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We present a lattice determination of the leading-order hadronic vacuum polarization (HVP)
contribution to the muon anomalous magnetic moment, a}fVP , in the so-called short and intermediate
time-distance windows, a3° and a,", defined by the RBC/UKQCD Collaboration [Phys. Rev. Lett. 121,
022003 (2018)]. We employ gauge ensembles produced by the Extended Twisted Mass Collaboration
(ETMC) with Ny =2+ 1+ 1 flavors of Wilson-clover twisted-mass quarks with masses of all the
dynamical quark flavors tuned close to their physical values. The simulations are carried out at three values
of the lattice spacing equal to ~0.057, 0.068 and 0.080 fm with spatial lattice sizes up to L ~ 7.6 fm. For
the short-distance window we obtain a5 (ETMC) = 69.27(34) x 107'°, which is consistent with the
recent dispersive value of a3P(e"e™) = 68.4(5) x 107!% [Colangelo et al., Phys. Lett. B 833, 137313
(2022)]. In the case of the intermediate window we get the value a)) (ETMC) = 236.3(1.3) x 107'%, which
is consistent with the result a)’ (BMW) = 236.7(1.4) x 10~'° [Borsanyi er al., Nature (London) 593, 51
(2021)] by the BMW Collaboration as well as with the recent determination by the CLS/Mainz group of
ay (CLS) = 237.30(1.46) x 107'% [C& ez al., Phys. Rev. D 106, 114502 (2022)]. However, it is larger than
the dispersive result of ay (e"e™) =229.4(1.4) x 10710 by approximately 3.6 standard deviations. The
tension increases to approximately 4.5 standard deviations if we average our ETMC result with those by
BMW and CLS/Mainz. Our accurate lattice results in the short and intermediate windows point to a
possible deviation of the e e~ cross section data with respect to Standard Model predictions in the low- and
intermediate-energy regions but not in the high-energy region.
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I. INTRODUCTION

The anomalous magnetic moment of the muon a, =
(g —2)/2 is one of the most precisely determined quantities
in physics, both experimentally and theoretically. It is a
crucial quantity for which a long-standing tension between
the experimental value and the Standard Model (SM)
prediction might provide important evidence for new
physics beyond the SM. The Fermilab Muon g — 2 experi-
ment (E989) has recently published the results of the
analysis of the run-1 data collected in 2018 [1-4], finding
a remarkable good agreement with the previous E821
measurement at Brookhaven National Laboratory [5].
The current experimental world average [1]

a,® = 116592061(41) x 10~ (1)

has a relative uncertainty of 0.35 ppm. The ongoing data
analysis of the second and third runs at Fermilab will allow
one to further reduce the uncertainty on the experimental
value by a factor of 4, and a forthcoming experiment at
Japan Proton Accelerator Research Complex (E34) [6] is
expected to reach a similar precision.

From the theoretical side, the dominant source of
uncertainty in the determination of @, comes from the
leading-order hadronic vacuum polarization (HVP) term
al™? of order O(aZ,) and, to a less extent, from the
hadronic light-by-light scattering contributions of order
O(a?,,). The most precise prediction for the HVP con-
tribution has been obtained till now using a data-driven
approach, in which the HVP contribution is reconstructed
from the experimental cross section data for electron-
positron annihilation into hadrons, using dispersion rela-
tions and assuming only SM physics at high energy [7-12].
Such dispersive analyses find [13] a value of

allVP(disp) = 6931(40) x 1071, (2)

which corresponds to an overall uncertainty on a,, of 0.37
parts per million (ppm). The difference between the
experimental result of Eq. (1) and the value a;™, obtained
by using Eq. (2) for the HVP contribution, is

Aa, = a;® — ai™ = 251(41)(43) x 107!
= 251(59) x 1071, (3)

where the first error is from the experiment and the second
one from the theory [13]. The difference given in Eq. (3)
corresponds to a discrepancy of 4.2 standard deviations
(4.20). To match the accuracy of the upcoming experi-
mental results, it is very important to check the result of the
dispersive analysis using different methods and to reduce
the theoretical uncertainty. To this end a complementary
and powerful approach to compute the HVP term is
provided by lattice QCD (LQCD) [13]. In the LQCD

formulation, a;/"* can be extracted from the zero three-

momentum Euclidean correlation function of two electro-
magnetic (em) currents, V(z), employing the so-called
Euclidean time-momentum representation, as described
in Sec. IL.

In recent years, impressive progress has been
made by the LQCD community enabling the evaluation
of a}lVP with increasing precision, reaching the goal of a
few permille accuracy. A breakthrough concerning the
precision achieved came from the recent lattice calculation
performed by the BMW Collaboration, that found a values
of ajVP(BMW) = 7075(55) x 107" [14], corresponding
to a relative uncertainty of 0.8%. The result of the BMW
Collaboration differs from the dispersive one of Eq. (2) at
the level of 2.1¢ and reduces the difference given by Eq. (3)
to 1.5¢. Independent LQCD determinations of the HVP
term with a few permille accuracy are needed in order to
confirm the BMW result. This requires a joint effort from
the lattice QCD community because of the large degree of
complexity inherent to such calculations and of the delicate
task of controlling all sources of systematic errors in order
to achieve the targeted precision.

In this respect, the so-called short and intermediate
time-distance windows, introduced by the RBC-UKQCD
Collaboration [15], are very important benchmark quan-
tities. They allow for comparisons not only among
determinations from lattice methods, which are ab initio
SM predictions, but also with the results obtained by the
dispersive approach using the experimental data from
ete” — hadrons. By modifying the integration kernel
using suitably defined smooth step functions that are
tailored to exponentially suppress contributions from
given time regions, it is possible to decompose the full
HVP as the sum of three terms:

af"?' = a3® + ay + a®, (4)
which probe separately short- (a;°), intermediate- ()
and long-distance physics (a;), respectively. In the long-
distance window, since the tail of the correlator V(7) is
dominated by light two-pion states, one typically observes
large statistical noise and large finite size -effects
(FSEs), the treatment of which requires refined tech-
niques. On the contrary, in the short- and intermediate-
distance windows, FSEs are moderate and, moreover, the
lattice data are more precise, allowing a cleaner compari-
son across independent lattice calculations. The short-
distance contribution aED suffers from large discretization
artifacts, associated to the behavior of the correlator V(¢)
at small time distances. Even though this may present a
significant challenge, the comparison among the results
obtained with different lattice regularizations provides the
opportunity to test the robustness of the continuum limit
extrapolation.
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In this work, we present the results of the Extended
Twisted Mass Collaboration (ETMC) on the short-distance
and intermediate window contributions related to the
isospin-symmetric up- and down- (¢), strange- (s) and
charm- (c¢) quark-connected contributions, as well as the
quark-disconnected contributions (disc). The analysis is
performed using gauge configurations generated by ETMC
with Ny =2+ 1+ 1 flavors of Wilson-clover twisted-
mass sea quarks with masses tuned very close' to their
physical values [16—19]. We will refer to these ensembles
as physical point ensembles. These ensembles correspond
to three values of the lattice spacing, namely a ~0.057,
0.068, and 0.080 fm, determined in the meson sector (see
Appendix A 2), and spatial lattice sizes ranging from L =~
5.1 fm to L ~ 7.6 fm.

Using such physical point gauge ensembles better
controls the systematic error arising from the chiral
extrapolation that would be required had one used ensem-
bles simulated with heavier than 140 MeV pions. After the
continuum and infinite volume extrapolations, we obtain
for the short-distance window

aSP(£) = 48.24(20) x 10719,
asP(s) = 9.074(64) x 1071,
aP(c) = 11.61(27) x 10719,
a3P (disc) = —0.006(5) x 10717, (5)

where the first three results refer to the quark-connected
contributions to a;’D from light, strange and charm quarks
and the latter is the sum of all quark-disconnected
(flavor diagonal and off-diagonal) contributions.’ Adding
to Eq. (5) also the contribution a3P(b) = 0.32 x 10717
coming from the bottom quark (see also the lattice results of
Ref. [20]) and the QED correction a,° (QED) = 3 x 107'2,
both estimated in perturbative QCD and QED using the
RHAD software package [21], we get

'The sea s and ¢ quark mass values are fixed by imposing at a
few percent accuracy level the physical conditions detailed in
Ref. [16], while the sea light-quark mass values lie for all lattice
spacings within 5%—-10% from the “physical” value defined by
the M5°%“P = 135 MeV, and a check and/or correction for the
effect of the corresponding mismatch on the observables of
interest is carefully carried out in our analyses. For more details
see, Appendix A.

The separatlon of quark-connected and -disconnected con-
tributions to a given correlator can be expressed in terms of local
correlators by formally introducing, when needed, a suitable
number of extra valence flavors (having the same masses as the
physical quarks) and the corresponding ghosts. In this work,
the different contributions to af,D ‘W can be separately extracted
from local current-current correlators computed within the
renormalizable mixed-action lattice setup described in detail in
Appendix A.

aSP(ETMC) = 69.27(34) x 10710, (6)

In the case of the intermediate-distance window we obtain

a¥ () = 206.5(13) x 1071,
ay (s) = 27.28(20) x 10719,
a¥(c) = 2.90(12) x 1071,
ay (disc) = —0.78(21) x 1071, (7)

We note that in this work we do not compute the isospin-
breaking (IB) contribution @) (IB). Taking for the latter the
BMW value of Ref. [14], namely a, (IB)=0.43(4)x 10",
and summing up with the contributions of Eq. (7), we get

a¥ (ETMC) = 236.3(1.3) x 1071, (8)

which is consistent both with the BMW result a’ (BMW) =
236.7(1.4) x 1071° [14] and the recent CLS/Malnz one
ay (CLS) = 237.30(1.46) x 107'% [22] to better than lo
level. The nice consistency observed among three accurate
determinations of a:f’ represents a remarkable success for
LQCD computations.

We can compare our lattice results with those
obtained with dispersive methods using the experimental

e"e” — hadronsdata. The dispersive results obtained in
Refs. [11,23] are

a;P(eTe™) = 68.44(48) x 10719, 9)

a)jv(e+ ~) =229.51(87) x 10719, (10)
while the analyses of Refs. [8§—11] and the merging
procedure of Ref. [13], which takes into account tensions
in the e" e~ database in a more conservative way, yield [24]

asP(ete) = 68.4(5) x 10719, (11)

ay(eTe”) =229.4(1.4) x 10719, (12)

Our result given in Eq. (6) agrees with the dispersive one of
Eq. (11) within ~1.4¢ in the short-distance window, while
there is a ~3.60 tension between our result of Eq. (8) and
the corresponding dispersive one of Eq. (12) in the
intermediate window. The tension increases to ~4.2¢ if
we average our result of Eq. (8) with the BMW one,
obtaining ay = 236.49(95) x 10~'°. Taking into account
also the recent CLS/Mainz result we get an average of three
lattice computations equal to a) = 236.73(80) x 107!,
which turns out to be in tension w1th the dispersive result of
Eq. (10) by ~6.16 and the more conservative result of
Eq. (12) by ~4.5¢.

The impact of this work is twofold: Firstly, concerning
the intermediate-distance window, we confirm the two
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recent and most accurate LQCD results by BMW and CLS/
Mainz, the consequence of which is to increase the
discrepancy with the corresponding prediction based on
eT e cross section data to the remarkable significance level
of ~4.5 standard deviations. Secondly, we accurately
compute, for the first time, the contribution from the
short-distance window, showing that there is no significant
tension with the corresponding dispersive result. This
clearly indicates that any deviation between the QCD +
QED theory predictions, as used in the low-energy SM
framework used in lattice calculations, and the eTe™ cross
section experiments is unlikely to occur at high values of
the center-of-mass energy, which corresponds to small
values of the Euclidean time distance. Instead, a significant
deviation of QCD + QED predictions from e*e™ cross
section data may occur in the low- and/or intermediate-
energy regions. Such a possibility has been also discussed
in recent works [25-29] exploiting the constraints from SM
electroweak precision tests and low-energy observables.

The paper is organized as follows: In Sec. II, we provide
the relevant notations and the definitions of the time
windows. In Sec. III we present our determinations of
the light-, strange- and charm-quark-connected contribu-
tions to the vector correlator and we describe some basic
steps of our strategy to reach the physical point for all the
time windows. Sections III A and III B contain, respec-
tively, the results of our detailed analysis of the continuum
limit for the short- and intermediate-distance windows for
all the quark flavors. In Sec. IV, we evaluate the sum of all
quark-disconnected flavor diagonal and off-diagonal con-
tributions. Section V is devoted to comparing with other
available LQCD calculations as well as with the most
recent dispersive results available for the HVP time-
window observables according to Refs. [23,24]. The out-
come of the comparison with dispersive predictions and its
phenomenological implications are briefly discussed. Our
conclusions are summarized in Sec. VI.

Further in-depth technical information is given in
the Appendixes as follows: In Appendix A, we briefly
describe our mixed-action setup and give details about the
lattice simulations, including an improved determination
of the lattice spacing with respect to the one carried
out in Ref. [18]. In Appendix B, we evaluate the scale-
invariant renormalization constants (RCs) of the vector and
axial-vector local quark currents, Zy and Z,, employing a
hadronic method based on Ward identities (WIs). Combined
with a high-statistics determination of the relevant
correlators, we achieve a high-precision determination of
Zy and Z,, as needed to guarantee a final accuracy of ~0.5%
for the short and intermediate time-distance windows.
In Appendix C, we briefly describe our strategy to reach
the physical values of the strange- and charm-quark masses,
mP™ and  mPMS, using various hadronic inputs. In
Appendix D, we prove that for lattice QCD with Wilson
quarks the (UV finite) RC of the flavor-singlet local vector

current, Zy», is equal to the nonsinglet vector current RC,
Zy, to all orders in the strong coupling. To the best of our
knowledge, the proof of this important and useful relation
has not been provided so far in the literature. In Appendix E,
we collect the relevant analytic formulas for the evaluation of
the leading lattice spacing artifacts at short time distances in
the free theory, i.e. at order O(a?). In Appendix F, we
provide some details of our parametrization of FSEs in the
time windows.

II. TIME-MOMENTUM REPRESENTATION

Following our previous works [30-32], we adopt the
time-momentum representation [33] and evaluate the HVP

contribution to the muon anomalous magnetic moment

HVP
a, as

af"? =243, /°° dte? K (m, 1)V (1), (13)
0

where ¢ is the Euclidean time and the kernel function
K(m,t) is defined as’

K(z) 22/)1dy(1 —y){l —j%}(%\/lyfyﬂ,
o(y) = 0

Jo\y
y

The Euclidean vector correlator V(¢) is defined as

V(t)E;Z / PxEDTO)  (15)

i=1,23

with J,(x) being the electromagnetic (em) current operator

Ju(x) = Z Qem,flpf(x)yMl//f(x) (16)

f=u,d,s,c,...

and q,, s the electric charge for the quark flavor f (in units
of the absolute value of the electron charge). The vector
correlator V(¢) can be evaluated on a lattice with spatial
volume V = L? and time extent T at discretized values of
the time distance ¢/a, ranging from 0 to T/a.

A. The RBC/UKQCD windows in the time-momentum
representation

Following the analysis of the RBC/UKQCD
Collaboration [15], each of the three terms appearing in
Eq. (4) can be obtained from Eq. (13) with integration
kernel K(m,t) multiplied by suitably smoothed Heaviside
step functions, namely

The leptonic kernel K(z) is proportional to z> at small values
of z and it goes to 1 for z —» oo.

074506-4



LATTICE CALCULATION OF THE SHORT AND INTERMEDIATE ...

PHYS. REV. D 107, 074506 (2023)

1.0 T T T I
L /’—~\\
r % N ]
/ o,
0.8 o , \\ B ]
L / \ '
= L / —SD Ny
g 0.6 - // B \\ k g
= - ; w A ]
[=) .
<n® 0.4 _— Y2 U R LD K \\ —_
L / SN 1
02 / FAEEEAN b
C , . N ]
7 " N
oobe=x=" . .. R34 L =y
0.0 0.5 1.0 1.5
t (fm)
FIG. 1. The time-modulating function ©"*(¢) for w = {SD, W,

LD}, defined in Egs. (18)—(20), versus the time distance #
for the values of the parameters f,, f; and A given
in Eq. (21).
o0
a}f:Zaﬁm/ di* K (m,1)©" (1)V(r), w={SD,W,LD},
0
(17)

where the time-modulating function ©"*(¢) is given by

1
SD =1
@ (t) - 1 1 + e_z(t_lo)/A ’ (18)
1 1
AW — —
O = s T Tz (19)
LD — 1
O (1) = (20)

1+ e~ 21=11)/A
with the parameters ¢, t;, and A chosen [15] to be equal to

to = 0.4 fm, t; =1 fm, A =0.15fm. (21)

The resulting time-modulating functions @5P-W-LD(7)
shown in Fig. 1.

In this work, we focus on the determination of the first
two terms, i.e. w = {SD, W} corresponding to the short-
and intermediate-distance window contributions, postpon-
ing the analysis of the more demanding long-distance (LD)
term to a future work.

The fermionic Wick contractions appearing in the right-
hand side (rhs) of Eq. (15) give rise to two distinct topologies
of Feynman diagrams, namely to the quark-connected and
quark-disconnected contributions. Connected contributions
are flavor diagonal, while the disconnected ones have both
diagonal and off-diagonal flavor components. In what
follows we decompose @), into the following contributions:

are

ay = ay () + ay(s) + ay(c) + ay(disc) +---, (22)
where the first three terms correspond to the quark-con-
nected contributions of mass degenerate up and down ()
quarks, and a strange () and a charm (c) quark, respectively,

while the fourth term represents all quark-disconnected
contributions. In Eq. (22) the ellipses corresponds to
subleading terms that we do not address directly in this
work, namely the IB effects of order O(a},) and
O(a?,,(my —m,)), as well as the contribution of quarks
heavier than the charm. Moreover, for the disconnected term
ay;(disc) we evaluate both the flavor-diagonal and the off-
diagonal light-, strange- and charm-quark contributions.

B. The RBC/UKQCD windows in energy

Let us here make contact with the dispersive approach
used in Refs. [11,23]. Using the once-subtracted dispersion
relations, the vector correlator V() can be written as (see,
e.g., Ref. [30])

!
1222

V(1) / " dEE2RMA(E)e ",
E

thr

(23)

where R"4(E) is related to the one-photon e*e~ annihi-
lation cross section into hadrons, 6"(E), by

2
dra;

m Rhad (E)

hadE:
o () 3E?

