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We conduct numerical simulations of a model of four-dimensional quantum gravity in which the path
integral over continuum Euclidean metrics is approximated by a sum over combinatorial triangulations. At
fixed volume, the model contains a discrete Einstein-Hilbert term with coupling x and a local measure term
with coupling f that weights triangulations according to the number of simplices sharing each vertex. We
map out the phase diagram in this two-dimensional parameter space and compute a variety of observables
that yield information on the nature of any continuum limit. Our results are consistent with a line of first-
order phase transitions with a latent heat that decreases as k — oo. We find a Hausdorff dimension along the

critical line that approaches Dy = 4 for large x and a spectral dimension consistent with D, = % at short

distances. These results are broadly in agreement with earlier works on Euclidean dynamical triangulation
models which utilize degenerate triangulations and/or different measure terms and indicate that such

models exhibit a degree of universality.

DOI: 10.1103/PhysRevD.107.074505

I. INTRODUCTION

There are many proposals for quantizing four-dimen-
sional gravity (see the reviews [1-4]). Among those, we
explore a nonperturbative and background-independent
approach known as Euclidean dynamical triangulation
(EDT), in which a discrete sum over simplicial manifolds
replaces the continuum path integral. This approach is
similar in spirit to the causal dynamical triangulation
(CDT) program [2,5] after relaxing the causality constraint
in the discrete sum over triangulations. Hence unlike CDT,
there is no explicit time direction in a triangulation of EDT
formulation where a spacelike hypersurface can be iden-
tified. In practice, we restrict to triangulations with equal
edge lengths and fixed topology. In addition, we only
include so-called combinatorial triangulations in the dis-
crete path integral, which guarantees that the neighborhood
of each vertex is homemorphic to a 4-ball. This ensures
that any p-simplex in the triangulation is uniquely specified
in terms of its vertices. This differs from the recent work by
Laiho er al. which utilizes an ensemble of degenerate
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triangulations, and a different measure term [6-9]. Our
work is also complementary to that of Ambjorn et al. [10]
who employ the same class of triangulations but a different
measure term.

The goal of our work has been to provide a detailed
picture of the phase diagram of the model and the location
of possible phase transitions by simulating the model over a
fine grid in the two-dimensional parameter space for three
lattice volumes ranging up to N, = 32, 000 four-simplices.
We find evidence for a single critical line separating a
crumpled from a branched polymer phase consistent with
all earlier studies of similar models. In addition to certain
bulk observables, we have focused our attention on the
Hausdorff and spectral dimensions at different phases near
the transition line and are able to compute these along and
transverse to this critical line more systematically than the
previous studies [6,7,10].

II. THE LATTICE MODEL

The partition function of the model for pure gravity takes
the form

Z=> p(T)e™s (1)

where the discrete action S is given by

S = —kNo+ ANy +y(N, — V)2, (2)
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where the sum runs over all abstract triangulations with
fixed (here spherical) topology.' The first two terms in the
action depend on the number of vertices N and the number
of four simplices N, arise from using Regge calculus
[13,14] to discretize the continuum Einstein-Hilbert action
with k playing the role of the bare Newton constant and 1 a
bare cosmological constant. The third term plays an
auxiliary role in effectively fixing the target volume to V
by tuning A while still allowing for small fluctuations 6V ~

L essential to ensure ergodicity in the Monte Carlo

VY
sampling of the triangulations.

The central assumption in this approach to quantum
gravity is that the sum over triangulations reproduces, in
some appropriate continuum limit, the ill-defined continuum
path integral over metrics modulo diffeomorphisms. In two
dimensions, this prescription reproduces known results for
2D gravity from Liouville theory and matrix models [15,16]
but in higher dimensions reproducing continuum gravity is
merely a plausible ansatz.

Most recent works assume that an additional measure term
p(T), which depends on local properties of the triangulation,
is needed to ensure this correspondence with continuum
gravity remains true [7,10]. Here we employ a new form

No
(1) =[] (3)

where ¢; denotes the number of simplices sharing vertex i
and f is a new parameter. The measure term is similar to the

'Numerical evidence has been presented in previous studies
that the number of possible 4D triangulations of fixed spherical
topology is exponentially bounded [11,12] and hence can be
controlled by a bare cosmological constant term.
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Susceptibility plots (a) yy, and (b) e 4, for V = 32K are shown. The peaked structure near x ~ 1.6 indicates a phase

local measure term used in previous studies where the
coordination number of the triangles is used [7,10]. It is
conjectured that tuning the coupling to such an operator is
necessary to restore the continuum symmetries and approach
a fixed point where a continuum limit can be taken [10],
which describes quantum gravity.

