
https://doi.org/10.1103/RevModPhys.84.399
https://doi.org/10.1142/S0217732396001090
https://doi.org/10.1142/S0217732396001090
https://doi.org/10.1016/0370-2693(96)00955-0
https://doi.org/10.1016/S0370-2693(98)00177-4

METHODS FOR HIGH-PRECISION DETERMINATIONS OF ...

PHYS. REV. D 107, 074507 (2023)

[44] C.Q. Geng, C.C. Lih, and W.-M. Zhang, Study of
B, , — ["I7y decays, Phys. Rev. D 62, 074017 (2000).

[45] G. A. Chelkov, M. I. Gostkin, and Z. K. Silagadze, Radia-
tive leptonic B decays in the instantaneous Bethe-Salpeter
approach, Phys. Rev. D 64, 097503 (2001).

[46] C.-W. Hwang, Radiative leptonic decays of heavy mesons in
heavy quark limit, Eur. Phys. J. C 46, 379 (2006).

[47] N. Barik, S. Naimuddin, P. C. Dash, and S. Kar, Radiative
leptonic decay: B~ — u~ 7,y in a relativistic independent
quark model, Phys. Rev. D 77, 014038 (2008).

[48] Y.-L.Shen and G. Li, Radiative D(D,) decays in the covariant
light front approach, Eur. Phys. J. C 73, 2441 (2013).

[49] A. Kozachuk, D. Melikhov, and N. Nikitin, Rare FCNC
radiative leptonic B, — yI*I~ decays in the Standard
Model, Phys. Rev. D 97, 053007 (2018).

[50] S. Dubnicka, A.Z. Dubni¢kova, M. A. Ivanov, A. Liptaj, P.
Santorelli, and C. T. Tran, Study of B, — £"¢~y decays in
covariant quark model, Phys. Rev. D 99, 014042 (2019).

[51] A. Khodjamirian, G. Stoll, and D. Wyler, Calculation of
long distance effects in exclusive weak radiative decays of B
meson, Phys. Lett. B 358, 129 (1995).

[52] A. Ali and V. M. Braun, Estimates of the weak annihilation
contributions to the decays B — py and B — wy, Phys. Lett.
B 359, 223 (1995).

[53] G. Eilam, I. E. Halperin, and R. R. Mendel, Radiative decay
B — lvy in the light cone QCD approach, Phys. Lett. B 361,
137 (1995).

[54] T.M. Aliev, A. Ozpineci, and M. Savci, B, — I "y decays
in light cone QCD, Phys. Rev. D 55, 7059 (1997).

[55] P.Ball and E. Kou, B — yev transitions from QCD sum rules
on the light cone, J. High Energy Phys. 04 (2003) 029.

[56] T. Janowski, B. Pullin, and R. Zwicky, Charged and neutral
B“’dis — y form factors from light cone sum rules at NLO,
J. High Energy Phys. 12 (2021) 008.

[57] G.Burdman, J. T. Goldman, and D. Wyler, Radiative leptonic
decays of heavy mesons, Phys. Rev. D 51, 111 (1995).

[58] M. Saleh Khan, M. Jamil Aslam, A.H.S. Gilani,
and Riazuddin, Form-factors and branching ratio for the
B — lvy decay, Eur. Phys. J. C 49, 665 (2007).

[59] S. Kiirten, M. Zanke, B. Kubis, and D. van Dyk, Dispersion
relations for B~ — ¢~p0,¢'~¢'" form factors, Phys. Rev. D
107, 053006 (2023).

[60] C. Kane, C. Lehner, S. Meinel, and A. Soni, Radiative
leptonic decays on the lattice, Proc. Sci. LATTICE2019
(2019) 134 [arXiv:1907.00279].

[61] A. Desiderio et al., First lattice calculation of radiative
leptonic decay rates of pseudoscalar mesons, Phys. Rev. D
103, 014502 (2021).

[62] C. Kane, D. Giusti, C. Lehner, S. Meinel, and A. Soni,
Controlling unwanted exponentials in lattice calculations of
radiative leptonic decays, Proc. Sci. LATTICE2021 (2022)
162 [arXiv:2110.13196].