(24)
with E being the e*e™ center-of-mass energy and Eg, =

M in QCD + QED. In terms of R"I(E) the HVP term
afV? is given by

2a2,m3 [ 1 _(E
e — R [ dE— K(— |R"™Y(E), (25
all 971_2 /Elhr E3 m” ( ) ( )

where the leptonic kernel K(x) is defined as*

_ 3 . [
K(x) :sz/o dzz*e ™K (z)
32/1d(1 ) Y (26)
IR S TRy

Consequently, the time-window contribution (17) can be
written as

202, m> [ 1 ./ E\ =
wo_ emyu JdE— K= @wERhadE,

(27)

thr

where the energy-modulating function ©"(E) is given by

- ® dt?e 'K (m,1)®" (1)
®W(E) — f() foo dtt2 _EtKﬂ
5 e (my,t)

(28)

“The leptonic kernel K (x) is proportional to x? at small values
of x and it goes to 1 for x — co. At the two-pion threshold one has
K(2M,/m,) ~0.63.
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FIG. 2. The energy-modulating function ©Y(E) for
w = {SD, W, LD}, defined in Eq. (28), versus the energy E.
The vertical lines represent the location of the two-pion threshold
(short-dashed line) and of the p-meson resonance (dot-dashed
line).

and shown in Fig. 2 for w= {SD,W,LD} (cf. also
Ref. [24]).

III. THE CONNECTED CONTRIBUTIONS
TO a;° AND a)¥

In this work, we analyze four gauge ensembles recently
produced by ETMC in isospin-symmetric QCD (isoQCD)
with Ny =2+ 1+ 1 flavors of Wilson-clover twisted-
mass quarks as described in Refs. [16-19]. The parameters
of the ensembles are given in Table V of Appendix A,
where our lattice setup and technical details are thoroughly
discussed.

In this section, we present the evaluation of the light-,
strange- and charm-quark-connected vector correlators [see
Eq. (A11)]

Ve = 5@ 30 LU T 0) @, (29)

X =13
P 1
() =3 322 (e (W1l (0)(©, (30)
X = 13
re 1 ccC cc
“( 5—32213 (e (5] (O)©, (31

where reg € {tm, OS} specifies the two types of ultraviolet
(UV) regularization employed for the renormalized local
vector currents J, i, and J,, og defined in Eq. (A12) for each
quark flavor. The suffixes £Z’, ss’ and cc’ on the currents
denote that the quark and antiquark fields in each current
correspond to different valence replica, thereby giving rise
to connected (C) Wick contractions only.

Our high-precision determination of the two scale-
invariant RCs Zy, and Z,, needed to renormalize the local
vector currents in the tm and OS regularizations, is
described in Appendix B.

Results for the correlators Vi"(z) and V?®(z) for f =
{¢, s, c} evaluated on the ETMC ensembles cB211.072.64
and c¢D211.054.96 are shown in Fig. 3. For all ensembles,
regularizations and quark flavors, the connected vector
correlators are precise at the level of percent or better up to
time distances of ~1.5 fm. Such a range covers the whole
time region relevant for the determination of the short- and
intermediate-distance window contributions (see Fig. 1).
We note that for each quark flavor the correlators Vi ()

and V(1) should differ only by discretization effects of

order O(a?). From Fig. 3, it can clearly be seen that at very
small time distances, ¢ < 0.2-0.3 fm the discretization
artifacts are large, while they are small for # = 0.3 fm.

For each of the four ensembles of Table V in
Appendix A, the light-quark correlators V'™ (¢) and V95(1)
are computed using No,... = 10° stochastic spatial sources
per gauge configuration. The sources are randomly dis-
tributed in the time slice, diagonal in spin and diluted in the
color variable. The statistical errors are found to scale as
1/v/Ngource Up to time distances of ~1.5 fm.

The strange-quark-connected vector correlators Vi™(¢)
and V95(¢) are also computed using the four ensembles of
Table V of Appendix A. Depending on the ensemble
considered, up to 64 spatial stochastic sources are used
for the inversions of the Dirac operator. As described in
Appendix C, for each ensemble we perform simulations at
two values of the valence bare strange-quark mass, au,, in
order to interpolate the results for a3P(s) and a, (s) to the

physical strange-quark mass m?™".

Unlike the light and strange sectors, the charm-
quark-connected vector correlators V() and VOS(r) are
computed using the six ETMC ensembles listed in
Table XIII of Appendix C. Namely, beyond the three
physical point ensembles cB211.072.64, ¢C211.060.80
and ¢D211.054.96, we include in this analysis three ensem-
bles at a coarser lattice spacing, namely cA211.53.24,
cA211.40.24 and cA211.30.32 [18,34], aiming at a better
control of discretization effects in the charm sector.” We
check that the correlators Vi™(#) and V5(¢) have within
errors a completely negligible dependence on the sea light
quark mass, which is larger than the physical one for the
ensembles cA211.53.24, cA211.40.24 and cA211.30.32.
For the same reason however these three ensembles are not
employed in our analysis of the light- and strange-connected
correlator contributions. Indeed, particularly in the case of
ay (¢), a significant extrapolation to the physical sea light
quark mass point would be required if the three cA211
ensembles were to be included in the continuum fits. This

>The pion mass and the value of M,L for the cA211.53.24,
cA211.40.24 and cA211.30.32 ensembles are equal to M, ~ 365,
302, 261 MeV and ML ~ 4.0, 3.5, 4.0, respectively. FSEs are
expected to be negligible for the vector correlator V() and, thus,
we do not include the cB211.072.96 ensemble in the charm
analysis.
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The connected vector correlators £V () (top), £V (¢) (middle) and £V .(¢) (bottom) evaluated for the ETMC ensembles

cB211.072.64 (left) and ¢cD211.054.96 (right) using the two UV regularizations denoted by “tm” for twisted-mass quarks (red circles)
and “OS” for Osterwalder-Seiler valence quarks (blue squares) versus the time distance . For both ensembles, the bare strange- and
charm-quark masses are, respectively, equal to u, = u and p, = uL (see Tables XI and XIII of Appendix C).

would spoil one of the main strengths of our analysis. The
improved value of the lattice spacing a for the A ensembles is
given in Table VII of Appendix A. Depending on the
ensemble considered, up to 24 spatial stochastic sources
are used for the inversions of the Dirac operator. For each
ensemble, we perform simulations at three values of the
valence bare charm-quark mass, ay,., in order to interpolate
the results for a;° (¢) and @ (¢) to the physical charm-quark

hys o .
mass mb"" as determined in Appendix C.

We interpolate and extrapolate our data for a);(s) and
a,/(c) to the physical strange- and charm-quark masses

h h . )
my™* and mP™* using a linear ansatz:

ay(f.omg) = ay(fom™) - [1+ A% (my —mP™)],  (32)

where f = {s.c} and a}(f, m;hys) and A} are fitting
parameters. In what follows, we consider two different
branches of analysis, in which a}/ (s, m?hys) [a})(c, mghys)]

is determined using the values of mP™S (mPMY) obtained

using either the 7, (17,) or the ¢ (J/¥) meson masses. Then,
we perform a separate continuum limit extrapolation for
both determinations. Any discrepancy between the con-
tinuum extrapolated values obtained using the two hadronic
inputs will be added as a systematic error in the final error
budget.

In order to avoid the use of fitting procedures to take into
account the slight mistuning of the pion mass in the
simulations as compared to its physical value [ME™* =

ME¥P — 135.0(2) MeV [18]], as well as the possible
impact of FSEs, we implement in our analysis of all the
windows the following three steps:

(i) Interpolation to the physical value of the pion mass
for each gauge ensemble through explicit simula-
tions at a slightly different value of the light-quark
valence bare mass ayu,. By using the same gauge
configurations and stochastic sources we get a
statistically good determination of the corrections
in the valence sector, which turn out to be relevant
only for a, (£) at the level of approximately 1-2
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standard deviations. A further smaller correction
due to the slight mistuning of the light-quark sea
mass is evaluated adopting the RM123 expansion
method [32,35,36].

(i) Usage of a common reference lattice size L.t =
5.46 fm through a smooth interpolation of the results
for the ensembles ¢cB211.072.64 and cB211.072.96
using a linear fit in the variable e=™+L. For the other
two ensembles ¢C211.060.80 and ¢D211.054.96,
when using the improved determination of the lattice
spacing (see Table VII of Appendix A), the lattice
size L is at the correct reference value (see Table V of
Appendix A). By comparing the window results for
the ensembles cB211.072.64 and cB211.072.96, we
observe as a general trend that, at the lattice spacing
of a ~0.08 fm, FSEs are small in the “tm” case and
practically absent in the “OS” case. Moreover, once
the data are interpolated at the reference spatial
lattice size L,; = 5.46 fm, the infinite volume limit
is obtained within a fraction of the uncertainties, for
all windows except for the case of the light-quark
contribution to the intermediate window, a) (¢).

(iii) For a) (¢), after taking the continuum limit, we
apply a final correction Aa)’ (£; L) to obtain the
infinite volume result [see Eq. (59) of Sec. III B].
The correction is evaluated assuming dominance
of the FSEs related to intermediate two-pion states
in the correlator V,(t), as already observed in
Ref. [31]. Its explicit expression is given by
Eq. (F14) with w = W in Appendix F. It contains
no free parameters and we will refer to it as the
Meyer-Lellouch-Liischer-Gounaris-Sakurai (MLLGS)
model [37-44] for FSEs.

In what follows, we analyze our lattice data of a}; (f) for
w = {SD,W} and f = {7, s, ¢} already interpolated at the
physical pion mass M5 = M5 — 135.0(2) MeV and
at the reference lattice size L, = 5.46 fm.

A. The short-distance window contributions
a3®(?), a3P(s) and a;”(c)

The connected contribution a3°(f) to the short-distance
window is given by

aP(f) = 2a2, / ¥ A2 K (m, O (1)V (1), (33)
0

where f = {7,s,c} and ©5P(r) is given by Eq. (18). In
what follows, window quantities, like a;°(f), are obtained
on each gauge ensemble by replacing the time integral with
a discrete sum over time slices from t = auptot =T/2.

Even if the lattice data for the vector correlators are O(a)
improved thanks to our maximally twisted lattice setup (see
Appendix A), care should be taken when considering the
continuum limit of the short-distance window contributions

a;°(?), a3°(s) and a3P(c). We illustrate this point in the
case of the light-quark contribution a3°(#), but similar
conclusions hold as well also in the case of a3P(s)
and a5°(c).

As discussed in Refs. [45,46], power counting suggests
that for short time distances, i.e. t < A(‘QICD, the lattice
spacing artifacts in V ,(7) can be described by an expansion
of the type

612 © aZn
Velr) = V() {1 thz+) b t—} ED
n=2

where b,, (n =1,2,...) are constants up to logarithmic
corrections [47] and VS (¢) is the renormalized light-quark
correlator in the continuum limit. The lattice spacing
artifacts appearing in V,(¢) induce discretization effects
on the short-distance light-quark contribution a;°(#), as
follows:

asP(¢) = 242, / ik (m,1)®SP (1) Ve (r)

2 2n

a - a
-[1+b2t—2+2b2nt2—n} (35)
n=2

Taking into account that, at small values of ¢, the leptonic
kernel K(m,t) is proportional only to m7r* and VE™ (1) is
dominated by its perturbative value, which at order O(a?)
reads as (see, e.g., Ref. [30])

5
Ven(e) 18228 (36)
D

1<<Aé(]:
the discretization effects on a5P(¢) are of order O(a?) for
n > 2 and of order a® log(a) for n = 1. Beyond the leading
order O(a?), perturbative corrections can induce further
discretization effects of order a®log”(a) with p < 0 [47].
The crucial point here is that discretization effects of the
type alog(a), containing a positive power of the loga-
rithm, are dangerous. They slow down the convergence
with respect to a pure a” scaling and may not be visible
unless simulations at very small lattice spacing are per-

formed. This behavior is illustrated in Fig. 4, where the

SD . pert

lattice artifacts Aa, ™ (£), given by

- 5
AaED*pen(f) = Za%m/ dﬂzK(mﬂt)GSD(t) 182213
a2 © a*"
) [bz 7z + ; by, ZQ_n:| ’ (37)

are shown for both the tm and OS regularizations. These are
evaluated numerically in the free theory and in the massless
limit. It can be clearly seen that a naive fit to an a> scaling
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FIG. 4. The discretization effects on a5P(¢) evaluated numeri-
cally in the free theory and in the massless limit, i.e. the quantity
AaP"(£) given by Eq. (37). The vertical dotted lines indicate
the simulated values of the squared lattice spacing. The red
squares and the blue triangles correspond, respectively, to the tm
and OS regularizations. The solid lines represent a naive a?
scaling performed using only the results corresponding to the
range of simulated values of the lattice spacing.

of the results within the range of the available values of the
lattice spacing, indicated by the vertical dotted lines in
Fig. 4, would lead to an incorrect, nonvanishing continuum
limit equal to ~1 x 10717,

The curvature visible in Fig. 4, which yields the correct
vanishing continuum limit for Aa, """ (¢), is generated by
the term proportional to b, in Eq. (37). We calculate
analytically the relative O(a?/?) artifacts affecting V ,(t)
at order O(a?) in lattice perturbation theory with N, =2
massless twisted-mass fermions. The outcome of such an
analysis is that b, = 1 for both the tm and OS local vector
currents; see Appendix E for details.

In Fig. 5, we show our determinations of a;° () for the
tm and OS currents for all four ETMC ensembles of
Table V both before (green markers) and after (blue
markers) applying the analytic perturbative subtraction of
the a?/# discretization effects in V,(t). We show also the
results of a combined polynomial fit in powers of a® of the
general type

= a;" " (f) - [L+ DY8(f)a® + D5*(f)a*], (38)
where reg = {tm, OS} and a,"“°™(f) is the same value at
a’> = 0 for the two regularizations. Since the variation of
the logarithmic term log(a) is too mild in the range of the
available values of the lattice spacing, we still observe an
approximate (O(a?) scaling in both the unsubtracted and
subtracted lattice data. However, as already discussed in
connection to Fig. 4, the continuum extrapolation for the
unsubtracted data misses the correct value by approxi-
mately 2%, which is well above our statistical uncertainty
and larger than any other source of systematic error.

T
52f 1 v
H v
1 v
50 !
@ v
| v v
S agp S
=} VOSNT =
— : ~_ ¥ o] g
ATy ¥ v
< 1 v
) i
RS a
H wo perturbative subtraction
a2t &
! O(a®/t?) perturbative subtraction =——
! B
40T 1 O /2 perturbative subtraction
0 0.001 0002 0.003 0004 0005 0.006  0.007
a2 [fm?]
FIG. 5. The light-quark-connected contribution to the short-

distance window aED(f), given in Eq. (35), versus the squared

lattice spacing a® in physical units using both the tm (squares)
and OS (triangles) local currents (A12). The green markers
correspond to the lattice data for the four ETMC ensembles of
Table V. The blue markers include the subtraction of the analytic
perturbative a? /£ discretization effects in V ,(¢). The red markers
represent the lattice data after the subtraction of the lattice
artifacts in V,(r) evaluated numerically in the free theory and
in the massless limit at all orders in a”. The solid lines are the
results of the simple combined fits given in Eq. (38)
with D95(¢) = 0.

The dangerous a?/# discretization effects in V() turn
out to be equal for both the tm and OS regularizations,
which, however, exhibit quite different lattice artifacts at
short time distances at all orders in «,, as can be seen in
Fig. 3. Thus, the question is whether the subtraction of the
discretization effects in V,(¢) evaluated numerically in the
free theory and in the massless limit at all orders in a? is
beneficial. To answer this question, we show in Fig. 5 by
the red markers the lattice data after the subtraction of all
the lattice artifacts at order O(a?). The subtracted data
exhibit indeed much smaller discretization effects in both
regularizations and this fact makes more robust the
extrapolation to the continuum limit.

The strange- and charm-quark contributions to the short-
distance window, a3P(s) and a3°(c), display the same

i

cutoff dependence as the light-quark one, a;°(7), due to

the dangerous massless a’loga artifacts, which are
“dynamically” generated in the time integral by the region
of small time distances of the order  ~ O(a). In complete
analogy with the case of the light-quark contribution, we
remove the leading a® log(a) cutoff effects from our lattice
data, by subtracting from the renormalized strange- and
charm-quark vector correlators V(7) and V() the lattice
artifacts of the perturbative one, evaluated numerically at
order O(a?) and at finite values of the bare quark masses.
The impact of the above subtraction on the vector corre-
lators Vi(#) and V?S(t) is illustrated in the plots of Fig. 6,

which can be compared with analogous plots of Fig. 3 for
the unsubtracted data.
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FIG. 6. The same as in Fig. 3, but after subtracting the perturbative lattice artifacts evaluated numerically in the free theory, i.e. at order
O(a?), at finite values of the bare quark masses and of the lattice spacing.

The lattice data for a;°(#) shown in Fig. 5 exhibit a very
high statistical precision of the order of 0.05%. Instead, the
accuracy we reached for the lattice spacing is only of the
order of 0.2% (see Table VII). The reason is that the short-
distance window is largely insensitive to the scale setting
and therefore to its uncertainty. Indeed, we notice that in the
continuum limit and at short time distances the correlator
V() is dominated by its perturbative massless term (36).
Thus, after replacing the modulating function ®5P(7) with a
Heaviside step function (¢, — t), the physical value of
a;P(¢) is almost saturated by the perturbative term
(5a2,,/97%) [} dxK(my,tox)/x, which does not depend
upon the scale setting. For a more quantitative discussion
see Appendix A 2.

The values of a,°(£), a;°(s) and a;°(c) obtained after
subtraction of the perturbative lattice artifacts at order
O(a?) are shown in Fig. 7 for both the tm and OS
regularizations. In the case of a3°(s) [a;°(c)] our data
correspond to the two branches of the analysis in which we
set the physical strange (charm) quark mass using either the
mass of the 7, (7.) pseudoscalar meson or that of the ¢
(J/¥) vector meson.

Discretization effects on aED(f ) (see top panel of Fig. 7)
are consistent with a” scaling within tiny errors in the OS
regularization, while higher-order corrections are clearly
present in the tm case. The result of the combined fit based
on the ansatz of Eq. (38), in a representative case where the
fit parameter D95(7) is set to zero, is shown by the solid
lines. The extrapolated value of a3P(#) in the continuum
limit has a remarkable statistical error of less than 0.1%.

The statistical errors of our lattice data for a5P(s) (see
middle panel of Fig. 7) are typically of order O(0.1%), with
the data obtained using M,, as hadronic input displaying an
accuracy of ~0.05%. The solid lines correspond to the
results of the combined fit in Eq. (38) for f =, in a
representative case where the fit parameter D95(s) is set
to zero.

