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We present results for the static energy in (2þ 1þ 1)-flavorQCDover awide range of lattice spacings and
several quark masses, including the physical quark mass, with ensembles of lattice-gauge-field configu-
rations made available by theMILC Collaboration. We obtain results for the static energy out to distances of
nearly 1 fm, allowing us to perform a simultaneous determination of the scales r1 and r0, as well as the string
tension σ. For the smallest three lattice spacings we also determine the scale r2. Our results for r0=r1 and
r0

ffiffiffi
σ

p
agreewith published (2þ 1)-flavor results. However, our result for r1=r2 differs significantly from the

value obtained in the (2þ 1)-flavor case, which is most likely due to the effect of the charm quark. We also
report results for r0, r1, and r2 in fm, with the former two being slightly lower than published (2þ 1)-flavor
results. We study in detail the effect of the charm quark on the static energy by comparing our results on the
finest two latticeswith the previously published (2þ 1)-flavorQCD results at similar lattice spacing.We find
that for r > 0.2 fm our results on the static energy agree with the (2þ 1)-flavor result, implying the
decoupling of the charm quark for these distances. For smaller distances, on the other hand, we find that the
effect of the dynamical charm quark is noticeable. The lattice results agree well with the two-loop
perturbative expression of the static energy incorporating finite charm mass effects. This is the first time that
the decoupling of the charm quark is observed and quantitatively analyzed on lattice data of the static energy.

DOI: 10.1103/PhysRevD.107.074503

I. INTRODUCTION

The energy of a static quark-antiquark pair separated by
a distance r, E0ðrÞ has played an important role in QCD
since early days [1]. Nonperturbative calculations with
lattice gauge theory [2] were important in establishing
confinement in QCD and in understanding its interplay
with asymptotic freedom. Confinement manifests itself in
the linear rise of E0ðrÞ at large r; the corresponding slope
is known as the string tension. In the literature, E0ðrÞ is
sometimes also called the static potential. The term “static
energy” is, however, preferable because in the context of
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nonrelativistic effective field theories of QCD the term
“static potential” is understood to be the contribution to
E0ðrÞ coming solely from soft gluons, i.e., gluons of energy
or momentum of order 1=r. The static potential is infrared
divergent [3]. Up to a constant shift, the energy is a physical
quantity not affected by infrared divergences. In particular,
the infrared divergence of the static potential cancels in the
static energy against an ultraviolet divergence coming from
ultrasoft gluons, i.e., gluons of energy and momentum of
order αs=r [4,5].
In lattice QCD, the static energy plays also an important

role in setting the lattice scale, i.e., in the conversion from
lattice to physical units. In quenched lattice QCD calcu-
lations, the scale has been set using the string tension, but in
full QCD the string breaks at the pair-production threshold,
making a precise definition difficult. Instead of the static
energy, one can also use the force

FðrÞ≡ dE0ðrÞ
dr

; ð1:1Þ

which is easier to manage in dimensional regularization as
it is free of the order ΛQCD renormalon [6–8] and in lattice
gauge theory because it is free of the self-energy linear
divergence. The dimensionless product r2FðrÞ can be used
to set the scale [9], especially at distances where statistical
and systematic uncertainties are under good control.
Examples of such a scale setting are the scales r0, r1,
and r2 defined by

r2i FðriÞ ¼ ci; i ¼ 0; 1; 2; ð1:2Þ
with c0 ¼ 1.65 [9], c1 ¼ 1 [10], and c2 ¼ 1=2 [11].
The static energy has been extensively studied in QCD

with two light quarks and a (physical) strange quark,
referred to as (2þ 1)-flavor QCD [10–17], and the scales
r0 and r1 have been determined for a wide range of lattice
spacing. The study of the static energy in (2þ 1þ 1)-flavor
QCD, i.e., in QCD with two light quarks, a (physical)
strange quark, and a (physical) charm quark, is less
established. The MILC Collaboration [18,19] calculated
the static energy in a narrow region of distances and
obtained the r1 scale using the highly improved staggered
quark (HISQ) action [20] for sea quarks and one-loop
tadpole-improved Symanzik gauge action [21–24]. In
MILC’s work, four lattice spacings were used, a ≈ 0.06 ,
0.09, 0.12, and 0.15 fm, and the three light quark masses,
ml ¼ ms=27, ms=10, and ms=5, the first corresponding to
the physical light quark mass. Here, ms is the physical
strange quark mass. The ETM Collaboration studied the
static energy using the twisted-mass formulation in the
quark sector and tree-level Symanzik gauge action [25].
The calculations were performed at three lattice spacings,
a ≈ 0.065, 0.082, and 0.089 fm, and several values of the
light quark masses corresponding to pion mass in the range
210–450 MeV [25]. In that work, the static energy was

calculated in a narrow distance range around r ∼ r0 and the
scale r0 was determined.
In this paper, our aim is to extend the studies of the static

energy in (2þ 1þ 1)-flavor QCD to smaller lattice spacing,
namely a ≈ 0.032 fm and 0.043 fm, and a large range of
distances on MILC’s (2þ 1þ 1)-flavor HISQ ensembles.
Weperform a simultaneous determination of the scales r0=a,
r1=a and the string tension on 11–12 ensembles.We proceed
to take the continuum limit of these scales and the combi-
nations r0=r1 and

ffiffiffiffiffiffiffi
σr20

p
. In addition, we also determine

the scale r2=a and the ratio r1=r2 on the six ensembles at the
three smallest lattice spacings. Finally, we determine the
continuum limits in fm of r0, r1, and r2 as well.
The (2þ 1þ 1)-flavor HISQ ensembles are described in

Refs. [18,19,26]. Taken together these ensembles have
yielded impressive results for a wide range of observables.
The observables cover spectroscopy [27–32], the decay
constant ratio fKþ=fπþ [33,34], the B-, D-, and J=ψ-meson
decay constants [26,35–39], quark condensates [40], the
hadronic vacuum polarization for the anomalous magnetic
moment of the muon [41–44], quark masses and αs [45–47],
the hindered M1 transition ϒð2SÞ → ηbð1SÞγ [48], the
electromagnetic form factor of the pion [49,50], the
Cabibbo–Kobayashi–Maskawa (CKM) element jVusj from
K → πlν [51,52], Bs → Dð�Þ

s form factors [53–55], neutral
B0
d;s mixing matrix elements [56,57], and Bc → Bd;s, J=ψ

form factors [58,59]. Significant, though less extensivework
has been carried out on ensembles with (2þ 1þ 1)-flavor of
twisted-mass Wilson fermions [60–62], for example, quark
masses [25].
The static energy is also an important way to determine

the strong couplingαs or, equivalently,ΛMS; seeRef. [63] for
a recent review. Such studies started with quenched QCD
[64–66]. Thereafter, the static energy in (2þ 1)-flavor QCD
has been used to determine αs in several lattice setups
[17,67–70]. These works have showed that perturbative
QCD describes well the lattice results up to distances
r ≈ 0.15–0.2 fm. These distances include the inverse charm
quark mass, so the charm quark can neither be considered
massless nor infinitely heavy. It is important to account for
finite charm quark mass effects when analyzing the static
energy in ð2þ 1þ 1Þ-flavor QCD, particularly when deter-
mining αs. In this paper, we show the impact of finite charm
quark mass effects on the static energy by comparing our
new lattice QCD results for the static energy in (2þ 1þ 1)-
flavor QCDwith published results in (2þ 1)-flavor QCD at
similar lattice spacings. The comparison also demonstrates
for the first time how the charm quark decouples from the
static energy when going from short to large distances.1

1Decoupling of Nf ¼ 2 charmlike heavy quarks at very large
distances has already been observed for the force and was
published in conference proceedings [71]. Decoupling of heavy
quarks in a similar setup has been proposed as a scheme for
determining αs [63,72].
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Further, we compare the (2þ 1þ 1)-flavor lattice data with
the two-loop expression of the static energy, including
charm mass effects.
The rest of the paper is organized as follows. Our

numerical calculation of the static energy on the HISQ
ensembles is described in Sec. II. We then take these results
and analyze them in Sec. III to obtain the scales ri=a and
string tension a2σ. Section IV forms several universal ratios
or products of these quantities among each other and
combined with afp4s (the lattice spacing defined via the
decay constant of a fictitious meson with quark and
antiquark having mass 0.4ms) from Ref. [26]. We then
turn in Sec. V to the comparison of the static energy with
perturbation theory, in particular, studying the effect of the
massive charm quark sea. Section VI offers some outlook
and conclusions. Several technical appendices follow. We
found some inconsistencies in the gauge fixing of the
publicly available and widely used HISQ ensembles, which
we document in Appendix A. Additional plots and tables in

support of Secs. II–IV can be found in Appendix B.
Formulas from perturbative QCD needed for our study
of charm quark loops are collected in Appendix C.
Preliminary results based on these data have been published
in conference proceedings [73]; we have refined that
analysis to permit quantitative studies of the impact on
the various uncertainties.
To conclude this introduction, Fig. 1 shows the

(2þ 1þ 1)-flavor QCD static energy obtained from our
calculations for all ensembles in this work. As detailed
below, we compute the static energy with both “bare” and
“smeared” links, and in the figure we show only the bare
(smeared) data for r=a ≤ 4 (r=a > 4). (For details, see
Sec. II). On the scale of Fig. 1, it is possible to see light
quark mass dependence only at the larger r, but it is very
difficult to spot lattice-spacing dependence. The data are,
however, precise enough for both to be (statistically)
significant, requiring the painstaking analysis of the rest
of the paper. Figure 1 demonstrates for the first time the
progression of the static energy in (2þ 1þ 1)-flavor QCD
from the Coulombic to the confining region.

II. SIMULATIONS

In this section we give an overview of the simulation
details, i.e., the gauge and fermion action, and further
ensemble details. After that, we describe the operators used
and how we extract the static energy, i.e., the ground state
of the underlying correlation function.

A. HISQ ensembles and lattice setup

We employ ensembles of lattice gauge fields with
(2þ 1þ 1)-flavors of sea quark, generated by the MILC
Collaboration [18,19,26]. The subset used in this paper is
listed in Table I.2 The sea quarks, namely two isospin-
symmetric light quarks and physical strange and charm
quarks, are simulated with the (rooted) determinant of the
HISQ action [20]. In most figures, we denote the ensembles
by their respective β values and their light quark mass
labeled with roman numerals i, ii, or iii, indicatingml=ms at
the physical value 1=10 or 1=5, respectively. The gluon
action is the on-shell Symanzik-improved action [21,22]
with the couplings determined at the one-loop level [23,24]
with tadpole improvement [75]. Thus, the gluon action has
leading discretization effects of order α2sa2 and a4. The sea
quark action eliminates discretization effects of order α0sa2,
as well as those from staggered taste-symmetry violation of

FIG. 1. Results for the static energy in physical units from the
calculations described in this paper. The data are from twelve
ensembles of varying lattice spacing (keyed by β) and three
choices of light quark mass (denoted “M i,” “M ii,” “M iii”).
Lattice units are eliminated via r0=a, and the unphysical constant
is eliminated by setting E0ðr0Þ ¼ 0. See Sec. IV C for details.