Our work is focused on examining the phase structure of
the model in the («, ) with the goal of searching for critical
behavior and locating a region where such a continuum
limit exists.

III. PHASE STRUCTURE

We employ a Monte Carlo algorithm to sample the sum
over random triangulations of the four dimensional sphere
[17]. Five elementary local moves (“Pachner moves”)
which, applied randomly, are known to be sufficient to
reach any part of the triangulation space.

Two of the simplest observables that can be used to
locate the transition are the node and measure susceptibil-
ities which are defined by

1

xn, = 7 ((NG) = (No)?) (4)

e = 3 ((0%) ~ (0)?) g

with Q0 = NLOZZ\QI log ¢;.

In Fig. 1 we show these as a function of k at # = 0.25 for
a lattice of (average) volume N, = 32,000. We used 10’
thermalized triangulations to compute the thermodynamic
quantities where we defined a Monte Carlo sweep as an
attempt to change the triangulation (using the Pachner
moves) 32,000 times by randomly choosing the moves and
the associated simplices/subsimplices. Measured quantities

074505-2



EUCLIDEAN DYNAMICAL TRIANGULATIONS REVISITED

PHYS. REV. D 107, 074505 (2023)

0.19 V=32k $=0.25 k=1.60

0.18

No/N,

0.17

0.16

0 5 10 15 20

Monte carlo time(x 10°)

V=32k $=0.25 k=1.60

100

\]
t

frequency

0.16 0.17 0.18 0.19
No/Ny

FIG. 2. First-order nature of the transition at # = 0.25 can be seen from the (a) Monte Carlo time series for Ny/N, and (b) double peak

structure of the probability density of Ny/Ny.
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FIG. 3. At large « two distinctive peaks are observed in the
susceptibility plots. Position of the critical points are shown with
the vertical lines.
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FIG. 4. f dependence of the average radius r,,, at different
fixed values of k, at a target volume V = 32 K. Vertical lines
denote the position of the critical points ﬁﬂ. at different gravita-
tional constants k.

were further blocked afterwards to compute the jackknife
errors. The peaks in both susceptibility quantities indicate
the presence of a phase transition.

In Fig. 2 we show the Monte Carlo time evolution of the
vertex number N and its associated probability distribution
for a V = 32,000 simplex simulation close to the critical
line at # = 0.25. The tunneling behavior in the Monte Carlo
time series, together with the double-peak structure in the
probability distribution for the number of vertices P(N)
constitutes strong evidence that the transition is first order
in this region. The existence of the first-order transition
precludes a continuum limit and indeed the observation of a
similar structure at f = 0 was the original motivation for
introducing a measure term.

As we increase k we observe that the latent heat of the
transition, as measured by the separation in the two peaks in
the probability distribution P(N,) decreases and the struc-
ture of the susceptibility plots changes. If one fixes x one
observes a broad peak centered at 5., followed by a much
narrower peak at ., with ., > B, Fig. 3. For f# > S,

TABLE L. Pseudotransition point k. () obtained from fixed
(k) scan of the susceptibilities [y(log ¢)] at target volume V =
32 k vs corresponding estimates of the critical point &, (B,)
determined from the average radius r,y,.

p K. e
1.00 —0.89(1) —0.894(6)
0.50 0.75(1) 0.756(6)
0.25 1.61(2) 1.606(6)
K ﬁc ﬁc
2.0 0.14(1) 0.144(6)
2.5 0.00(1) 0.006(6)
3.0 —0.13(1) —0.13(1)
3.5 —0.25(1) —0.244(6)
4.0 -0.36(1) -0.35(1)
45 —0.46(1) —0.46(1)
5.0 -0.56(1) -0.56(1)
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FIG. 5. Phase diagram of the pure gravity model with the
combinatorial triangulation. Transition line separates the col-
lapsed (CP) phase and the branched polymer (BP) phase.

the system is clearly in the branched polymer phase, while
for f < ., the system is clearly in the crumpled phase.
The separation Af between the two critical points narrows
down as the volume is increased. In our lattice analysis, we
have used f3., as our best estimate for the pseudocritical
point f,.