As for a;P(c) (see bottom panel of Fig. 7), the statistical
errors of our data are typically of order O(0.1%) for both
choices of the reference hadron mass. Discretization effects
appear to be at the level of O(5%) with opposite signs
between the tm and OS regularizations. The size of
discretization effects is limited thanks to the subtraction
of the perturbative cutoff effects at order O(a?) evaluated at

074506-10



LATTICE CALCULATION OF THE SHORT AND INTERMEDIATE ...

PHYS. REV. D 107, 074506 (2023)

49.5
49
- 48.5
= + ) Fit function OS —
— 1 a* term included
X ! / Fit function tm
< .
N 475y Lattice data OS=
GES ' )
S g7l - Lattice data tm-&-
46.5 + £
464 -
) 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007
a? [fm?)
Fit function M,, - Fit function M,
9.6 T
0 '+ |Lattice data M, , OSw Lattice data My, OS®
51
Lattice data M, , tme Lattice data My, tmg

aﬁD(s) x 1010

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007
a? [fm?]
Fit function M, = Fit function My
B Lattice data M, , OSw Lattice data My, OSw|
13 ' Lattice data M,,, tme Lattice data My, tmg|

a* term included

0 0001 0002 0003 0004 0005 0006 0007 0.008 0.009
a? [fm?]

FIG. 7. The light-quark (top), strange-quark (middle) and
charm-quark (bottom) -connected contributions to the short-
distance window aSP versus the squared lattice spacing a” in
physical units using both the tm (triangles) and OS (squares)
regularizations after subtraction of the perturbative lattice arti-
facts at order O(a?). In the middle (bottom) panel the blue and red
points correspond to the lattice data obtained using the masses of
the 5, (n,) and ¢ (J/¥) mesons to obtain the physical strange
(charm) quark mass. The solid lines correspond to the results of
the combined fitting procedure given in Eq. (38) with D95 (¢) =
D5(s) =0 and D95(c) #0. The extrapolated values in the
continuum limit are shown at a®> = 0 together with our final
results given by Egs. (49)—(51).

the charm-quark mass. The solid lines correspond to the
results of the combined fit in Eq. (38) for f =¢, in a
representative case where the quartic a* terms are included
for both regularizations.

In order to estimate the systematic uncertainty related to
the continuum limit we consider combined fits adopting for
all the windows the following generic ansatz:

ay(f) = ap ™ (f) - |1 + DY¥(f)a’

(12

reg reg 4
+D1L(f)W+D2 (fla*|., (39)
where w = {SD, W} and f = {¢.s.c}, while DY, ,(f)
and a;*°"(f) are free parameters to be fitted to the data.
Because of the limited number of data points the case in
which all the free parameters are simultaneously nonzero is
not considered. We remind that in our combined fits the
parameter a, “°"(f) does not depend upon the regulariza-
tion reg = {tm, OS}.

In Eq. (39) we have included possible logarithmic
terms of the form a?/log(a®A3)]" V), where the power
n"¢(f) represents an effective anomalous dimension for
perturbative corrections beyond the leading order O(a?)
[47]. In what follows, inspired by the findings of Ref. [48]
about the one-loop anomalous dimensions of the operators
appearing at O(a?) in the Symanzik expansion for the case
of actions with improved Wilson fermions, we will con-
sider the representative cases n™¢(f) =1, 2, 3 when
D{7(f) #0. The energy scale A, is taken to assume
two different values, namely Ag = 1/wg ~ 1.14 GeV and
Ag = 1/(3wy) =380 MeV, where w is the gradient-flow
scale found to be equal to wy = 0.17383(63) fm in
Ref. [18]. In addition to the aforementioned fits, we also
performed extrapolations to the continuum limit by leaving
out data at the coarsest lattice spacing, as well as separate
linear extrapolations for the two regularizations.

In order to reach the continuum limit we have considered
also an alternative strategy, based on considering the
difference and the ratio of a; (f) in the two regularizations,
namely

D*(f) = &/(H)lwm = @ (Hlos: (40)
R*(f) = @/ (H)lwm/ @i (los- (41)

Since the continuum limit of the difference D" (f) should
exactly vanish, while the one of the ratio R*(f) should be
equal to unity, we consider the following fitting functions:

2
a
DY (f) = Dia*> + D\ ——————~ + Dya*, (42)
" [log(a*A3)]")
2 a’ 4
RY =1+R R,—+ R»,a", 43
(f) + 1a + 1L [log(azl\(z))]”(f) + 2a ( )

where we have assumed that n'™(f) = n3(f) = n(f). The

continuum value a,*°"(f) is given by
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D
) =

1

if D,#0 and R, #0 (44)

D
=1L otherwise. (45)
1L

As for Eq. (39), the fitting procedure in which all the free
parameters appearing in Eqs. (42) and (43) are varied is not
considered.

Using Egs. (39), (42), and (43) we have carried out
hundreds of combined fits of our lattice data for the two
regularizations tm and OS. In the fitting procedure we have
minimized the y? variable constructed taking into account
the correlations between the tm and OS correlators corre-
sponding to the same gauge ensemble. We have evaluated
the correlation matrix using a jackknife sampling procedure
and found that its entries are smaller than 0.5 for the light-
quark contribution and typically larger (reaching up to
~0.99) for the heavier flavors.

In order to average the different analyses of the same
lattice data, we make use of the procedure developed in
Ref. [49]: Starting from N computations with mean values
X, and uncertainties o, (k =1, ..., N), based on the same
set of input data, their average x and uncertainty o, are
given by

N

N N
x:Zwkxk, GE:Za)ko%—l—Za)k(xk—x)z, (46)
k=1 k=1

k=1

where w; represents the weight associated with the kth
determination.

We have excluded from the average all fits having
d.o.f. =1 in order to avoid overfitting. Then, we have
considered two different choices for the remaining weights
wy. The first one is based on the Akaike information
criterion (AIC) [50], namely

)

) X e_()(§+2Nparlns_Ndnla>/2 (47)

where y7 is the value of the y? variable for the kth
computation, Np,ms the number of free parameters and
Ngaa the number of data points.6 Since in our fits the
number of d.o.f. is limited, we adopt also a second choice
for w; given by a step function

2 n
0|1 +2/-— - , 48
Die { T2V ot d.o.f} (48)

where 1 is the mean value and /2/d.o.f. is the standard
deviation of the y?/d.o.f. distribution. The results obtained

®We have verified that the use of the slightly different
definition proposed in Ref. [51], namely @ o exp[—(y*+
2N parms = 2N daa)/ 2], leads to very similar averages and errors
as compared with those corresponding to the use of Eq. (47).

with the above two choices of w; are reassuringly very
similar and their small difference is added as a systematic
error in the final error budget. At the physical point
we get

asP(£) =48.24(3),,,(20)

s x 10710 = 48.24(20) x 1019,

(49)

syst

aSP(s) =9.074(14) , (62)

b x 10710 =9.074(64) x 10717,

(50)

syst

a3P(c) =11.61(9) 415 (25) 4y x 10710 =11.61(27) x 1071,

(51)

syst

where
(i) ()g Iincludes the statistical uncertainty of the
Monte Carlo samplings and the one due to the
fitting procedure; and
(ii) ()ys represents the systematic error coming from
discretization effects, evaluated according to
Eq. (46) from the results of the fits based on the
ansatz in Egs. (39), (42), and (43).
The final error corresponds to the statistical and systematic
errors added in quadrature.

In Fig. 8 we show the histograms of the results at the
physical point obtained by our fitting procedures based on
Egs. (39), (42), and (43) applied to our lattice data of
a;°(7), a3P(s) and a3 (c) for the two choices (47) and
(48) for the weights w; appearing in Eq. (46). The
distributions exhibit multiple peaks. This feature is related
to the fact that the statistical uncertainties are significantly
smaller than the systematic ones. We stress that such a
situation is ideal for the application of the averaging
procedure given by Eq. (46).

Before closing the subsection, we show the results of a
cross-check we performed to exclude that possible residual
cutoff effects of the type a*/[log(a*A3)|"™ with n™8 < 0
may spoil our continuum limit extrapolation of aED. To this
end we have carried out a slightly different analysis of
a;P(¢), in which we consider a truncated version of
Eq. (35), where the lower bound of integration is fixed
to a nonzero t;,, i.e.

U

AP (8, 1) = 202, / " A2 K (m,)OP(1)V (1), (52)

Imin

where 7,;, is kept fixed in physical units for all ensembles.
Clearly, one has a3 (2, tyn — 0) = a;° (7). The idea is to
perform first the continuum extrapolation at fixed ¢,,;, and
then to look at the behavior of aﬁD(f s tmin) @S Tmin 18
decreased toward zero. In a5P(Z, ty;y,), the logarithmic
a?/[log(a*/w3)]"™ cutoff effects generated in ay°(£) by
the integration at short times become simple a?-like lattice
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FIG. 8.

10.40 10.57 10.74 10.91 1107 11.24 1141 11.58 11.75 11.92 12.08 1225 1242 12.59
SD 10
ayP(c) x 10

Histograms of the results at the physical point obtained by our fitting procedures based on Egs. (39), (42), and (43) applied to

our lattice data of a3 (#) (top panels), a3P(s) (middle panels) and a;°(c) (bottom panels) adopting for the weights w either the AIC
(left panels) or the step function (right panels), described, respectively, by Egs. (47) and (48). The red bands correspond to our final
results (48) and (49). In each panel we show the number of fits, the average (x) and the error (o) evaluated according to Eq. (46) and the
cumulative probability corresponding to the interval [x — o, x 4+ 6,]. The vertical short-dashed lines correspond to the 16th and 84th

percentiles of the probability distribution function (PDF) Pr(Y).

artifacts with potentially large 1/[log(72;,/w3)]"" coeffi-
cients, which can be then safely extrapolated to zero. We
use values of 7., in the range [0.08, 0.15] fm, which
correspond to f,,;, > a for all the ensembles of Table V.

It is useful to consider the following quantity:
&P (2, tmin) = @32 (4, tin) + AP (€, i), (53)

where

min
AGPP (L 1Y =22, / A1 K (m, 1)@ (1) Vo 1)
0

(54)

and V"(t) is the light-quark correlator in the continuum
limit, obtained using the RHAD software package [21] at
order O(a}). The difference ay°(£) — @5P (£, tyyiy) is thus
expected to be of order O(a(1/tyin)t2,,)- In Fig. 9 we

show our determinations of &ED(f , tmin ) after extrapolation
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51

sob aiP() = 48.24 (20) x 1071
= Continuum extrapolated data fixed t,,;, -+
= wl
X
= i
‘S 48} ¢
E YO o o 0
N
Q 47
N3
5]
46 +
45 : : : : _
0 0.005 0.01 0.015 0.02 0.025

t%nin [me]

FIG. 9. Results for the modified short-distance window
@ (7, tmin) [see Eq. (53)], obtained for various values of 7,
after extrapolation to the continuum limit using the combined
fitting procedures based on Egs. (39), (42), and (43). The red
band corresponds to our final result given by Eq. (49).

of a3°(Z, 1) to the continuum limit using the combined
fit procedures based on Egs. (39), (42), and (43). The data
exhibit a nice flat behavior in 72, with a very small residual
slope due to effects at order O(a)(1/tyin)t2s,)- It is
reassuring that the data for 5P (¢, t,;,) are consistent for
foin S 0.1 fm with our final short-distance result of Eq. (49)

within one standard deviation.

B. The intermediate windows a,' (¢), ) (s) and a" (c)

The connected contribution @) (f) to the intermediate
window is given by

a¥ (f) = 22, / 2K (m, )% (1)V (1), (55)
0

where f = {¢,s,c} and ®W(z) is given by Eq. (19). Our
results corresponding to the tm and OS regularizations, at
the physical pion mass M2 = ME°?P — 1350(2) MeV
and at the reference lattice size L,.; = 5.46 fm, are shown
in Fig. 10 together with a representative example of
continuum extrapolation. We note that, in contrast with
the short-distance window, there are no discretization
effects of the type a’log(a), thanks to the exponential
suppression of the modulating function ®W(¢) at small
values of 7 = a (see Fig. 1). Therefore, we do not carry out
any subtraction of the tree-level perturbative lattice
artifacts.

The statistical precision of the lattice data for a,) (€, L)
is of the order O(0.2%). Also the results for a, (s) obtained
using M, have a very good precision of order 0(0.2%),
while the ones obtained using M, have typically larger
errors by a factor of ~3. This originates from the fact that
the plateaux of the ¢)-meson effective mass are substantially

208
= 206
=}
—
X
= 204
}qL’
- a* term included
> 202
=3
S : Fit function OS=  Lattice data OS
200 Fit function tm Lattice data tm
198 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007
a? [fm?]
Fit function My Fit function M,, -
29 —— Lattice data My, OSwLattice data M, , OSw|
\ | Lattice data My, tma Lattice data M, , tme
28.5
go 28 a* term included ~~ .
X orslg #
2 ‘{?# — v -
= : —m )
== o7 : i
2651 4 a* term included
o6 Lt ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007
a2 [fm?]
Fit function My Fit function M, =
5 -
Lattice data My, OSs  Lattice data M,,, OSwl
45 Lattice data Mg, tma  Lattice data M,,, tme v
~v
=S
= 4t a* term included v
X . d 5]
pag : 2
L g5 —*
> D : b4
a@i 3 7 B
3 {)’ 7
2.5 :
0 0.001  0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009
a? [fm?]
FIG. 10. The light-quark (top), strange-quark (middle)

and charm-quark (bottom) -connected contributions to the
intermediate window aXV versus the squared lattice spacing a”
in physical units using both the tm (triangles) and OS (squares)
regularizations. In the middle (bottom) panel the blue and red
points correspond to the lattice data obtained using the masses
of the n, (n.) and ¢ (J/¥) mesons to obtain the physical
strange (charm) quark mass. The solid lines correspond to
representative examples of continuum extrapolation obtained
using the ansatz in Eq. (39) with D' (f) = DS (f) = 0 (poly-
nomial fits). The extrapolated values in the continuum limit are
shown at a®> =0 together with our final results given by
Eqgs. (56)—(58).

noisier than the ones of the pseudoscalar 7, meson (see
Fig. 18). Finally, the results for a;/ () exhibit a very good
precision of order 0(0.5%) when we use M,_and of order
0(0.2%) when we use M y.
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FIG. 11. Histograms of the results at the physical point obtained by our fitting procedures based on Egs. (39), (42), and (43) applied to
our lattice data of a)' (7, L) (top panels), ay' (s) (middle panels) and a,, (c) (bottom panels) adopting for the weights wy either the AIC
(left panels) or the step function (right panels), described, respectively, by Eqs. (47) and (48). The red bands correspond to our final
results (56)—(58). In each panel we show the number of fits, the average (x) and the error (o,) evaluated according to Eq. (46) and the
cumulative probability corresponding to the interval [x — o, x 4 6,]. The vertical short-dashed lines correspond to the 16th and 84th
percentiles of the PDF Pr(Y).

Using Egs. (39), (42), and (43) we have carried out (48) of the weights w, appearing in Eq. (46). As in the case
hundreds of combined fits of our lattice data for the two of the short-distance windows, the distributions of Fig. 11
regularizations tm and OS by minimizing a correlated y>  exhibit multiple peaks, which implies that the statistical
variable. In this case, the entries of the correlation matrix ~ uncertainties are significantly smaller than the systematic
are in the range 0.5-0.7 for the light-quark contribution and  ones due to lattice artifacts.

typically larger (reaching up to 0.99) for the heavier flavors. At the physical point we get

Also here we have excluded from the averaging procedure

given by Eq. (46) all fits having d.o.f. = 1 in order to avoid a¥ (£, Lye) = 205.5(0.7)y(1.1) e X 10710
overfitting. In Fig. 11 we show the histograms of the results pTE st s

obtained at the physical point for the two choices (47) and =205.5(1.3) x 107"°, (56)
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TABLE I. Summary of the various flavor contributions to aﬁD(disc) in units of 107!2 for the cB211.072.64, cC211.060.80 and
cD211.054.96 ensembles. The symbols £7, ss and cc denote, respectively, the flavor-diagonal light, strange and charm contributions,
while Zs, £c and sc denote the off-diagonal light-strange, light-charm and strange-charm contributions, respectively.

Ensemble 43 s cc ‘s ‘c sc Total
cB211.072.64  —337(13)  —2.000(59)  —1.18(14)  +529(15)  —-1.52(24)  +1.67(13)  —1.20(23)
cC211.060.80  —-3.36(16)  —2.000(73)  —078(11)  +5.53(17)  —148(20)  +1.37(15)  —0.80(18)
cD211.05496  -3.54(16)  —2.084(75)  —-071(14)  +560(18)  -151(21)  +127(18)  —0.96(20)
TABLE II.  The same as in Table I, but for the various flavor contributions to )" (disc) in units of 107'°.

Ensemble 473 ss cc ‘s ‘e sc Total
cB211.072.64  —1.087(49)  —0.149(22)  —0.030(53)  +0.635(58)  +0.00(8)  —0.02(6)  —0.651(93)
cC211.060.80  —1300(69)  —0.159(27)  —0.033(49)  +0.726(81)  —0.03(7)  +0.04(7)  —0.762(75)
cD211.054.96  —1201(73)  —0.149(29)  +0.018(54)  +0.627(81)  +0.02(8)  —0.02(7)  —0.701(80)

ay (s) =27.28(13) 1 (15) 5 X 10710 =27.28(20) x 10710,
(57)
ay (€) =2.90(3) 5 (12) 4y X 10710 =2.90(12) x 10719

(58)

syst

To the result of Eq. (56) we must add the FSE correction
—Aa) (£, L) evaluated within the MLLGS model
according to Eq. (F14) of Appendix F with w = W and
L.s = 5.46 fm in the continuum limit and at the physical
pion mass point. We get

Aa,")’(f, Lys) = —1.00(20) x 10710, (59)
which leads to
ay () =206.5(1.3) x 1071°. (60)

We expect to get a substantial reduction of the error in
Eq. (60) using the results from a new ETMC ensemble at
the physical pion mass point with a finer lattice spacing
currently under production.

We point out that our result given in Eq. (60) is consistent
at the level of 1.5¢ with the previous ETMC estimate
ay (£) =202.2(2.6) x 107'° [52], but it improves the
precision by a factor ~2. This result is mainly related to
the improvement of the statistical precision and to the
reduction by a factor of ~10 of the discretization system-
atics as compared to Ref. [52].

IV. DISCONNECTED CONTRIBUTIONS

In this section we address the calculation of the quark-
disconnected contributions to the vector correlator V (1)|,
[see Eq. (A10)], which are the sum of the six relevant
quark-disconnected [label (D)] correlators displayed in
Eq. (All) weighted by the appropriate charge factors,

and may globally denoted as Vg (7)|9. The currents
involved in the individual correlators are defined in
Eq. (A12) within the OS regularization. From the vector
correlator Vg (1) | the values of a;° (disc) and a)) (disc)
are straightforwardly evaluated according to Eq. (17).