2While the β 7.00 M i,iii or β 7.28 M iii ensembles are
affected by insufficient sampling of topological sectors, this does
not lead to statistically significant effects for heavy-light mesons
[26]. There are indications in (2þ 1)-flavor QCD that insufficient
sampling of topological sectors does not affect the static energy at
a statistically significant level either [74]. Hence, we have
disregarded quantitative effects of topological freezing in our
calculations.
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order α1sa2, but does not realize full Oðαsa2Þ improvement.
In short-distance quantities, the sea quarks contribute in
loops, so the quark-action discretization artifacts in the
static energy are of order α2sa2 and αsa4. The three-link
improvement term for the charm quark is adjusted to
eliminate higher-dimension discretization effects with
powers of ðamcÞ2 at the tree level. In the characterization
of these ensembles, we use the lattice scale afp4s , which
was introduced in [19] as an extension of the fps scale
[76], determined via the decay constant of a pseudoscalar
meson made up from two quarks at the mass of 0.4ms
[19,77], which is a compromise between good chiral
behavior and only modest staggered taste-symmetry
violation.
For reference, we also employ (2þ 1)-flavor ensembles

from the HotQCD Collaboration [11,16], again with the
(rooted) HISQ determinant for the sea quarks but now with
a tree-level Symanzik-improved gauge action. These
ensembles correspond to continuum pion masses of Mπ ≈
160 or 320 MeV, respectively, while the strange quark is
physical; in their characterization we use the lattice scale
ar1 determined from the static energy [10], which had been
obtained through, e.g., continuum extrapolation of r0=r1
[12], or chiral-continuum extrapolation ofϒ-splittings [76],
or of r1fπ [77]. Since r1 is derived from a gluonic operator,
it is rather insensitive to the light quark masses in the sea or
to staggered taste-symmetry violation; our analysis con-
firms this well-known fact, see Sec. III C.
The gauge configurations have been fixed to Coulomb

gauge. Due to miscommunication, we accidentally
employed two different schemes, fixed tolerance and fixed
iteration count. Subsets of the β 6.72 M i ensemble had
each in turn; for details, see Appendix A. As a consequence,

we analyzed the two subsets with different gauge-
fixing schemes separately and confirmed the independence
of the energy levels; see Figs. 22 and 23 in Appendix A. In
the further analysis, we restricted ourselves to the subset
with the fixed-tolerance scheme due to having better
statistics.

B. Correlation functions and fitting

The static energy is obtained from the time dependence
of the Wilson-line correlation function Cðr; τ; aÞ at sepa-
ration r=a ∈ Z3 computed after fixing to a Coulomb gauge
(see Sec. II A):

Wðr; τ; aÞ ¼
Yτ=a−1
u¼0

U4ðr; ua; aÞ; ð2:1Þ

Cðr;τ;aÞ

¼
�

1

N3
σ

X
x

X
y¼RðrÞ

1

NcNr
tr½W†ðxþ y;τ;aÞWðx;τ;aÞ�

�
;

ð2:2Þ

¼
X∞
n¼0

Cnðr; aÞðe−τEnðr;aÞ þ e−ðaNτ−τÞEnðr;aÞÞ; ð2:3Þ

where, on the first line,U4 is a temporal link. On the second
line, one sum is over all spatial sites x with Nσ the isotropic
spatial extent of the lattice in each direction, and h…i
denotes the average over all dynamical quark and gauge
field configurations. The other sum is over all distances y
that are either a cubic rotation reflection of r, or that
correspond to the same geometric distance jrj with large

TABLE I. MILC gauge ensembles used in this study. The ensembles in the four upper rows have successive configurations separated
by 5 time units (TU); the other ensembles use a separation of 6 TU.a

Our naming N3
σ × Nτ β

afp4s (fm)
[26] u0 [78] aml ams amc ml=ms

ðamsÞtuned
[26]

Mπ (MeV)
[26]

Nconf
[26]

β 5.80 M i 323 × 48 5.80 0.15294 0.85535 0.00235 0.0647 0.831 Physical 0.06852 131 1041
β 6.00 M ii 323 × 64

6.00 0.12224 0.86372
0.00507

0.0507 0.628
1=10

0.05296
217 1000

β 6.00 M i 483 × 64 0.00184 Physical 132 709
β 6.30 M iii 323 × 96

6.30 0.08786 0.874164
0.0074 0.037 0.44 1=5

0.03627
316 1008

β 6.30 M ii 483 × 96 0.00363
0.0363

0.43 1=10 221 1031
β 6.30 M i 643 × 96 0.0012 0.432 Physical 129 1074
β 6.72 M iii 483 × 144

6.72 0.05662 0.885773
0.0048

0.024 0.286
1=5

0.02176
329 1017

β 6.72 M ii 643 × 144 0.0024 1=10 234 1103
β 6.72 M i 963 × 192 0.0008 0.022 0.26 Physical 135 1268
β 7.00 M iii 643 × 192

7.00 0.0426 0.892186
0.00316 0.0158 0.188 1=5

0.01564
315 1165

β 7.00 M i 1443 × 288 0.000569 0.01555 0.1827 Physical 134 478
β 7.28 M iii 963 × 288 7.28 0.03216 0.89779 0.00223 0.01115 0.1316 1=5 0.01129 309 821

aThere are two exceptions from this rule, one stream of β 6.30 M i with a separation of 4 TU and one stream of β 6.72 M i with a
separation of 8 TU.

NORA BRAMBILLA et al. PHYS. REV. D 107, 074503 (2023)

074503-4



enough jrj=a3; Nr is the total number of distances included
in this sum. On the same line, Nc ¼ 3 is the number of
colors. Finally, on the last line, Nτ is the temporal extent of
the lattice, and this spectral decomposition holds—with
improved gauge action—only for τ=a ≥ 2. Because, in our
notation, τ=a are dimensionless integers, fits to the τ=a
dependence yield dimensionless energies aEn. For each
ensemble, we have also constructed a Wilson-line corre-
lation function replacing the bare links U4 with links after
one iteration of four-dimensional hypercubic (HYP) smear-
ing [79] with standard smearing parameters (α1 ¼ 0.75,
α2 ¼ 0.6, α3 ¼ 0.3). Smearing improves greatly the signal-
to-noise ratio even at large distances, as discussed in
Secs. III A and III C, but the exponents in Eq. (2.3) can
be interpreted as static energies only when at least one
component of r=a is greater than 2.
In this work, we are interested only in the lowest-lying

state, namely aE0ðr; aÞ. We want to combine data for a
huge range of r from r=a ¼ ð1; 0; 0Þ out to jrj ≈ 1 fm and
from a wide range of lattice spacing a from 0.03 fm up to
0.15 fm. The former (short distances, fine lattices) are
indispensable for the comparison to weak-coupling calcu-
lations in Sec. V, while the latter (large distances, coarser
lattices) are indispensable for a determination of some
lattice scales and the string tension in Sec. III. The data
written to disk are limited to within a sphere jrj ≤ Rmax and
to a maximum time τ ≤ Tmax, which are collected in
Table II. In particular, our data are restricted to distances
smaller than those where string breaking occurs.4

Because of the limited time range, and because of the
exponential degradation of the signal-to-noise ratio,5 we
can safely neglect the backwards-propagating states in
Eq. (2.3) and are, in practice, limited to extractions of

the ground state energy from multiexponential fits with a
finite number of states. We reparametrize Cðr; τ; aÞ using
energy differences aΔnðr;aÞ¼ aEnðr;aÞ−aEðn−1Þðr;aÞ>
0, n ≥ 1 instead of the equivalent6 full excited state energies
aEnðr; aÞ, n ≥ 1,

Cðr;τ;aÞ¼ e−τE0ðr;aÞ
�
C0ðr;aÞþ

XNst−1

n¼1

Cnðr;aÞ
Yn
m¼1

e−τΔmðr;aÞ
�

þ…; ð2:4Þ

and choose Nst ¼ 1, 2, or 3, such that the highest state is
labeled by ðNst − 1Þ. The spectrum depends strongly on jrj,
so the time interval τ ∈ ½τmin; τmax� in the fit must be chosen
to depend on jrj. Whereas, the ground state energy is
essentially an attractive Coulomb interaction for small r,
the low-lying excited states correspond to a repulsive
Coulomb interaction instead. At larger distances, all
energy levels are controlled by the QCD string tension,
with much smaller energy differences of order ΛQCD.
Hence, as the excited states survive longer at larger r, we
choose standard values of τmin for each Nst, depending on
the distance jrj, i.e.,

jrj þ 0.2 fm ≤ τmin;1 ≤ 0.3 fm for Nst ¼ 1;

2

3
jrj þ 0.1 fm ≤ τmin;2 ≤ τmin;1 − 2a for Nst ¼ 2;

1

3
jrj ≤ τmin;3 ≤ τmin;2 − 2a for Nst ¼ 3; ð2:5Þ

and round it to the next larger integer multiple of the
lattice spacing afp4s . Since we cannot always follow these
criteria, we amend the fit ranges as necessary. The two
main reasons for doing so are the limited number of
available data due to finite Tmax=a (see Table II) and the
inability to constrain the two extra parameters for each
further state, if less than two data could be added. We test
the robustness of the fits by varying τmin=a by �1
wherever possible. Occasionally, the reduction by −1 sets
τmin=a ¼ 1, which with the Symanzik-improved action is
marred by a contact term, so we do not use such fits
further. Hence, we arrive at a two-dimensional table,
labeled by ðτmin=a;NstÞ, of results fCn; Eng for each
ðr; aÞ. A complete account of the time ranges is given
in Table III in Appendix B 1.
For a few representative pairs of ðr; τÞ, we find auto-

correlation times of Cðr; τ; aÞ in the range of 1 or 2
separations of successive configurations on the β 7.00
M i ensemble, which is the worst case due to the interplay
of small ensemble size, fine lattice spacing, and physical
light-quark mass, see Table I. Hence, in this case a block

TABLE II. Time and distance intervals in the full data set. The
minimum distance is always (1,0,0).

afp4s (fm) β Tmin=a Tmax=a Tmax (fm) rmax=a rmax (fm)

0.15294 5.8 1 9 1.35 6 0.92
0.12224 6.0 1 6 0.73 6 0.73
0.08786 6.3 1 8 0.70 8 0.70
0.05662 6.72 1 10 0.57 12 0.68
0.0426 7.0 1 20 0.85 20 0.85
0.03216 7.28 1 28 0.91 24 0.78

3For paths of length jrj=a > 6 that are inequivalent under the
hypercubic group, we average over the path-dependent correla-
tion function and neglect nonsmooth discretization artifacts; see
Sec. III A.

4Since Wilson-line correlators in Eq. (2.2) do not overlap with
two static-light mesons, our correlators are expected to be
insensitive to string breaking.

5This degradation is much alleviated in correlation functions
obtained with smeared links since the ultraviolet noise, due to
short-distance fluctuations, is diminished and since the divergent
contribution to static energy is decreased dramatically.