To complement this determination of the critical point,
we have also studied the mean radius of the discrete
geometry which is defined by

e = Ni<§jzv<>> (6)

where N5(r) is the number of four simplices at geodesic
distance r measured on the dual lattice from some ran-
domly chosen origin. In Fig. 4 we show a plot of the mean
radius r,,, vs f for several values of k. Like the suscep-
tibility plots, the signature of the first-order phase transition
is also evident from the plot of the average radius r,,, of the
simplicial universe. To find the critical coupling, we
computed a numerical derivative of the radius as a function

of f# and identified the critical point /}C as the point where
this derivative is maximal. A list of transition points derived
from this observable is added in the second column of
Table I and shown to agree very well with the f,. values
determined from the susceptibility of the measure term
Xiog ¢- Notice that for the small-x regime, we have fixed the
value of f# and scanned in « to search for a transition point.
Whereas for the large-x regime, we have fixed « and done a
scan in f values.” Results obtained from different simu-
lations are combined to produce the phase diagram in
Fig. 5. The transition line separates the collapsed phase and
the branched polymer phase. Properties of these two phases

*This was motivated by the schematic phase diagram known
from the earlier studies [7], where the transition line shows a trend
to asymptote to a negative 3. value at large x. However, there is
no guarantee that we will find a similar trajectory of the transition
line in our analysis with the new measure term.

are further discussed in the subsequent sections, and results
obtained seem to be consistent with the degenerate tri-
angulation studies [7].

IV. HAUSDORFF DIMENSION

To compute the Hausdorff dimension Dy we assume that
N;(r) takes the scaling form

N3(r) = NP f(r/ NP, (7)

Fitting to this form shows that the Hausdorff dimension in
the branched polymer phase is consistent with the value of
Dy = 2 (Fig. 6) while in the collapsed phase, the extracted
value of Dy from such fits is large, which is consistent with
the continuum expectation of infinite Hausdorff dimension
[18,19]. At small distances, N5 should grow as ~rP#~!
[18]. In practice, we have used this fact rather than data
collapse on the scaling form to extract Dy close to the
critical line on our largest lattice by fitting

N3 :AFDH_1+B. (8)

Figure 7 shows such a fit. For a single pair of («, ), several
such fits were performed and systematic errors were
computed due to the choice of different fit ranges.
Details of the error analysis for the computation of the
Hausdorff dimension is similar to the error analysis of the
spectral dimension computation which are discussed in
the following section. The results presented are an ensem-
ble average computed from 2000 thermalized configura-
tions. The fit is performed at several fixed f and fixed x to
observe the variation in the Hausdorff dimension as we
move from the collapsed phase to the branched polymer
phase. The value of the Hausdorff dimension is strongly
influenced by the distance from the critical line as can be
seen in Fig. 8, which shows Dy (/) at a fixed k = 4.0. From
the rise of the value of Dy towards the left, it is evident that

0.8
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1/Dy
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N,
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0.2

0.0

—0.5 0.0 0.5 1.0 1.5
p

FIG. 6. Data collapse of the three-volume N;(p) with scaled
distance is consistent with Dy = 2.0 in the BP phase.
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FIG. 8. Variation in Hausdorff dimension Dy with f at k = 4.0
at V = 32 K. Position of the critical coupling . derived from
susceptibility is noted with the vertical line.

FIG. 10. Fit to the de Sitter solution of the three-volume
distribution data.

as we probe deep into the collapsed phase, we get larger
Hausdorff dimensions. Also clearly visible is that deep in
the branched polymer phase on the right of the diagram, the
value of Dy approaches the known value of 2.

In Fig. 9, we demonstrate the measured Hausdorff
dimension along the critical line which also includes a
fit of the form

Dy =M exp(—Nk) + Dy .

©)

Here, M and B are fit parameters and Dy — Dy, as
K — oo. We find Dy , = 4.21 £ 0.46 which is consistent
with the emergence of four-dimensional de Sitter space in
this limit.