The disconnected contributions are computed for the
light-, strange- and charm-quark mass using three ensembles
close to the physical quark masses, namely cB211.072.64,
cC211.060.80 and cD211.054.96. Due to the high cost
of the calculation, we do not compute disconnected con-
tributions using the larger volume ¢B211.072.96 ensem-
ble, since FSEs are expected to be negligible within
statistical errors.

The strange- and charm-quark loops are computed at a
quark mass obtained by tuning the Q and A, baryons,
respectively, to their physical value. The values of the bare
masses for the strange, ay,, and for the charm, ayu,., quarks
are given in Appendix C 3.

Various noise-reduction techniques are employed to
improve the signal-to-noise ratio of disconnected loops.
These are the one-end trick [53], the exact deflation of low
modes [54] and hierarchical probing [55]. The one-end
trick is used for all loops; hierarchical probing with distance
8 is used for all loops, except the charm-quark loops for the
¢B211.072.64 ensemble, where instead distance 4 is used;
and deflation of the low modes is used for the light-quark
loops for the cB211.072.64 and cC211.060.80 ensembles.
The latter method is not employed for the cD211.054.96
ensemble because of the prohibitively large memory
requirements. Instead multiple stochastic sources are used.

The results for the diagonal and off-diagonal discon-
nected contributions are summarized in Table I for a5° and
in Table II for a,'. In Fig. 12, we show the continuum
limit extrapolation for the disconnected contributions to
a;” and a)). Qualitatively, for a) the light-light contribute
+150% of the total disconnected contribution, the strange-
light —80% and the strange-strange +30%. All other
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o Linear a2 ansatz Our results for a;°(disc) and a' (disc) are

—0.002} ! Lattice dataw

—~0.004 }

asP (disc) = —0.006(5) x 1019, (61)

% ] ay (disc) = —0.78(21) x 1071, (62)

V. COMPARISON WITH DISPERSIVE
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 e+e_ RESULTS AND OTHER LATTICE
& i) QCD CALCULATIONS

Our results obtained in the isospin-symmetric limit for
the quark-connected contributions from the light, strange
and charm quarks as well as the sum of all quark-
disconnected flavor diagonal and off-diagonal contribu-

| tions to the short and intermediate time-distance windows

‘{’ are listed in Egs. (5) and (7). In the case of the intermediate
window al‘f", our findings can be compared with the
: corresponding ones obtained by the BMW Collaboration
1 in Ref. [14], by the CLS/Mainz group in Ref. [22], by

Lehner and Meyer in Ref. [56] and by Aubin ef al. in
Ref. [57] (which updates their previous result [58]). We
consider also the results obtained by yQCD Collaboration
in Ref. [59], by ETMC in Ref. [52] and by RBC/UKQCD
in Ref. [15], which come from lattice setups that have less
than three values of the lattice spacing or do not include
panel, but for the intermediate window al\}'. The blue band ensembles close to the physi_cal pion mass point. All the
corresponds to the extrapolation performed using a linear fit above results are collected in Table H.I' We observe a
ansatz in @, remarkable agreement among all lattice QCD results
establishing a clear and important success for the compu-

tation of this quantity within the framework of lattice QCD.

. 2
Linear a“ ansatz
Lattice datas|

0.2

1
—04F 1

1
—0.6F

—0.8}
1

u:}’v(disc.) x 1010

'
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007

a2 [m?)

FIG. 12. Top panel: the quark-loop disconnected contribution
to the short time-distance window, aﬁD, versus the squared lattice
spacing a” in physical units. Bottom panel: the same as in the top

combinations are consistent with zero within the errors. We
do not observe sizable cutoff effects at this level of precision.
The disconnected contribution to aED is very small, being
approximately 40 times smaller as compared to our error on

Moreover, very recently the Fermilab Lattice, HPQCD, and
MILC Collaborations published [60] accurate results for

one-sided window contributions to a}i*?, quoting in par-

ticular a value of a) + a3P = 304.0(9)(6), where the

the light-connected contribution to aﬁD. Given the available second error accounts for corrections from QED and IB.
data, we perform only a single continuum extrapolation,  The above finding is in good agreement with our results
using a linear fit ansatz in a’. [see Egs. (67) and (68) below].

TABLE III. Contributions to the intermediate time-distance window al‘jV obtained in this work and in Refs. [14,15,22,52,56,57,59],
namely the quark-connected light (¢), strange (s) and charm (c) diagrams and the sum of the quark-disconnected flavor diagonal and oft-
diagonal diagrams. The last row lists the averages of all the lattice results for each contribution made following the PDG approach. All

quantities are in units of 10710

References ay (¢) ay (s) ay (c) ay (disc)
This work 206.5(1.3) 27.28(0.20) 2.90(0.12) —0.78(0.21)
BMW [14] 207.3(1.4) 27.18(0.03) 2.7(0.1) —0.85(0.06)
CLS/Mainz [22] 207.0(1.5) 27.68(0.28) 2.89(0.14) —0.81(0.09)
Lehner and Meyer [56] 206.0(1.2) 27.06(0.22) e e
Aubin et al. [57] 206.8(2.2)

4QCD [59] 206.7(1.5) 26.7(0.3) o

ETMC [52] 202.2(2.6) 26.9(1.0) 2.81(0.11)

RBC/UKQCD [15] 202.9(1.5) 27.0(0.2) 3.0(0.1) ..
Average 206.0(0.6) 27.18(0.03) 2.86(0.06) —0.83(0.05)

074506-17



C. ALEXANDROU et al.

PHYS. REV. D 107, 074506 (2023)

As shown in Sec. II B, the time-window contributions
a3P and a)) can be evaluated using Eq. (27), which involves
the energy-modulating functions @5P(E) and OV (E),
related to the time-modulating functions ©5P(¢) and OV (1)
of Eq. (28), and the experimental data available for the e e~
ratio R"4(E), given in Eq. (24).

Using the database of Ref. [11] one gets the quite precise
results [23]
aP(ete”) = 68.44(48) x 10719, (63)

u
ay (eTe™) =229.51(87) x 1071, (64)

More recently, starting from the analyses of Refs. [8—11]
and adopting the merging procedure of Ref. [13],
which takes into account tensions in the ete™ database
in a more conservative way, the authors of Ref. [24] quote
the values

azP(eTe™) = 68.4(5) x 10717, (65)
ay (ete”) =229.4(1.4) x 10710 (66)

To compare with the dispersive results, we need to
sum up all the quark-connected and -disconnected con-
tributions evaluated in the previous sections. The indi-
vidual contributions are not fully uncorrelated, since they
are determined starting from basically the same gauge
configurations. However, since the statistical uncertainty
of the vector correlator is not dominated by the gauge error
(see, e.g., Sec. Il A) and the spatial stochastic sources

employed are different for different flavors, we do not
expect to have significant correlations among the various
contributions to the time windows. We have checked
explicitly this point in the case of the light- and strange-
connected contributions and found a negligible correlation.
Thus, the uncertainties of the individual quark-connected
and -disconnected contributions are summed in quadrature.

Following the above strategy, the sum of a3°(¢), a5°(s),
a;°(c) and a3P(disc), i.e. the sum of Egs. (49)-(51) and
(61), yields the result 68.91(31) x 10~'°. Adding also the
contribution a3°(b) = 0.32 x 107'% coming from the bot-
tom quark (see also the lattice results of Ref. [20]) and a
QED correction a3° (QED) = 0.03 x 107'°, both estimated

using the RHAD software package [21], we get
af,D(ETMC) = 69.27(34) x 10719, (67)

which agrees with the dispersive results (63) and (65)
within ~1.4c.

In the case of the intermediate window, we have to sum
the results obtained for a)) (¢), a' (s), a) (¢) and a)) (disc),
namely the values given in Egs. (57), (58), (60), and (62),
obtaining 235.9(1.3) x 10~'°. Adding the IB contribution
ay (IB) = 0.43(4) x 1079, estimated using the corre-

sponding BMW results of Ref. [14], we obtain
ay (ETMC) = 236.3(1.3) x 10719, (68)

We now compare the above result with other lattice
calculations available for the total window contribution
satisfying the simple criterion of being based on

SD W

ETMC '22 —@——

BMW '20 —/A— HVP

CLS '22 —N/—

ETMC '22 —@—

average +—O—
e' e —mO—— e'e —O— e e —0O—
sl b b L I USSR S e by b b Ly
67.5 68,0 685 69.0 695 700 225 230 235 240 685 690 695 700 705 710 715
a2y 100 a%yx10"° a Py 10
w " w

FIG. 13.  We show lattice QCD results of the short-distance window aﬁD (left panel), intermediate window al‘f’ (central panel), obtained
in this work and in Refs. [14,22], and the full HVP term af"* (right panel) from Ref. [14], compared with the corresponding dispersive
determinations from Ref. [24], based on experimental e* e~ — hadrons data (see text). In the central panel, the green diamond denotes
the average of our result given in Eq. (68) with those from Refs. [14,22], namely a,’ = 236.73(80) x 107'°.
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TABLE IV. Values of @ obtained in this work for the short and intermediate time-distance windows, w = {SD, W}, and from
Ref. [14] for the full HVP term, w = HVP, compared with the corresponding dispersive determinations of Ref. [24], based on
experimental et e~ — hadrons data (third column). The difference between the second and third columns, Aay, is given in the fourth
column, while the contributions of the 2z channels a; (27) (below a center-of-mass energy of 1 GeV), obtained in Ref. [24], are shown
in the fifth column. All quantities are in units of 107'% except for the last column, where we list the values of the ratio between Aay; and

the 27 contribution ay,(27).

Window (w) ay (LQCD) ay(ete”) [24] Aay ay(27) [24] Aay/ay (27)

SD 69.3(0.3)" 68.4(0.5) 0.9(0.6) 13.7(0.1) 0.066(43)

w 236.3(13)" 229.4(1.4) 6.9(1.9) 138.3(1.2) 0.050(14)

HVP 707.5(5.5) [14] 693.0(3.9) 14.5(6.7) 494.3(3.6) 0.029(14)
“This work.

lattice setups with more than two values of the lattice
spacing and at least one ensemble close to the physical
pion mass point. Our value (68) is nicely consistent with
the result @y (BMW) = 236.7(1.4) x 107'° by the BMW
Collaboration [14] and with the recent one ay' (CLS) =
237.30(1.46) x 107'9 by the CLS/Mainz group [22] at
better than 1o level. However, it is in tension with the
dispersive result (66) by 3.60. Averaging our result (68)
with the one by the BMW Collaboration, we obtain
ay =236.49(95) x 107'°, which disagrees with the dis-
persive result by 4.2¢. Taking into account also the very
recent result by the CLS/Mainz group [22], we get
ay =236.73(80) x 107'°, which increases the tension
with the dispersive result at the level of ~4.5¢.
Comparing with the more precise dispersive result
(64), obtained in Refs. [11,23], the tension increases
further, reaching the level of ~6.1¢. The above lattice and
dispersive results for the short and intermediate time-
distance windows as well as those for the full HVP term
are also collected in Fig. 13.

The accurate lattice results suggest the possible presence
of deviations in the e e~ cross section data with respect to
the QCD + QED theory predictions somewhere in the low-
and/or intermediate-energy regions but not in the high-
energy region as defined in Fig. 2.

In Table IV, we collect our lattice results for the short
and intermediate time-distance windows and the lattice
value of the full HVP term taken from Ref. [14]. These
lattice results are compared with the corresponding dis-
persive determination of Ref. [24], based on experimental
ete” — hadron data. The differences between them
denoted by Aaj for w = {SD,W,HVP} are shown in
the fourth column. The contribution of the 2z channels
(below a center-of-mass energy of 1 GeV) to the various
windows, a}/(27), as determined in Ref. [24], are com-
pared with the differences Aay. We find that the ratio of
Aay/ay(27) is at the level of ~3%-5% for the three
windows albeit with large uncertainties. This suggests,
qualitatively, that the accurate lattice results for the time
windows and for the full HVP term could be compatible
with an overall few-percent enhancement of the e'e™

cross section data in the 2z channels at center-of-mass
energies below 1 GeV.

VI. CONCLUSIONS

We have presented a lattice determination of the leading-
order HVP contribution to the muon anomalous magnetic
moment, af¥*, in the so-called short- and intermediate-
distance windows, a3° and a)’, defined by the RBC/
UKQCD Collaboration [15].

For this determination we have employed a set of gauge
ensembles produced by ETMC with Ny, =2+1+1
flavors of Wilson-clover twisted-mass sea quarks with
masses tuned very close to their physical values [16-19].
The gauge ensembles used are simulated at three different
values of the lattice spacing, namely a ~ 0.057, 0.068, and
0.080 fm, and with spatial lattice sizes up to L ~ 7.6 fm.

We worked in the isospin-symmetric limit. The quark-
connected contributions from the light (1/d), strange and
charm quarks as well as the sum of all quark-disconnected
flavor diagonal and off-diagonal contributions are com-
puted. These are then used to evaluate the contribution to
the short and intermediate time-distance windows,
obtaining the results listed in Egs. (5) and (7). In the case
of the intermediate window aXV, our findings are in nice
agreement with several results obtained by other lattice
QCD collaborations, as shown in Table III. Such a
remarkable agreement within small uncertainties represents
the robustness of the evaluation of this quantity within the
framework of lattice QCD.

Adding the bottom-quark and the QED contribution to the
short-distance window, a3° (b)+a,°(QED)=0.35x10""°,
evaluated in perturbative QCD using the RHAD software
package [21], and the IB contribution to the intermediate
window, a)' (IB) = 0.43(4) x 107'° taken from Ref. [14],
we get

asP(ETMC) = 69.27(34) x 10719, (69)
a¥ (ETMC) = 236.3(1.3) x 10712 (70)

Our result for the short-distance contribution given in
Eq. (69) is consistent with the recent dispersive value
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azP(ete™) = 68.4(5) x 10710 [24] within ~1.40. In the
case of the intermediate window, our value given in
Eq. (69) is larger than the dispersive result a,' (e*e™) =
229.4(1.4) x 1071° [24] by ~3.60. Our value is nicely
consistent with the BMW result a)’ (BMW) = 236.7(1.4) x
10719 [14] and with the recent CLS/Mainz one a)) (CLS) =

237.30(1.46) x 1070 [22] at better than 1o level. The
tension between our value and the dispersive result increases
from ~3.60 to ~4.2¢ if we average our result (70) with the
one obtained by the BMW Collaboration, leading to
a) =236.49(95) x 107'°. Including in the average also
the recent CLS/Mainz result we get a) = 236.73(80)x
1071, which is in disagreement with the dispersive result
by ~4.5¢.

In conclusion, the impact of our lattice computations is
twofold. Concerning the intermediate-distance window we
confirm the two currently most accurate lattice QCD
results, namely those from the BMW Collaboration and
the CLS/Mainz group, increasing the discrepancy with the
corresponding prediction based on e™ e~ cross section data
to the significant level of ~4.5 standard deviations.
Moreover, we have computed accurately for the first time
the short-distance window, finding that there is no signifi-
cant tension with the corresponding dispersive result. This
is a clear indication that any deviation between QCD +
QED theory predictions, the framework employed in SM-
based lattice calculations, and the eTe~ cross section
experiments is unlikely to occur at high energy. Instead,
it may occur somewhere in the low- and/or intermediate-
energy regions.
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APPENDIX A: LATTICE SETUP AND
SIMULATION DETAILS

In this work, we analyze the gauge ensembles produced
recently by ETMC in isospin-symmetric QCD (isoQCD)
with Ny =2+ 1+ 1 flavors of Wilson-clover twisted-
mass quarks and described in Refs. [16-19]. Our renor-
malizable lattice theory is specified by the following action:

S = SymlU] + Sgseal ¥ o Ul + Sgvallqy. 47} Ul

+ Sghost[{¢f’ ¢}}’ U}’ (Al)
which corresponds to a mixed-action lattice setup employ-
ing twisted-mass [66,67] and Osterwalder-Seiler fermions
[68]. This setup allows us to avoid any undesired strange-
charm quark mixing through cutoff effects and to preserve
the automatic O(a) improvement of all physical observ-
ables [69]. Moreover, it offers the possibility of considering
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two different regularizations of the current-current corre-
lators relevant for the present study.

The gluon action Syy[U] is the (mean-field) improved
Iwasaki one [70]. It contains the bare gauge coupling f =
6/ g3 that controls the lattice spacing a, as QCD asymptotic
freedom implies aAqcp ~ exp(—1/(2byg3)) with by > 0.

Concerning the fermionic sector of the action, it can be
written as the sum of the sea and valence quark actions. The
sea quark action is written in terms of a light ¥, =
(Ugeq> dgea) and a heavy W), = (Cyeas Ssca) quark doublet,
namely

Sq,sea = a4Z{qu(x) [}/ : v + He — i7573WngPf(x)

() V + py + s — iyst W, (x) )
(A2)

For the valence quark action, it is convenient to allow for
several replica, labeled by n =1,2,3, ..., of each quark
flavor f with different values of the Wilson parameter r ,,
which in practice we restrict to be 7y, = (—1)""". Thus, we
have

Spva = a*> D> Gy, ()ly -V +my

X fa

= sgn(ry,)irsWerl—1]dy.,(x). (A3)

where g, is a single flavor field and f runs over the four

lightest quark flavors u, d, s, and c. By vﬂ we denote the
symmetric gauge covariant lattice derivative, while V,, and
V,, stand for the analogous forward and backward lattice
derivatives, respectively, and [H(4) covariant] “spacetime”
indices are omitted when contracted with each other. In the
expressions above, the critical Wilson-clover operator is
defined as

Wel, = =az V-V 4 mgl(r)

(6 r
+a S;VZ( >J/,,na" [0 — Ol

(A4)

i.e. it includes the critical mass m,, term and a clover term
x 7,7, [0, — Q,,] (ie. a lattice discretization of the
Pauli term o ic,, F,,) [71] with a coefficient, cgy, that is
identical for all sea and valence flavors and is fixed to
the value obtained in one-loop tadpole boosted
perturbation theory [72]. In writing the valence quark
action S, ,, we have also exploited the known property
[69] W&|_, = —W&l,. In Eq. (A2) for S, ., the operators
W¢ are implicitly defined for » = 1 and their two-flavor
structure is displayed by the Pauli matrices 7> and 7! acting
in flavor space.

In the sea and valence quark action sectors the critical
Wilson-clover term, which includes the critical mass
counterterm o mg, ~ 1/a, is taken at maximal twist with
respect to the soft quark mass terms in order to guarantee
automatic O(a) improvement of the physical observables
[67,73] and m, is set to a unique value for all flavors [69].
The inclusion of the clover term turns out to be very
beneficial for further reduction of the residual cutoff effects,
in particular those on the neutral pion mass, thereby making
the Monte Carlo simulations close to the physical pion
point numerically stable [16] (see also Ref. [74]).