6We denote the collective set of fit parameters as fCn; Eng,
n ≥ 0, even though it means, in practice, fC0; fCng; E0; fΔngg,
n ≥ 1, which contains the same information.
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size of 2τint ≈ 4 is justifiable, which permits up to 100
blocks. Autocorrelation times on other ensembles are, if
anything, smaller than this. Hence, we assemble for each
ensemble NJ ¼ 100 jackknife pseudoensembles of the
correlation function data for each ðr; τÞ. From these NJ ¼
100 jackknife pseudoensembles, we estimate the correla-
tion matrix, which obviously has nonzero off-diagonal
entries in both directions of the ðr; τÞ space. The available
data span an ðr; τÞ-space of Oð102Þ to Oð104Þ points. While
proximity in the τ-direction certainly provides a hint on the
actual strength of the correlations, such a naive expectation
is not justified at all towards proximity in jrj. Given NJ ¼
100 jackknife pseudoensembles, we may expect to be able
to obtain good estimates for

ffiffiffiffiffiffi
NJ

p ¼ 10 eigenvalues. In
order to avoid or reduce eigenvalue smoothing7 as much as
possible, we have to slice the data and reduce them to a
subset of about

ffiffiffiffiffiffi
NJ

p ¼ 10 points in ðr; τÞ-space and
estimate the correlation matrix for that subset. In order
to propagate the statistical correlations of the correlation
function into the analysis of r-dependence of the static
energy E0ðr; aÞ, we repeat the analysis on the original
sample and on all NJ ¼ 100 jackknife pseudoensembles.
In the correlation function fits discussed in this section,

we slice ðr; τÞ-space in the r direction, i.e., we consider the
correlation matrix only between data at different τ for the
same r. If the correlated fit8 (on the original sample) does
not converge, then we thin out the set of τ values—
potentially going down to zero degrees of freedom—by
iteratively eliminating one datum in a randomized manner
(keeping at least two data in each of the first 2=3 and last
1=3 of the fit interval) and repeating the fit attempt. If we
include ND ≤

ffiffiffiffiffiffi
NJ

p ¼ 10 data, we do not smooth eigen-
values of the correlation matrix. Otherwise, if we include
ND > 2

ffiffiffiffiffiffi
NJ

p ¼ 20 data, we smooth the ND −
ffiffiffiffiffiffi
NJ

p
lowest

eigenvalues; or else, we apply smoothing to the ND=2
lowest eigenvalues. In some cases we have one large and
copiously many very small eigenvalues9 leading to a
condition number of Oð106Þ even after the smoothing;
correlated fits for these cases could only succeed by means
of the randomized thinning out of the fit interval. We also
perform uncorrelated fits by neglecting the off-diagonal
elements of the correlation matrix, which never require the
randomized thinning out of the fit interval, and thus provide
additional cross-checks on the results. Below, in the study
of the r dependence, τ is not a variable anymore, and we
consider the correlation matrix between data at different
jrj=a; see Sec. III B.

For 0 < n ≤ Nst, we use Bayesian priors for
Cnðr; aÞ, aE0ðr; aÞ, and aΔnðr; aÞ. The prior distributions
in χ2priorðfCn; aEngÞ are of Gaussian form for each param-
eter, i.e.,

χ2priorðfCn; aEngÞ ¼
ðaE0 − aẼ0Þ2

σ2
aẼ0

þ
XNst−1

n¼0

ðCn − C̃nÞ2
σ2
C̃n

þ
XNst−1

n¼1

½aΔn − aΔ̃n�2
σ2
aΔ̃n

; ð2:6Þ

where the reasoning behind central values and width is
spelled out in detail in the following. Sincewe are interested
only in the ground state energy, aE0ðr; aÞ, we marginalize
over the parameters related to the excited states; therefore,
priors may be chosen to aid the stability of the fits,
particularly during resampling. To set the prior central
values and widths for fits with Nst ¼ 1, we automate
procedures based on the effectivemass and scaled correlator.
Automation is necessary because of the large (1000 s) of
Wilson-line correlators in this work.
In practice, we use the results of the Nst ¼ 1 fits as the

starting guess for the Nst ¼ 2 fits and similarly for the
Nst ¼ 3 fits. On each resample we follow the exact same
procedure that was used on the mean to choose the
Bayesian priors to determine starting values for the fit
parameters.
For fits with Nst > 1, the choice of priors faces several

challenges. Since the values of the overlap factors Cnðr; aÞ
change by an order of magnitude across the available r
range, we cannot use a simple functional form that works
over a wide r range. A further challenge is the decrease of
the ground state overlap factor C0ðr; aÞ and the increase of
the ground state energy aE0ðr; aÞ for larger jrj, which gets
compounded with an increase of the excited state overlap
factors Cnðr; aÞ and the decrease of the excited state energy
differences aΔnðr; aÞ. These features require the priors to
become narrower for larger jrj. Further, we require priors
on the ground state parameters to avoid an outcome where
the parameter C0ðr; aÞ approaches zero with poorly con-
strained aE0ðr; aÞ, while aE1ðr; aÞ approaches the true
ground state energy. Thus, we use multiple stages of
simpler fits for each r to gain information for use as prior
knowledge in fits with larger Nst. We ensure for all ground
state parameters, i.e., ðaE0ðr; aÞ; C0ðr; aÞÞ, loose priors
with a width of at least 10%, which is orders of magnitude
wider than the respective statistical uncertainties. For the
excited state energy differences ðaΔ1ðr; aÞ; aΔ2ðr; aÞÞ, we
use loose priors with widths of 10% or more. Lastly, for the
excited state overlap factors ðC1ðr; aÞ; C2ðr; aÞÞ, we deter-
mine very loose priors in terms of small positive values with
widths of at least 100%. Due to their large widths, the
individual priors do not rely on unacceptable examination

7We follow standard procedures [80] with adaptations spelled
out in the text.

8We use R statistical package [81] with the NLME library [82]
for these fits.

9Such cases occur typically at small r=a and even more so with
smeared links. As some of these fits failed altogether, we have
missing entries in the ðτmin=a; NstÞ-table of results for some
aE0ðr; aÞ.
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of the data and could be modified without significant
changes of the fit results.
In more detail, our procedures are as follows:
(i) For fits with Nst ¼ 1, we estimate the initial param-

eters, central values, and widths of the priors via
linear regression. For fits with any Nst, we assign
10% of the respective central value or 100% of the
previous error (estimate)—whichever is larger—to
the widths of the two priors related to the ground
state. The main purpose of the fits with Nst ¼ 1 in
our analysis is to suggest suitable central values of
the priors for the ground state parameters C0ðr; aÞ
and aE0ðr; aÞ in the ensuing fits with Nst ¼ 2.

(ii) The fits with Nst ¼ 2 serve as our main result, as we
are interested only in the ground state energy, i.e.,
aE0ðr; aÞ. We use the (uncorrelated) fits with Nst ¼
1 to obtain prior central values for the ground-state
parameters. We assign 10% of this central value or
100% or the Nst ¼ 1 error (estimate)—whichever is
larger—to the widths of the two priors related to the
ground state. For the energy difference aΔ1 ¼
aE1 − aE0, we take a calculation in SU(3) pure
gauge theory [83] fit to a Cornell parametrization,

aΔ1 ¼ −
A
R
þ afp4sBþ a2fp4sσR; ð2:7Þ

with A ¼ −0.09364 GeV fm, B ¼ 1.11218 GeV,
and σ ¼ −0.309585 GeV fm−1; here R is a dimen-
sionless measure of distance defined in Sec. III, and
we employ afp4s from Table I to convert the right-
hand side to lattice units. As we do not have robust
prior information about the overlap factorC1ðr; aÞ in
(2þ 1þ 1)-flavor QCD, we choose a fairly loose
prior C1ðr; aÞ ¼ 0.10ð0.10Þ, which coincides with
the usual sign and order of magnitude seen in earlier
stages of the analysis. To err on the side of caution,
we assign 20% of the respective central value to the
width of the prior related to aΔ1.

(iii) For fits with Nst ¼ 3, we use the (uncorrelated) fits
with Nst ¼ 2 to obtain prior central values for the
ground-state and first excited-state parameters. We
retain the assignment of 10% of the respective
central value or 100% of the previous error (esti-
mate)—whichever is larger—to the widths of the
priors related to these states. However, we choose a
width of 0.10 or 100%—whichever is larger—for
the overlap factor C1ðr; aÞ of the first excited state
since we anticipate that we may have been incapable
of separating it from the second excited state in the
fit with Nst ¼ 2. For aΔ2, we choose 2aΔ1 and
aΔ1=2 as the prior central value and width, respec-
tively. As we have even less prior information about
the overlap factor C2ðr; aÞ, and since it is known that
the correlation functions with Symanzik action
contain negative spectral weights for small jrj=a,

see, e.g., Refs. [17,84], we choose a very loose prior
C2ðr; aÞ ¼ 0.02ð0.20Þ since this coincides with
magnitude seen in earlier stages of the analysis.
The main purpose of the fits with Nst ¼ 3 in our
analysis is to serve as cross-checks that confirm that
neither of the two lowest states would be modified
significantly if another state were added.

With these priors in hand, we define an augmented χ2

function for each ðr; aÞ10:

χ2augðfCn; aEngÞ ¼ χ2dataðfCn; aEngÞ þ χ2priorðfCn; aEngÞ;
ð2:8Þ

χ2dataðfCn; aEngÞ
¼

X
u;w∈½τmin;τmax�=a

Δðu;NstjfCn; aEngÞ½σ−2�uw

× Δðw;NstjfCn; aEngÞ; ð2:9Þ

Δðu;NstjfCn; aEngÞ ¼ CðuÞ − Fðu;NstjfCn; aEngÞ;
ð2:10Þ

where CðuÞ denotes a Monte Carlo estimate of the
correlator Cðr; ua; aÞ, σ2 their covariance in the sample,
and F the right-hand side of Eq. (2.3) truncated toNst states
and considered to be a function of the Cn and aEn and
parametrized by the lattice time u (orw). The prior term χ2prior
is given in Eq. (2.6) above. For each ðr; aÞ, weminimize χ2aug
to obtain the best-fit values of ðfCn; aEngÞ, 0 ≤ n < Nst.
We show representative plots of p-value distribution

(across the NJ ¼ 100 jackknife pseudoensembles) for the
physical β 7.00 M i ensemble in Fig. 24 in the
Appendix B 1. Here, p is defined as described in
Appendix B of Ref. [85]. The energy levels and overlap
factors in Fig. 23 (concerning another ensemble, namely
the physical β 6.72 M i ensemble), suggest that con-
straining excited states is challenging at small distances,
hence the presence of a few outliers for small jrj=a. At large
enough jrj=a the distribution is quite flat and close to the
ideal case, suggesting that the fit functions are good
descriptions of the data.
We estimate the statistical errors of the fit parameters

from either the Hessian matrix of the fit or from the
distribution of the jackknife resamples. We find these two
estimates to be similar in magnitude without obvious trends
of one being usually larger or smaller than the other. In
practice, we keep the jackknife error estimate and propa-
gate statistical correlations in terms of the resamples.
Moreover, given the stability analysis for the physical β
7.0 M i ensemble—see Fig. 25 in Appendix B 1—we find
that the influence of reasonable variation of Nst or τmin=a

10The label ðr; aÞ for various quantities is suppressed to reduce
clutter.
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is covered by this statistical error estimate, so we do not
modify the error of the ground state energy aE0ðr; aÞ
further. Similarly, including or neglecting the off-diagonal
entries of the correlation matrix does not lead to a
statistically significant or systematic trend in the results.
Because the uncorrelated fits do not require the randomized
thinning in τ, described above, we carry these results to the
next step as a cross-check. The final result of this analysis
consists of the ðτmin=a; NstÞ table of aE0ðr; aÞ and the
respective (statistical) error estimate, each on the mean and
on the NJ ¼ 100 jackknife pseudoensembles, and each
with or without including the off-diagonal elements of the
correlation matrix. This analysis permits quantitative stud-
ies of the impact of the various uncertainties on the physical
results obtained in Secs. III–V. The results for aE0 for the
Nst ¼ 2 fits are contained in Supplemental Material [86].