[63] R. Frezzotti, M. Garofalo, V. Lubicz, G. Martinelli, C. T.
Sachrajda, F. Sanfilippo, S. Simula, and N. Tantalo, Com-
parison of lattice QCD + QED predictions for radiative
leptonic decays of light mesons with experimental data,
Phys. Rev. D 103, 053005 (2021).

[64] Y. Aoki et al. (RBC and UKQCD Collaborations),
Continuum limit physics from 2 + 1 flavor domain wall
QCD, Phys. Rev. D 83, 074508 (2011).

[65] T. Blum et al. (RBC and UKQCD Collaborations), Domain
wall QCD with physical quark masses, Phys. Rev. D 93,
074505 (2016).

[66] M. Beneke and J. Rohrwild, B meson distribution amplitude
from B — ylv, Eur. Phys. J. C 71, 1818 (2011).

[67] P. A. Boyle, L. Del Debbio, N. Garron, A. Juttner, A. Soni,
J.T. Tsang, and O. Witzel (RBC/UKQCD Collaborations),
SU(3)-breaking ratios for D and B, mesons, arXiv:
1812.08791.

[68] E. Shintani, R. Arthur, T. Blum, T. Izubuchi, C. Jung, and C.
Lehner, Covariant approximation averaging, Phys. Rev. D
91, 114511 (2015).

[69] S. Hashimoto, A.X. El-Khadra, A.S. Kronfeld, P.B.
Mackenzie, S. M. Ryan, and J. N. Simone, Lattice QCD
calculation of B — DI decay form-factors at zero recoil,
Phys. Rev. D 61, 014502 (1999).

[70] A.X. El-Khadra, A.S. Kronfeld, P. B. Mackenzie, S. M.
Ryan, and J. N. Simone, The semileptonic decays B — zlv
and D — zlv from lattice QCD, Phys. Rev. D 64, 014502
(2001).

[71] T. Blum, P. A. Boyle, V. Giilpers, T. Izubuchi, L. Jin, C. Jung,
A. Jiittner, C. Lehner, A. Portelli, and J. T. Tsang (RBC and
UKQCD Collaborations), Calculation of the Hadronic Vac-
uum Polarization Contribution to the Muon Anomalous
Magnetic Moment, Phys. Rev. Lett. 121, 022003 (2018).

[72] X. Feng and L. Jin, QED self energies from lattice QCD
without power-law finite-volume errors, Phys. Rev. D 100,
094509 (2019).

[73] G.C. Donald, C.T.H. Davies, J. Koponen, and G.P.
Lepage, Prediction of the Dj Width from a Calculation
of its Radiative Decay in Full Lattice QCD, Phys. Rev. Lett.
112, 212002 (2014).

[74] B. Pullin and R. Zwicky, Radiative decays of heavy-light
mesons and the fg)]ﬂHl decay constants, J. High Energy
Phys. 09 (2021) 023.

[75] X.-Y. Tuo, X. Feng, L.-C. Jin, and T. Wang, Lattice QCD
calculation of K — £v,£'"¢'~ decay width, Phys. Rev. D
105, 054518 (2022).

[76] See  Supplemental Material at  http:/link.aps.org/
supplemental/10.1103/PhysRevD.107.074507 for plain-text
files containing the numerical values of the data points
shown in Fig. 14.

[77] N. H. Christ, M. Li, and H.-W. Lin, Relativistic heavy quark
effective action, Phys. Rev. D 76, 074505 (2007).

[78] D. Giusti and C. Lehner, A new framework to tune
an improved relativistic heavy-quark action, Proc. Sci.
LATTICE2021 (2022) 042 [arXiv:2111.15614].

[79] G.S. Bali, V. M. Braun, B. GliBle, M. Gockeler, M. Gruber,
F. Hutzler, P. Korcyl, A. Schéfer, P. Wein, and J.-H. Zhang,
Pion distribution amplitude from Euclidean correlation
functions: Exploring universality and higher-twist effects,
Phys. Rev. D 98, 094507 (2018).

[80] A. Gérardin, H. B. Meyer, and A. Nyffeler, Lattice calcu-
lation of the pion transition form factor with Ny =2+ 1
Wilson quarks, Phys. Rev. D 100, 034520 (2019).