The valence ghost action term reflects the form and
follows the notation of the valence quark action, viz.

Sghost = 042 Z ¢}q('x> [}/ -V + mpy
X fa

- Sgn(rf,ﬂ)iYSWg‘r:l]d’f,n(x)’ (AS)
with each ¢, being a complex boson field of spin 1/2 (i.e.
a ghost), and is included in order to obtain formally
vanishing contributions from all the valence fields to the
effective gluonic action. Of course no ghost fields ever
occur in our actual computations.

For the light-quark doublet the sea and valence bare
mass p, is unique and takes values such as to obtain M,
close to MPWS — pgisoQCD _ 135.0(2) MeV [18]. Larger
values of M, are used to compute observables relevant for
scale setting, where the analysis includes a chiral extrapo-
lation to ME™S,

The masses of the strange and charm sea quarks are set
within ~5% accuracy to their physical values for each
ensemble by carefully tuning the parameters p, and s in
S4.sea (in the preliminary stage of our simulations) in order
to reproduce the renormalization group invariant (RGI)
values Mp /fp =79(0.1) and m./m;=11.8(0.2)
adopted in Refs. [16-18]. The above values are consistent
with the more precise, recent determinations My, /fp =
7.88(0.02) and m./m, = 11.77(0.03) from Ref. [75] and
they are sufficiently accurate for the purposes of the
present work.’

The masses of the strange and charm valence quarks are
very accurately fixed by two physical inputs, which can
conveniently be chosen as the kaon and D-meson masses.

"From our study of the light-quark sea mass corrections (see
below Table VI) we observe that a change of ~5% in the light-
quark sea mass affects a, () by less than ~0.05%. Sea quark
effects are in general suppressed as the quark mass is increased
and, in the limit where the sea quark mass, m,, of a given flavor
is large as compared to Aqcp, the relative change of an
observable is expected to scale as the relative sea quark mass
change times O[(Agcp/Miea) (0 (Myeq) /7*)]. Thus, a ~5% rel-
ative mistuning of strange- and charm-quark sea masses cannot
have a significant impact on window observables that are
evaluated with a few permille relative uncertainty.
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TABLE V. Parameters of the ETMC ensembles used in this work. We give the light-quark bare mass, au, = au, = ap,, the pion mass
M, the lattice size L and the product M, L. The values of the lattice spacing are determined as explained in Appendix A 2 using the 2016

PDG value f2™*

= fi,foQCD = 130.4(2) MeV [76] of the pion decay constant for setting the scale.

Ensemble p V/a* a (fm) ap, M, (MeV) L (fm) M, L
cB211.072.64 1.778 647 - 128 0.07957(13) 0.00072 140.2(0.2) 5.09 3.62
cB211.072.96 1.778 96 - 192 0.07957(13) 0.00072 140.1(0.2) 7.64 543
¢C211.060.80 1.836 803 - 160 0.06821(13) 0.00060 136.7(0.2) 5.46 3.78
cD211.054.96 1.900 96 - 192 0.05692(12) 0.00054 140.8(0.2) 5.46 3.90
cA211.53.24 1.726 243 . 48 0.09076(54) 0.00530 361.6(2.1) 2.18 3.98
cA211.40.24 1.726 243 .48 0.09076(54) 0.00400 315.2(2.0) 2.18 3.46
cA211.30.32 1.726 323 .64 0.09076(54) 0.00300 272.2(1.7) 2.90 4.00

In this way, using the ETMC ensembles of Refs. [16-19],
the values of the charm and strange as well as light u/d
renormalized quark masses were determined in Ref. [34].
Here, we redetermine the strange and charm valence quark
masses by the physically equivalent requirements of
reproducing the energy of the ¢ resonance (or the mass
of the fictitious pseudoscalar meson 5, determined accu-
rately in isoQCD at the physical point in Ref. [14]) and the
energy of the J/y resonance (or the mass of the pseudo-
scalar meson 7,). As discussed in Appendix C, we find
results in nice agreement, up to lattice artifacts in the charm
sector, with those obtained from the Mg and M, inputs
in Ref. [34].

Following this procedure, we are able to determine the
valence quark mass parameters m, and m, using high-
statistics observables that are computed on the same gauge
configurations and using the same stochastic sources as the
vector current-current correlator V(¢) of Eq. (15). This
method is very convenient for minimizing the statistical
error on the time windows a,;. In practice, to interpolate our
results to the physical strange and charm valence quark
masses, we evaluate the contributions to V() from vector
correlators in the s and ¢ valence sector for a few values of
the bare valence quark masses au!® and au®, which will
be specified later in Tables XI and XIIIL

Essential information on the ETMC ensembles relevant
for this work is collected in Table V. With respect to
Refs. [17,18,34] two other dedicated gauge ensembles,
c¢B211.072.96 and cD211.054.96, have been produced for
the investigation of FSEs and cutoff effects [19]. The
cB211.074.96 ensemble, which has a spatial lattice size
L ~7.6 fm, is used to estimate FSEs by comparing to the
smaller cB211.074.64 ensemble, while the cD211.054.96
ensemble corresponds to our finest lattice spacing
a ~0.057 fm. Note that for the three finest lattice spacing
ensembles, which are the only ones that have been used
for the calculation of ay/(#), a;(s) and a)(disc), the pion
mass is simulated quite close to the isoQCD reference
value ME™S = M5°%CP — 135,0(2) MeV, which was also
adopted in Refs. [18,34]. For the evaluation of the light-
quark-connected contribution, the inversions of the Dirac

operator have been performed using N, = 10* spatial
stochastic sources per gauge configuration. The tech-
niques adopted for the calculation of the disconnected
diagrams are briefly outlined in Sec. IV.

Pion-mass mistuning effects, which are at most of order 5—
6 MeV for the B-, C-, and D-type ensembles listed in Table V,
are relevant for the light-quark contribution to the intermedi-
ate window [a, ()] and completely negligible within the
accuracy for all the other contributions considered in this
work. Indeed, a)’ (#) is dominated by zz and zzz contribu-
tions and, hence, particularly sensitive to variations of the
light-quark mass. In order to minimize the systematic errors
related to the (small) difference M, — Mi,SOQCD on the
ensembles used for the calculation of a,vlv(f ), we performed
additional simulations enabling to correct our lattice data for
the mistuning of M . In practice we evaluated the corrections
to a) (¢) due to the appropriate small change of . in the
valence and in the sea sector of the lattice action.

The former correction has been determined by perform-
ing additional inversions of the light-quark Dirac operator
employing a slightly smaller value of the light bare quark
mass au), < apu,, keeping the sea quark mass fixed to ay,.
The values of the valence light-quark mass ayu/, have been
chosen, for each ensemble, according to the following
relation:

MiTSOQCD 2
I

apy = aﬂf< i3

T

where M, is the measured value of the pion mass on any
given ensemble. Since such corrections are expected to be
of the order of few permille, only a limited number of
stochastic sources [(O(100)] have been used for this
calculation. The valence correction V¥ (¢) to the vector
correlator has been then determined for both tm and OS
regularizations as

SV () = Vo(t,auly, app) = Vo (t, app,app), (A7)

where V (¢, ap,, ap,) is the unitary vector correlator, while
V(t, ap,, ap,) is the one obtained from simulations at the
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TABLE VL

The values of the light-quark bare mass difference 5(ayu,) adopted for each ETMC gauge ensemble, given in units of 107.

The third column contains the values of M, in physical units obtained after the mass correction, while the other columns show the
original values for a) (#) and the resulting da, (£), given in units of 107'°, in the two regularizations tm and OS.

Ensemble S(apy) M, (MeV) ay (¢, tm) Say (¢, tm) ay (¢,08) Say (¢,08)
cB211.072.64 -5.25 135.2(2) 204.61(36) 0.13(10) 203.36(33) 0.38(7)
cB211.072.96 -5.25 135.2(2) 205.98(21) 0.26(11) 203.18(20) 0.51(8)
¢C211.060.80 ~1.50 134.9(3) 204.88(44) 0.05(5) 203.02(37) 0.02(5)
cD211.054.96 —4.36 135.1(3) 205.67(42) 0.36(9) 203.96(39) 0.31(10)

valence quark mass ay, and sea quark mass ayu,. In order to
reduce the statistical noise, Eq. (A7) has been evaluated
using a common set of stochastic sources for both valence
masses, ap, and ayl,.

|

As for the evaluation of the corrections to a)' (£) coming
from the sea sector, we rely on the so-called expansion
method. At leading order in §(au,) = au), — au, the cor-
rection 5V (1) to the vector correlator can be determined as

dq)]e—S[q’ﬂﬂf]—é(dW) f‘i’f‘l’f(x)o([) f[dq)]e—s[d).ayf]o([)

svsa(r) =1

f[dq)}e—s[‘b-aw]—é(aﬂf) f‘i’f‘*'f(x)

f[d@] e_S[q)’aﬂf]

= —8(aus) ) (¥ ¥e(x)O(1)) = (OO PP, ()] + O(8 (apr)).

X

3
a ! !
0= Y Sl

=123

where, to keep the notation simple, we collectively denote
with @ all fermionic and gluonic fields, while S[®, au/]
corresponds to the Wilson-clover twisted-mass action in
Eq. (A1) with bare light-quark mass au,. The composite
field O(t) is a product of two light valence quark currents [see
Egs. (A11) and (A12) for the notation] but no sea quark fields
¥, and ¥,. The expansion method has the clear advantage
that no new gauge configurations have to be generated and
allows one to compute 6V5*(r) from the insertion of the
(light-quark) scalar density inside the current-current corre-
lator. All vacuum expectation values in Eq. (A8) are evaluated
in the gauge background generated by S[®, au,|. Finally, the
total correction ay, (¢) to the light-quark contribution to the
intermediate window is given by

say (¢)=2a2, /oo di* K (m, 1)® (1)[5VY¥ (1) + 5V5(1))].
0

(A9)

In Table VI we show the values of the correction Say ()
(for both tm and OS regularizations) on the four ensembles
of Table V, along with the original values of a) (¢), the
simulated values of &(ap,), and the values of the
pion masses obtained after performing such corrections.
It turns out that (i) the correction da, (¢) shifts upward the
intermediate window by approximately 2¢ (or less) for the
¢B211.072.64, ¢cB211.072.96 and ¢cD211.054.96 ensem-
bles, while it is completely negligible within the uncertainty
for the ensemble cC211.06.80, and (ii) the sea quark mass

1'(0),

(A8)

correction is found to be significantly smaller than the one
from the valence quark mass.

1. The correlator V(¢) in the mixed-action setup

In our formulation, we find it convenient to evaluate the
vector correlator V(z) [see Eq. (15)] by employing two
different regularizations for the quark-connected contribu-
tions to the correlator. Moreover, as discussed in the
following, using a mixed-action (MA) setup, we can define
renormalized correlators for each individual quark flavor
(7, s, ¢) connected term and for the various quark flavor
diagonal and off-diagonal disconnected contributions to a;;
(here w = SD, W). This flexibility turns out to be advanta-
geous for extrapolating independently contributions to a,;
that can have a different magnitude and relative accuracy to
the continuum limit. After taking the continuum limit they
are combined to yield the desired results of the unitary
1s0QCD theory.

The vector correlator V(¢) for Ny =2 + 1 + 1 QCD can
be reconstructed, in the continuum limit, by combining a
number of renormalized correlators in our MA setup, with
coefficients dictated by the em charge of the various quark
flavors. Namely

{ 1 I
V(©)lhia 25‘132 Z Vi () has

X =13

x=(x.1), (Al0)

with
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L L ) + 5 (2

re; ! ss' 4 cc’ cc’ 1t
Vii(x) MgA = 9 <Jff;g ireg 9 ireg (X) [‘]zreg]T(O»(C) + § <‘]i,reg(x) [Ji,reg] (0)>(C)
4 + 1 - 2 - 2 ! o 1 !t 4 U
T sV O + 5 (os (VIS )P + 5 (s (5] (0
1 . 2 ; 2 .
= 5 UG5 (5) s (0) 4 1) P) 4 (765 (1)) 0) + he) ) = & (s () U5 (0) 4+ 1) P, (A1)

where reg € {tm, OS} labels the two regularizations of the single-flavor renormalized vector currents, up to variants that are
equivalent in the large statistics limit. Adopting the lighter notation g ,(x) = f,(x) for the single-flavor valence quark

fields, the relevant renormalized vector currents read

e g P o 7 o

Jiim = Zal1¥ul2, Jos = Zvl1yr,ts,
ss' < ss' -

Jiim = ZAS1Y 452, Jios = Zv317uS3,
C,/ o - CC’ . _

Jiim = ZAC1Y,C2, Juos = ZyC1y,c3,

where Z, or Zy are the appropriate ultraviolet (UV) finite
RCs for the bare local vector currents in Eq. (A12). We
recall that £ = u = d, as in our lattice QCD setup u and d
quarks are mass degenerate. For all valence quark flavors
f=7¢,s,c, we have ry; = —rpy =rp3=---=1. The
suffixes on the currents (e.g., ss’, ss or §'s’) just remind
whether the quark and antiquark field entering in each
current belong to different (e.g., ss’) or equal (e.g., ss or
s's") valence fermion replica, independently of the Wilson r
values which are specified by the index n = 1,2,3. The
suffix (C) or (D) attached to the correlators contributing
to V;i(x)|35 in Eq. (A10) indicates whether these corre-
lators give rise to quark-connected or -disconnected Wick
contractions.

As customary when working with twisted-mass lattice
fermions, we say that a vector current, e.g., ]%eg, is
written in the tm or OS regularization if the two valence
quarks f and f’ entering the current appear in the valence
quark action S, ,, of Eq. (A3) with rp = —rpor rp = ry,
respectively. As one can see from the examples in
Eq. (A12), this implies that the OS regularization is the
unique possible choice for the currents entering in the
fermion-disconnected correlators. Numerically, they
give much smaller contributions to a,; than the quark-
connected correlators, for which instead the two lattice
discretizations are available.

We outline here the main steps of the proof showing that

one can extract physical information on the correlator V()

in QCD from the correlators V(z)|'%:5, following the logic

that was adopted in Ref. [69] for correlators relevant to
other physical observables. Let us start from the UV finite
RCs of the currents appearing in Eq. (A12).

For the currents involving two different valence-replica
quark fields (i.e. Jﬁf;g, ij;eg, Jﬁfr’eg), which enter in the
quark-connected correlators, one easily checks that the
appropriate RC is Z, or Zy for reg = tm or reg = OS,

Jios = Zvlirutr, Ji6os = ZvEsy,t's,

ss < s's <
Jivos = ZvS1Yust I3 0s = Zy337,53,

78

Jes = Zverycr, J56s = ZvTay,cs, (A12)

|

respectively. Indeed, since the RC are named following the
standard notation for untwisted Wilson lattice fermions,
this result is easily obtained by rewriting for the two
considered regularizations (reg) the current operator in the
valence quark basis where the Wilson term appears
untwisted, viz.

Sq,val = 042 Z)_(f,n(x) [7 ' v + Sgn(rf.rl)i}/Smf
x o fan

+ Wil (%)- (A13)

Comparing with the form of S, ,,; in Eq. (A3), one sees that
the relation between the two valence quark field bases reads

Fa=as, =7 pne e,
(A14)

In=dpy= TSy,

Taking as an example the currents J5,

s and J ,Sfé)s it follows

that since

gl}'ﬂs2 :)?s.lySYMs,Z’ E]J/”Sj; :)_(S,l}/y)(s,f% (AIS)
the first and second bare currents in Eq. (Al5) are
renormalized with Z, and Zy, respectively. The same
argument holds for all the other currents having two
different valence-replica quark fields in Eq. (A12), with
the relative sign of the Wilson r parameters of the valence
quark and antiquark determining whether the proper RC is
ZyorZ A.8 As for the vector currents involving two equal

/f/

: . : (44 ss cc
valence-replica quark fields, i.e. J 108" J woss J0ss J 1,08

¥For completeness we recall that such scale-independent RCs
are needed in lattice regularization that break chiral symmetries in
order to have the valence-quark currents normalized consistently
with the chiral WIs of QCD [77,78].

074506-24



LATTICE CALCULATION OF THE SHORT AND INTERMEDIATE ...

PHYS. REV. D 107, 074506 (2023)

J;"“(';S, and J;:SS, which enter in the quark-disconnected
correlators, it is easy to check that their form is unchanged
upon rewriting them in the quark basis where the valence
fermion action takes the form given in Eq. (A13). Thus, the
problem is reduced to determining the renormalization
pattern for a single-flavor vector current in untwisted
Wilson lattice QCD. Taking, for instance, the case of the
charm-quark flavor (the argument is unchanged for s, d and
i), what we are after is the relation between the chiral
covariantly renormalized current, say [7.7,4.|. and the
bare current g.y,q.. In Appendix D we show that for
standard Wilson fermions the flavor-singlet and -nonsinglet
vector current RCs actually coincide, i.e. Zyo = Zy, from
which it follows that the current g.y,q,. is only multipli-
catively renormalized and [§.7,q.r = Zv3.7,9.. As a
consequence, all the vector currents that involve two equal
valence-replica quark fields in our mixed-action setup are
also multiplicatively renormalized through Zy,.

An important result is obtained exploiting renormaliz-
ability of our mixed-action setup (Al) and universality,
provided [69]

(i) a suitable renormalization condition (e.g., the value

of f, in is0QCD) is imposed as g3 — 0,

(i1) the bare soft mass parameters are matched so as to
work with equal sea and valence renormalized quark
masses for each flavor (see below for more de-
tails), and

(iii) all the current-current correlators appearing in
Eq. (A10) are normalized consistently with the
chiral Wl of N, =2+ 1+ 1 QCD.

Namely, the correlator V(7)[{:>% in Eq. (A10) admits a
continuum limit that coincides with the one of the
formally identical correlator, V(2)|§", evaluated at equal
renormalized quark masses in a chiral-symmetric lattice
regularization, e.g., defined using Ginsparg-Wilson sea
and valence quarks, whence the label GW, of the same
mixed Ny =2+ 1+1 QCD action. Moreover, at the
given renormalized quark masses, the continuum limit
of V(¢)|§% in the chiral-symmetric lattice regularization is
identical to the continuum limit of V(¢)|°Y, i.e. the
correlator of Eq. (15) in the unitary Ny =2+1+1

QCD setup.’ The latter is precisely the quantity of interest

for extracting a5

cludes our proof.