III. FITS OF THE STATIC ENERGY

In this section, we take the results from the Nst ¼ 2 fits
described in Sec. II to determine the “potential” scales ri=a,
i ¼ 0, 1, 2 and the string tension a2σ. The scales ri are
defined in Eq. (1.2) via the force in Eq. (1.1). Earlier
calculations in (2þ 1)-flavor QCD [11,16,87] find the
scales to be

r0 ≈ 0.475 fm; r1 ≈ 0.3106 fm; r2 ≈ 0.145 fm; ð3:1Þ

corresponding to distinct physical regimes. On the one
hand, r2 ∼ 1=mc is similar to the inverse charm quark mass
and, being right at the edge of the perturbative regime,
expected to be insensitive to the light sea quarks. On the
other hand, r0 ∼ 1=ΛQCD is in the nonperturbative regime
and, hence, is known to be sensitive to the pion mass, but is
expected to be insensitive to charm sea quarks. As r1 is in
between these two, it might be sensitive to both the light
and the charm quarks in the sea. At distances beyond r0, but
before string breaking, the force is a constant, namely the
“string tension” σ ¼ −FðrÞ, r0 ≲ r≲ 1 fm. As discussed in
Sec. II, our data set is intended to obtain accurate results for
the scales ri (and αs), rather than the string tension, which
we obtain from data with r ≥ 0.58 fm.
At nonzero lattice spacing, the static energy is

available only at discrete distances, requiring some sort
of numerical derivative in place of Eq. (1.2). Moreover,
aE0ðr; aÞ depends on the direction of r, so it is not a
smooth function of the usual spatial Euclidean distance
r ¼ jrj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22 þ x23

p
. A good alternative is a measure

of distance defined via the tree-level gluon propagator,
known as the tree-level corrected distance [17].
In the following, we begin with the explicit definition of

the tree-level corrected distance in Sec. III A. We then
proceed in Sec. III B to the fits of the static energy, which
yield the force and, thus, values for the scales ri=a and
string tension a2σ in lattice units and at fixed lattice

spacing. This subsection includes discussion of the results,
including the quark mass dependence and a comparison to
earlier work. For relative scale setting in future work, it is
convenient to combine the data in a fit to a smooth curve
[88,89], which we do in Sec. III C.

A. Discretization artifacts and tree-level correction

On the lattice, the static energy is given at the tree level of
perturbation theory by one-gluon exchange, just like in the
continuum. In Coulomb gauge, its temporal component
reads

D44ðkÞ ¼ a2
�
4
X3
j¼1

sin2
�
1

2
akj

�
þ cwsin4

�
1

2
akj

��−1
;

ð3:2Þ

where cw ¼ 0 for the (unimproved) Wilson gauge action
and cw ¼ 1=3 for the (improved) Lüscher-Weisz action
[23]. As in the continuum, this component is independent
of k4 (in Coulomb gauge). For bare links, one simply takes
the Fourier transform,

Etree
0 ðr; aÞ ¼ −CFg20

Z
d3k
ð2πÞ3 e

ik·rD44ðkÞ≡ −
CFg20
4π

1

rI
;

ð3:3Þ

where g0 is the bare gauge coupling, CF ¼ ðN2
c − 1Þ=ð2NcÞ

is a color factor, and the last expression defines rI, which is
discussed further below. Because the gluon propagator is a
direction-dependent function of k, the static energy E0ðr; aÞ
is a nonsmooth function of the Euclidean distance r. Even
beyond the tree level, one finds that the static energy is
much smoother in rI , which we refer to below as the tree-
level improved or tree-level corrected distance. For exam-
ple, r ¼ 3a for both r ¼ ð3; 0; 0Þa and ð2; 2; 1Þa, but
rIð3; 0; 0Þ ¼ 2.979a while rIð2; 2; 1Þ ¼ 3.013a. Even
beyond the tree level, E0ð3; 0; 0Þ < E0ð2; 2; 1Þ. We have
computed the tree-level corrected distances rI=a in the
infinite-volume limit for each vector r=a with jrj=a ≤ 6
both for bare links or for links after one step of HYP
smearing [79] using the HiPPy software package and the
HPsrc software framework [90,91]. HYP smearing introdu-
ces a nontrivial vertex on either side of D44 in Eq. (3.3),
thus modifying rI. For example, in this case rIð3; 0; 0Þ ¼
3.020a while rIð2; 2; 1Þ ¼ 2.997a. The results are in
Table IV in Appendix B 2 for bare and HYP-smeared
links.11 The former are consistent with previous results
[68,93] up to very small finite-volume effects.

11These results are part of an ongoing project aiming at a full
one-loop calculation in lattice perturbation theory [92]. To our
knowledge, the improved distance with HYP smearing appears in
Table IV for the first time.
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For the rest of this section, it is convenient to switch to
lattice units. We introduce EðR; aÞ ¼ aE0ðr; aÞ and
R ¼ rI=a. The tree-level correction reduces the size of
nonsmooth discretization artifacts considerably but not
completely. Figure 2 shows how the results on the β
7.00 M i ensemble change (apparent) shape when switch-
ing from the Euclidean distance r=a to the improved
distance R. The behavior is similar to previous calculations
in (2þ 1)-flavor QCD [17]; see the side-by-side compari-
son of Figs. 12 and 13 of Ref. [17]. The improvement,
especially for HYP-smeared data, is readily apparent. That
said, a closer look—dividing the data by a Cornell fit over
the range 2.7 ≤ R ≤ 4.7 as in Fig. 3—shows the tree-level
correction is insufficient to produce a result for EðR; aÞ that
is smooth at the level of its statistical errors. In previous
calculations in (2þ 1)-flavor QCD with a much denser set
of lattice spacings [17,68], the residual discretization
artifacts were taken care of through a heuristic nonpertur-
bative correction procedure [17,68,94], but here we do not
pursue such an approach.
Correlation functions are distorted at small jrj=a by

contact-term interactions between overlapping “fat links”
from which the temporal Wilson lines are constructed. With
one iteration of HYP smearing applied to each temporal
Wilson line, the distance vectors up to r=a ≤ ð2; 2; 2Þ are,
in principle, affected by such contact terms. The contri-
bution along the cubic diagonal is suppressed (for the
standard choice of parameters, α1 ¼ 0.75, α2 ¼ 0.6, and
α3 ¼ 0.3 [79]) by ð0.135Þ2 ≈ 2% against a corresponding
“thin link” contribution, giving rise to effects commensu-
rate with the differences between Euclidean or improved
distances with bare links. The contact-term contributions
remain quantitatively significant even at the maximal range

r=a ≤ ð2; 2; 2Þ. The intermittent ordering of r=a for vectors
with largest component 2a or 3a leads to discontinuous
changes in the HYP-smeared result much larger than the
tiny statistical errors, see Fig. 3, in particular, between
r=a ¼ ð3; 0; 0Þ and r=a ¼ ð2; 2; 1Þ or between r=a ¼
ð2; 2; 2Þ and its neighbors. To reduce the impact of these
discontinuities, we omit r=a ¼ ð3; 0; 0Þ and r=a ¼ ð2; 2; 2Þ
from our data set with smeared links.

FIG. 2. The static energy EðR; aÞ from the fits with Nst ¼ 2 with preferred τmin=a for the physical β 7.00 M i ensemble, vs two
measures of the distance. Left: data from bare links (right: HYP smeared). The static energies plotted against the tree-level improved
distance R (Euclidean distance r=a) are colored orange (blue). The static energies with bare links roughly follow a 1=r in terms of both
distances measures up to small nonsmooth discretization artifacts; cf., Fig. 3. The static energy with HYP-smeared links is far from
Coulomb-like when plotted against the Euclidean distance r=a, when r=a≲ 2.5, but using the improved distance R removes this
distortion. Serious nonsmooth discretization artifacts remain; cf., Fig. 3.

FIG. 3. The static energy EðR; aÞ again on the β7.00 M i
ensemble, divided by a Cornell-fit performed in the range
2.7 ≤ R ≤ 4.7, for bare-link (blue circles) and HYP-smeared
(orange diamonds) data. Even after using the tree-level improved
distance R, residual nonsmooth discretization artifacts remain:
the bare-link data are not smooth at R ¼ 3 and R ¼ ffiffiffiffiffi

17
p

, for
example, while the HYP-smeared data are not smooth until (at
least) R > 4.5.
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B. Determination of the scales and the string tension
from the static energy

Even as a function of R, the lattice result for the static
energy EðR; aÞ contains nonsmooth residual discretization
artifacts larger than its statistical errors, yet we require a
smooth interpolation to define its derivative. We choose the
Cornell potential,

EðR; r=a; aÞ ¼ −
A
R
þ Bþ ΣR; ð3:4Þ

as a functional form because it encodes the main features
of the static energy. In practice, we adjust the constant
term B by adding a shift such that Eðð3; 0; 0Þ; aÞ þ
Eðð2; 2; 1Þ; aÞ ¼ 0, i.e., B ¼ A=R� − ΣR�, where R�≡
1
2
½Rð3; 0; 0Þ þ Rð2; 2; 1Þ�. We consider REðR; aÞ in order

to get rid of the leading Coulomb behavior, which results in
the functional form

REðR; aÞ ¼ −Aþ BRþ ΣR2

¼ −A
�
1 −

R
R�

�
þ ΣðR2 − RR�Þ: ð3:5Þ

On each ensemble, we fit the data to the right-hand side of
Eq. (3.5) to obtain A and Σ, from which we solve ci ¼
Aþ Σðri=aÞ2 to obtain the scale ri=a (for each i ¼ 0, 1, 2).
For fits at large distances, we identify Σ with the string
tension (in lattice units, i.e., Σ ¼ a2σ).
For tests, we try adding to the right-hand side of Eq. (3.4)

direction-dependent terms κpΔpðr=aÞ or κLWΔLWðr=aÞ,
which are defined via Eq. (3.3) in terms of the gluon
propagator for the plaquette or Lüscher-Weisz action:

Δpðr=aÞ≡
�

1

Rp
−
a
r

�
¼ Oða2Þ;