Encouraged by this, we have compared our three-volume
distribution near the critical point at large x with the
(Euclidean) de Sitter solution.’ The associated three-volume
profile for the Wick rotated case takes the form of Eq. (10)
[7,20,21]. An attempt to fit the three-volume data to the de
Sitter solution is made in large . Fig. 10, and the fit indicates
that the average geometry at small to intermediate distances is

6.0 consistent with de Sitter solution,
----- fit: M exp(—Nk.) + Dp(c0)
Y data 3 r—>b
. N;(r) = =N3/*Tcos® 1) (10)
55 Dy oo=4.21 £ 0.46 4 S0N4/
M=0.83 + 0.49
= S N=0.34 +£0.33
SIRR % Here, s, I" and b are fit parameters. One can think of s, as
% determining a relative lattice spacing for different values of
45 Wi Ted the (x, f#). We find a good matching of our data to the de Sitter
B e solution starting from a small distance r up to about five steps
beyond the maxima. The long tail of the distribution is likely
4.0 5 3 1 5 a finite size effect [7].
K./(I

FIG. 9. Fit to the extracted Hausdorff dimension Dy as a
function of critical coupling along the transition line.

*Solution of the Einstein’s equation for a homogenous and
isotropic universe described by the Friedmann-Lemaitre-Robert-
son-Walker metric.
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V. SPECTRAL DIMENSION

Another measure of the fractal dimension for a fluctuat-
ing geometry is called the “spectral dimension” Dy. It can
be computed for a simplicial manifold M using a random
walk process. First, a simplex is randomly chosen in the
triangulation. Then starting from that simplex, the random
walk corresponds to successively moving from one simplex
to one of its neighbors via a randomly selected face. This
process is then iterated a large number of times for the same
triangulation. To compute the spectral dimension, one
records the number of times the walk returns to the starting
simplex as a function of the diffusion time (number of steps
of the random walk). By running several of these walks and
averaging over starting points and over the ensemble of
configurations obtained at some fixed f and x we can obtain
the probability of returning to the starting simplex P, (o)
after o steps. The spectral dimension is then defined from
the relation,

_dlog (P,(o))

Ds(e) = dlogo

(11)

The return probability is also a useful quantity that can be
used to find the relative lattice spacing at different points on
the transition line [7]. This is discussed in more detail in the
Appendix.

In the branched polymer phase, we observe Dy = 4/3,
which is consistent with theoretical expectations [22] while
in the crumpled phase, it is large. At the critical point, we
find Dy is not well-fitted by a constant but instead runs with
scale 0. In Fig. 11, we show a plot of this running spectral
dimension for V =32 K and f = —0.1375, « = 3.0.

We used 2000 thermalized configurations for the com-
putation of the spectral dimension. Each random walk is
performed up to 15,000 steps, and we choose 32,000
randomly chosen sources (starting point of the walk) per
configuration. The fit is attempted over different ranges.
Due to the finite volume of the lattices, the spectral
dimension will increase and reach a maximum before

291 230, 8 = -01375
1 p-value=0.76 111 { {
2.01 I ]
N ]
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0 2000 4000 6000 8000
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FIG. 11. Sample fit of the spectral dimension near the transition

line in the phase space.

21 x
T . I siziesle =

0.4 0.3

&

FIG. 12. UV [Dg(0)] and IR [Dg(oo)] spectral dimension
across transition at a fixed x = 4.0. The vertical line denotes
the position of the transition point, and the two horizontal lines
denote the D value of 1.5 and 4 for comparison with the data.

~0.6 0.5

decreasing. However, the number of steps needed to reach
this maximum depends on the effective dimension of the
manifold. We use data points up to the maximum value of
the spectral dimension whenever possible. This amounts to
choosing different fit ranges at different regions of the
parameter space. The choice of the fit range is justified by
tracking the p-value of the fits.

As in previous works [7,23], we found the following fit
function best represents the data

Dy(c) = a+ (12)

c+o’

The fit function yields estimates for the spectral dimension
at small distances Dg(0) and also at large distances Dg(0).
A single-elimination jackknife procedure is used to com-
pute the error bars, and the fit is performed for different fit
ranges. Systematic errors due to the choice of the fit range

