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We construct exact duality transformations in pure SU(N) Hamiltonian lattice gauge theory in (2þ 1)
dimension. This duality is obtained by making a series of iterative canonical transformations on the SU(N)
electric vector fields and their conjugate magnetic vector potentials on the four links around every
plaquette. The resulting dual description is in terms of the magnetic scalar fields or plaquette flux loops and
their conjugate electric scalar potentials. Under SU(N) gauge transformations they both transform like
adjoint matter fields. The dual Hamiltonian describes the nonlocal self-interactions of these plaquette flux
loops in terms of the electric scalar potentials and with inverted coupling. We show that these nonlocal loop
interactions can be made local and converted into minimal couplings by introducing SU(N) auxiliary gauge
fields along with new plaquette constraints. The matter fields can be included through minimal coupling.
The techniques can be easily generalized to (3þ 1) dimensions.
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I. INTRODUCTION

In the past few decades there have been numerous
approaches to dualize gauge theories to obtain their dynam-
ics in terms of the dual potentials [1–3]. Many of these
attempts are partly inspired by the success of the dual
formulation of Abelian lattice gauge theories where duality
transformations have led to interesting confining and non-
confining phases in terms of the magnetic monopoles [3]. It
is widely believed that color confinement and nonperturba-
tive vacuum structure can also be better understood within
the dual framework with inverted couplings [1,2,4,5]. In the
recent past, the quest for quantum simulation of non-Abelian
lattice gauge theory Hamiltonians using trapped ion or ultra
cold atomic gases and optical lattices are important and
exciting developments [6–8]. The present work with local
dual interactions and inverted coupling provides an alter-
native framework for these quantum simulations in the
magnetic basis [6,8]. In fact, dual Hamiltonian formulations
and the corresponding magnetic basis are of importance for
quantum simulations of gauge theories as they are expected
to be more cost efficient for the Hilbert space truncation

processes in theweak coupling continuum limit [8]. For this
reason in the last few years there has been a surge in the
search for the dual representation of various Abelian and
non-Abelian lattice models and their application to quantum
computations [6,8,9]. The exact duality transformations also
naturally lead us to the construct the dual magnetic disorder
operators [9,10], which in turn, have been used in ZN and
SUðNÞ toric code models to construct anyonic states for
topological quantum computations [11].
All duality approaches in the past focus on solving the

Abelian or non-Abelian Gauss law constraints to write the
electric fields in terms of the dual electric potentials.
In Abelian gauge theories such solutions are simple and
lead to interesting dynamics [3,8]. However, in non-
Abelian cases the duality attempts have not been very
successful. Various solutions of non-Abelian Gauss laws
lead to the dual descriptions of dynamics, which are
involved [1,2,5] and often nonlocal [9] with difficult
physical interpretations. These nonlocal interactions also
make them computationally unwieldy. Further, many of
these duality techniques are tailor made for the SU(2)
gauge group [5] and their generalizations to SU(3) and
higher SU(N) groups are far from clear. In this paper, using
a Hamiltonian approach in (2þ 1) dimension, we illustrate
how to evade the above difficulties and transit from the
original SU(N) Kogut-Susskind electric vector field and
magnetic vector potential description [see (1)] to the (dual)
magnetic scalar field and electric scalar potential descrip-
tion [see (49)]. The dual formulation is also a loop
formulation as the dual operators involved are untraced
Wilson loops over plaquettes or equivalently the magnetic
fields (see Fig. 1) and their conjugate electric scalar
potentials. Under SU(N) gauge transformations they both
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transform like adjoint matter fields. We find that the
nonlocal loop-loop interactions, described by electric scalar
potentials, can be made local and converted into minimal
coupling by introducing auxiliary SU(N) gauge fields
through additional plaquette constraints [see (41)]. This
should be contrasted with the original interactions which
are in terms of the magnetic vector potential holonomies
around the plaquettes [see (1)]. This duality between the
original plaquette link interactions and the minimal cou-
pling interactions describing loops in (2þ 1) dimension
is a novel feature of the present study. In our previous work
[9] we have constructed duality transformations that
explicitly solved the SU(N) Gauss law constraints at every
lattice site. The dual theory in this case was a SU(N) spin
model without any gauge degrees of freedom. The above
solutions of SU(N) Gauss law constraints are essentially
nonlocal relations between the SU(N) Kogut-Susskind
electric fields and the dual electric scalar potentials leading
to a nonlocal dual Hamiltonian [9]. These nonlocality
issues in the dual formulations have been recently dis-
cussed in the context of quantum simulations in the
magnetic basis (see Bauer et al. in [6,8]). In the present
work we take a different route and define the dual SU(N)
electric scalar potentials without solving the Gauss law
constraints. We construct SU(N) magnetic scalar or pla-
quette fields and their conjugate electric scalar potentials
[2] by making a series of iterative canonical transforma-
tions on the original electric vector fields and their con-
jugate magnetic vector potentials [12]. These canonical
transformations are designed to produce local plaquette

loop holonomies (physical magnetic fields) by gluing
together its four link holonomies (gluons). This framework
is pictorially illustrated in Figs. 1 and 4. Following this
process we find the following:
(1) TheKogut-Susskind noninteracting electric field g2E⃗2

terms dualize to loop interaction terms. As expected,
these loop interactions are described by minimal
coupling between SU(N) electric scalar potentials
and the corresponding auxiliary gauge fields.

(2) The Kogut-Susskind interacting magnetic field
1=g2Tr (Uplaquette þ H:c:) terms dualize to the
noninteracting magnetic fields terms. They create
and annihilate single plaquette loops [9,13].

Thus under duality the roles of interacting and non-
interacting terms get interchanged resulting in the inversion
of coupling constant (g2 → 1=g2) as expected.
The plan of the paper is as follows: In Sec. II we start

with Kogut-Susskind Hamiltonian formulation. This sec-
tion is added for the sake of completeness and to set up the
notations. In Sec. III we discuss the canonical transforma-
tions which take us from link description to the plaquette
loop description by joining the four links of every pla-
quette. To make the presentation simple, we first discuss
how to join two link holonomies by making a single
canonical transformation. In Sec. III A we iterate this step
on a simple 2 × 2 plaquette lattice and define four new
plaquette loop holonomies (magnetic fields) and their
conjugate electric scalar potentials. In Sec. III B we directly
generalize these results to N × N plaquette lattice and
define N2 new plaquette holonomies. All technical issues

FIG. 1. (a) Original lattice with 2NðN þ 1Þ link holonomies and their conjugate electric fields. (b) The final configurations: N2

plaquette loop holonomies, NðN þ 1Þ vertical link holonomies and N horizontal links holonomies at ðm; n ¼ 0Þ. The missing N2

horizontal links at ðm; n > 0Þ have been traded off for N2 plaquettes through canonical transformations ðCTÞ in (28) and (29). As
expected, the total number of new configurations (¼ N2 þ NðN þ 1Þ þ N ¼ 2NðN þ 1Þ) in (b) match with the total number of initial
link configurations in (a).
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and details involved in performing canonical transforma-
tions are worked out in Appendix A. In Sec. IV we discuss
the dual loop dynamics in (2þ 1) dimensions in terms of
magnetic scalar fields and their conjugate electric scalar
potentials. The nonlocality and rotational symmetry prob-
lems and their resolutions are discussed. We also compare
our SU(N) duality results with the U(1) lattice gauge theory
duality results. This simple comparison provides better
understanding of the non-Abelian duality relations between
electric fields and the electric scalar potentials. We end the
paper with a summary and a brief discussion about the
future problems.
The notations used are as follows: The lattice sites and

links will be denoted by n⃗ ¼ ðm; nÞ and ðn⃗; îÞ, respectively,
with m; n ¼ 0; 1; 2;…; N and i ¼ 1, 2. We use roman and
calligraphic fonts to denote the SU(N) conjugate field
operators in the electric (before duality) and the magnetic
(after duality) descriptions, respectively. This is clearly
illustrated in Table I.

II. THE HAMILTONIAN DYNAMICS

The Hamiltonian of SU(N) lattice gauge theory is [14]

H ¼ HE þHM ¼ g2
X
n⃗;î

Tr ðE2ðn⃗; îÞÞ

þ K
g2

X
p

Tr ð2 − ðUp þ U†
pÞÞ; ð1Þ

where g2 is the coupling and K is a constant. The plaquette
operator Up at site n⃗ and ði; jÞ plane is defined as Up ¼
Uðn⃗; îÞUðn⃗þ î; ĵÞU†ðn⃗þ ĵ; îÞU†ðn⃗; ĵÞ and E� ¼ Ea

�T
a,

where Ta; a ¼ 1; 2;…;N2 − 1 are the generators of funda-
mental representation of SU(N). This is the electric field
description with the conjugate pairs ðEaðn⃗; îÞ; Uðn⃗; îÞÞ
satisfying

½Eaþðn⃗; îÞ; Uαβðn⃗; îÞ� ¼ −ðTaUðn⃗; îÞÞαβ;
½Ea

−ðn⃗þ î; îÞ; Uαβðn⃗; îÞ� ¼ ðUðn⃗; îÞTaÞαβ: ð2Þ

In (1) we have used TrE2ðn⃗; îÞ≡ TrE2
�ðn⃗; îÞ. The above

commutation relation implies that Eaþðn⃗; îÞ ðEa
−ðn⃗þ î; îÞÞ

shown in Fig. 2(a) rotate (antirotate) Uðn⃗; îÞ the form left
(right), respectively. The link operators Uðn⃗; îÞ are SU(N)
operators and satisfy

U†U ¼ I ¼ UU†;

where I is N × N identity operator. Moreover matrix
elements of U commute among themselves

½Uαβ; Uγδ� ¼ 0; ½Uαβ; U
†
γδ� ¼ 0: ð3Þ

The left and right electric fields Ea
�ðn⃗; îÞ commute with

each other and individually satisfy SU(N) Lie algebra.