ΔLWðr=aÞ≡
�
1

R
−
a
r

�
¼ Oða4Þ: ð3:6Þ

Here, Rp is the same as R but for the plaquette-action gluon
propagator. The coefficients κP or κLW are expected to be
numbers of order 1 times leading powers of α3s or α2s ,
respectively, expected from power counting arguments in
the Symanzik effective theory. The nonsmooth contribu-
tions from both terms of Eq. (3.6) are dropped in the
determination of the force as the derivative of a smooth
function.
These fits entail several challenges. The Cornell potential

is too simple to describe the full range of distances, so for
each scale ri we fit to a narrow interval around ri=afp4s with
ri as in Eq. (3.1) and afp4s as in Table I. For the ensemble β
7.28 M iii, we choose the interval to be �35% and
�30%, otherwise. We also require six (fourteen) or more
points below (above) ri=afp4s and expand the interval

towards smaller (larger) r=a if needed (as happens on
the coarser ensembles). If the latter criterion cannot be met,
then we relax it to five (eleven) instead. The coarsest
ensembles cannot provide enough points, particularly
below ri=afp4s, so then we do not attempt fits. In practice,
this means we quote results for r1=a (r2=a) only for β >
5.80 (β > 6.30). For the string tension, we fit the range
0.58 fm ≤ rI < rmax, with rmax from Table II.
The next challenge is the correlations among the aE0

data in each fit. As discussed in Sec. II, we use NJ ¼ 100
jackknife pseudoensembles to estimate the covariance
matrix, permitting good control of up to ∼

ffiffiffiffiffiffi
NJ

p ¼ 10
eigenvalues (in practice, of the correlation matrix).
Unless we restrict the fit to only ∼10 distinct R, we
encounter many unphysically small eigenvalues. We
address this issue by thinning the data, choosing ten
(fifteen) points at random in the intervals specified above
for the scales ri (string tension). We pick three R values in
the lower half of the interval and seven R values in the
upper half for fits of the scales as illustrated in Fig. 4. This
asymmetric selection is motivated by three general proper-
ties, namely the decrease of the slope of the static energy at
larger R, the increase of the noise at larger R, and the higher
density of data at larger R due to the larger number of
Euclidean spatial vectors with integer components. Without
the random picks the first two properties would be
counterbalanced by the latter in terms of the constraining
power attributable to data at smaller or larger R. In our
procedure that uses a fixed number of data, we have to
make a somewhat arbitrary choice how to skew the
selection procedure to mimic these properties. At very
large R, the data are similarly noisy across the available R
range, the slope does not change visibly, and the density is
always fairly high for all ensembles. Hence, these consid-
erations do not apply, and we pick five R values out of each
third of the interval for fits of the string tension.
Now, the very restrictive fit form, Eq. (3.5), may

underestimate the uncertainties in the derivative, and a
thinned-out set of R values may exaggerate the influence of
nonsmooth discretization artifacts. For this reason, we
repeat the random picks NP times. For the finest β
7.28 M iii ensemble we use NP ¼ 200, and for the
others NP ¼ 100. The same NP sets of random picks are
used on each of the NJ jackknife pseudoensembles. The
procedure is illustrated in Fig. 4, which shows the first 30
fits on the first of the jackknife pseudoensemble of the
physical β 7.00 M i ensemble. Sometimes there are fewer
than three points to the left of the fit result, which happens
because the separator is set by ri from (2þ 1)-flavor QCD,
Eq. (3.1), and the (2þ 1þ 1)-flavor QCD scale afp4s in
Table I. This effect is found to happen most often for r2,
which is the distance most sensitive to the charm quark sea.
While repeating the fit on all jackknife pseudoensembles

takes care of the correlated statistical fluctuations,
using different random picks accounts for the systematic
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uncertainties that arise from nonsmooth discretization
artifacts and thinning the data. For each of the NP sets
of random picks, we obtain the mean and statistical error
from the variation over the NJ jackknife pseudoensembles.
Figure 5 shows the jackknife histograms of theNP picks for
each of the three ri=a. The variation over the random picks
is much larger than the statistical variance of each indi-
vidual pick. (Bear in mind that the width of a jackknife
histogram has to be multiplied by

ffiffiffiffiffiffi
NJ

p
to get the statistical

error.) Under the natural assumption of some uncorrelated
component in the statistical fluctuations across different R,
the random picks partially account for statistical errors, too.
It is not a priori obvious whether such statistical or
systematic effects dominate the spread of the distribution
of the histograms associated with the random picks.
Statistically significant variation of the (weighted) mean
in Fig. 5 upon including some direction-dependent para-
metrization of discretization artifacts via κPΔP or κLWΔLW
as in Eq. (3.4) would indicate dominance of the latter, while

a small variation of the (weighted) mean would suggest
dominance of the former. We observe a small variation of
the weighted mean, covered by the spread without direc-
tion-dependent terms, which increases slowly toward
smaller distances R. We conclude that statistical effects
are dominant for the distances considered.
There are systematic dependencies between the

extracted scale ri=a and the details of the NP random
picks, which can be visualized if the NP random picks are
projected to a more simple measure such as the (randomly
chosen) minimum distance Rmin. For example, Fig. 27 in
Appendix B 3 shows that the extracted ri=a sometimes is,
and sometimes is not, correlated with Rmin. For some other
cases, these dependencies may be clearly monotonic,
rather flat, or clearly nonmonotonic. Lacking clear pat-
terns, we account for the variation by taking for the central
value an average of the NP different mean values,
weighted by the statistical (jackknife) errors and estimat-
ing the systematic uncertainty by considering the maximal

FIG. 4. First 30 of the NP randomly selected data points (open symbols) and corresponding fit results (filled symbols) for the first
jackknife pseudoensemble of the bare-link data on the physical β 7.00 M i ensemble. A vertical offset is introduced for clarity, while
the colors and symbol shapes are for visual distinction only. The separation between the lower and upper half of the interval is indicated
by a gray vertical line, based on Eq. (3.1) and afp4s as in Table I.
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absolute difference between this weighted mean and any
of the NP random picks. This systematic uncertainty
estimate is much larger than the (statistical) sample
standard deviation for small ri=a, but smaller than it
for large enough ri=a. Nevertheless, the statistical error
of the mean—proportional to the sample standard
deviation—is practically always smaller than this system-
atic uncertainty estimate. Although the statistical error
of the mean is further reduced for the smeared-link result,
the systematic error remains similar. As a consequence,
the benefits of smearing are astonishingly small for the
determination of the lattice scale.
Turning to the string tension, our data are insufficient to

constrain the coefficient A when fitting the static energy
over the range r ≥ 0.58 fm. This range lies between the
Coulomb and (asymptotic) string regime, where a 1=R
behavior is also expected albeit on very different physical
grounds [95]. With no obvious physical origin for a 1=R
term in this range, we choose fits fixing A to either Ar0, the
fit results from the r0 fit, or π=12 [95]. In fact, Ar0 turns out

to be within a factor of 2 of π=12, and it is natural to expect
a coefficient of an effective 1=R term within this range. As
the string tension is not the main objective of this work, we
simply present both choices in Appendix B 3.
The resulting values and errors for the scales ri=a and the

string tension a2σ are given in Table Vof Appendix B 3. We
observe a strikingly nontrivial quark mass dependence for
all scales ri=a. First, as naively expected and observed in
previous calculations in (2þ 1)-flavor QCD [11], we
obtain larger values of ri=a at smaller light quark masses,12

which is clearly visible in Fig. 6. However, this effect seems
to have a very peculiar lattice spacing dependence. On the
one hand, the physical ml=ms or ml=ms ¼ 1=10 results are
very close at β ¼ 6.00 or β ¼ 6.30, while theml=ms ¼ 1=5
is somewhat off at β ¼ 6.30. On the other hand, at

FIG. 5. Jackknife histograms of the ri=a for each of NP random picks, distinguished by color for the bare-link data on the β 7.00 M i
ensemble. The gray vertical lines and bands represent the corresponding mean value and error estimate, described in the text and
collected in Table V. Similar plots for a2σ are shown in Fig. 26 in Appendix B 3.

12For unclear reasons, the smeared result for r1=a with the
intermediate massml=ms ¼ 1=10 (β 6.30 M ii) does not follow
a consistent mass ordering and is a clear outlier from many other
trends, too.
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β ¼ 6.72, the ml=ms ¼ 1=10 or ml=ms ¼ 1=5 results are
very close, while the physical ml=ms is somewhat off.
Instead of being due to a statistical fluke, this effect may be
caused by the variation of the charm or strange quark
masses, which are highly correlated across the ensembles;
see Table I. At β ¼ 6.72, the ml=ms ¼ 1=10 or ml=ms ¼
1=5 ensembles have a charm quark mass that is 10% larger
than for the physical ml=ms ensemble. However, at β ¼
6.30 the physical ml=ms or ml=ms ¼ 1=10 ensembles have
almost the same charm quark mass, which is about 2%
smaller than for the ml=ms ¼ 1=5 ensemble. And at β ¼
6.00 the physical ml=ms or ml=ms ¼ 1=10 ensembles have
identical charm masses. This observation suggests that the
dependence of the potential scales on the charm or strange
quark masses may be significantly larger than previously
anticipated. In Sec. III C, we study this quark mass
dependence quantitatively when fitting the ri=a data to a
smooth curve in g20 and quark masses. The light quark mass

dependence becomes insignificant for r2=a, in line with
results in (2þ 1)-flavor QCD [11].
Since the correlators with bare- or smeared-link variables

represent different discretizations, different values of the
scales ri=a with bare or smeared links are to be expected.
This effect needs to be distinguished from the distortions of
the smeared-link correlators at small distances due to the
unphysical contact-term interactions. While the former is
not a problem, the latter needs to be avoided. The smeared-
link data yield substantially smaller values when ri=a < 3,
namely for r2=a at β ¼ 6.72 or r1=a at β ¼ 6.0, which are
clearly inconsistent with the bare-link results. It is sugges-
tive to attribute this discrepancy to the contact-term
interactions seen in Fig. 2. Hence, we discard these smeared
results (enclosed by square brackets in Table V in
Appendix B 3) and use the bare results in their place when
smoothening the scales and, in Sec. IV, when extrapolating
to the continuum limit. In the range 3≲ ri=a≲ 4, which

FIG. 6. The potential scales ri=a, i ¼ 0, 1, 2 for all ensembles (indicated by colors) and bare (circles) and smeared (diamonds) gauge
links. We use the lattice scale afp4s to convert our ri=a results to physical units and a2fp4s for the x coordinate. Filled symbols correspond

to physical light quark mass ensembles, while open symbols represent larger than physical quark masses. The gray band indicates the
(2þ 1)-flavor value from Flavour Lattice Averaging Group (FLAG) 2021 [96] for r0 and r1, and from Ref. [11] for r2; see those
references for details on the conversion to physical units. Similar plots for

ffiffiffi
σ

p
are shown in Fig. 28 of Appendix B 3.
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includes the maximal R where the contact-term interactions
between the smeared-link variables distort the correlation
function, this underestimation of ri=a with smeared links
becomes mild and usually consistent within errors.
However, the shift between r1=a with bare and smeared
links in the β 6.30 M ii ensemble clearly deviates from
the pattern exhibited by the other two masses at this (or any
larger) β. Since the result with bare links is consistent with
the expected pattern of a monotonic light quark mass
dependence, we conclude that this smeared-link result is
not reliable. To be consistent, we discard the r1=a results
with smeared links for all sea quark masses at β ¼ 6.30
(enclosed by square brackets in Table V in Appendix B 3)
and use the bare results in their place. We opt, however, to
keep the smeared-link results for r0=a at β ≤ 6.0 and for
r2=a at β ¼ 7.0 since there is nothing obviously wrong
with these. With smeared links we find compatible or
slightly larger ri=a for ri=a > 5, where small-distance
distortions can be ruled out; see Sec. III A.
Another striking feature of Fig. 6 is that our data lie

consistently lower than the (2þ 1)-flavor results (shown as
gray bands). In Fig. 7, we compare our r1=a results to those
from earlier calculations using common subsets of the
ensembles obtained by the MILC Collaboration [18,19].
Our results are systematically lower than MILC’s, signifi-
cantly so at β ¼ 6.3. Since the two sets of results are based
on different fit procedures, they can differ by discretization
effects. Our larger errors originate in the systematic error
estimate from the full spread to the randomized variation of
the R values in Sec. III B. Even so, the trend of both data
sets is toward a lower value of r1 (in fm) than that from the
FLAG compilation of (2þ 1)-flavor results; cf. Fig. 6. This
trend is corroborated by our data at smaller lattice spacings,
as discussed further in Sec. IV.