A few remarks are in order about the way of tuning the
bare soft mass parameters in order to work with equal sea
and valence renormalized quark masses for each physical
flavor in the mixed-action setup (A1). Based on the results

, as discussed in Sec. II. This con-

*This identity is easily checked by noting that the correlators
V(6)|G% and V(1)|°Y, being defined in the same UV regulari-
zation for all types of quark fields and evaluated at equal
renormalized masses, give rise to identical Wick contractions
at finite lattice spacing.

of Ref. [69] a simple way of doing so consists in matching
the sea and valence bare mass parameters according to

Zs Zs

mg :ﬂﬁ_z_ﬂﬁ’ m. :Mﬁ+z_:u5’
P P

(A16)

me =W, = Hlq,

where Zp (Zg) is the RC of the pseudoscalar (scalar) flavor
nonsinglet quark bilinear density and fixing the values of
My = Mg, By and u,. in order to reproduce the “physical”
values of three observables (sensitive to the light, strange
and charm quark masses) in isoQCD. Of course the
definition of such physical values in isoQCD is conven-
tional, since in the physical world SU(2) isospin symmetry
is only approximate, but any arbitrariness induced by the
conventional definition of an i1soQCD world can be
removed by evaluating the corresponding QED and strong
IB corrections'” (for a review see, e.g., Ref. [75]).

In practice we tune u, and 5 by matching them to their
valence counterparts m, and m, as discussed in Ref. [16].
The values of the valence quark masses m, and m, are in
turn fixed in order to reproduce the phenomenologically
well-known values of My, /fp and m./m;, as discussed
above in introducing the mixed-action lattice setup (Al).
Such a tuning step could be performed with an accuracy of
few percents for all lattice resolutions in the early stages of
the simulation effort without affecting significantly the
uncertainty of the final results owing to the very mild
dependence of a;° and a)' on the strange and charm sea
quark masses.

Aiming at a few permille determination of the window
contributions, it is crucial to have a high-precision deter-
mination of the RCs Z, and Zy, as well as of the values of
the lattice spacing. While the accurate evaluation of Z, and
Zy will be discussed in Appendix B, we address now a
significant improvement of the determination of the lattice
spacing (the result of which is given in Table V) with
respect to the results obtained in Ref. [18].

2. Improved determination of the lattice spacing

In order to reduce the uncertainties on the lattice spacing
as compared to the results obtained in Ref. [18], we take
advantage of the following improvements: (i) Pseudoscalar
observables are now available with substantial higher
accuracy thanks to a huge number of stochastic sources
(Ngouree = 10%) per gauge configuration; (ii) two new
ensembles at the physical point, namely c¢B211.072.96
and cD211.054.96, are included in the analysis; and (iii) a
significant increase in the number of independent gauge
configurations analyzed for the two physical mass point

9As mentioned in Secs. I and V, the IB correction to aP is

negligible, while the one to a is estimated using the BMW
results of Ref. [14].
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ensembles the cB211.072.64 and cC211.060.80 as com-
pared to what we used in Ref. [18]; and (iv) the inclusion of
four ensembles at a coarser lattice spacing of a ~ 0.091 fm,
namely cA211.53.24, cA211.40.24, cA211.30.32 and
cA211.12.48, taken from Ref. [18]; they will be referred
to as A-type ensembles. The simulated pion masses are
in the range 170-350 MeV [18] and, therefore, they are not
close to the physical pion point. Consequently, in the
analyses of the light- and strange-quark contributions
to the window observables they would require a significant
extrapolation in the pion mass. Nevertheless, they can be
useful for the analysis of the charm contribution
to the window observables, since the latter ones have a
very tiny dependence on the sea light-quark mass; (v) the
inclusion of four B-type ensembles at a ~ 0.080 fm, namely
cB211.25.24, cB211.25.32, cB211.25.48 and cB211.14.64
from Ref. [18], for getting control over FSEs and pion-mass
dependence.

Following Ref. [18] the analysis is performed using as
input the dimensionless variable

M2

$r = 621 (A17)

corrected for FSEs using the resummed formulas from
Ref. [79]. Then, we fit the pion decay constant in lattice
units, af ,, determined on the A- and B-type (second largest
lattice spacing) ensembles, using the following ansatz
inspired by chiral perturbation theory (ChPT):

af{r(fﬂ,L) = affﬂ'(é:ghys’ 00) . {1 _ 25” log(fﬂ/fﬁhys)
+ [P + Pdisc(“fzjr)z} . (f,, - /j?,hys)}

oML
b/

(A18)
where j = A, B and af4, af®, P, Py, and Pggg are free
fitting parameters. We use a total of ten ensembles."’
Using the values obtained for P, Pg;,. and Pgsg we can
correct the lattice data of af , for the mistuning in &, and for
FSEs on all the ETMC ensembles, i.e. also on the C and D
ensembles. After applying such corrections, which are
small on the physical point B, C and D ensembles, the
lattice spacing is determined from
@ = afs(E™ 00) /2

X=A,B,C.D, (Al9)

where O = f0QCD _ 130 4(2) MeV  [76] (as in

Ref. [18]). As no use is made here of the gradient flow
quantity wy/a, the above scale setting procedure is

"For the ensemble cA211.12.48 we correct the value of a [
accounting for violation from maximal twist condition following
Ref. [18].

0.075
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0.07 : °
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0.05 Lattice data B Ensembles corrected for FSEs o~
Lattice data A Ensembles corrected for FSEs e+
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&n

FIG. 14. The pion decay constant in lattice units, af,, as
determined on the A and B ensembles, versus the dimensionless
variable £, given in Eq. (A17). The smaller markers represent the
results obtained using the combined fit (A18). Both data points
and fit curves are shown after removing FSE using the result for
Prgg. The vertical dotted line corresponds to the physical value

£, = &S = £50QCD 9 0068.

equivalent to that of Ref. [18] only up to relative O(a?)
effects on the lattice spacing.

The reduced y* of the fit based on the ansatz (A18) is
y*/d.o.f. ~ 1.6, with ten measurements and five parame-
ters. Fit stability is checked by including or excluding the
cA211.12.48 ensemble and by including or excluding all
the A-type ensembles. In the latter case we set Py = 0.
The quality of the fitting procedure is illustrated in Fig. 14.
The values of the lattice spacing for the various ETMC
ensembles are collected in Table VII and compared with the
ones from Ref. [18].

It can be seen that, except for the A-type ensembles, the
updated values of the lattice spacing are more precise than
those obtained in Ref. [18] by a factor of ~2. We reach a
precision better than ~0.2% for the ensembles B, C and D,
while for the A ensembles the relative uncertainty of a is
equal to ~0.6%. The reason why the accuracy of the lattice
determination for the A-type ensembles is not at the same
level is that, unlike for the rest of the ensembles, we do not
have simulations very close to the physical pion point. This
means that we have to extrapolate from larger values of &,
to reach the physical value increasing the error, as

TABLE VII. In the first column we give the ensemble type
according to its lattice spacing, in the second column we give the
updated values of the lattice spacing a, and in the third column we
give our previous determination using a smaller set of ensembles
and statistics [18].

Ensembles a (fm) [this work] a (fm) (from [18])
A 0.09076(54) 0.09471(39)
B 0.07957(13) 0.08161(30)
C 0.06821(13) 0.06942(26)
D 0.05692(12) 0.05770(20)
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FIG. 15. a*-scaling behavior of the relative difference between

the two determinations of the lattice spacing given in Table VII.
The violet and green bands correspond to a linear fit in a” applied,
respectively, to all the four data points and to the three finest ones
only. The width of the bands represents one standard deviation.

demonstrated in Fig. 14. In Fig. 15, we plot the relative
difference between the two determinations of the lattice
spacing that exhibits a nice a’-scaling behavior.

In this work we use the values of the lattice spacing given
in the central column of Table VII (see also Table V).

Finally, a relevant question which we want to address is
the sensitivity of the short and intermediate windows to the
uncertainty of the lattice spacing, focusing on the (most
relevant) case of the light-quark contribution. While the
windows are dimensionless quantities, the lattice spacing
enters their calculation explicitly through the fact that the
two dimensionful quantities entering the leptonic kernel,
the muon mass m, and the window parameter A, must be
converted in lattice units. The impact that the relative
uncertainty Aa/a on the lattice spacing produces in a};(£)
(w = SD, W) is given by

Aay(6) |olog(@(€))| Aa_ . Aa
@) " 910g(a) ‘ s =T B

The coefficient C* can be computed numerically from the
knowledge of the lattice vector correlator and from the
derivative of the integration kernel with respect to the lattice
spacing a. In the case of the full HVP this coefficient turns
out to be around 1.8, as already pointed out in Ref. [80]. For
the short and intermediate windows, we find instead CSP ~
0.1 and CV ~ 0.4. The short-distance window is therefore
largely insensitive to the uncertainty on the scale setting,
while for the intermediate window the impact is a factor of
4 smaller than that for the full HVP.

APPENDIX B: HADRONIC
DETERMINATION OF Z, AND Z,

In order to reach a high-precision determination of the
two scale-invariant RCs Zy, and Z, we employ a hadronic

TABLE VIII. The values of Z, and Z, used in this work for
each of the ETMC ensembles of Table V, determined by
employing the WI-based hadronic method described in the next
subsections. In the last row we provide our determination of the
two RCs on the coarsest lattice spacing a ~ 0.091 fm. They have
been obtained by extrapolating to the physical sea light-quark
mass point (corresponding to M, = ME°Py the values of Zy,
and Z, calculated on the three specified A-type ensembles (see
also Table V), with a ~ 0.091 fm.

Ensemble Zy Zy
cB211.072.64 0.706379(24) 0.74294(24)
cB211.072.96 0.706405(17) 0.74267(17)
cC211.060.80 0.725404(19) 0.75830(16)
cD211.054.96 0.744108(12) 0.77395(12)
cA211.(53.24, 40.24, 30.32) 0.68700(14) 0.7280(17)

method based on the WI combined with a high-statistics
determination of the relevant suitable correlators. This
allows us to obtain on the physical point ensembles of
Table V, namely the B-, C- and D-type ensembles, an
accuracy of ~0.03%—0.10% for Z, and of ~0.001% for Zy,
thus reaching the desired accuracy. We collect the values of
Z, and Zy used in this work for each of the ETMC
ensembles of Table V in Table VIIIL.

We proceed to illustrate in detail the method, based on
WI and universality, that enables us to obtain the two RCs
Zy and Z, with very high precision. The derivation relies
on two main ingredients, namely an exact conserved
current relation holding in the Wilson twisted-mass regu-
larization and the fact that the critical Wilson term is a truly
dimension-five irrelevant operator.

1. Case of Zy,

In order to discuss the evaluation of the RC of the flavor
nonsinglet vector and axial currents, in the context of the
mixed-action setup for Ny = 2 + 1 + 1 LQCD described in
Sec. IIT it is convenient (and enough) to focus on the
Lagrangian for just two different valence quark flavors,
which can be taken with a common soft mass parameter,
say up, and are denoted by F and F'.

Let us start by considering the case where the two
distinct valence quark flavors are taken at maximal twist
with opposite r-Wilson parameters, i.e. rp = —rp = 1. In
order to lighten notation and ease a number of algebraic
steps in the following let us collect the two valence quark
field in a two-flavor valence field, y, _, i.e.

Yyal,— = (qF’ qF’)? ll_/val,— = (QF7 Z]F’)’ (Bl)

with the suffix “—" reminding of rprz < 0. The FF’ sector
of the valence quark action (A3) reads
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Sq val D Sq val — ZWle v + HF

- 1757 Wcr|r=1]anl.—(x)’ (BZ)
with the 7> matrix acting in the FF’ flavor space. Since RC
are named after the quark basis where the Wilson term is
untwisted, it is useful to write also in this basis

Xval,— = e_i”y513/4l//val,—a )_(val,— = l/_/val,—e_iﬂy513/4 <B3)
the FF' sector of the valence quark action [see Eq. (B2)],

namely

SqFﬁ;u = a4D_(V211,—(x) [y -V +irstur

X

+ Wg"rzl])(val,— (X) <B4)
The expression of axial and vector currents, as well as
scalar and pseudoscalar densities, is different in the two
different bases, while the physical meaning of these
operators is manifest in the y basis where the quark mass
term (x pp) takes its canonical form. In that basis, also
referred to as the “physical” one, we use here for the
operators symbols in calligraphic style and write

(1

-A l//val 7/;4}/5 D) Yyal,—
€3ah VZ = €3ab)_(va1,—},ﬂ %)(val,— (Cl =1 ’ 2) ’
- 3 = P (BS)
A/} = Xval.=YuY575Xval.— (a = 3)’
a
VZ = ll_/val,—}/y EV/val,—
_ b
. { €3abA£ = €3ab)(val~—7/ﬂ}/5 A val.— (a =1, 2) ’ (B6)
Vi :)_(val,—yu ?)(val,— (Cl = 3)7
a
P =wya-1s > Wal-
B P = Jya-7s g)(va],— (a = 112)’ (B7)
Z%SO = i%)_(val,—)(val.— (Cl = 3)’
0 — - _9ip3 _ i s
§'= Yval,-Y¥val,— = 2iP° = 21)(val,—75 A Aval,— (BS)

2

Owing to the exact flavor symmetry of Wilson fermions
for massless quarks (up = 0), the WI

9, (Vi(x)0(0)) = =2ure’” (P (x)0(0)), ~ (BY)

where 9, is the lattice backward derivative, holds true
exactly at finite lattice spacing. In Eq. (B9) Vﬂ is the exactly
conserved point-split lattice current,

a

Vi) =5 { P 007 = DG Uyt 4 )

Rl o)) 5 U (0 (0 .
(B10)

The lattice WI of Eq. (B9) can be used to determine the
finite RC Zy, of the pointlike current Vj;, a = 1,2, i.e. of the
axial current Aj, a =1,2 in the “physical” y basis.
Making use of Eq. (B9) and of the transformation law
of Egs. (B5)—-(B7), it is easy to show that Z, can be

extracted using

. (P (1)P}(0)
>0, AL )P (0)

where 5” is the lattice symmetric derivative and operators
are written in the physical basis; see Eqgs. (B5) and (B7).
Moreover, the limit ur — 0, it is strictly speaking unnec-
essary, since the difference Zy (ur) — Z(0) amounts only
to lattice artifacts of order O(a’u%) or O(a*urAgep). Any
choice of up, which of course must be set to the same value
in physical units for all ensembles, is legitimate, and we can
use this freedom to evaluate Zy, at a convenient value of .
According to the discussion above, for each ensemble we
extract Zy from the large time behavior, t/a > 1, of the
following estimator'”:

ZV = lim 2/4[:
ur—0

(B11)

pp(1)

Ry(t) =2up= ;
3,C8(1)

(B12)

where (correlators are named here after the unphysical y
basis)

cun (1) 32 0[P (x)P'(2)|0), (. —r).  (B13)
CPp(r) = gZ<0|A5<x>7>”<z>|o>6,,<,‘_,,>. (B14)

We recall that P'(x) = @y _(x)rs37' wea—(x) and
AY(x) = Wya—(X)707s 3 7' Wya—(x) are the pseudoscalar
and axial pointlike bare (nonsinglet) currents, respectively,
in the “physical” basis, while in Eq. (B12) the suffix tm
reminds that all the quark bilinear operators appearing in
the correlators C'f}, and CY), involve a quark of flavor F and
an antiquark of ﬂavor F', or vice versa, with rp = —rp.
Because of the WI in Eq. (B9) one must have

The value of the estimator at small times is affected by
relatively larger lattice artifacts, while at large times no significant
deterioration of the signal-to-noise ratio is expected as the one-
pion state dominates the correlators.
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FIG. 16. Time behavior of the estimator Ry (7), given by Eq. (B12), for the cB211.072.64 (left panel) and cC211.060.80 (right panel)
ensembles. The red circles and the blue squares correspond to two simulated values of yr shown in the inset.

Ry(1) = Zy + O(a®up. @’ ppAgep).  (B1S)
In Fig. 16 we show the time behavior of the estimator Ry (¢)
for the cB211.072.64 and cC211.060.80 ensembles and for
two values of ap . It can be seen that the WI method allows
one to determine the RC Zy, from the plateau of Ry () with
remarkably high precision. Regarding the value of j, we fix
it by the requirement that the ground state mass of the
correlator C'5} (1) matches the mass of the fictitious 7, meson
(made out of a strange quark and a strange antiquark), i.e.
M, = 689.89(49) MeV [14]. The values of Z\, correspond-
ing to this choice are collected in Table VIIL

2. Case of Z,

Let us consider now the case where the two distinct
valence quark flavors are taken at maximal twist with equal
r-Wilson parameters, i.e. rp = rpz = 1. In order to lighten
notation and ease some algebra we collect the two valence
quark field in a two-flavor valence field, w, , i.e.

Weas = (9r. ), Wyat = (Gr.gr),  (B16)
with the suffix + reminding of rprp > 0. The FF" sector
of the valence quark action (A3) reads

Sq,val 2 S;C;l = a4zl/_/val,+ ()C) [Y -V + HF
X

= irsIWa - Jwya s (%), (B17)
with the 2 x 2 identity matrix T acting in the FF” flavor
space. As RCs are named after the quark basis where the
Wilson term is untwisted, we introduce in this basis the
notations

)(val,+ = e_iﬂy5/4l//val,+7 }_{val,+ = l/_/vzrll,nLe_iMS/“ (BIS)

for the FF” sector of the valence quark action [see
Eq. (B17)], namely

Sgl\j;l - (14 § )C_val,+ (x) [7/ ' v + in]],uF + Wg'r:l})(val,-ﬁ- ()C)
(B19)

It follows that in the F'F” valence sector the nonsinglet axial
currents and the pseudoscalar densities in the physical y
basis (for which we use calligraphic style symbols) are
given by

_ ¢ 0s
Al =W 47,7 7anl,+ = Ay

Ta

= )_(val,+7/47/5 E)(val,—&- ((1 =12, 3) (BZO)
and
a — o7, ¢ _ -@a0S
Py =Wval,+75 ?anlﬁ» - lS#
74
= i)_(val,+ ?)(valﬂr ((1 = 17 2’ 3)’ (le)

where the suffix OS on the y-basis expression of the
operators reminds that they are made out of a valence quark
and antiquark having equal r parameters in the action; see
Egs. (B17) and (B19).

In order to determine the RC Z,, let us start by defining
the following ratio:
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s (1)

Ry(1) = qu

(B22)

where (correlators are named here after the unphysical y
basis)

co(1) 32 0[P (x)P*(2)[0)3, (B23)

e () ng OLAY ()P (2)]0)8, 1, (B24)

with A(l) and P' given by Egs. (B20) and (B21). The suffix
OS in the correlators reminds that C$s and CS% involve a
quark of flavor F and an antiquark of flavor F’, or vice
versa, with rp = rp.