½Ea
�ðn⃗; îÞ; Eb

�ðn⃗; îÞ� ¼ ifabcEc
�ðn⃗; îÞ: ð4Þ

The right electric field Ea
−ðn⃗þ î; îÞ rotating the link

operator from the right in (2) are obtained by the parallel
transports along the link ðn⃗; îÞ:

TABLE I. The kinematical degrees of freedom before and after duality transformations. Under SU(N) gauge transformations, the loop
conjugate pairs ðEaþðn⃗Þ;Wαβðn⃗ÞÞ in [B] transform like SU(N) adjoint scalar matter fields. They describe the SU(N) magnetic fields and
their conjugate electric scalar potentials, respectively. The last column shows the auxiliary SU(N) gauge fields defined on links. They are
introduced with additional plaquette constraints (41) to obtain minimally coupled local dual theory. This table also explains the notations
used in this paper. The locations of different holonomies and their electric fields are shown in Fig. 6.

SU(N) Kogut-Susskind formulation Dual SU(N) formulation

[A] (Mixed) [B] (Physical) [C] (Unphysical)

Link holonomy: Uαβðn⃗; îÞ
Link electric field: Ea

�ðn⃗; îÞ
Plaquette holonomy: Wαβðn⃗Þ
Plaquette potential: Ea

�ðn⃗Þ
String holonomy: Uðn⃗; îÞ
String electric field: Ea

�ðn⃗; îÞ
½Ea

�ðn⃗; îÞ; Uαβðn⃗; îÞ� ¼ −ðTaUðn⃗; îÞÞαβ ½Ea
�ðn⃗Þ;Wαβðn⃗Þ� ¼ −ðTaWðn⃗ÞÞαβ ½Ea

�ðn⃗; îÞ;Uαβðn⃗; îÞ� ¼ −ðTaUðn⃗; îÞÞαβ

FIG. 2. Kogut-Susskind link operators Uðn⃗; îÞ and their left
(right) electric field Eaþðn⃗; îÞðEa

−ðn⃗þ î; îÞ); (a) location of electric
fields on the link ðn⃗; îÞ, (b) location of electric fields around a
lattice site n⃗. The SU(N) Gauss law (8) involves all four electric
fields around site n⃗.

EXACT DUALITY AND LOCAL DYNAMICS IN SU(N) LATTICE … PHYS. REV. D 107, 074504 (2023)

074504-3



E−ðn⃗þ î; îÞ ¼ −U†ðn⃗; îÞEþðn⃗; îÞUðn⃗; îÞ: ð5Þ

Note that Tr ðEþðn⃗; îÞÞ2 ¼ Tr ðE−ðn⃗þ î; îÞÞ2 and

½Eaþðn⃗; îÞ; Eb
−ðn⃗þ î; îÞ� ¼ 0: ð6Þ

Under gauge transformation at site n⃗, the left electric field
and the holonomy transform as

Uðn⃗; îÞ → Λðn⃗ÞUðn⃗; îÞΛ†ðn⃗þ îÞ;
Eþðn⃗; îÞ → Λðn⃗ÞEþðn⃗; îÞΛ†ðn⃗Þ: ð7Þ

In (7), Λðn⃗Þ are arbitrary unitary matrices. The SU(N)
Gauss laws at the lattice site n⃗ are [14]

Gaðn⃗Þ≡X2
i¼1

ðEaþðn⃗; îÞ þ Ea
−ðn⃗; îÞÞ ¼ 0; ∀ n⃗: ð8Þ

III. CANONICAL TRANSFORMATIONS: LINKS
TO LOOPS AND STRINGS

In this section, using canonical transformations,we transit
from the Kogut-Susskind link electric field representation to
its dual plaquette magnetic field representation in SU(N)
lattice gauge theory. These transformations are used to write
the Hamiltonian in (1) in its dual form (49). This duality is
achieved by canonical gluing the four links around every
plaquette on the lattice to define plaquette loop or magnetic
operators and their conjugate electric scalar potentials. This
is pictorially shown in Figs. 4(a) and 4(b). Note that no
attempt is made to solve the SU(N) Gauss laws explicitly to
obtain this dual magnetic description. As the above canoni-
cal transformation procedure is iterative,we startwith gluing
two link holonomies and define their electric fields.We then
generalize this canonical transformation procedure to 2 × 2
plaquette lattice (see Sec. III A) and then toN × N plaquette
lattice (see Sec. III B), respectively. In what follows, wewill
construct only left (right) plaquette and string electric fields
through canonical transformations. Their right (left) electric
fields can then be easily obtained using the parallel transport
relations (5) with Uðn⃗; îÞ replaced by the corresponding
plaquette or string holonomies.We use calligraphic symbols
to denote the new field operators obtained after every
canonical transformation.
We consider any two adjacent conjugate pairs:

ðEa
�ð1Þ; Uαβð1ÞÞ and ðEa

�ð2Þ; Uαβð2ÞÞ. They are the two
conjugate pairs located on the links ðn⃗; 1̂Þ and ðn⃗þ 1̂; 1̂Þ,
respectively, as shown in Fig. 3. More precisely,

ðEa
�ð1Þ; Uαβð1ÞÞ≡ ðEa

�ðn⃗; 1̂Þ; Uαβðn⃗; 1̂ÞÞ;
ðEa

�ð2Þ; Uαβð2ÞÞ≡ ðEa
�ðn⃗þ 1̂; 1̂Þ; Uαβðn⃗þ 1̂; 1̂ÞÞ:

We join the above holonomies together and define the new
but equivalent pairs ðEa

�ð12Þ;Uαβð12ÞÞ and ðEa
�ð2Þ;Uαβð2ÞÞ

through canonical transformations:

Uαβð12Þ≡ ðUð1ÞUð2ÞÞαβ; Eaþð12Þ ¼ Eaþð1Þ;
Uαβð2Þ≡ Uαβð2Þ; Eaþð2Þ ¼ Ea

−ð1Þ þ Eaþð2Þ: ð9Þ

The transformations (9) are illustrated in Fig. 3. They are
canonical as the two new conjugate pairs ðEa

�ð12Þ;Uαβð12ÞÞ
and ðEa

�ð2Þ;Uαβð2ÞÞ also follow the standard canonical
commutation relations:

½Eaþð12Þ;Uαβð12Þ� ¼ −ðTaUð12ÞÞαβ; ð10aÞ

½Eaþð2Þ;Uαβð2Þ� ¼ −ðTaUð2ÞÞαβ: ð10bÞ

Note that the two new holonomies Uαβð12Þ and Uαβð2Þ
trivially commutewith each other and we have addedEa

−ð1Þ
to define Eaþð2Þ in (9) so that

½Eaþð2Þ;Uαβð12Þ� ¼ 0;

½Eaþð12Þ;Uαβð2Þ�≡ 0: ð11Þ

The two new conjugate pairs commute with each other and
are therefore mutually independent. They are on the same
footing as the original two Kogut-Susskind pairs.
Note that, in this simplest two link case, if we identify the

two end points ðn⃗Þ and ðn⃗þ 1̂Þ in Fig. 3 then Uð12Þ
transforms like a magnetic flux loop. We can now follow
the classification shown in Table I by identifying
ðE�ð12Þ;Uð12ÞÞ with ðE�ðn⃗Þ;Wðn⃗ÞÞ and ðEþð2Þ;Uð2ÞÞ
with the string pair ðEþðn⃗þ 1̂; 1̂Þ;Uðn⃗þ 1̂; 1̂ÞÞ. We further
note that the electric field E�ð1Þ of the link holonomy
Uαβð1Þ, which is canonically transformed into Uαβð12Þ,
appears in both the final electric fields. This aspect is
clearly shown in Fig. 3. This simple fact will lead to the
nonlocal duality relations [see (14) and (20a), (20b)], which
are obtained after iterating (9) over the entire lattice. This,

FIG. 3. Gluing two SU(N) holonomies using canonical trans-
formations. From two Kogut-Susskind links, we get two new
mutually independent holonomies.
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in turn, will lead to nonlocal dual or loop dynamics [see
(39)]. As mentioned earlier, having defined the left electric
fields in (9), the right electric fields get fixed by the parallel
transport along the new links

Eaþð12Þ ¼ −Ra
bðUð12ÞÞ Eb

−ð12Þ;
Eaþð2Þ ¼ −Ra

bðUð2ÞÞ Eb
−ð2Þ: ð12Þ

In the above equations Ra
b are the SOðN2 − 1Þ rotation

operators and satisfy RRT ¼ 1 ¼ RTR. They are defined as
Ra
bðUÞ ¼ 2trðTaUTbU†Þ. The new left and right electric

fields also satisfy the SU(N) Lie algebra, they commute
with each other and their magnitudes are equal. In
summary, in this section we have converted the shorter
flux line Uαβð1Þ into longer flux line Uαβð12Þ using (9).
This simple canonical transformation will now be iterated
over the entire lattice to convert all horizontal links into
local plaquettes starting from the top. This in turn will
define the holonomy around a plaquette or the magnetic
fields as the fundamental variables in the dual theory [15].
We first generalize the canonical transformations (9) to
2 × 2 plaquette lattice in Sec. III A and then discuss the
general N × N plaquette case in Sec. III B.

A. ð2 × 2Þ plaquette lattice

This simple case is illustrated in Fig. 4 and in Table I. The
initial 12 Kogut-Susskind link conjugate pairs ðEðm; n; îÞ;
Uðm; n; îÞÞ are shown in Fig. 4(a) or in Table I[A]. The final
four (physical) plaquette conjugate pairs ðEðm; nÞ;Wðm; nÞÞ
and the remaining eight (unphysical) string conjugate
pairs ðEðm; n; îÞ;Uðm; n; îÞÞ are shown in Fig. 4(b) or in
Tables I[B] and I[C], respectively. As is clear from the figure,
we have converted the four Kogut-Susskind horizontal link
holonomies and their electric fields at ðm ¼ 0; 1; n ¼ 1; 2Þ

into the four plaquette holonomies and their electric fields.
The 12 canonical transformations leading to the configura-
tions in Fig. 4(b) from Fig. 4(a) are systematically worked out
inAppendixA. In the next section the end results of the above
canonical transformations are written down. They have exact
duality interpretation.