C. Smoothening

For relative scale setting in future work on the HISQ
ensembles, it is useful to summarize the results for ri=a as
functions of the squared bare gauge coupling g20 and the
bare quark masses amq.

13 In this work, we use an Allton
Ansatz [88], in particular, the very generic form found, for
example, in Ref. [89], adapted to include the charm quark
mass dependence,

a
ri
¼ C0fβ þ C2g20f

3
β þ C4g40f

3
β

1þD2g20f
2
β

: ð3:7Þ

Here,

fβ¼ðb0g20Þ−b1=ð2b
2
0
Þe−1=ð2b0g20Þ; b0¼

βðNf Þ
0

ð4πÞ2 ; b1¼
βðNf Þ
1

ð4πÞ4 ;

ð3:8Þ
is the integrated β function to two loops, which scales

asymptotically as fβ ∝ a, and βðNfÞ
0;1 are the first two

coefficients of the β function; see Appendix C 1. In the
present case, Nf ¼ 4. Further,

C0¼C00þC01l
aml

fβ
þC01s

ams

fβ
þC01

amtot

fβ
þC02

ðamtotÞ2
fβ

;

C2¼C20þC21

amtot

fβ
; amtot ¼ 2amlþamsþamc;

ð3:9Þ

where C00, C01l, C01s, C01, C02, C20, C21, C4, and D2 are
parameters to be determined from fits described below. In
C00, the second through fourth terms parametrize con-
tinuum limit quark mass dependence, while the C02 term
represents a discretization effect on the largest (i.e., fourth)
term. We find we cannot constrain C4 and C21, so in the
following, they are set to zero.
Further, we cannot reliably constrain the coefficients of

multiple quark mass dependent terms. Given that the charm
quark mass is much larger than light or strange quark
masses, amtot is dominated by the variation of amc; fits
using only amc (in place of amtot) typically have larger
reduced χ2 than those incorporating the light quark mass
dependence as well through amtot. Since the strange quark
mass usually varies quite similarly to the charm quark
mass, such that the physical value of mc=ms is realized to a
fair approximation, using amc þ ams (in place of amtot)
would not lead to different conclusions. Thus, parametri-
zations with some light quark mass dependence are
preferred by the data. The parametrization yielding smallest
reduced χ2 (averaged over four fits for r0=a or r1=a using

FIG. 7. Comparison of our direct determinations of r1=a,
Table V, to previous results on some on the ensembles from
the MILC Collaboration [18,19]. As in Fig. 6, we convert all
results to physical units via afp4s and use a2fp4s for the x

coordinate.

13Here, it is not possible to do so for r2=a because we have data
at only three lattice spacings.
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both bare-link or smeared-link data) is quadratic in amtot
with only C00, C02, C20, and D2 being allowed to vary. For
r1=a, fits are similarly good with a parametrization linear in
amtot with only C00, C01, C20, and D2 being allowed to
vary. Finally, for r0=a, fits with a parametrization linear in
aml and ams (neglecting amc) are similarly good, too. The
coefficients for the total quark mass term are compatible
between all linear or between all quadratic fits; see Table VI
in Appendix B 4. The respective covariance matrices
are supplemented as text files. Moreover, the coefficients
of fits for bare or smeared links are compatible. We point
out that the dominant light quark mass dependence in
both the linear or the quadratic fit is actually linear, as
ðamtotÞ2 ¼ðamcþamsÞ2þ4ðamcþamsÞðamlÞþ �� �. We

use the quadratic fits including all ensembles as our main
results. Their residuals do not show a consistent pattern of
the light quark mass dependence; see Fig. 8.
The regression errors of the interpolated values ri=a

obtained from the Allton fit coefficients are reported in
Table VII in Appendix B 4. They are similarly large as the
errors from the direct determination, while some outliers
among the errors have been eliminated; cf. Table V in
Appendix B 4. In order to test whether the Allton fit might
assign an undue large weight to any ensemble, we repeated
the same Allton fit on each subset of the data leaving out
one ensemble in each; all of these fits are covered by the
regression error of the Allton fit using the full data set,
see Fig. 9. In the corresponding curves, evaluated at

FIG. 8. Residues of the Allton fits for ri=a using all ensembles (indicated by the color). Filled symbols correspond to physical light
quark mass ensembles, while open symbols represent larger-than-physical quark masses; circles (diamonds) denote bare- (smeared)-link
data. We use the squared bare gauge coupling g20 for the x coordinate, but shift bare- and smeared-link data horizontally by∓ 0.1ml=ms

to improve the visibility.

FIG. 9. The potential scales ri=a, i ¼ 0, 1 multiplied by the two-loop β-function, fβ as in Eq. (3.8), for all ensembles (indicated by
colors) and bare links. Filled symbols correspond to physical light quark mass ensembles, while open symbols represent larger than
physical quark masses. The curves correspond to the Allton fit, Eq. (3.7), evaluated at the masses of the physical mass ensembles using
the parameters given in Table VI in Appendix B 4. The color of the lines indicates the ensemble that has been left out, while the black
curve (hidden behind the other lines) is the one including all, with the band representing its regression error. We use the squared bare
gauge coupling g20 for the x coordinate. A corresponding plot for smeared links is in Fig. 29 in Appendix B 4.
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ml ≥ ms=10 with the corresponding ams and amc values
(not shown in Fig. 9), we see a wiggly structure between
β ¼ 7.28 and β ¼ 6.30, which is more pronounced in r0=a
than in r1=a; hints of such a trend were already seen in
Fig. 6 and are interpreted as an effect due to the 10%
variation of the charm mass between the different
β ¼ 6.72 ensembles. We also use the parametrization
in terms of the Allton fit to obtain results in the chiral
limit of the light quark mass, where we use ms and mc of
the physical mass ensembles, or ms and mc of the only
existing β ¼ 7.28 ensemble. In the latter case, we esti-
mate the physical value of the light quark mass from the
sea strange quark mass using the physical ml=ms-ratio,
i.e., 1=27.3, to be aml ¼ 0.000409.

IV. CONTINUUM LIMITS

In Sec. III C, we have determined the individual results
for the scales ri=a and the string tension a2σ on each
ensemble. Here, we form dimensionless combinations of
the ri=a and a2σ. In particular, we compute r0=r1 and r1=r2
for which we use the smoothened values for r0;1=a given in
Table VII in Appendix B 4 and the direct determination of
r2=a given in Table V in Appendix B 3. The results for the
string tension are conveniently multiplied by the smooth-
ened ðr0=aÞ2; the square root of this product is collected in
Table VII in Appendix B 4. We then perform continuum
extrapolations of these universal dimensionless quantities.
We also multiply the smoothened values for r0;1=a with
afp4s , cf. the last few paragraphs of Sec. III B, in order to
perform a continuum extrapolation of these two dimen-
sionful quantities.

A. Ratios r0=r1 and r1=r2
The errors of the individual ri=a contain our estimates

of systematic uncertainties, dominated by the variation of

the independent randomly chosen sets of R values. These
are considerably larger than the statistical errors, and as
explained in the discussion around Fig. 5, we add them
and the statistical uncertainties in quadrature. The regres-
sion errors of the smoothened ri=a therefore reflect the
systematic errors. We show the results for the ratios of
the smoothened scales evaluated at the parameters of the
individual ensembles as a function of the squared bare
gauge coupling in Fig. 10. The gray bands indicate
published (2þ 1)-flavor values [11,16]. Across all ensem-
bles, our results for r0=r1 in (2þ 1þ 1)-flavor QCD are
marginally lower than the HotQCD result in (2þ 1)-flavor
QCD [16], where the approach to the continuum limit
has been found to be flat within errors for similar
lattice spacings with a variety of actions [14,16]. The
(2þ 1þ 1)-flavor QCD result shows a fairly flat behavior,
too, although there are hints of some curvature that point
to a mild decrease towards the continuum limit. A
systematic dependence on the light quark mass with larger
r0=r1 for smaller pion mass is visible. With the exception
of the results on the corresponding coarsest lattices,
β ¼ 6.72, our results for r1=r2 in (2þ 1þ 1)-flavor
QCD turn out to be systematically higher than the result
in (2þ 1)-flavor QCD, where the approach to the con-
tinuum limit has been found to be flat within errors for a
similar range of lattice spacings [11]. The coarsest lattices
for which r2=a has been obtained in either analysis have
r2=a < 3. Such distances are still affected by substantial
nonsmooth discretization artifacts after the tree-level
correction, see Sec. III A. Since the (2þ 1)-flavor QCD
analysis had benefited from nonperturbative corrections,
they may have not been affected by a similar discretization
artifact that impacts the (2þ 1þ 1)-flavor QCD result at
β ¼ 6.72; this might explain the somewhat lower value for
r1=r2. No systematic dependence on the light quark
masses can be resolved.