At large time distances #/a >> 1 one has the following
asymptotic behavior:

-M9S¢ + e—Mf,’S(T—t)

e
C$S (1) = |G 2MOS . (B2)
» fOS
ad,C5 (1) — *2— M5 sinh (aM9®)(GS)"
Zy
-M95t —M9S(T—1)
e +e (B26)

2 MOS ’

where M9 is the mass of the valence OS pion 7, i.e. the
ground state mass extracted from C95 (1) at the given quark
mass u, while S is related to the pion decay constant f,
through

0.7440

0.7435

742 _
0 > o auF=aus=O.O19 (]
[m} auF=aus=0.021
0_7420....I....I....I....I....I....
10 20 30 40 50 60 70

t/a

f;)S =fz+t O(az)' (B27)

The previous equations imply the following asymptotic
large time behavior for R, (7):

Z, GY®
795 MO9S sinh (aMO)

RA(t) = 2aur (B28)

In order to determine Z, from the estimator R A(t) it is
necessary to have an independent way to extract fO5, since
both G95 and M2S can be determined from C$(¢) alone.
This can be achieved exploiting the fact that, as a
consequence of the WI given in Eq. (B9), the meson decay
constant f, can be extracted in the tm regularization
without the knowledge of any RCs, from the large time
behavior of C¥}(7), namely using

—-MPt 4 e—M}}“(T—z)

e
CBy(1) = G
Gtm
LD P S B29
f3 = 2aur sinh (aM™) (B29)

where again fi" = f, + O(a?). By imposing fO5 = fum,
which is true up to lattice artifacts, we can determine Z 4
using

_ M5 sinh (aM9®) Z
R,y(t) =R (1) =2 T L2 5 74, B30
A( ) A( ) M;lr_'n sinh (aM}Tm) ZP — Ly ( )
where
ZP GOS
— = B31
Zs Gy (B31)
0.7590

0.7585
)
lec™
0.7580 J
1
lH
i o auF=auS=O.O16
L o auF=aus=O.018
0.7575 s b b by by s by by

10 20 30 40 50 60 70 80
t/a

FIG. 17. The same as in Fig. 16, but for the estimator R, () given by Eq. (B30).
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TABLEIX. The values of Z,/Zy and Zp/Z obtained from the
hadronic method discussed in the text for each of the ETMC
ensembles of Table V. In the last row we provide our determination
of the two RCs on the coarsest lattice spacing a ~ 0.091 fm. They
have been obtained by extrapolating to the physical sea light-quark
mass point (corresponding to M, = M is0QCD )the valuesof Z, /Zy,
and Zp/ Z calculated on the three specified A-type ensembles (see
also Table V), with a ~ 0.091 fm.

Ensemble Z4/Zy ZplZg
cB211.072.64 1.05176(35) 0.79018(35)
cB211.072.96 1.05134(24) 0.79066(23)
cC211.060.80 1.04535(22) 0.82308(23)
cD211.054.96 1.04011(16) 0.85095(18)
cA211.(53.24, 40.24, 30.32) 1.0597(24) 0.7517(29)

is the ratio between the flavor nonsinglet pseudoscalar (Zp)
and scalar (Zg) RCs.

As in the case of Zy, there is freedom in choosing the
valence quark mass up at which the correlators are
evaluated, provided this value is kept fixed in physical
units for all ensembles. Indeed, the difference Z, (ur) —
Z,(0) represents a mere O(a*u%., a*upAqep) cutoff effect.
In Fig. 17 we show our determination of the estimator
R, () for the cB211.072.64 and c¢C211.06.80 ensembles
and for two values of aup. We adopt for Z, the same
choice made for Zy and fix p to the strange mass by the
requirement that the ground state mass of the CPp(7)
correlator matches the one of the #, meson, i.e.
M, = 689.89(49) MeV. The values of Z, corresponding
to this choice, and obtained from the plateaux of the
estimator R,(¢), are collected in Table VIIL

For sake of completeness we collect in Table IX the
values of the ratios of RCs Z,/Zy corresponding to the
results of Table VIII and Zp/Z obtained from Eq. (B31).

APPENDIX C: THE PHYSICAL STRANGE- AND
CHARM-QUARK MASSES

In this appendix we describe our strategy to reach the
physical values of the valence strange- and charm-quark
phys phys ; o
masses, my - and me >, using various hadronic inputs. Our
results are well consistent with those obtained in Ref. [34]
using the kaon mass to determine m!™* and the D,-meson

mass to determine mP™>,

In Secs. C 1 and C 2 we list, respectively, the values of the
valence bare strange- and charm-quark masses, au, and ay,.,
used for each gauge ensemble to interpolate the simulations
of Sec. III to the physical strange- and charm-quark masses.
In Sec. C 3 we list the values of ay, and au,. used to evaluate

the strange- and charm-quark loops of Sec. IV.

1. The physical strange-quark mass

In order to reach the physical strange-quark mass m?™*,

we made use of two different hadronic inputs, namely the

5] .
@ 02092 aps = 0.015
0.28} 02000 b
02080 BN pRBERSRRRIRRRLARERNOERNBANRRA
= e |
0.26 + & 02087 5560 65 70 75 80 - 85 90
§ S 02019 aps = 0.014
S 0% % vt
= o6 T g
0.22¢+ %%%M B T R TR TR T
=l
0.2l Hany
0 10 20 30 40 50 60 70 8 90
t/a
aps = 0.015
0.4} B Q3000 f . LTI ]
bimp ]
038 L g 0.3000 F : : : i ¢ . . . .
= 300 32 34 36 38 40 42 44 46
2 0.36} B aps = 0.014
E : ]
0.34} 5 gigggg;’llllllzuiuﬂl
0.2940 F
0.321 H ST e ]
. 5
=
0.3t :
0 10 4
t/a
FIG. 18. Effective masses aM, (top) and aM, (bottom)

obtained, respectively, from the strange pseudoscalar and vector
correlators evaluated in the tm regularization in the case of the
cD211.054.96 ensemble. The horizontal bands indicate the
results of a constant fit in the plateaux regions, where the ground
state dominates.

mass of a fictitious #, meson, made of two mass-degenerate
strangelike quarks of different flavors, and the mass of the
¢ vector meson. The physical value of the fictitious #,-
meson mass, M, , was determined with subpermille pre-
cision in Ref. [14], so that throughout this work we make
use of the value

MY = 689.89(49) MeV, (C1)
while for the mass of the ¢y meson we rely on the PDG [81]
value

MY =1019.461(16) MeV. (C2)
Within the lattice QCD formulation, we extract aM, and
aM , from the connected part of the strange pseudoscalar
and vector correlators, respectively, evaluated in the tm
regularization, which guarantees that discretization effects
are of order O(a’u,). Thus, in the case of the ¢ meson we
neglect the contribution from quark-disconnected dia-
grams, which are expected to yield a tiny correction of
order O(a?). In Fig. 18 we show the quality of our
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TABLE X. Values of am®™™" in the MS(2 GeV) scheme [34,82]
in lattice units determined using in Eq. (C3) either the #,-meson
mass (C1) or the ¢p-meson mass (C2) as the physical hadronic
input.

Ensemble am™ (n,) am®™* ()

cB211.072.64 0.03846(41) 0.03608(58)
cB211.072.96 0.03845(41) 0.03533(51)
¢C211.060.80 0.03320(40) 0.03139(58)
cD211.054.96 0.02788(25) 0.02709(32)

determination of aM, and aM, on our finest ensemble
cD211.054.96.

In order to determine the physical strange-quark mass
am®™* in lattice units, we interpolate and extrapolate our
lattice data for aM, and aM, using the following linear

ansatz:

aMpzaMghyWK-(%—am?hyS), P={n,.¢}, (C3)
P

with x and amP™® being fitting parameters for each

ensemble. aM‘;,hys is obtained from Egs. (C1) and (C2)
using the improved determination of the lattice spacings the
values of which are listed Table VII. The results obtained
for am?™® in the MS(2 GeV) scheme are collected in
Table X and shown in Fig. 19 versus the squared lattice
spacing. No significant FSEs are visible and the data
exhibit a nice a’-scaling behavior. The continuum limit

extrapolations for m?™* corresponding to the use of the 7,-

and ¢-meson masses as hadronic inputs agree very well
within one standard deviation and, moreover, they are

0.11

From My, &

0.105} From M .2

PRD 104 (2021) 8-

0.1t

0.095 +

phys
mh™

0.09} EIJ EI]

0.085 1

0.08 L " " " " " " " " J
0 0.001  0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009

a? [fm?)

FIG. 19. Continuum limit extrapolation of mf™* in the

MS(2 GeV) scheme, determined using the 7,-meson (blue
squares) and the ¢-meson (red squares) masses as hadronic
input. The two determinations agree in the continuum limit within
one standard deviation. The black square at a*> = 0 corresponds
to the result obtained in Ref. [34] using the kaon mass to

. hys
determine m5™*.

TABLE XI. Values of the bare strange-quark mass au, and of
the RC Zp [evaluated in the RI-MOM scheme and converted in
the MS(2 GeV) one [34,82]] for each of the four ensembles of
Table V. We indicate with au’ (au’?) the lightest (heaviest) bare
strange-quark mass used for each ensemble.

Ensemble apt apl? Zp[MS(2 GeV))
cB211.072.64 0.019 0.021 0.4788(54)
cB211.072.96 0.019 0.021 0.4788(54)
c¢C211.060.80 0.016 0.018 0.4871(49)
cD211.054.96 0.014 0.015 0.4894(44)

consistent with the result obtained in Ref. [34] using the
kaon mass to determine m5™".

For each gauge ensemble we perform simulations at two
values of the valence bare strange-quark mass, ay, in order

to interpolate the results for a3°(s) and a) (s) to the

physical strange-quark mass m?™* . The simulated values of
ap, are collected in Table XI together with the values of the
RC Zp, of the pseudoscalar density obtained in the
regularization independent momentum subtraction (RI-
MOM) scheme and converted in the MS(2 GeV) one in
Refs. [34,82].

2. The physical charm-quark mass

In order to reach the physical charm-quark mass mPhs,

we use two different hadronic inputs, namely the masses of
the pseudoscalar 7, and vector J/¥ mesons. In this work,
we adopt the PDG values [81]

MP™* = 2.984(4) GeV, (C4)

MY =3.097(1) GeV. (C5)
where the errors include the estimate of the quark-dis-
connected contributions made in Refs. [83,84]. We extract
aM, and aM;,y from the connected part of the charm
pseudoscalar and vector correlators, respectively. In
Fig. 20, we show the quality of our determination of
aM,_and aM )y using our finest ensemble ¢cD211.054.96.

In order to determine the physical charm-quark mass
am®™"* in lattice units, we interpolate and extrapolate our
lattice data for aM, and aM g using the following linear

ansatz:

aMp = aM®™ 4 &- <%—arn5hys>, P={n.J/¥},
P

(Co)

with & and amP™® being fitting parameters for each ensem-

ble. aM‘,lhys is obtained from Egs. (C4) and (C5) using the
improved determination of the lattice spacing. The results

obtained for am®™* in the MS(3 GeV) scheme are collected
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FIG. 20. Effective masses aM, (top) and aM,,y (bottom)
obtained, respectively, from the charm pseudoscalar and vector
correlators evaluated in the tm regularization in the case of the
cD211.054.96 ensemble. The horizontal bands indicate the
results of a constant fit in the plateaux regions, where the ground
state dominates.

in Table XII and shown in Fig. 21 versus the squared lattice
spacing. No significant FSEs are visible and the data exhibit
a nice a’-scaling behavior. The continuum limit extrapola-
tions for mE™* corresponding to the use of the ;- and J /P-
meson masses as hadronic inputs agree very well within one
standard deviation and, moreover, they are consistent with
the result obtained in Ref. [34] using the D -meson mass to
determine mP™*.

For each ensemble, we perform simulations at three

values of the valence bare charm-quark mass, ay,., in order

TABLE XII. Values of am®™* in the MS(3 GeV) scheme
[34,82] in lattice units determined using in Eq. (C6) either the
n.-meson mass from Eq. (C4) or the J/¥-meson mass from
Eq. (C5) as the physical hadronic input.

1.25

12

From My, &
From M NE=!

0.9
- PRD 104 (2021) &
0830001 0002 0003 0004 0005 0006 0007 0008 0.009
a? [fm?]
FIG. 21. Continuum limit extrapolation of mP™* in the

MS(3 GeV) scheme, determined using either the 77.-meson (blue
squares) or the J/W-meson (red squares) masses as hadronic
input. The two determinations agree in the continuum limit. The
black square at a®> = 0 corresponds to the result obtained in
Ref. [34] using the mass of the D, meson to determine m"™*. The
blue and red bands correspond to the best-fit functions obtained
fitting only the (more statistically accurate) data at the three finest
lattice spacings.

to interpolate the results for a3°(c) and a, (c) to the

physical charm-quark mass m"™*. The values of au, used
are collected in Table XIII together with the values of the
RC Zp of the pseudoscalar density obtained in the RI-
MOM scheme and converted in the MS(3 GeV) one in

Refs. [34,82].

3. The strange- and charm-quark masses in
disconnected contributions

In Sec. IV the strange- and charm-quark loops are
computed at a quark mass obtained by tuning the Q and
A, baryons, respectively, to their physical value. The values
of the bare masses for the strange, au,, and for the charm,
ay,., quarks are listed in Table XIV. In Fig. 22, we show the
continuum limit of the renormalized strange- and charm-

TABLE XIII. Values of the bare charm-quark mass au. in
lattice units and of the RC Zp [evaluated in the RI-MOM scheme
and converted in the MS(3 GeV) one [34,82]] for each of the
ETMC ensembles employed in the charm sector. We indicate
with auk, au! and au?, respectively, the lightest, the inter-
mediate, and the heaviest bare charm-quark masses used for each
ensemble.

Ensemble am?™*(n.) am®™*(J/¥)  Ensemble ap* apuM apl Zp[MS(3 GeV)]
cA211.53.24 0.5210(81) 0.5128(83) cA211.53.24 0.265 0.290 0.300 0.5267(54)
cA211.40.24 0.5213(82) 0.5133(83) cA211.40.24 0.265 0.290  0.300 0.5267(54)
cA211.30.32 0.5218(81) 0.5145(83) cA211.30.32 0.265 0.290 0.300 0.5267(54)
cB211.072.64 0.4489(45) 0.4457(46) cB211.072.64 0.210 0.230 0.250 0.5314(59)
¢C211.060.80 0.3746(43) 0.3735(42) ¢C211.060.80 0.175 0.195 0.215 0.5406(54)
c¢D211.054.96 0.3076(29) 0.3068(27) c¢D211.054.96 0.165 0.175 e 0.5431(48)
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FIG. 22. Renormalized strange (left) and charm (right) quark mass, given, respectively, in the MS(2 GeV) and MS(3 GeV) scheme
[34,82], obtained in this work using the RCs Zp from Tables XI and XIII and tuning the Q and A, baryon masses, versus the squared
lattice spacing. The red stars are the results of the continuum limit extrapolation carried out in Ref. [34].

quark masses in the MS(2 GeV) and MS(3 GeV) scheme
[34,82], respectively. We compare them against the results
computed in the continuum limit in Ref. [34]. Note that the
Values of the renormalized strange-quark mass mEMs =
Zz'(MS, 2 GeV),uS do not show sizable cutoff effects,

whlle ml™* = Zz1(MS, 3 GeV)u, does.

APPENDIX D: FLAVOR-SINGLET
RENORMALIZATION CONSTANTS

In this appendix we show that in LQCD with Wilson
quarks the (UV finite) RCs of the singlet (Z,0) and
nonsinglet (Zy) pointlike vector currents coincide. This
property follows from the exact invariance of the massless
theory under flavor-singlet and -nonsinglet vector trans-
formations and it holds generally with any number N of
Wilson fermions of arbitrary mass, for all possible values of
the twist angle and of the clover improvement coefficient.

For definiteness let us consider LQCD with Ny =4
flavors of Wilson quarks, say u, d, s and ¢, with renor-
malized masses iy = Z,,my = Z,,(my — my,), f = u, d, s,
¢, with or without a flavor-singlet clover term. Defining
DY (U) =y -V = (a/2)V*V + mg + (i/4)cyyo - F the
critical Dirac-Wilson operator, with V,, (V) the forward
(backward) gauge covariant lattice derivative, which
implicitly depends on the gauge-links field U, and v,, =
1V, + V3], the lattice action reads

TABLE XIV. Values of the bare quark masses au, and ayu,
used for the calculation of strange- and charm-disconnected
contributions.

Ensemble a, ap,

cB211.072.64 0.01860 0.249
¢C211.060.80 0.01615 0.206
cD211.054.96 0.01360 0.166

+a42 Z

X  f=u,d,s,c

Srocp = Sym[U (x)[DE(U) +mglq(x).

(D1)

where Syy[U] denotes the pure gauge action term." In the
limit of degenerate quark masses (m, = m, = m; = m,)
the lattice action is manifestly invariant under both flavor-
singlet U(1) and flavor-nonsinglet SU(4) global vector
transformations of the quark fields g, f = u, d, s, ¢, with
exactly conserved one-point split Noether currents given by

W =5 3 [t ai) (1 +7,) U, ()
f=ud.s.c
4 -7Vt ap)] (D)
and
6) = 33 lante a1+ 1)U 9
>
~ (1= 1)U, (g (e + ai)), (D)

with 2* (b = 1,2, ...,15) being the generators of SU(4).
The corresponding conserved charges are

PBoth here and in Appendix A the fields ¢  and g refer to the
quark of flavor f in the physical basis where its soft mass term
takes the canonical form m;g,q,. However the lattice regulari-
zations are different, though related in the chiral limit by an
axial rotation, since the critical Wilson term here is taken aligned
to the soft mass term in the chiral internal space, while it is
maximally twisted in the lattice setup of Appendix A, implying
that the RCs of an operator with a given physical meaning in the
two lattice regularizations are in general related through an axial
rotation (depending of course on the details of r; and r} for the

valence fields).
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oy =a*> VP (x) = 30k

(D4)

X

implying that the one-point split lattice currents (D2) and
(D3) are not renormalized. The baryon number charge is

Opar = %Qg)). Note also that single-flavor one-point split

conserved vector currents V,(,f ) exist, for f =u, d, s, c,

that are obtained by the appropriate combinations of the
identity and the diagonal SU(4) generator matrices. From
these currents the corresponding single-flavor conserved
charges Q{/ can be defined, in analogy with Eq. (D4). For
instance, taking A(°) =diag(—1,—1,—1,+3), one has Q, =
oY + oy,

For nondegenerate quark masses, e.g., in Ny =2+ 1 +
1 LQCD, the U(1) vector symmetry remains exact while
the SU(4) flavor symmetry is only softly broken and the
charges ng) (b=1,2,...,15), though being in general
time dependent, satisfy the same SU(4) charge algebra as
in the mass-degenerate case. This implies that all the one-
point split lattice currents (D2) and (D3) still admit unit RC.