1. Plaquette, strings, and duality

We first describe the new plaquette sector. The four
plaquette fluxes shown in Fig. 4(b) are

Wðm; nÞ ¼ Uðm; n; 2̂ÞUðm; nþ 1; 1̂Þ
U†ðmþ 1; n; 2̂ÞU†ðm; n; 1̂Þ: ð13Þ

In (13) m, n ¼ 0, 1. Their conjugate plaquette electric
fields, fixed through the iterative canonical transformations
(see Appendix A), are

Eþðm; nÞ ¼ −
XN¼2

j¼nþ1

Sjðm; nÞEþðmþ 1; j; 1̂ÞS−1
j ðm; nÞ:

ð14Þ
The parallel transports Sjðm; nÞ in (14) are defined as (see
Appendix A)

Sj¼1ðm; 0Þ ¼ Uðm; 0; 2̂ÞUðm; 1; 1̂Þ; ð15aÞ

Sj¼2ðm; 0Þ ¼ Uðm; 0; 2̂ÞUðm; 1; 1̂ÞUðmþ 1; 1; 2̂Þ; ð15bÞ

Sj¼2ðm; 1Þ ¼ Uðm; 1; 2̂ÞUðm; 2; 1̂Þ: ð15cÞ

The physical interpretation of the nonlocal operators
Sjðm; nÞ shown in Figs. 5(a)–5(c) is simple. They
implement the parallel transports from the location of

FIG. 4. A simple 2 × 2 plaquette lattice. (a) The Kogut-Susskind description in terms of 12 link holonomies and their left and right
electric fields shown by •. (b) Dual lattice with four physical plaquette holonomiesWðm; nÞ;m; n ¼ 0, 1, six unphysical vertical strings
Uðm; n; 2̂Þ;m ¼ 0; 1; 2; n ¼ 0, 1, and two unphysical horizontal strings Uðm; 0; 1̂Þ;m ¼ 0, 1 at the bottom of the lattice. The electric
fields of plaquettes are shown by •, whereas electric fields of unphysical strings are shown in •. All unphysical strings can be removed by
gauge transformations at ðm ≠ 0; n ≠ 0Þ.
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the original Kogut-Susskind link electric fields at ðmþ 1;
j > nÞ to the location of the dual plaquette electric field at
ðm; nÞ in (14). Therefore like Kogut-Susskind electric
fields the dual plaquette electric fields Eðm; nÞ also trans-
form like adjoint matter fields.
As a consequence of canonical transformations the

plaquette pairs ðE�ðm; nÞ;Wðm; nÞÞ are conjugate and
satisfy the standard canonical commutation relations:

½Eaþðn⃗Þ;Wαβðn⃗Þ� ¼ −ðTaWðn⃗ÞÞαβ;
½Ea

−ðn⃗Þ;Wαβðn⃗Þ� ¼ ðWðn⃗ÞTaÞαβ: ð16Þ

The plaquette electric fields satisfy SU(N) Lie algebra

½Ea
�ðn⃗Þ; Eb

�ðn⃗Þ� ¼ ifabcEc
�ðn⃗Þ: ð17Þ

The canonical commutation relation amongst the new
plaquette fields (16), (17) are the dual version of the
standard Kogut-Susskind commutation relations (2), (4),
respectively. Note that while Kogut-Susskind relations (16)
involve electric fields Eðn⃗; îÞÞ and its conjugate magnetic
vector potentials in Uαβðn⃗; îÞ, the dual commutation rela-
tions (16) involve magnetic scalar fields in Wðm; nÞ and
their conjugate electric scalar potentials Eðm; nÞ. Therefore,
the canonical transformations (13) and (14) can also be
interpreted as the exact SU(N) duality transformations.

After duality, the fundamental conjugate pairs describing
the dynamics (see Sec. IV) are the magnetic scalar fields
and their conjugate electric scalar potentials ðEðm; nÞ;
Wðm; nÞÞ. Under SU(N) gauge transformations (7) they
transform as adjoint scalar matter fields

Wðn⃗Þ → Λðn⃗ÞWðn⃗ÞΛ†ðn⃗Þ;
E�ðn⃗Þ → Λðn⃗ÞE�ðn⃗ÞΛ†ðn⃗Þ: ð18Þ

We now describe the remaining eight unphysical string
sector shown in Fig. 4(b) and Table I[C]. As the iterative
canonical transformations preserve the total number of
degrees of freedom, these eight strings are the leftover
degrees of freedom after defining the four dual plaquette
holonomies in (13). They are unphysical and can be
completely gauged away as is clear from Fig. 4(b).
However we retain them to keep the dual loop dynamics
simple and local (see Sec. IV). The two horizontal and six
vertical string holonomies are

Uðm; 0; 1̂Þ ¼ Uðm; 0; 1̂Þ; m ¼ 0; 1: ð19aÞ

Uðm;n; 2̂Þ¼Uðm;n; 2̂Þ; m¼0;1;2; n¼0;1: ð19bÞ

The corresponding conjugate electric fields are (see
Appendix A)

Eþðm; 0; 1̂Þ ¼ Eþðm; 0; 1̂Þ −
X2
j¼1

Sjðm; 0ÞE−ðmþ 1; j; 1̂ÞS−1
j ðm; 0Þ;

Eþðm; n; 2̂Þ ¼ Eþðm; n; 2̂Þ −
X2
j¼nþ1

S0
jðm; nÞE−ðm; j; 1̂ÞS0−1

j ðm; nÞ ð20aÞ

þ
X2
j¼nþ1

Sjðm; nÞE−ðmþ 1; j; 1̂ÞS−1
j ðm; nÞ: ð20bÞ

FIG. 5. Nonlocal parallel transports S and S0 required for defining plaquette and string electric field operators in (15a), (15b), (15c)
and (21a), (21b), (21c), respectively.
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Again like the parallel transport Sjðm; nÞ; ðm; n ¼ 0; 1Þ,
the parallel transports S0

jðm; nÞ in (20b) are required to
construct the new string electric fields (see Fig. 5) in the
dual description. They are defined as

S0
1ðm; 0Þ ¼ Uðm; 0; 2̂Þ; ð21aÞ

S0
2ðm; 0Þ ¼ Uðm; 0; 2̂ÞUðm; 1; 2̂Þ; ð21bÞ

S0
2ðm; 1Þ ¼ Uðm; 1; 2̂Þ: ð21cÞ

The parallel transports S0
jðm; nÞ in (21a), (21b), and (21c)

are shown in Figs. 5(d)–5(f), respectively. For more details,
see Eqs. (A24), (A44), (A50), (A14), and (A39) in
Appendix A. Again the canonical transformations ensure
that the eight-string conjugate pairs also satisfy the standard
canonical commutations relations:

½Eaþðm; n; îÞ;Uαβðm; n; îÞ� ¼ −ðTaUðm; n; îÞÞαβ: ð22Þ

In (22) if î ¼ 1̂ then n ¼ 0 as horizontal strings exist only at
the bottom. These canonical relations are systematically
derived in Appendix A. It is easy to check that the 12 new
conjugate pairs commute with each other and therefore are
completely independent. Thus the canonical transforma-
tions again ensure that there is no mismatch between the 12
initial (links) and the 12 final (loops and strings) degrees of
freedom. While the loop conjugate pairs transform as SU
(N) adjoint matter, the string conjugate pairs transform as
SU(N) gauge fields

Uðn⃗; îÞ → Λðn⃗ÞUðn⃗; îÞΛ†ðn⃗þ îÞ;
E�ðn⃗; îÞ → Λðn⃗ÞE�ðn⃗; îÞΛ†ðn⃗Þ: ð23Þ

In (23) the conjugate pairs ðE�ðn⃗; î ¼ 1Þ;Uðn⃗; î ¼ 1ÞÞ in
(23) exist only when n⃗ ¼ ðm; 0Þ. Note that this asymmetry
in the string holonomy sector is due to the special choice
of canonical transformations in Appendix A, which con-
verts all Kogut-Susskind horizontal link holonomies at
ðm; n > 0Þ into plaquette loops. Their absence also leads to
nonlocal loop-loop interactions. This is because the nearest
neighbour electric scalar potentials Eðn⃗Þ and Eðn⃗þ îÞ
cannot be coupled minimally in the horizontal directions
(see Sec. IV). In Sec. IVA we will reintroduce the
horizontal holonomies through new plaquette constraints
(41) and recover the rotational symmetry as well as locality
of the original Hamiltonian (1).