[81] J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither,
A. Grimshaw, V. Hazlewood, S. Lathrop, D. Lifka,
G.D. Peterson, R. Roskies, J.R. Scott, and N. Wilkins-
Diehr, XSEDE: Accelerating scientific discovery, Comput.
Sci. Eng. 16, 62 (2014).

074507-27


https://doi.org/10.1103/PhysRevD.62.074017
https://doi.org/10.1103/PhysRevD.64.097503
https://doi.org/10.1140/epjc/s2006-02510-2
https://doi.org/10.1103/PhysRevD.77.014038
https://doi.org/10.1140/epjc/s10052-013-2441-7
https://doi.org/10.1103/PhysRevD.97.053007
https://doi.org/10.1103/PhysRevD.99.014042
https://doi.org/10.1016/0370-2693(95)00972-N
https://doi.org/10.1016/0370-2693(95)01087-7
https://doi.org/10.1016/0370-2693(95)01087-7
https://doi.org/10.1016/0370-2693(95)01088-8
https://doi.org/10.1016/0370-2693(95)01088-8
https://doi.org/10.1103/PhysRevD.55.7059
https://doi.org/10.1088/1126-6708/2003/04/029
https://doi.org/10.1007/JHEP12(2021)008
https://doi.org/10.1103/PhysRevD.51.111
https://doi.org/10.1140/epjc/s10052-006-0152-z
https://doi.org/10.1103/PhysRevD.107.053006
https://doi.org/10.1103/PhysRevD.107.053006
https://doi.org/10.22323/1.363.0134
https://doi.org/10.22323/1.363.0134
https://arXiv.org/abs/1907.00279
https://doi.org/10.1103/PhysRevD.103.014502
https://doi.org/10.1103/PhysRevD.103.014502
https://doi.org/10.22323/1.396.0162
https://doi.org/10.22323/1.396.0162
https://arXiv.org/abs/2110.13196
https://doi.org/10.1103/PhysRevD.103.053005
https://doi.org/10.1103/PhysRevD.83.074508
https://doi.org/10.1103/PhysRevD.93.074505
https://doi.org/10.1103/PhysRevD.93.074505
https://doi.org/10.1140/epjc/s10052-011-1818-8
https://arXiv.org/abs/1812.08791
https://arXiv.org/abs/1812.08791
https://doi.org/10.1103/PhysRevD.91.114511
https://doi.org/10.1103/PhysRevD.91.114511
https://doi.org/10.1103/PhysRevD.61.014502
https://doi.org/10.1103/PhysRevD.64.014502
https://doi.org/10.1103/PhysRevD.64.014502
https://doi.org/10.1103/PhysRevLett.121.022003
https://doi.org/10.1103/PhysRevD.100.094509
https://doi.org/10.1103/PhysRevD.100.094509
https://doi.org/10.1103/PhysRevLett.112.212002
https://doi.org/10.1103/PhysRevLett.112.212002
https://doi.org/10.1007/JHEP09(2021)023
https://doi.org/10.1007/JHEP09(2021)023
https://doi.org/10.1103/PhysRevD.105.054518
https://doi.org/10.1103/PhysRevD.105.054518
http://link.aps.org/supplemental/10.1103/PhysRevD.107.074507
http://link.aps.org/supplemental/10.1103/PhysRevD.107.074507
http://link.aps.org/supplemental/10.1103/PhysRevD.107.074507
http://link.aps.org/supplemental/10.1103/PhysRevD.107.074507
http://link.aps.org/supplemental/10.1103/PhysRevD.107.074507
http://link.aps.org/supplemental/10.1103/PhysRevD.107.074507
http://link.aps.org/supplemental/10.1103/PhysRevD.107.074507
https://doi.org/10.1103/PhysRevD.76.074505
https://doi.org/10.22323/1.396.0042
https://doi.org/10.22323/1.396.0042
https://arXiv.org/abs/2111.15614
https://doi.org/10.1103/PhysRevD.98.094507
https://doi.org/10.1103/PhysRevD.100.034520
https://doi.org/10.1109/MCSE.2014.80
https://doi.org/10.1109/MCSE.2014.80