Here our focus is on the renormalization properties of the
pointlike bare vector currents

VLO) (x)= qu(x)yﬂqf(x)’
f

Vil (x) = a5(x)277,q,(x). (b=1.2.....15).  (D5)
f

Owing to the presence of the Wilson term in the lattice
action the pointlike currents (D5) are not conserved, while,
based on the exact vector U(1) and SU(4) symmetries,
one expects that their properly renormalized flavor-singlet
and-nonsinglet counterparts read

Ve (x) = Zyo Vi (%),
(

Vi e(x) = Zy Vi (x),

(b=1,2,...,15), (D6)
with Zyo and Z, nontrivial dimensionless, UV finite
functions of the bare gauge coupling g3.

As far as the renormalization of vector singlet and
nonsinglet currents is concerned, the values of the indi-
vidual quark masses play no role, because they can at most
affect Zy and Zyo through immaterial O(am) lattice
artifacts.'* The latter will actually be O(a?m?) and

O(a’mAqcp) if the correlators from which the RCs are

"It is well known that by adding soft mass terms, i.e. m ;g 45
to the action density of massless QCD no new UV divergencies,
apart from those that are reabsorbed in the usual quark mass
renormalization (71 = Z,,m), appear in the theory [85].

determined are O(a) improved. Hence with no loss of
generality in the following we can assume fully degenerate
quark masses and set

my qs.c =M. (D7)

The proof that in LQCD with Wilson quarks Zyo = Zy, will
proceed in two steps.

(i) We observe that Zyo = Zy if and only if the
insertion of the pointlike bare vector charge
a*> = Gn(x)70qs(x) of a certain fixed flavor 4 in
the correlation functions of multilocal operators with
no h-flavor valence quarks (or zero total h-flavor
quantum number) vanishes.

(i) We prove that the aforementioned operator insertion,
which of course gives rise only to quark-discon-
nected diagrams, is actually vanishing.

For the second step we find it convenient to employ, as a
proof-technical tool, a mixed-action LOQCD (MALQCD)
setup, which has no direct relation to the twisted-mass
mixed-action framework adopted in the paper and in no
way restricts the validity of the result. As far as we know,
the result Zyo = Zy for LQCD with Wilson quarks is
currently established in perturbation theory only up to the
two-loop level (included) [86].

1. Step (i)
For definiteness let us identify the flavor & with the
charm, i.e. & = c. To lighten notation we write g, = f.

Assuming no special relation between Zyo and Zy in
LQCD we have (see, e.g., Ref. [78])

27,elu() = (VA x) + VA ()
= 1 (Z +32))[er,cl(x)

1 -
+Z (Zyo=Zy)[ay,u+dy,d+5y,s](x). (D8)
Inserting the corresponding charm vector charge in corre-
lation functions of local fields, ®,, interpolating states with
zero charm number and nonzero baryon number, say, e.g.,
proton states, i.e. ®,(y) = [(#ysd)u],(y), the conserva-
tion of the charm number charge Qf, evidently implies

0= (0" leracla(x)0i()
= 32+ 32) (@00 Y endweio))

1 ) _
32 = 2 @(a)a Yoo + o

X

+syos}R<x>cbz<y>>.
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Since the correlator with coefficient (Zyo — Zy) is non-
vanishing (already at the classical level), we see that the
insertion of the bare charm charge a* >_:[¢yc](x) between
operators containing no ¢ (valence) quark vanishes if and
only if Zyo —Zy = 0. As there is no loss of generality in
taking & = ¢ the statement of step (i) is hence proved
within LQCD.

2. Step (ii)

We now want to prove that in LQCD with Ny = 4 mass-
degenerate quarks one has

<‘1’ﬂ(Z)a3Z[5roc} (x)d>2(y)>LQCD -0  (DI10)

X

with (- ) qcp reminding that the lattice path integral is
evaluated with the action (D1).

A key point is that the plain LQCD correlator in the lhs
of Eq. (D10) satisfies the identity

<‘D/3 (2)a’ Z [Eroc] (x)@a(y) >LQCD

—<¢’ﬁ<z>a32[6yoc]<x>¢*<y>>MALQCD (1)

where the correlator on the rhs is instead evaluated in a
mixed-action LQCD setup, as reminded by the notation
(- *)maLqcp» With lattice action [recall Eq. (D7)]

J+a*y " Y F)IDEU) +m]f(x)

x  f=ud,s,c

+a4z Z {f'(x)[D¥(

x fl=u'd,.
+)?f/(x)[DZ¥(U)+m])(f’(x)},

SMALQCD = SYM
(U)+m]f'(x)
(D12)

where u', d, ... are mere valence quark fields and
Xu'» Xu» --- are the corresponding valence ghost spin-1/2
fields (obeying Bose statistics so as to cancel all virtual sea
contributions from the “primed” fields), while the proton
interpolating valence operator is @/, (y) = [(i'ysd')u'] ,(y).
It is known [69] that the critical mass parameter m,, for
Wilson lattice valence quark and ghost fields coincides with
the one for plain LQCD Wilson quarks, so that DY (U) in
Eq. (D12) is the same lattice Dirac operator as in Eq. (D1).

The identity (D11) follows from the fact that the plain
LQCD and the mixed-action LQCD correlators, in view of
the specific flavor content of the fields involved, give rise to
identical Wick contractions. Indeed by construction the
plain LQCD and the mixed-action LQCD formulations lead
to identical vertices and identical fermion propagators,
evaluated on identical gauge configurations, because in

both lattice setups the gauge effective action is given

by Siﬁ[U] = SYM[U] - Zf:u,d,s,c IOg detKD(‘:Ar/(U) + m]
Moreover the identity (D11) evidently implies an analo-

gous identity where the charge insertion a* Y :[¢yoc](x) is

replaced by Cl3 Z}%Zf=u,d,s,c[jy0f] ()C)Z
(@)Y lencloelo))
= LQCD
~(q@eY; Y Fudwelo)

T e >MALQCD

(D13)

On the other hand, in the MALQCD setup, owing to the
exact invariance of the action under U(1) vector trans-
formations acting only on the fields u, d, s, c, i, d,s,and ¢,
there exists a conserved baryon charge, given by either the

one-point split current V0 [see Eq. (D2)] or the local
(multiplicatively renormalized through Z.) vector current

- Zf:u.d,s,c [i(x)yOf(x)]ls
”d” = a3ZV0 § = a3z Z [frof](x )Zvoé.

X f=uds;c
(D14)

The identity (D13) can hence be cast in a form where the

occurrence of conserved charge Q%<

b 18 explicit, i.e.

(@0 lenncln ><I>l<y>>LQCD

X

3

- DI5
4Z 0 (D15)

<¢Z’(Z)Qgﬁys’c®g (¥))marLocp = 0,

and the last (key) equality follows from the fact that the
operators @} and CIJ’ involving only valence quark fields u’

and d’ commute w1th Qi 45:¢ Indeed, inserting intermedi-
ate states in the MALQCD correlator of Eq. (D15) itis clear
that all the states created by the action of qD’J are inert under
the action of Q" d5:¢ charge.'® The statement of step (i), i.e.
Eq. (D10), is thus proven.

Combining step (ii) with step (i) one concludes that
Zy = Zy in LQCD with Wilson quarks.

"By standard Ward-Takahashi identity methods one can check
that also in the MA lattice setup [see Eq (D12)] we use for this

proof the bare local vector current Vo =Y e F(X)70f (X))
does not mix with the analogous vector currents made out of
Valence quarks (f") and/or valence ghosts (y ).

"“This property holds due to exact conservation of Q< in
the MALQCD renormalizable (but nonunitary) theory even if the
underlying Hilbert-Fock space globally has (owing to states with
Xy ghosts) an indefinite metric.
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An alternative proof of Z,o = Z, might be given by
relying on large N, arguments in Wilson lattice SU(N.)
QCD. Working at arbitrary values of N, and at fixed values
of the renormalized coupling u = g%N ¢, one can infer from
the existence of exactly conserved U(1) and SU(4) vector
charges the vanishing of the quark-disconnected Wick
contractions that would otherwise lead to Zyo # Zy,. We
omit here the details of such a proof, which, although being
technically different, appears conceptually equivalent to the
one given above.

A comment is in order about why similar relations, of the
form Zpo = Zr, are not expected to hold in general for
I'=A, S, P, T, i.e. for bilinear operator other than vector
ones, at least in LQCD with Wilson quarks or in other
lattice formulations breaking chiral symmetries. This sit-
uation is at variance with respect to what happens in UV
regularizations respecting all the nonanomalous chiral
symmetries (such as lattice QCD with overlap quarks),
where it is known that Z, =Zy =Zyo =1, while
Zp =Zg, Zg = Zpo and, owing to identical multiplicative
renormalization of all quark masses, Zg = Zp.

For the case of I' = V, that we discussed above, our
proof of the relations (D9) and (D10) relies on the fact that
even in a lattice formulation breaking chiral symmetries the
flavor-singlet and -nonsinglet vector transformations are
exact invariances of the lattice action, enabling one to
define single-flavor conserved charges for each flavor
f=u, d, s, c. The existence of such conserved charges
was in fact exploited to prove the vanishing of the quantities
in Egs. (D9) and (D10).

But similar symmetry properties hold true neither for the
axial currents (case I' = A), owing to the U, (1) anomaly in
the flavor-singlet sector, nor for the scalar (I' = S), pseu-
doscalar (I' = P) and tensor (I' = T) densities, which are
not related to any conserved currents, too.

APPENDIX E: FREE-THEORY CALCULATION
OF THE LEADING LATTICE ARTIFACTS AT
SHORT DISTANCE

In this appendix we will show some of the details of the
calculation of the a?/¢* lattice artifacts appearing in the
vector correlator at short distance. The calculation is
performed in lattice perturbation theory at order a? with
Ny = 2 massless fermions. The approach which we use is
similar to the one adopted in Ref. [46], where the free-
theory isovector correlator was computed using one local
and one conserved current. Here we analyze the case in
which V,,(t) is computed using both the twisted-mass and
the Osterwalder-Seiler local currents of Eq. (A12). For
noninteracting massless twisted-mass fermions, the up and
down quark propagator is given by

_ —iy, Dy = 1755 2P
<l//f(17)ll/f(—l9)> = ”j o = Ag 2;1’ (El)
Zﬂpy +T(E;¢py)

where r=1i1f=wuand r=—-11f £ =d, and

2
p, = =sin (%) (E2)

The coordinate-space quark propagator is then given by

3
/dPO/“ TP ipot yip-x-y)

. _lyﬂp,u - lr}/S EZypy
~ 2 A
b+ 5 (3 P)
where t = x; — yy. The integral over p, can be computed

exactly using the residue theorem. The denominator in
Eq. (E1) can be written as

) [i)ﬁ +%2 (Zﬁ)z]

u

- 1.
Py = Esm(apﬂ),

(we(xX)we(y)

, (E3)

2 .
= —?A(p)(cosh (iapy) — cosh (aE,)), (E4)
where A(p) and E, are defined as
L,
A(p) =1 +§Cl2p2,
a’B(p)(4A(p) +a’B(p))
cosh (aE,) = \/ 142(p) +1,
IR PP
B(p) =p>+= D _bib; (ES)
<j

The momentum-space lattice quark propagator has two
poles in the complex plane at ip, = +E,, and the corre-
sponding residue can be computed using

N (ipo — Ep)
D)= i, o) cowh iapo) — couh (aE )
1
~ VB(p) (@A) + Bp)) .

Using the previous results, Eq. (E3) can be written as

z 3 el -(x=y)
Wi ) = [ S Es e s

: {sgn(t) y—osinh(aEp) —iy-p
a

o=

which is valid for # # 0. The light-connected vector corre-
lator V,,(#) can be readily computed using Eq. (E7). The
result is

(E7)
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z d3p e—2Ep|t|
V,a(t) = 4N (¢ : / A TI
ud( ) C(Qem,u + Qem.d) " (271_)3 D2(17)

x [% sinh?(aE,) +%ﬁ2 i%z (ﬁ2 - f;—((g) 2] ,

(E8)

where the plus sign corresponds to the result obtained using
the current J2°, while the minus sign to the one obtained
using JI". The dangerous O(a? log(a)) artifacts in a5 (see
the discussion in Sec. III A), which are generated upon
integration in the short-distance window, stem from the
O(a?/1?) artifacts of the vector correlator. Expanding the
integrand of Eq. (E8) in powers of the lattice spacing up to

order O(a?), we get

V() = AN (22 2 © AP ol
ud(t) C(QGm,u+qezn,d) : (271.)36
1 1
< 3= 5P + @PIIGE) + 0] (©9

where G(p) is a dimensionless function given by

2 P p?
G(p) :<1 _Z<]’;lpj>
9 p|
The result of Eq. (E9) does not depend upon the chosen
values of r, and therefore the current Jf,?s and J;;" produce the
same a” log(a) discretization effects in a3°. The integrals

appearing in Eq. (E9) can be computed analytically. We
obtain

(E10)

4N, 1 a’
Vud(t) = (qgm,u + qzm,d) : Tﬂz ' 273 ’ (1 + ? + O(a4)> .

(E11)

APPENDIX F: PARAMETRIZATION OF
FSES IN THE WINDOWS

Following Ref. [31] the isovector part of the correlator
V,q(t) can be analytically represented as the sum of two
terms, Vg (f) + V.. (1), where V. (7) represents the two-
pion contribution in a finite box, while V() is the “dual”
representation of the tower of the contributions coming
from the excited states above the two-pion ones. Therefore,
V,..(t) is expected to dominate at large and intermediate
time distances, say 72 1 fm, while the contribution of
Vaua () is important at short time distances, as first
observed in Ref. [30]. The FSEs on the correlator V(1)
were analyzed in Ref. [31] using the above representation
and it was found that the main contribution comes from the
two-pion states. Thus, we make use of these findings to

construct our parametrization of FSEs for ' (¢), for which
the two-pion states are known to represent the dominant
contribution (roughly around 70%).

As it is well known after Refs. [37-40], the energy levels
w,, of two pions in a finite box of volume L* are given by

w, = 21/ M? + k2, (F1)

where the discretized values k,, should satisfy the Liischer
condition, which for the case at hand (two pions in a P
wave with total isospin 1) reads as

811 (ky) + ¢<"2£> = nx, (F2)

with §;; being the (infinite volume) scattering phase shift
and ¢(z) a known kinematical function given by

212z

ez (I = 22)7

The two-pion contribution V,,(7) can be written
as [41-43]

tan p(z) = (F3)

Vea(t) =D valAy e, (F4)

where v, is the number of vectors 7 € Z3 with norm |7]> =
n and the squared amplitudes |A,|> are related to the
timelike pion form factor F,(w,) = |F,(w,)|e® %) by

2k;, k,L , (k, L\
AR = 5 p 2| s Knke [ Knk ‘
oAl = o |Fatan) Pk () + 2 ()

(F5)

Following Ref. [31] we adopt the Gounaris-Sakurai (GS)
parametrization [44] of the timelike pion form factor
Fo(w,) = |Fy(w,)|e® %) where the form factor phase
coincides with the scattering phase shift according to the
Watson theorem. The GS ansatz is based on the dominance
of the p resonance in the amplitude of the pion-pion P-wave
elastic scattering (with total isospin 1), namely

Mg - Azm(o)
M} —w* — A, (w)

FS(w) = , (F6)

where the (twice-subtracted [44]) pion-pion amplitude
A, (@) is given by

Ag(w)= h(Mp) 4 (wz —M2) h’(Mp)

5 2, —h(a))+ia)Fp,,,,(a))

(F7)
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with
2 13 2 2
Gpnn k M, Gpnn M7
r ==, F8 A =h(M,)——LNW(M =, F11
) = 222 (Fs) o 0) = (M) =2 (M) + =25 ()
2 13
ko2 2k
h(w) = gg———lo (w;ﬁ_/[ ), (F9)
ren r and k= \/w?/4 — M2. By analytic continuation the GS
/ Q%zm K2 2 M% w + 2k forGrISI factor at @ =0 is normalized to unity, i.e.
W (w) = on 70 I+ {1+ P Zl g oM, ) Fi% (@ =0) = 1. The scattering phase shift 511(k), ie.
the phase of the pion form factor according to the Watson
(F10) theorem, is given by
J
M2 — @? — h(M - M)W (M,)/(2M,,) + h
a)rpmr( )

The GS form factor (F6) contains two parameters:
the resonance mass M, and its strong coupling with two
pions g,.,. Since the ETM ensembles of Table V are
quite close to the physical pion point, we fix the p mass and
the strong coupling g,,, at their physical values, namely

M, =0.775GeV and g, = | /43M2T,/ (M} — 4M3)/2 =

5.95 [81].
As is well known, the infinite volume limit of Eq. (F4) is
given by

4M?

1 i | p—
e e,

4872

V() = dow? {1 -
(F13)

and, therefore, the FSEs on the window contribution a}; (¢)
for w = {SD, W,LD} can be written as

Aa(L) = ()~ g (O
2 10 feo 2 w 00
=205 [ Km0 (V) - V(D)

(F14)

where the charge factor 10/9 takes into account the
proportionality between the light-quark-connected and
the isovector correlators in isosymmetric QCD, while
the correlators V() and VZ(¢) are given by Egs. (F4)
and (F13), respectively. We will refer to this model for
V(1) as the Meyer-Lellouch-Liischer-Gounaris-Sakurai
(MLLGS) model.

As a check of our parametrization (F14) we consider the
estimate of the (continuum) FSEs in the isovector channel
made by the BMW Collaboration in the intermediate
window [14], viz.

Ay =N (LEMWV) = WJ:IMNLS?N —ay ()] 1o

= —0.49(2)(4) x 10710 (F15)

with LBMW — 6272 fm. Using 50 two-pion states in

ref

Eq. (F13) at L = LBMY we obtain
Aay THLEY) = an = () o = ap ()|
— 037 x 1071, (F16)

which roughly corresponds to 75(7)% of the BMW result
of Eq. (F15). We devise to extrapolate to the infinite volume
limit, employing the MLLGS model. However to take into
account the deviation from the BMW result, we enhance
the MLLGS correlator by a factor 1.25 and associate to this
correction a relative error of 20%.

For completeness we report our determination of
Aa)) (L) evaluated using Eq. (F14) for the intermediate
window at the physical pion mass point and at the reference
lattice size L = 5.46 fm, namely

Aal‘,V(Lref) = —1.00(20) x 10717, (F17)
which is used in Sec. III B to correct FSEs on our data
for ay (£, Liet).
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