2. Inverse relations

The canonical relations (13), (19a), and (19b) can be
easily inverted to write the Kogut-Susskind fields in terms
of the new plaquette, string fields:

Uðn⃗; 1̂Þ ¼ Lðn⃗ÞUðm; 0; 1̂ÞRðn⃗þ 1̂Þ; n ¼ 1; 2; ð24aÞ

Uðm; 0; 1̂Þ ¼ Uðm; 0; 1̂Þ; m ¼ 0; 1; ð24bÞ

Uðm; n; 2̂Þ ¼ Uðm; n; 2̂Þ: m ¼ 0; 1; 2: ð24cÞ

In (24a), the parallel transports on the left and right sides
are

Lðn⃗Þ≡
�Yn
j¼1

U†ðm;n−j; 2̂ÞWðm;n−jÞ
�
; ð25aÞ

Rðn⃗þ 1̂Þ≡
�Yn−1
k¼0

Uðmþ 1; k; 2̂Þ
�
: ð25bÞ

Note that the nontrivial relations (24a) and (25a), (25b),
involving nonlocal parallel transports L and R, are again
simple consequence of the covariance under the SU(N)
gauge transformations (7), (18), and (23). The correspond-
ing Kogut-Susskind electric fields are

Eþðm; 0; 1̂Þ ¼ E−ðm; 0Þ þ Eþðm; 0; 1̂Þ; ð26aÞ

Eþðn⃗; 1̂Þ ¼ E−ðn⃗Þ þ U†ðn⃗ − 2̂; 2̂ÞEþðn⃗ − 2̂ÞUðn⃗ − 2̂; 2̂Þ;
ð26bÞ

Eþðn⃗; 2̂Þ ¼ Eþðn⃗Þ þ S−1ðn⃗ − 1̂; 1̂ÞE−ðn⃗ − 1̂ÞSðn⃗ − 1̂; 1̂Þ
þ Eþðn⃗; 2̂Þ: ð26cÞ

In (26c) nonlocal parallel transports are

Sðm; n; 1̂Þ ¼ LUðm; 0; 1̂ÞR: ð27Þ

These relations are derived in Appendix A. However, they
are easy to understand and can be written down just by
looking at the final four loop and eight string configurations
in Fig. 4(b). We note that the Kogut-Susskind electric fields
E�ðm; n; îÞ rotates all those new configurations in Fig. 4(b)
that share the link holonomy Uðm; n; îÞ. Therefore,
E�ðm; n; îÞ is a sum of all these loop and string electric
fields parallel transported to the lattice site ðm; nÞ to
maintain the SU(N) gauge covariance. As an example, if
we want to write the Kogut-Susskind right electric field
Eþðm; n; 1̂Þ, then we identify the two dual holonomies
Wðm; nÞ andWðm; n − 1Þ, which share the linkUðm; n; 1̂Þ
and parallel transport their electric field to the site ðm; nÞ to
get the canonical relation (26b). Similarly, the Kogut-
Susskind electric fields Eþðm; 0; 1̂Þ; Eþðm; n; 2̂Þ in (26a)
and (26c) get extra contribution from the respective
horizontal and vertical strings. These inverse relations
are graphically illustrated in Figs. 8(a)–8(c).
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B. ðN × NÞ plaquette lattice

We now generalize the dual relations obtained in the
previous section to N × N lattice. There are N2 horizontal
links at ðm; n > 0Þ as shown in Fig. 1. Using (9) we
canonically transform them into plaquettes in the clockwise
direction as shown in Fig. 6(b). This canonical gluing starts
from the top left column and goes from the top to the bottom
and then repeated iteratively in the adjacent right columns. As
each plaquette formation requires three canonical transforma-
tions (see Appendix A), we need 3N2 canonical transforma-
tions to cover the entire lattice. At the end we construct (i)N2

plaquettes pairs: ðEðn⃗Þ;Wðn⃗ÞÞ, (ii)NðN þ 1Þ vertical strings
pairs: ðEðn⃗; 2̂Þ;Wðn⃗; 2̂ÞÞ, and (iii) N horizontal string pairs:
ðEðm; 0; 1̂Þ;Wðm; 0; 1̂ÞÞ. These dual configurations with
their left, right electric fields are shown in Fig. 6(b).

1. Plaquette, strings, and duality

The N2 plaquettes fluxes are

Wðn⃗Þ ¼ Uðn⃗; 2̂ÞUðn⃗þ 2̂; 1̂ÞU†ðn⃗þ 1̂; 2̂ÞU†ðn⃗; 2̂Þ: ð28Þ

Their conjugate left electric fields are

Eþðn⃗Þ ¼ −
XN
j¼nþ1

Sjðn⃗ÞE−ðmþ 1; j; 1̂ÞS−1
j ðn⃗Þ ð29Þ

in (29) n⃗≡ ðm; nÞ and m; n ¼ 0; 1;…; N − 1. The canoni-
cal relations (29) are straightforward generalizations of the
relations (14) where we have replaced 2 with N. This
generalization amounts to including all horizontal Kogut-
Susskind electric fields E−ðmþ 1; j > n; 1̂Þ up to the top
of the lattice. In (29) we have defined the parallel transport
operator Sjðm; nÞ shown in Fig. 7(a):

Sjðm;nÞ≡Uðm;n; 2̂ÞUðm;nþ 1; 1̂Þ
Yj−1

k¼nþ1

Uðmþ 1; k; 2̂Þ:

ð30Þ

In (30) j ≥ nþ 2 and Snþ1ðm; nÞ≡ Uðm; n; 2̂Þ
Uðm; nþ 1; 1̂Þ. The nonlocal parallel transport operators

Sjðm; nÞ encode the cumulative effects of all 3N2 canonical
transformations over the entire lattice. As mentioned in the
previous section, they are necessary for SU(N) gauge
covariance of (30).
The asymmetry in the shape of the Sjðm; nÞ is because of

the choice of iterative canonical transformations. In this
work we started at the left top corner and proceeded toward
the bottom in the first column and then moved to the adja-
cent right column. We know that Wðm; nÞ; n ¼ ðN − 1Þ;
ðN − 2Þ; � � � 0 are created sequentially by absorbing
Uðm; nþ 1; 1̂Þ at (N − n)th step starting from the top.
Therefore its electric field must contain all (N − n) Kogut
Susskind electric fields on the horizontal links above it.
They are located at different points and are parallel trans-
ported to ðm; nÞ via path S to maintain gauge covariance
of (29). The plaquette canonical commutation relations (16)
and (17) discussed in the previous section on the simple
2 × 2 lattice remain valid.
Having discussed the plaquette loop or magnetic field

sector, we now discuss the remaining string sector. The N
horizontal and NðN þ 1Þ vertical strings are related to old
link variables as

FIG. 6. (a) Kogut-Susskind Link operators, (b) N2 plaquette and NðN þ 1Þ vertical and N horizontal string at the bottom of the lattice.
The two types of electric fields E�ðn⃗; îÞ; E�ðn⃗Þ; E�ðn⃗; îÞ and their locations are shown.

FIG. 7. Two types of nonlocal parallel transports required for
canonical transformation: (a) Sjðm; nÞ defining the electric fields
of Wðm; nÞ in (29) and (32b), (b) S0

jðm; nÞ defining the electric
fields of the strings Uðm; n; îÞ in (32b). These strings are N × N
lattice generalizations of Fig. 5.
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Uðm;n¼0;1̂Þ¼Uðm;0;1̂Þ; Uðn⃗; 2̂Þ¼Uðn⃗; 2̂Þ: ð31Þ

Like in Sec. III A 1, the conjugate electric fields are

Eþðm; 0; 1̂Þ ¼ Eþðm; 0; 1̂Þ −
XN
j¼1

Sjðm; 0ÞE−ðmþ 1; j; 1̂ÞS−1
j ðm; 0Þ; ð32aÞ

Eþðm; n; 2̂Þ ¼ Eþðm; n; 2̂Þ −
XN
j¼nþ1

S0
jðm; nÞE−ðm; j; 1̂ÞS0−1

j ðm; nÞ þ
XN
j¼nþ1

Sjðm; nÞE−ðmþ 1; j; 1̂ÞS−1
j ðm; nÞ: ð32bÞ

As before, the vertical parallel transports are

S0
jðm; nÞ ¼

Yj−1
k¼n

Uðm; k; 2̂Þ ð33Þ

and S0
0ðm; 0Þ ¼ 1. The canonical transformations ensure

that all NðN þ 1Þ vertical string pairs ðEaþðn⃗; 2̂Þ;Uαβðn⃗; 2̂ÞÞ
and N horizontal string pairs ðEaþðm; 0; 1̂Þ;Uαβðm; 0; 1̂ÞÞ
satisfy the standard canonical commutation relations.
As before, under SU(N) gauge transformations (7) the

plaquette conjugate pairs transform as adjoint matter (18)
and the string conjugate pairs transform as gauge
fields (23).

2. Inverse relations

We can get Kogut-Susskind link operators from pla-
quette and string holonomies by solving Eqs. (28) and (31);

Uðn⃗; 1̂Þ ¼ Sðn⃗; 1̂Þ; ð34aÞ

Uðn⃗; 2̂Þ ¼ Uðn⃗; 2̂Þ: ð34bÞ

Where Sðn⃗; 1̂Þ is the shortest path containing the plaquette
holonomy W, which connects the sites n⃗ and n⃗þ 1̂ [see
Fig. 9(a)]:

Sðn⃗; 1̂Þ ¼ Lðn⃗ÞUðm; 0; 1̂ÞRðn⃗þ 1̂Þ: ð35Þ

In (35), we have defined left and right parallel transports

Lðn⃗Þ≡
�Yn
j¼1

U†ðm; n − j; 2̂ÞWðm; n − jÞ
�
; ð36aÞ

Rðn⃗þ 1̂Þ≡
�Yn−1
k¼0

Uðmþ 1; k; 2̂Þ
�
: ð36bÞ

FIG. 8. Inverse canonical relations: Kogut-Susskind electric fields in terms of the dual plaquette and string electric fields.
(a) Horizontal left electric field Eþðm; 0; 1̂Þ in (26a). (b) Horizontal left electric fields Eþðm; n; 1̂Þ, n ≠ 0 in (26b). (c) Vertical left
electric field Eþðm; n; 2̂Þ in (26c). The plaquette electric fields Eðm; nÞ are shown by • and string electric fields Eðm; n; îÞ are shown by •.
The round arrows show that required parallel transports.
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The canonical relations (29), (32a), and (32b) can also be
inverted to get the Kogut-Susskind electric fields in terms
of the plaquette and string fields:

Eþðm; 0; 1̂Þ ¼ E−ðm; 0Þ þ Eþðm; 0; 1̂Þ; ð37aÞ

Eþðn⃗; 1̂Þ ¼ ∇2ðUÞEðnÞ; ð37bÞ

Eþðn⃗; 2̂Þ ¼ −∇1ðSÞEðn⃗Þ þ Eþðn⃗; 2̂Þ: ð37cÞ

In the inverse duality relations (37a), (37b), (37c) we have
defined the difference operators with local Uðn⃗ − 2̂; 2̂Þ and
nonlocal S†ðn⃗ − 1̂; 1̂Þ parallel transports as

∇2ðUÞEðn⃗Þ≡ E−ðn⃗Þ þU†ðn⃗− 2̂; 2̂ÞEþðn⃗− 2̂ÞUðn⃗− 2̂; 2̂Þ;
ð38aÞ

∇1ðSÞEðn⃗Þ≡−Eþðn⃗Þ−S†ðn⃗− 1̂; 1̂ÞE−ðn⃗− 1̂ÞSðn⃗− 1̂; 1̂Þ:
ð38bÞ

Note that after duality the Kogut electric fields are not
fundamental. They are instead expressed in terms of
electric scalar potentials Eðm; nÞ. These electric scalar
potentials describe the gauge theory interactions in the
dual version (39) or (49) as opposed to the magnetic vector
potentials Uðm; n; îÞ that describe interactions in the

original Hamiltonian (1). These dynamical issues are
discussed in the next section.