FIG. 10. Ratios of smoothened r0=r1 or r1=r2 for all ensembles. For visibility’s sake the data are shifted horizontally by∓ 0.1ml=ms
for the bare-/smeared-link data. The gray solid line and band show published (2þ 1)-flavor values [11,16] for r0=r1 and r1=r2,
respectively.
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We now describe our continuum extrapolations
following the same procedures for all quantities. For
brevity and clarity, we denote each of these as ξ in the
following. The leading discretization effects are of order
α2sa2 and a4, as discussed in Sec. II A. With the lattice
spacing dependence represented by x ¼ ða=r0Þ2 or
ða=r1Þ2, and the light quark mass dependence represented
by y¼ðamlÞsea=ðamsÞsea or ðamlÞsea=ðamsÞtuned, we con-
sider the functional forms14

ξ ¼ ξ0 ðweighted averageÞ; ð4:1Þ

ξ ¼ ξ0 þ α2ξ1x ðlinÞ; ð4:2Þ

ξ ¼ ξ0 þ α2ξ1xþ ξ2x2 ðquadÞ; ð4:3Þ

ξ ¼ ξ0 þ α2½ξ1xþ ξ2xy� ðl; lmÞ; ð4:4Þ

ξ ¼ ξ0 þ α2½ξ1xþ ξ2xy� þ ξ3x2 ðq; lmÞ; ð4:5Þ

ξ ¼ ξ0 þ α2½ξ1xþ ξ2xy2� ðl; qmÞ; ð4:6Þ

ξ ¼ ξ0 þ α2½ξ1xþ ξ2xy2� þ ξ3x2 ðq; qmÞ; ð4:7Þ

ξ ¼ ξ0 þ α2½ξ1xþ ξ2xy� þ ξ3y ðl; lm;mcÞ; ð4:8Þ

ξ¼ ξ0þα2½ξ1xþξ2xy�þξ3x2þξ4y ðq; lm;mcÞ; ð4:9Þ

ξ ¼ ξ0 þ α2½ξ1xþ ξ2xy2� þ ξ3y ðl; qm;mcÞ; ð4:10Þ

ξ¼ ξ0þα2½ξ1xþξ2xy2�þ ξ3x2þ ξ4y ðq;qm;mcÞ;
ð4:11Þ

where we assume either α ¼ αb ≡ g20=ð4πu40Þ, including
the tadpole factors given in Table I (originally from
Ref. [26]), or α ¼ 1, i.e., we either incorporate or ignore
the one-loop improvement of the a2 dependence.
We fit the ratio r0=r1 using the parametrization evaluated

at four fixed ml=ms-ratios, namely, in the chiral limit of the
light quark masses, or at the three sets of actual values
present in the simulations, see Table I. Here we have five15

data points available, which allows us to vary βmin and
βmax. We start with a weighted average, Eq. (4.1), for
βmin ∈ f7.0; 6.72; 6.3; 6.0g, and we use linear, Eq. (4.2), for
βmin ∈ f6.72; 6.3g, and quadratic, Eq. (4.3), for βmin ∈
f6.3; 6.0g fits in ða=r0Þ2. We use βmax ∈ f7.28; 7.0g. We
repeat these fits with the exception of the weighted average
as a function of ða=r1Þ2. These constitute inequivalent
extrapolations with different error budgets: on the one
hand, due to the different error in x,16 and on the other hand,
due to the different cutoff and quark mass dependence of
r0=a and r1=a. The smoothened data, continuum results,
and fit curves of the parametrization evaluated at the
physical ml=ms-ratio as a function of ða=r0Þ2 are shown
in Fig. 11. The errors of the ratio are obtained by adding the

FIG. 11. Continuum extrapolation of the parametrization of r0=r1 evaluated at the physical ml=ms-ratio for 6.0 ≤ β ≤ 7.28 as a
function of ða=r0Þ2. The black points show the bare-link data (left) and the smeared-link data (right) with the corresponding continuum
results shown in red. The lines and bands show the fit curves and errors; within the fit range in cyan, as extrapolations towards the
continuum or coarser lattices in red/orange, respectively. The gray solid line and band indicate the HotQCD result in (2þ 1)-flavor QCD
[16]. A corresponding plot as a function of ða=r1Þ2 is shown in Fig. 30 in Appendix B 5.

14The abbreviations shown below are also the ones used in the
Supplemental Material [86] providing details of the individual fit
results.

15Not six because we do not determine r1=a on the β 5.80 M i
ensemble.

16All of the fits here are performed using orthogonal distance
regression fits that, in contrast to ordinary least squares mini-
mization, also takes into account uncertainties in the independent
variable [97].
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errors derived from the full parameter covariance matrix of
each parametrization in quadrature.
The distribution of the results for the four different light

quark mass ratios (chiral limit, physical, 1=10, and 1=5) is
shown in Fig. 12. While the central values are indistin-
guishable, the distributions are much broader for the two
larger masses, a consequence of the wiggles mentioned in
Sec. III C. We include all four of them for our final
determination of r0=r1.
Furthermore, we perform joint fits combining different

light quark masses. Namely, we use the parametrization of
r0=r1 evaluated at the actual ensemble parameters in our
study, or at subsets thereof. For r1=r2 we exclusively use
joint fits and combine the smoothened r1=a data with the
direct r2=a data. We start the joint fits with weighted
averages as above and employ fits linear and quadratic in
ða=r0Þ2, where we neglect explicit light quark mass
dependence. Again, for r0=r1 and the linear fits in
ða=r0Þ2, we vary βmin ∈ f6.72; 6.3g and for the quadratic
fits in ða=r0Þ2, we vary βmin ∈ f6.3; 6.0g. For r1=r2, we use
βmin ¼ 6.72, using only linear fits in ða=r0Þ2. For either, we
use βmax ∈ f7.28; 7.0g. We additionally supplement the fits
with terms linear and quadratic in the ml=ms-ratio, and
furthermore, we also repeat these fits, adding a term
proportional to the ml=ms-ratio that survives in the con-
tinuum limit. At this stage, we perform the fits with either
the sea strange quark mass of the ensemble or with the
tuned strange quark mass given in Table I, doubling the
amount of fits. On top, we choose either α ¼ αb ≡
g20=ð4πu40Þ or α ¼ 1, again doubling the amount of fits.
The fit functions are given in Eqs. (4.4)–(4.11). In order to

get the continuum contribution due to the terms propor-
tional toml=ms that survive in the continuum, we substitute
the values for ml=ms by expressions using the neutral or
charged pion masses and the average squared kaon mass,
respectively. For this, we use that in the isospin limit, we
have, using the Gell-Mann–Oakes–Renner (GMOR) rela-
tion [98],

M2
π ¼ 2mlB0; M2

K ¼ ðml þmsÞB0; ð4:12Þ

where B0 is a low-energy constant related to the chiral
condensate in the chiral limit [98] that cancels in the ratio.
We thus get from the GMOR relation,

ml=ms ¼ 1=ð2M2
K=M

2
π − 1Þ: ð4:13Þ

Inserting Particle Data Group (PDG) [99] values we can fix
the ml=ms-ratio in the continuum. We use the average
squared kaon mass, 2M2

K ¼ M2
K� þM2

K0 , and either the
neutral or charged pion mass squared,M2

π� orM2
π0
, yielding

ml=msjM2
π¼M2

π�
¼ 0.04128; ð4:14Þ

ml=msjM2
π¼M2

π0
¼ 0.03851: ð4:15Þ

We show the data together with the respective continuum
results in Fig. 13.
All of these combinations lead to about 100 trial fits

whose results, together with the ones previously discussed,
are shown in the histograms of Fig. 14. The blue lines and
bands correspond to the mean and the standard deviation of
the distributions. We also show a box plot17 together with
the histograms. The gray bands correspond to the published
(2þ 1)-flavor values [11,16] for r0=r1 and r1=r2, respec-
tively. Because the distribution for r0=r1 is fairly similar to
a Gaussian, the width appears to be an appropriate estimate
of the error; cf. Fig. 34 in Appendix B 5. However, the
distribution for r1=r2 does not resemble a Gaussian and is,
at least, bimodal. Even so, the confidence interval derived
from the cumulative distribution function of the histogram
is quite similar to the one from a Gaussian interpretation.
We obtain the best Akaike information criterion (AIC)
[100–102] with weighted averages of all included

FIG. 12. Continuum results for r0=r1 are obtained at four
different fixed ml=ms-ratios (distinguished by color). The histo-
grams show the distributions accumulated from fits like those
shown in Fig. 11. The symbols of each color correspond to the
respective mean and standard deviation. The gray symbol
indicates the HotQCD result in (2þ 1)-flavor QCD [16]
for r0=r1.

17The box plots use the standard, yet arbitrary, definition where
the box extends from the first quartile (Q1) to the third quartile
(Q3) of the data, with the dashed line at the median. The whiskers
extend from the box by 1.5× the interquartile range (IQR). Flier
points are those past the end of the whiskers. They are sometimes
considered outliers to be omitted; however, we do include them as
regular data points. In all of our results the mean (solid lines) and
the median in the box lie close to one another, and the median lies
within the box supporting the decision to take the mean as our
final result. Furthermore, the standard deviation in our results
(areas) and the IQR coincide very well supporting the decision to
take the former as our final error estimate.
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ensembles, both for r0=r1 or r1=r2, both for bare- or
smeared-link data, and both for separate fits at any of the
light quark masses—if applicable—or joint fits of the
different masses. For r0=r1, these weighted averages scatter
within the central 1σ interval of the distribution. For r1=r2,
however, they are very close to the (2þ 1)-flavor QCD
result, while the distribution of the fits yields a significantly
larger central value. Given that there are hints that r1=r2 for
β ¼ 6.72 could be a bit on the low side due to discretization
artifacts, this situation could be cleared up once a correction
beyond the tree level becomes available in (2þ 1þ 1)-
flavor QCD as well. Our final continuum results for the
ratios read

r0=r1 ¼ 1.4968� 0.0069; ð4:16Þ

r1=r2 ¼ 2.313� 0.069: ð4:17Þ

B. The scales r0 and r1 and the string tension

We repeat the analysis via the joint fits described earlier
on p. 26 for the two scales r0;1, or for the string tension σ.
To be more precise, we extrapolate afp4sðr0;1=aÞ, as well asffiffiffiffiffiffiffi
σr20

p
for the two choices of the coefficient A of 1=R,

discussed in Sec. III B as functions of ða=r0Þ2. The para-
metrizations are evaluated at the actual ensemble param-
eters in our study, or at subsets of these. We show the data
together with the respective continuum results in Figs. 15
and 16, respectively.

FIG. 14. Histogram of the continuum extrapolations for the ratios r0=r1 and r1=r2 using the Ansätze discussed in the text. The box
plots are explained in a footnote on p. 28. We take the mean and the standard deviation of the respective distributions as our final value
and uncertainty. The gray solid line and band show published (2þ 1)-flavor values [11,16] for r0=r1 and r1=r2, respectively. The
distribution of the errors is shown in Fig. 34 of Appendix B 5.

FIG. 13. Continuum results (red) and smoothened data (other colors) for the ratios r0=r1 (left) or r1=r2 (right) as functions of ða=r0Þ2,
using bare links. The gray solid line and band show the published (2þ 1)-flavor QCD values [11,16] for r0=r1 and r1=r2, respectively.
The corresponding plots for smeared links are shown in Fig. 31 of Appendix B 5.
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The histograms of the results are shown in Figs. 17
and 18. For the physical mass ensembles, the products
afp4sðr0;1=aÞ approach their respective continuum limits
from above, with clearly monotonic behavior throughout
the scaling window. In the case of r0, the best AIC is
reached for the bare-link result with quadratic x depend-
ence, or for smeared-link result with weighted averages, in
both cases for the full β range. In the case of r1, the best
AIC is reached for the bare- or smeared-link results with
quadratic x dependence for the full β range. Fits with
quadratic x dependence usually yield rather low continuum
results in the first quartile, while fits in the fourth quartile
are obtained by omitting smaller β values, and are sub-
stantially disfavored in terms of AIC. On the other hand, for
the string tension, weighted averages are favored in terms

of AIC and close to the center of each distribution. The
distributions of errors suggest that the width of the histo-
grams are good estimates of the uncertainty; cf. Fig. 35 in
Appendix B 5.
Both histograms of

ffiffiffiffiffiffiffi
σr20

p
have a more pronounced tail

towards lower values. The blue and orange lines and bands
correspond to the mean and the standard deviation of the
distributions using the two different A values, respectively.
The gray band corresponds to the published (2þ 1)-flavor
QCD result [14] for

ffiffiffiffiffiffiffi
σr20

p
, which had been determined in

simultaneous fits of r0=a and a
ffiffiffi
σ

p
. This result is bracketed

by our two calculations and conceptually closer to our
analysis with A ¼ Ar0 ; after taking into account the lower
value for r0 in our analysis, see Fig. 19, the results for σ are
in perfect agreement.