4
I Ds(o)
3 ¢ Dg(0)
= x
Qco 2 x x X X
$ 3.3 T F T
1.
0 .
2 3 4 5)

K

FIG. 13. UV [Dg(0)] and IR [Dg(o0)] spectral dimension along
the transition line. The horizontal line denotes the D, value of 1.5
for the comparison.
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are added in quadrature with the statistical error of the best
fit used to compute the overall error. We use the metric
‘p-value’ to select reasonable fit ranges for the data.
Figure 12 shows the variation of Dg(0) and Dg(c0) across
the transition line from the crumpled to the branched
polymer phase, while Fig. 13 shows the variation of these
quantities along the transition line. Analysis of the spectral
dimension reveals that Dg runs to small (Dg ~ 1.5) values
in the UV, which is consistent with the earlier EDT studies
[24], and CDT studies [25]. In the IR regime, the spectral
dimension Dg(oo0) is larger with Dg(o0) varying from
1.82-2.52. This scale dependence of the spectral dimension
was also seen earlier in CDT [23], renormalization group
approach [26], loop-quantum gravity [27] and in string
theory models [28]. It needs to be clarified from our study
whether the UV spectral dimension Dg(o0) attains larger
values for larger N, Larger volume simulations with
combinatorial triangulations must be conducted to resolve
the tension in the observed UV spectral dimension from our
study with the results obtained from the degenerate
combinatorial calculations [6].4

VI. CONCLUSIONS

We have explored the phase diagram of the combinato-
rial Euclidean dynamical triangulation model of four-
dimensional quantum gravity. The model contains two
parameters—a bare gravitational coupling x and a measure-
parameter . We find evidence for a critical line (/) that
separates a crumpled phase from a branched polymer
phase, which agrees with the results obtained from earlier
studies [7,10]. While this line is associated with first-order
phase transition for small k, the transition softens with
increased value of the coupling. An intermediate “crinkled”
phase opens up in this regime, but we have focused our
attention on the boundary between this region and the
branched polymer phase in our analysis since this is the
only place where we have observed consistent scaling that
survives the large volume limit. When we refer to the
critical point in our results, we always mean the boundary
between the crinkled and branched polymer phases.

The focus of much of our work has been to compute the
Hausdorff and spectral dimensions as we approach this

“In this study, we did not take the double scaling limit of the
spectral dimension as suggested by Laiho er al. [7] by simulta-
neously taking lattice spacing to zero and lattice volume to
infinity. Performing such an extrapolation might be important for
extracting a continuum value for the UV spectral dimension.

critical line from the crumpled phase. We find evidence that
the Hausdorff dimension Dy along the critical line
approaches Dy = 4 as «k increases where it is possible to
obtain increasingly good fits to classical de Sitter space.
The spectral dimension Dg(s) is observed to run with scale
s attaining values consistent with Dg(0) = % at short
distances for all values of x. These results are consistent
with earlier work using degenerate triangulations and
causal dynamical triangulation models and models using
different measure terms [7,10,25]. However, our measure-
ment of the spectral dimension at long distances D, (o)
barely exceeds Dg(co) ~2. This result is somewhat in
tension with the earlier work. However, we show that
D, (o0) depends strongly on the distance in parameter space
from the critical line, which renders such measurements
delicate and may explain this discrepancy. Large finite
volume effects, also observed in earlier studies, make this
measurement quite delicate.
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APPENDIX: RELATIVE LATTICE SPACING

In this work, we did not attempt to measure the
renormalized gravitational constant, which determines
the absolute lattice spacing. Instead, we have used the
relative lattice spacing obtained from the return probability.
Two different methods of finding the gravitational constant
in the context of the Euclidean dynamical triangulation can
be found in the two recent papers by Laiho et al. [8,9]. In
Fig. 14(a), we show the return probability at several
different points along the critical curve for V =32 K,
and in Fig. 14(b), it is shown that the curves at different
points in the critical line of the phase diagram can be
collapsed onto a single curve by rescaling the step size
(diffusion time of the random walk) o. Rescaling of the step
6 = 0,a> can be interpreted as yielding a relative lattice
spacing a, as k varies along the critical curve. Values of the
relative lattice constant a, are noted in Table II and are
consistent with the previous work by Laiho et al. Namely,
they reveal that as x approaches infinity, the corresponding
lattices get finer [7]. Hence, for a fixed target volume V, the
physical volume is smaller at larger x.., and it is likely that
the results obtained would suffer a greater finite size effect
in that region.
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FIG. 14. Return probability at different points in the critical line at lattice volume V = 32 k (a) with respect to diffusion step (o),
(b) with respect to rescaled diffusion step (o,). The scaling allows to find relative lattice spacing along the transition line. Associated
error bars are not shown in the right-hand figure to demonstrate the superimposed data from different points in the transition line.

TABLE II. Relative lattice spacing a, as the x is varied along the transition line.
K -0.90 -0.7375 1.5625 2.0 2.5 3.0 35 4.0 4.5 5.0
a, 1.5 1.475 1.135 1.05 1 0.935 0.92 0.895 0.87 0.86
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