IV. SU(N) DUAL DYNAMICS

The Kogut-Susskind Hamiltonian (1) can now be
rewritten in terms of the dual plaquette and string operators
as [16]

H¼
X
n⃗

�
g2Tr

�
ð∇2ðUÞEðn⃗ÞÞ2þðEþðn⃗; 2̂Þ−∇1ðSÞEðn⃗ÞÞ2

�

þK
g2
ð2N−TrðWðn⃗ÞþW†ðn⃗ÞÞÞ

�
: ð39Þ

This dual or loop description is invariant under SU(N)
gauge transformations (18), (23) and simple to interpret as
follows: The original nontrivial four link interaction term
in (1), which dominates near the g2 → 0 continuum limit,
is now a simple noninteracting magnetic field term
1
g2 TrðW þW†Þ ∼ 1

g2 B⃗
2. This is one of the expected out-

comes of duality transformations. On the other hand, the
original noninteracting electric field terms in (1) now
describe the interactions in terms of the adjoint electric
scalar potentials. Note that the dual interaction in the y
direction in (39) are the minimal coupling terms between
electric scalar potentials and the string fields in the y
direction.

FIG. 9. (a) Nonlocal interactions in the horizontal direction between E−ðn⃗ − 1̂Þ and Eþðn⃗Þ in (39). The parallel transport denoted by
Sðm; n; 1̂Þ depends nonlocally on U and W leading to nonlocal interactions in (39). (b) Introduction of new gauge fields Uðm; n; 1̂Þ
through the local plaquette constraints (41) converts them into minimal couplings.
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The immediate problem we face with the above dual
description is the nonlocal and asymmetric dynamics due to
the presence of Sðn⃗; 1̂Þ in (37c). The underlying reason for
this nonlocality and asymmetry is simply the absence of the
horizontal holonomies that have been canonically trans-
formed into Wðm; nÞ as shown in Fig. 4(b). The asym-
metric Gauss law constraints associated with the SU(N)
gauge invariance (18) and (23) are

Gaðn⃗Þ ¼ Ea
−ðn⃗Þ þ Eaþðn⃗Þ þ Eaþðn⃗; 2̂Þ þ Ea

−ðn⃗; 2̂Þ ¼ 0: ð40Þ

The above constraints directly follow from the new
configurations in Fig. 4(b). As shown in Appendix B the
new Gauss law constraints (40) reduce to the old symmetric
Gauss law constraints (8) when the canonical relations are
used and thus confirming (29) and (32a), (32b). The next
section addresses and solves the asymmetry and non-
locality issues by introducing new plaquette constraints.

A. Plaquette constraints

Having obtained the dual magnetic field description in
terms of the physical conjugate loop pairs ðEðn⃗Þ;Wðn⃗ÞÞ,
we resolve the above asymmetry and nonlocality problems
by reintroduction of horizontal link holonomies Uðn⃗; 1̂Þ
through the local plaquette constraints:

Uðn⃗; 2̂ÞUðn⃗þ 2̂; 1̂ÞU†ðn⃗þ 1̂; 2̂ÞU†ðn⃗; 1̂Þ ¼ Wðn⃗Þ: ð41Þ

Note that the constraints (41) imposed on the dual theory
are consistent with the dual gauge transformations (18)
and (23). They physically mean that the newly created
gauge invariant Wilson loops with gauge fields
ðUðn⃗; 1̂Þ;Uðn⃗; 2̂ÞÞ do not lead to any additional physical
degrees of freedom. The motivation for introducing (41) is
that on the constrained surface

Uðn⃗; 1̂Þ ¼ Sðn⃗; 1̂Þ: ð42Þ

Now the nonlocal inverse relation (37c) takes the local form
and we write

Eþðn⃗; îÞ ¼ δi2Eþðn⃗; îÞ þ ϵij∇jðUÞEðn⃗Þ: ð43Þ

In (43) i, j ¼ 1, 2. The plaquette constraints (41) must
commute with the Hamiltonian H in (39). It is clear that
the magnetic part, HM ∼ TrWðn⃗ÞÞ, commutes with (41) as
Wαβðn⃗Þ and Uαβðn⃗; îÞ are mutually independent and
commuting dual degrees of freedom. It is easy to see that
the constraints (41) will commute with the electric part
HE ðHE ∼ E⃗2ðn⃗; 1̂Þ þ E⃗2ðn⃗; 2̂ÞÞ also if the electric fields
Eaþðn⃗; 1̂Þ and Eaþðn⃗; 2̂Þ defined by (37b) and (37c) rotate
both sides of (41) covariantly. We therefore introduce
electric fields Eþðn⃗; 1̂Þ, which are conjugate to auxiliary
gauge fields Uðn⃗; 1̂Þ and write

Eþðn⃗; îÞ ¼ Eþðn⃗; îÞ þ ϵij∇jðUÞEðn⃗Þ: ð44Þ

In (44) the covariant derivatives are defined as

∇2ðUÞEðn⃗Þ≡ E−ðn⃗Þ þU†ðn⃗− 2̂; 2̂ÞEþðn⃗− 2̂ÞUðn⃗− 2̂; 2̂Þ;
ð45aÞ

∇1ðUÞEðn⃗Þ≡−Eþðn⃗Þ−U†ðn⃗− 1̂; 1̂ÞE−ðn⃗− 1̂ÞUðn⃗− 1̂; 1̂Þ:
ð45bÞ

As mentioned before the parallel transports in (45a)
and (45b) are also consistent with SU(N) gauge covariance.
This provides an additional cross check for the validity of
the SU(N) canonical or duality transformations.
At this stage it is interesting as well as illustrative to

compare Eq. (44) with the corresponding equation in U(1)
or ZðNÞ lattice gauge theories [9]. In U(1) case the Gauss
law constraints in (2þ 1) dimension are

∇⃗ · E⃗ðn⃗Þ≡X2
i¼1

ð∇iEðn⃗; îÞÞ ¼ 0; ð46Þ

where ∇i is the simple difference operator in i ¼ 1, 2
directions. The obvious solutions defining the Abelian
electric scalar potentials in (2þ 1) dimension are

Eðn⃗; îÞ ¼ ϵij∇jEðn⃗Þ: ð47Þ

The SU(N) electric scalar potentials defining Eq. (44) are
obvious generalizations of the corresponding Abelian
equation (47) with the ordinary difference operators
replaced by the SU(N) covariant difference operators.
Note that instead of directly solving (46) to obtain dual
electric potential Eðn⃗Þ in (47), we can also use the present
canonical transformation route to reach the same result. In
U(1) case the parallel transports in (5) and (38a), (38b) are
simple Abelian phase factors and cancel out. Thus there are
no strings or link gauge fields and we recover (47) without
any nonlocality or asymmetry problems.
The SU(N) Gauss law constraints

Gaðn⃗Þ ¼ Ea
−ðn⃗Þ þ Eaþðn⃗Þ þ

X
i¼1;2

ðEa
−ðn⃗; îÞ þ Eaþðn⃗; îÞÞ ¼ 0

ð48Þ

are now symmetric as shown in Fig. 10. Under SU(N)
gauge transformations all electric fields appearing in (48)
transform like adjoint matter fields.
The new Hamiltonian that commutes with the constraints

(41) written in terms of the dual operators is
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H ¼
X
n⃗

�
g2 Tr

X2
i¼1

�
Eþðn⃗; îÞ þ ϵij∇jðUÞEðn⃗Þ

�
2

þ K
g2

ð2N − TrðWðn⃗Þ þW†ðn⃗ÞÞÞ
�
: ð49Þ

The dual Hamiltonian (49) can also be interpreted as the
loop Hamiltonian. Its physical interpretation is very simple.
The second interacting term in (1) dualizes to the non-
interacting magnetic field term in (49). It creates and
annihilates the single plaquette loops. This is most trans-
parent in the prepotential operator language [9,13]. The
first original noninteracting electric field term in (1) dual-
izes to the loop-loop interaction term in (49). These
SU(N) loop interactions are through minimal couplings
of the loop electric scalar potential to the gauge fields.
This duality between interacting and noninteracting terms
leads to inversion of the coupling constant: g2 → 1

g2. Note
that the physical degrees of freedom are associated
only with the SU(N) magnetic fields and their conjugate
electric potentials ðEðn⃗Þ;Wðn⃗ÞÞ. The auxiliary string sector
ðEðn⃗; îÞ;Uðm; n⃗; îÞÞ with the new constraints (41) makes
the dual description local as well as simple and rotationally
covariant.
We again emphasize that the N2 horizontal strings

Uðm; n > 0; 1̂Þ can be removed using the N2 constraints
(41). As a result their N2 conjugate electric fields Eðm; n >
0; 1̂Þ can be put equal to zero without loss of any generality.
We thus recover the nonlocal Hamiltonian (39), which
in turn is exactly equivalent to the Kogut-Susskind

Hamiltonian (1) due to the canonical transformations. In
fact, at this stage we can also remove the vertical strings
completely. Such SU(N) canonical or duality transforma-
tions leading to dual SU(N) spin model without any
gauge or string degrees of freedom have been studied in
the past [9]. They lead to nonlocal dynamics. In the present
framework, with all interactions local and proportional to
g2, the dual Hamiltonian see (49) can be used to set up a
weak coupling perturbation theory near the continuum
g2 → 0 limit. The matter fields can be coupled to the SU(N)
gauge fields Uðn⃗; îÞ through minimal coupling so that the
SU(N) gauge invariance (18) and (23) remains intact.

V. SUMMARY AND DISCUSSION

In this work we have constructed the canonical trans-
formations in SU(N) lattice gauge theory that lead to local
dual Hamiltonian with minimal interactions between dual
electric scalar potentials and the auxiliary gauge fields. This
result is easy to understand as under gauge transformations
the magnetic or plaquette loop fields as well as their
conjugate electric scalar potentials transform like SU(N)
adjoint matter fields. The transformations convert the
plaquette interaction terms into the pure noninteracting
magnetic field terms and the pure noninteracting electric
field terms into the electric scalar potential minimal
coupling interaction terms. These results are important
as the plaquette interaction terms involving four links,
which dominate near the continuum g2 → 0 limit, have
been completely simplified. In the past, even in the simple
SU(2) lattice gauge theory case, these plaquette interactions
become extremely complicated in the loop Hilbert space
[5,13]. Therefore, it will be interesting to develop a
systematic weak coupling loop perturbation theory in the
g2 → 0 continuum limit with the dual Hamiltonian (49).
In the context of quantum simulations of non-Abelian

lattice gauge theories [6–8], the problem with the electric
basis [7,13], is the complicated matrix elements of the
magnetic field terms HM in (1). On the other hand, in the
magnetic basis the electric field terms HE in (1) becomes
complicated and nonlocal [6,8,9]. The present work pro-
vides a magnetic basis without the above nonlocality
problem and therefore may be better suited for quantum
simulations near the continuum limit.
In (3þ 1) dimension these canonical transformation can

be carried out on every ðXZÞ and ðYZÞ plane similar to the
present (2þ 1) dimensional case. We thus convert all X, Y
links at z > 0 into ðXZÞ, ðYZÞ plaquettes, respectively, and
Z links into the unphysical strings. Now the dual formu-
lation will have nonlocality in both the electric and
magnetic field parts of the Hamiltonian. The nonlocality
in the electric field part, like in (2þ 1) dimension, will be
due to gauge invariance, whereas the absence of (XY)
plaquette will introduce nonlocality in the magnetic part.
This nonlocal dynamics can again be made local by

FIG. 10. The new symmetric Gauss Laws Ea
−ðn⃗Þþ

Eaþðn⃗Þ þ
P

2
i¼1 ðEaþðn⃗; îÞ þ Ea

−ðn⃗; îÞÞ ¼ 0. There are six electric
fields at each site n⃗. The two plaquette electric fields or electric
scalar potentials are shown by dark bullets • and the four string
electric fields are shown by gray bullets •.
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introducing new plaquette constraints. The work in these
directions is in progress and will be reported elsewhere.

APPENDIX A: CANONICAL TRANSFORMATION
ON A 2 × 2 PLAQUETTE LATTICE

In this appendix, we will explicitly work out canonical
transformations (14), (20a), and (20b) for the simple 2 × 2
plaquette lattice. Starting from the top-left plaquette,
we make canonical transformations over four plaquettes
in the following four steps I, II, III and IV to construct
the plaquettes Wð0; 1Þ;Wð0; 0Þ;Wð1; 1Þ, and Wð1; 0Þ,
respectively (see Fig. 11). Each of these four steps involves
three gluings of Kogut-Susskind link holonomies through
canonical transformations illustrated in Fig. 3.

1. Construction of Wð0; 1Þ
In the first step we glue four links of the top-left plaquette

in the clockwise direction and convert them into the
plaquette Wð0; 1Þ and the three remaining holonomies:
Uð0; 1; 2̂Þ; Ũð1; 1; 2̂Þ; Ũð0; 1; 1̂Þ as shown in Fig. 12(I). The

three canonical transformations involved in this first step
are as follows:

(i) The first canonical transformation is

� ðEþð0; 1; 2̂Þ; Uð0; 1; 2̂ÞÞ
ðEþð0; 2; 1̂Þ; Uð0; 2; 1̂ÞÞ

�

→

� ðEþð0; 1; 2̂Þ;Uð0; 1; 2̂ÞÞ
ðẼþð0; 1Þ; Ũð0; 1ÞÞ

�
:

The two new holonomies are defined as

Uð0; 1; 2̂Þ ¼ Uð0; 1; 2̂Þ; ðA1Þ

Ũð0; 1Þ ¼ Uð0; 1; 2̂ÞUð0; 2; 1̂Þ: ðA2Þ

The basic canonical transformations (9) determine
their right electric fields

E−ð0; 2; 2̂Þ ¼ E−ð0; 2; 2̂Þ þ Eþð0; 2; 1̂Þ ðA3Þ

FIG. 11. Four steps canonical transformations on a simple 2 × 2 plaquette lattice. We construct Wð0; 1Þ;Wð0; 0Þ;Wð1; 1Þ, and
Wð1; 0Þ sequentially in steps I, II, III, and IV.
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Ẽ−ð0; 1Þ ¼ E−ð1; 2; 1̂Þ: ðA4Þ

The canonical transformations (A1), (A2), (A3),
(A4) and the electric field locations are shown in
Fig. 12(a). Their corresponding left electric fields
can be obtained by parallel transports as in (5):

Eþð0; 1; 2̂Þ ¼ Eþð0; 1; 2̂Þ þ S2ð0; 1Þ
× E−ð1; 2; 1̂ÞS−1

2 ð0; 1Þ; ðA5Þ

Ẽþð0; 1Þ ¼ −Ũð0; 1ÞE−ð1; 2; 1̂ÞŨ†ð0; 1Þ: ðA6Þ

In (A5) we have identified

Sj¼2ð0; 1Þ≡ Ũð0; 1Þ ¼ Uð0; 1; 2̂ÞUð0; 2; 1̂Þ: ðA7Þ

We thus obtain (20b) at m ¼ 0, n ¼ 1.
(ii) The second canonical transformation is

� ðẼþð0; 1Þ; Ũð0; 1ÞÞ
ðEþð1; 1; 2̂Þ; Uð1; 1; 2̂ÞÞ

�

→

� ð ˜̃Eþð0; 1Þ; ˜̃Uð0; 1ÞÞ
ðẼþð1; 1; 2̂Þ; Ũð1; 1; 2̂ÞÞ

�
:

The two new holonomies are defined as

Ũð1; 1; 2̂Þ ¼ Uð1; 1; 2̂Þ; ðA8Þ
˜̃Uð0; 1Þ ¼ Ũð0; 1ÞU†ð1; 1; 2̂Þ;

¼ Uð0; 1; 2̂ÞUð0; 2; 1̂ÞU†ð1; 1; 2̂Þ: ðA9Þ

The canonical transformations (9) lead to the fol-
lowing electric fields

Ẽ−ð1; 2; 2̂Þ ¼ E−ð1; 2; 2̂Þ þ Ẽ−ð0; 1Þ;
¼ E−ð1; 2; 2̂Þ þ E−ð1; 2; 1̂Þ; ðA10Þ

˜̃Eþð0; 1Þ ¼ Ẽþð0; 1Þ;
¼ −S2ð0; 1ÞE−ð1; 2; 1̂ÞS−1

2 ð0; 1Þ: ðA11Þ

The canonical transformations (A8), (A9), (A10),
(A11) and the electric field locations are shown in
Fig. 12(b). We now using (5), we obtain the left
and right electric fields of Ũð1; 1; 2̂Þ and ˜̃Uð0; 1Þ,
respectively, for later use:

Ẽþð1; 1; 2̂Þ ¼ Eþð1; 1; 2̂Þ − S0
2ð1; 1Þ

× E−ð1; 2; 1̂ÞS0−1
2 ð1; 1Þ; ðA12Þ

˜̃E−ð0; 1Þ ¼ S0
2ð1; 1ÞE−ð1; 2; 1̂ÞS0−1

2 ð1; 1Þ: ðA13Þ

In (A13) we have identified

S0
2ð1; 1Þ≡Uð1; 1; 2̂Þ ðA14Þ

as defined in the (21c) for m ¼ 1.
(iii) The third canonical transformation is

� ð ˜̃Eþð0; 1Þ; ˜̃Uð0; 1ÞÞ
ðEþð0; 1; 1̂Þ; Uð0; 1; 1̂ÞÞ

�

→

� ðEþð0; 1Þ;Uð0; 1ÞÞ
ðẼþð0; 1; 1̂Þ; Ũð0; 1; 1̂ÞÞ

�
:

We now glue the conjugate pair ð ˜̃Eþð0; 1Þ; ˜̃Uð0; 1ÞÞ
obtained in the previous step with link conjugate
link pair ðEþð0; 1; 1̂Þ; Uð0; 1; 1̂ÞÞ to get the first
plaquette conjugate pair ðEþð0; 1Þ;Wð0; 1ÞÞ along
with the intermediate link conjugate pair
ðẼþð0; 1; 1̂Þ; Ũð0; 1; 1̂ÞÞ

FIG. 12. First step of canonical transformation over the top
leftmost plaquette for 2 × 2 lattice. This step is further divided
into three parts (a), (b), and (c).
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Ũð0; 1; 1̂Þ ¼ Uð0; 1; 1̂Þ; ðA15Þ
Wð0;1Þ¼ ˜̃Uð0;1ÞU†ð0;1;1̂Þ;

¼Uð0;1;2̂ÞUð0;2;1̂ÞU†ð1;1;2̂ÞU†ð0;1;1̂Þ:
ðA16Þ

Their conjugate electric fields are

Ẽ−ð1; 1; 1̂Þ ¼ E−ð1; 1; 1̂Þ þ ˜̃E−ð0; 1Þ;
¼ E−ð1; 1; 1̂Þ þ S0

2ð1; 1Þ
× E−ð1; 2; 1̂ÞS0−1

2 ð1; 1Þ; ðA17Þ
Eþð0; 1Þ ¼ ˜̃Eþð0; 1Þ;

¼ −S2ð0; 1ÞE−ð1; 2; 1̂ÞS−1
2 ð0; 1Þ: ðA18Þ

Above canonical transformations are shown in
Fig. 12(c). We thus obtain (14) for m ¼ 0, n ¼ 1.

The above three canonical transformations com-
plete step I. In summary, starting from the four link
holonomies,

ðUð0; 1; 2̂Þ; Uð0; 2; 1̂Þ; Uð1; 1; 2̂Þ; Uð0; 1; 1̂ÞÞ;

we have obtained the following four equivalent
holonomies

Uð0;1;2̂Þ¼Uð0;1;2̂Þ;
Wð0;1Þ¼Uð0;1;2̂ÞUð0;2;1̂ÞU†ð1;1;2̂ÞU†ð0;1;1̂Þ;

Ũð1;1;2̂Þ¼Uð1;1;2̂Þ;
Ũð0;1;1̂Þ¼Uð0;1;1̂Þ: ðA19Þ

The corresponding electric fields are

Eþð0; 1; 2̂Þ ¼ Eþð0; 1; 2̂Þ þ S2ð0; 1ÞE−ð1; 2; 1̂ÞS−1
2 ð0; 1Þ;

Eþð0; 1Þ ¼ −S2ð0; 1ÞE−ð1; 2; 1̂ÞS−1
2 ð0; 1Þ;

Ẽ−ð1; 2; 2̂Þ ¼ E−ð1; 2; 2̂Þ þ E−ð1; 2; 1̂Þ;
Ẽ−ð1; 1; 1̂Þ ¼ E−ð1; 1; 1̂Þ þ S0

2ð1; 1ÞE−ð1; 2; 1̂ÞS0−1
2 ð1; 1Þ: ðA20Þ

Now we notice that in step I, we have traded off Uð0; 2; 1̂Þ
into the plaquette Wð0; 1Þ so its electric field E−ð1; 2; 1̂Þ
appears in all the four new plaquette and string electric
fields with appropriate parallel transports (A7) and (A14).
Now we will perform steps II, III, and IV using Eqs. (A19)
and (A20).
So we have two dual holonomies as required and two

intermediate holonomies that will be used for canonical
transformation in steps II and III. Electric fields for these
holonomies are, see Fig. 12.

2. Construction of Wð0; 0Þ
In the second step, we consider four holonomies

Uð0; 0; 2̂Þ, Ũð0; 1; 1̂Þ, Uð1; 0; 2̂Þ, and Uð0; 0; 1̂Þ, see
Fig. 11(I), and canonically convert them into following
four holonomies, see Fig. 11(II):

Uð0; 0; 2̂Þ ¼ Uð0; 0; 2̂Þ;
Wð0; 0Þ ¼ Uð0; 0; 2̂ÞŨð0; 1; 1̂ÞU†ð1; 0; 2̂ÞU†ð0; 0; 1̂Þ;

¼ Uð0; 0; 2̂ÞUð0; 1; 1̂ÞU†ð1; 0; 2̂ÞU†ð0; 0; 1̂Þ;
Ũð1; 0; 2̂Þ ¼ Uð1; 0; 2̂Þ;
Uð0; 0; 1̂Þ ¼ Uð0; 0; 1̂Þ; ðA21Þ

with their electric fields given by

Eþð0; 0; 2̂Þ ¼ Eþð0; 0; 2̂Þ þ S1ð0; 0ÞẼ−ð1; 1; 1̂ÞS−1
1 ð0; 0Þ;

Eþð0; 0Þ ¼ −S1ð0; 0ÞẼ−ð1; 1; 1̂ÞS−1
1 ð0; 0Þ;

Ẽ−ð1; 1; 2̂Þ ¼ E−ð1; 1; 2̂Þ þ Ẽ−ð1; 1; 1̂Þ;
E−ð1; 0; 1̂Þ ¼ E−ð1; 0; 1̂Þ þ S0

1ð1; 0ÞẼ−ð1; 1; 1̂ÞS0−1
1 ð1; 0Þ:

ðA22Þ

In Eq. (A22) we have identified strings

S1ð0; 0Þ≡Uð0; 0; 2̂ÞUð0; 1; 1̂Þ; ðA23Þ

S0
1ð1; 0Þ≡Uð1; 0; 2̂Þ ðA24Þ

as defined in (15a) for m ¼ 0 and (21a) for m ¼ 0,
respectively. Now we can use the expression of
Ẽ−ð1; 1; 1̂Þ given in step I to get the following:

Eþð0;0;2̂Þ¼Eþð0;0;2̂Þþ
X2
j¼1

Sjð0;0ÞE−ð1;j; 1̂ÞS−1
j ð0;0Þ;

ðA25Þ
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Eþð0; 0Þ ¼ −
X2
j¼1

Sjð0; 0ÞE−ð1; j; 1̂ÞS−1
j ð0; 0Þ; ðA26Þ

Ẽ−ð1; 1; 2̂Þ ¼ E−ð1; 1; 2̂Þ þ E−ð1; 1; 1̂Þ
þ S0

2ð1; 0ÞE−ð1; 2; 1̂ÞS0−1
2 ð1; 0Þ; ðA27Þ

E−ð1; 0; 1̂Þ ¼ E−ð1; 0; 1̂Þ

þ
X2
j¼1

S0
jð1; 0ÞE−ð1; j; 1̂ÞS0−1

j ð1; 0Þ: ðA28Þ

In the above equations, we have identified strings

S2ð0; 0Þ≡Uð0; 0; 2̂ÞUð0; 1; 1̂ÞUð1; 1; 2̂Þ; ðA29Þ

S0
2ð1; 0Þ≡Uð1; 0; 2̂ÞUð1; 1; 2̂Þ ðA30Þ

as defined in (15b) for m ¼ 0 and (21b) for m ¼ 1,
respectively. Thus we have obtain (20b) and (14) for m,
n ¼ 0. We use (A27) and (A28) to obtain left electric fields
for holonomies Ũð1; 0; 2̂Þ and Uð0; 0; 1̂Þ, respectively;

Ẽþð1;0;2̂Þ¼Eþð1;0;2̂Þ−
X2
j¼1

S0
jð1;0ÞE−ð1;j; 1̂ÞS0−1

j ð1;0Þ;

ðA31Þ

Eþð0;0;1̂Þ¼Eþð0;0;1̂Þ−
X2
j¼1

Sjð0;0ÞE−ð1;j; 1̂ÞS−1
j ð0;0Þ:

ðA32Þ

Equation (A31) will be used in step IV and (A32) is (20a)
for m ¼ 0.

3. Construction of Wð1; 1Þ
In the third step, we start with four holonomies

Ũð1; 1; 2̂Þ, Uð1; 2; 1̂Þ, Uð2; 1; 2̂Þ, and Uð1; 1; 1̂Þ of top right
plaquette, see Fig. 11(II), and performing canonical trans-
formations similar to previous step II we convert them into
one plaquette, two strings, and one intermediary holonomy:

Uð1; 1; 2̂Þ ¼ Ũð1; 1; 2̂Þ ¼ Uð1; 1; 2̂Þ;
Wð1; 1Þ ¼ Ũð1; 1; 2̂ÞUð1; 2; 1̂ÞU†ð2; 1; 2̂ÞU†ð1; 1; 1̂Þ;

¼ Uð1; 1; 2̂ÞUð1; 2; 1̂ÞU†ð2; 1; 2̂ÞU†ð1; 1; 1̂Þ;
Uð2; 1; 2̂Þ ¼ Uð2; 1; 2̂Þ;
Ũð1; 1; 1̂Þ ¼ Uð1; 1; 1̂Þ: ðA33Þ

The above holonomies are shown in Fig. 11(III) and their
electric fields are given by

Eþð1; 1; 2̂Þ ¼ Ẽþð1; 1; 2̂Þ þ S2ð1; 1ÞE−ð2; 2; 1̂ÞS−1
2 ð1; 1Þ;

ðA34Þ

Eþð1; 1Þ ¼ −S2ð1; 1ÞE−ð2; 2; 1̂ÞS−1
2 ð1; 1Þ; ðA35Þ

E−ð2; 2; 2̂Þ ¼ E−ð2; 2; 2̂Þ þ E−ð2; 2; 1̂Þ; ðA36Þ

Ẽ−ð2; 1; 1̂Þ ¼ E−ð2; 1; 1̂Þ þ S0
2ð2; 1ÞE−ð2; 2; 1̂ÞS0−1

2 ð2; 1Þ:
ðA37Þ

In the above equations, we have identified strings

S2ð1; 1Þ≡Uð1; 1; 2̂ÞUð1; 2; 1̂Þ; ðA38Þ

S0
2ð2; 1Þ≡Uð2; 1; 2̂Þ ðA39Þ

as defined in (15c) for m ¼ 1 and (21c) for m ¼ 2,
respectively. Using (A12) into (A34) we obtain (20b) for
m ¼ n ¼ 1 and (A35) is nothing but (14) for m ¼ n ¼ 1.
Equation (A36) is used to write the left electric field of
string Uð2; 1; 2̂Þ:

Eþð2; 1; 2̂Þ ¼ Eþð2; 1; 2̂Þ − S0
2ð2; 1ÞE−ð2; 2; 1̂ÞS0−1

2 ð2; 1Þ;
ðA40Þ

which is (20b) for m ¼ 2, n ¼ 1, and (A37) is used for
canonical transformations in step IV.

4. Construction of Wð1; 0Þ
In the fourth step we take four holonomies Ũð1; 0; 2̂Þ,

Ũð1; 1; 1̂Þ, Uð2; 0; 2̂Þ, and Uð1; 0; 1̂Þ, see Fig. 11(III), and
canonically convert them into following four holonomies,
see Fig. 11(IV):

Uð1; 0; 2̂Þ ¼ Ũð1; 0; 2̂Þ ¼ Uð1; 0; 2̂Þ;
Wð1; 0Þ ¼ Uð1; 0; 2̂ÞŨð1; 1; 1̂ÞU†ð2; 0; 2̂ÞU†ð1; 0; 1̂Þ;

¼ Uð1; 0; 2̂ÞUð1; 1; 1̂ÞU†ð2; 0; 2̂ÞU†ð1; 0; 1̂Þ;
Uð2; 0; 2̂Þ ¼ Uð2; 0; 2̂Þ;
Uð1; 0; 1̂Þ ¼ Uð1; 0; 1̂Þ; ðA41Þ

with their electric fields

Eþð1; 0; 2̂Þ ¼ Ẽþð1; 0; 2̂Þ þ S1ð1; 0ÞẼ−ð2; 1; 1̂ÞS−1
1 ð1; 0Þ;

Eþð1; 0Þ ¼ −S1ð1; 0ÞẼ−ð2; 1; 1̂ÞS−1
1 ð1; 0Þ;

E−ð2; 1; 2̂Þ ¼ E−ð2; 1; 2̂Þ þ Ẽ−ð2; 1; 1̂Þ;
E−ð2; 0; 1̂Þ ¼ E−ð2; 0; 1̂Þ þ S0

1ð2; 0ÞẼ−ð2; 1; 1̂ÞS0−1
1 ð2; 0Þ:

ðA42Þ

In the above equations, we have identified strings
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S1ð1; 0Þ≡Uð1; 0; 2̂ÞUð1; 1; 1̂Þ; ðA43Þ

S0
1ð2; 0Þ≡Uð2; 0; 2̂Þ ðA44Þ

as defined in (15a) for m ¼ 1 and (21a) for m ¼ 2,
respectively. Now we can use the expression of Ẽþð1; 0; 2̂Þ
and Ẽ−ð2; 1; 1̂Þ obtained in steps II and III, respectively;

Eþð1;0; 2̂Þ¼Eþð1;0; 2̂Þ−
X2
j¼1

S0
jð1;0ÞE−ð1;j; 1̂ÞS0−1

j ð1;0Þ

þ
X2
j¼1

Sjð0;0ÞE−ð2;j; 1̂ÞS−1
j ð0;0Þ; ðA45Þ

Eþð1; 0Þ ¼ −
X2
j¼1

Sjð1; 0ÞE−ð2; j; 1̂ÞS−1
j ð1; 0Þ; ðA46Þ

E−ð2; 1; 2̂Þ ¼ E−ð2; 1; 2̂Þ þ E−ð2; 1; 1̂Þ
þ S0

2ð2; 0ÞE−ð2; 2; 1̂ÞS0−1
2 ð2; 0Þ; ðA47Þ

E−ð2; 0; 1̂Þ ¼ E−ð2; 0; 1̂Þ

þ
X2
j¼1

S0
jð2; 0ÞE−ð2; j; 1̂ÞS0−1

j ð2; 0Þ: ðA48Þ

In the above equations, we have identified strings

S2ð1; 0Þ≡Uð1; 0; 2̂ÞUð1; 1; 1̂ÞUð2; 1; 2̂Þ; ðA49Þ

S0
2ð2; 0Þ≡Uð2; 0; 2̂ÞUð2; 1; 2̂Þ ðA50Þ

as defined in (15b) for m ¼ 0 and (21b) for m ¼ 1,
respectively. Equations (A45) and (A46) are (20b) and
(14) for m ¼ 1, n ¼ 0, respectively. We use (A47) and
(A48) to write left electric fields for holonomies Uð2; 0; 2̂Þ
and Uð1; 0; 1̂Þ, respectively.

Eþð2;0;2̂Þ¼Eþð2;0;2̂Þ−
X2
j¼1

S0
jð2;0ÞE−ð2;j; 1̂ÞS0−1

j ð2;0Þ;

ðA51Þ

Eþð1;0;1̂Þ¼Eþð1;0;1̂Þ−
X2
j¼1

Sjð1;0ÞE−ð2;j; 1̂ÞS−1
j ð1;0Þ:

ðA52Þ

Equations (A51) and (A52) are (20b) for m ¼ 2, n ¼ 0 and
(20a) for m ¼ 1, n ¼ 0, respectively.

APPENDIX B: CANONICAL
TRANSFORMATIONS, DUALITY,

AND GAUSS LAWS

In this appendix we show that the SU(N) Gauss laws in
terms of the plaquette and string electric fields (40) reduce
to the original Gauss laws (8) when the canonical trans-
formations are used. This equivalence requires numerous
highly nontrivial cancellations all along the nonlocal paths.
Thus these calculations also validate the SU(N) canonical
or duality transformations discussed in this work. The left
plaquette electric fields [see (29)] are

Eþðn⃗Þ ¼ −
XN
j¼nþ1

Sjðn⃗ÞE−ðmþ 1; j; 1̂ÞS−1
j ðn⃗Þ: ðB1Þ

In (B1) ðn⃗Þ ¼ ðm; nÞ. We can obtain the right electric
field for plaquette operators by parallel transport

E−ðn⃗Þ ¼ −W†ðn⃗ÞEþðn⃗ÞWðn⃗Þ;

¼ Uðn⃗; 1̂Þ
XN
j¼nþ1

S0
jðmþ 1; nÞE−ðmþ 1; j; 1̂Þ

S0−1
j ðmþ 1; nÞU†ðn⃗; 1̂Þ: ðB2Þ

The left electric field for vertical strings (31) are

Eþðn⃗; 2̂Þ ¼ Eþðn⃗; 2̂Þ −
XN
j¼nþ1

S0
jðn⃗ÞE−ðm; j; 1̂ÞS0−1

j ðn⃗Þ

þ
XN
j¼nþ1

Sjðn⃗ÞE−ðmþ 1; j; 1̂ÞS−1
j ðn⃗Þ: ðB3Þ

We can obtain the right electric field for a vertical string by
parallel transporting the left electric field (32a) over string
Uðm; n; 2̂Þ;

E−ðn⃗; 2̂Þ ¼ −U†ðn⃗ − 2̂; 2̂ÞEþðn⃗ − 2̂; 2̂ÞUðn⃗ − 2̂; 2̂Þ;
¼ E−ðn⃗; 2̂Þ þ Eþðn⃗; 1̂Þ þ E−ðn⃗; 1̂Þ

þ
XN
j¼nþ1

S0
jðn⃗ÞE−ðm; j; 1̂ÞS0−1

j ðn⃗Þ

− Uðn⃗; 1̂Þ
XN
j¼nþ1

S0
jðmþ 1; nÞE−ðmþ 1; j; 1̂Þ

× S0−1
j ðmþ 1; nÞU†ðn⃗; 1̂Þ: ðB4Þ

Adding (B1), (B2), (B3), and (B4) all six nonlocal terms
cancel out and we see that the Gauss laws in terms of the
dual potential (40) are exactly same as the original Gauss
laws (8).
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APPENDIX C: THE PLAQUETTE CONSTRAINTS

In this section we show that the new plaquette constraints
(41) weakly commute with the Hamiltonian and therefore
remain preserved under time evolution. We define the
following operator

Cαβðn⃗Þ≡ ðUpðn⃗Þ −Wðn⃗ÞÞαβ: ðC1Þ

In (C1) Upðn⃗Þ≡ðUðn⃗; 2̂ÞUðn⃗þ 2̂; 1̂ÞU†ðn⃗þ 1̂; 2̂ÞU†ðn⃗; 1̂ÞÞ.
Using (44) it is easy to prove that the Kogut-Susskind
electric fields rotate Cαβ from left and right as follows:

½Eaþðn⃗0; 1̂Þ; Cαβðn⃗Þ� ¼ δn⃗0;n⃗ðCðn⃗ÞTaÞαβ
þ δn⃗0;n⃗þ2̂R

abðU†ðn⃗; 2̂ÞÞðTbCðn⃗ÞÞαβ
≈ 0; ðC2aÞ

½Eaþðn⃗0; 2̂Þ; Cαβðn⃗Þ� ¼ δn⃗0;n⃗ðTaCðn⃗ÞÞαβ
þ δn⃗0;n⃗þ2̂R

abðU†ðn⃗; 1̂ÞÞðCðn⃗ÞTbÞαβ
≈ 0: ðC2bÞ

In (C2a) and (C2b) we have used the plaquette, string
sectors canonical commutation relations (16) and (22).
They show that on the constrained surface the dual
Hamiltonian commutes with the plaquette constraints:

½H;Cαβðn⃗Þ� ≈ 0: ðC3Þ

We also check the commutation relations of the constraints
Cαβðn⃗Þ ¼ 0 with the Gauss law constraints (48):

½Gaðn⃗0Þ; Cαβðn⃗Þ� ¼ −δn⃗0;n⃗½Ta; Cðn⃗Þ�αβ ≈ 0: ðC4Þ

Therefore, the plaquette constraints (41) together with the
SU(N) Gauss law constraints (48) define the physical
Hilbert space where the dual loop dynamics with inverted
coupling is local.
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