FIG. 16. Continuum results (red) and smoothened data (other colors) for
ffiffiffiffiffiffiffi
σr20

p
assuming two different coefficients A for the Coulomb

term are shown in the left or right columns, respectively, as functions of ða=r0Þ2, using bare links. The gray solid line and band show the
published (2þ 1)-flavor QCD value [14]. The corresponding plots for smeared links are shown in Fig. 33 of Appendix B 5.

FIG. 15. Continuum results (red) and smoothened data (other colors) for afp4s r0;1=a are shown in the left or right columns,
respectively, as functions of ða=r0Þ2, using bare links. The gray solid line and band show the published (2þ 1þ 1)-flavor QCD values
[25,34] for r0 and r1, respectively. The corresponding plots for smeared links are shown in Fig. 32 of Appendix B 5.
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Our final results for the scales themselves, and the string
tension, are given by the mean and standard deviation of the
respective distributions of our fit results. Finally, we may
combine the continuum limits of r1=r2 and r1 adding errors
in quadrature, i.e., Eqs. (4.17) and (4.19), to obtain our final
result for r2. The corresponding procedure, i.e., combining
the continuum limits of r0=r1 and r1, i.e., Eqs. (4.16)
and (4.19), and adding the errors in quadrature, yields a
consistent result for r0 with smaller errors, namely
0.4546� 0.0043 fm. Our final results read

r0 ¼ 0.4547� 0.0064 fm; ð4:18Þ

r1 ¼ 0.3037� 0.0025 fm; ð4:19Þ

r2 ¼ 0.1313� 0.0041 fm; ð4:20Þ
ffiffiffiffiffiffiffi
σr20

q
¼ 1.077� 0.016 ðA ¼ Ar0Þ; ð4:21Þ

ffiffiffiffiffiffiffi
σr20

q
¼ 1.110� 0.016 ðA ¼ π=12Þ: ð4:22Þ

The decreasing trend in the scale r1=a in Fig. 15 is
similar to the one already discussed in Fig. 6 and is
reflected in the continuum value of r1 that is lower than
the published value, namely r1 ¼ 0.3112ð30Þ fm [34]. A
similar statement holds for r0. The difference between the
results in Eqs. (4.21) and (4.22) must be regarded as a
measure of the inherent uncertainty of defining the string
tension in QCD in an intermediate regime between
Coulomb behavior at small distances and string breaking
at large distances.

C. Summary plot

We finally have all building blocks available to
achieve a curve collapse and generate Fig. 1 in Sec. I.
For all ensembles we use the static energy results from the
Nst ¼ 2 fits described in Sec. II as a function of the tree-
level corrected distance R ¼ rI=a described in Sec. III A.
We convert both the dimensionless static energy E ¼
aE0ðr; aÞ and the distance R to r0 units, i.e., ðr0=aÞE as
a function of ða=r0ÞR. We replace r0=a by ðr1=aÞðr0=r1Þ
using Eq. (4.16) and ri=a from Table VII, if the latter has a
smaller error than the former. We use bare-link rather than
smeared-link results for the scales. Next, we normalize all

FIG. 18. Histogram of the continuum extrapolations for the
string tension using the Ansätze discussed in the text. The box
plots are explained in the text on p. 28. The blue and orange lines
and bands correspond to the mean and the standard deviation of
the distributions using the two different A values, respectively.
The gray band corresponds to the (2þ 1)-flavor value [14] forffiffiffiffiffiffiffi

σr20
p

. The distribution of the errors is shown in Fig. 36 of
Appendix B 5.

FIG. 17. Histogram of the continuum extrapolations for the individual scales ðr0;1=aÞafp4s using the Ansätze discussed in the text.
The box plots are explained in the text on p. 28. We take as our final value and uncertainty the mean and the standard deviation of the
respective distribution. The gray bands corresponds to the literature values [25,34] for r0 and r1, respectively. The distribution of the
errors is shown in Fig. 35 of Appendix B 5.
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results to zero at ða=r0ÞR ¼ 1 (using Eq. (3.5) to inter-
polate in a �25% interval). Then, we combine our
normalized continuum results from the bare-link data for
R ≤ 4 and the smeared-link data for R > 4 and convert the
combined result ðr0=aÞE as the ordinate and ða=r0ÞR as the
abscissa to physical units, using the continuum result for r0
from Eq. (4.18). This is the set of static-energy results
shown in Fig. 1.

D. Comparison to published results

In Fig. 19, we compare our ð2þ 1þ 1Þ-flavor QCD
results for the ratio r0=r1 and for the scales r0;1 to earlier
(2þ 1)- and ð2þ 1þ 1Þ-flavor QCD results and the cor-
responding FLAG2021 average [96]. For the ratio r0=r1, the
(2þ 1)-flavor FLAG value has a χ2=d:o:f: ≈ 4.741=2
[degrees of freedom (d.o.f.)]. Under the assumption of the
decoupling of the charm quark, we compute a newweighted

average of our result, the known (2þ 1)-flavor results
[12,15,103] and the result [14] omitted in the FLAG report
that encompasses the (2þ 1)-flavor FLAG average and
most of its uncertainty band; however, it comes with a
slightly larger uncertainty itself. The χ2=d:o:f: ≈ 14.800=3
increases slightly but not significantly when including our
result and the one [14] omitted by FLAG. The change in
average is from 1.5049(74) to 1.490(20).
For the scales r0;1, the (2þ 1)-flavor FLAG values, r0 ¼

0.4701ð36Þ fm and r1¼0.3127ð30Þ fm, have a χ2=d:o:f: ≈
3.790=4 ¼ 0.948 and χ2=d:o:f:≈ 7.281=4¼ 1.820, respec-
tively. The (2þ 1þ 1)-flavor results consist of one deter-
mination each: r0 ¼ 0.474ð14Þ fm [25] (with twisted-mass
Wilson sea quarks) and r1 ¼ 0.3112ð30Þ fm [34] (with a
subset of the ensembles used here). Performing a weighted
average of the respective determinations with our results
yields r0 ¼ 0.4586ð71Þ fm with χ2=d:o:f: ≈ 1.472=1 and
r1 ¼ 0.3076ð37Þ fm with χ2=d:o:f: ≈ 3.021=1.

FIG. 19. Comparison plots for r0=r1, r0, and r1 with the FLAG 2021 averages (gray bands) [96]. Multiple errors on inputs are added in
quadrature. References to results entering the FLAG averages are shown in the plots, and we also include (2þ 1)-flavor results (gray
symbols) for r0=r1 [14] and r0 [104] that are omitted from the FLAG report. The blue bands constitute our “new” averages explained in
the text. See Refs. [12,14,15,25,34,75,85,87,102–108].
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V. CHARMED LOOPS

As anticipated in the Introduction, now that we have data
for the static energy in (2þ 1þ 1)-flavor QCD, it is
possible to study the effect of the massive charm loops.
We review the weak-coupling result for Nf massless sea
quarks in Sec. VA and discuss the corrections from a
massive sea quark in Sec. V B. We collect all relevant two-
loop formulas in Appendix C. Finally, in Sec. V C, we
conclude the discussion with the explicit, quantitative
comparison of our results with perturbation theory, either
with finite-quark-mass effects at the two-loop level, or with
(2þ 1)-flavor QCD, i.e., without charm at all. We see a
clear difference in the lattice-QCD data with and without
charm, and the comparison with perturbation theory val-
idates the expected decoupling.

A. Static energy and force in perturbation theory

Similarly to Eqs. (2.2) and (2.3) in lattice gauge theory,
the static energy is related to the large time behavior of the
real-time rectangular Wilson loop of spatial length r and
temporal length t [1,109–111],

E0ðrÞ ¼ lim
t→∞

i
t
ln

�
trP exp

�
ig
I
r×t

dzμ AμðzÞ
��

; ð5:1Þ

whereP stands for the path ordering of the color matrices, g
is the QCD gauge coupling (αs ¼ g2=ð4πÞ), and Aμ are the
SU(3) gauge fields, which are time ordered. In nonsingular
gauges, like the covariant gauges and the Coulomb gauge,
the Wilson lines at equal initial and final time do not
contribute to the energy and may be ignored or replaced
with any initial and final state that overlaps with the ground
state. The static energy is, up to a constant shift, a physical
observable, hence, gauge invariant and renormalization
scheme and scale independent.
At short distances, i.e., when rΛQCD ≪ 1, it holds that

αsð1=rÞ ≪ 1 and E0ðrÞ may be expanded as a series in αs.
In the following of this section, we will restrict ourselves to
the case of massless sea quarks. The perturbative expansion
of E0ðrÞ has then the form

E0ðrÞ ¼ Λ −
CFαs
r

ð1þ #αs þ #α2s þ #α3s ln αs

þ #α3s þ #α4s ln2αs þ #α4s ln αs þ…Þ; ð5:2Þ

where Λ is a constant of mass dimension one and the #
stand for the numerical coefficients that have been ana-
lytically computed so far (some of them are given in
Appendix C 1). It is precisely because the expansion (5.2)
is known to high order, that fitting the static energy
computed with lattice QCD to (5.2) has the potential to
provide an accurate determination of αs.
Up to two loops, the only scale that sets the running of

the strong coupling constant is 1=r. Starting from three

loops, however, another scale contributes to the static
energy, it is the energy scale αs=r [3]. Because this scale
is much smaller than 1=r, it may be called the ultrasoft
scale, and the latter, the soft scale. Ultrasoft gluons may be
emitted by static quark-antiquark pairs when changing their
color configuration from a color singlet to a color octet.
Soft and ultrasoft effects are conveniently factorized in

an effective field theory framework [4,5],

E0ðrÞ ¼ Λþ Vðr; ν; μusÞ þ δusðr; ν; μusÞ; ð5:3Þ

where Vðr; ν; μusÞ contains all soft contributions and can be
identified with the color-singlet static potential, and
δusðr; ν; μusÞ encodes the ultrasoft contributions. The scale
ν is the renormalization scale of the strong coupling
constant. It is typically of the order of the soft scale
1=r. The energy scale 1=r≳ μus ≳ αs=r is a factorization
scale separating soft from ultrasoft modes.
While the static energy is up to a constant shift finite, the

functions Vðr; ν; μusÞ and δusðr; ν; μusÞ are not. Indeed, the
ln αs terms appearing in the expansion (5.2), first at order
α4s , are remnants of cancellations happening between
infrared divergences affecting the potential Vðr; ν; μusÞ
and ultraviolet divergences affecting δusðr; ν; μusÞ:

ln αs ¼ ln
μus
1=r

þ ln
αs=r
μus

: ð5:4Þ

The potential satisfies renormalization group equations that
have been determined and solved up to subleading loga-
rithmic accuracy [112,113]. This means that all logarithms
of the form α3þn

s lnnðμusrÞ and α4þn
s lnnðμusrÞ entering the

potential have been computed. The two-loop expression of
the static potential (energy) supplemented by the loga-
rithms α3þn

s lnnðμusrÞ (α3þn
s lnnαs) is said to provide the

static potential (energy) at next-to-next-to-leading logarith-
mic accuracy (N2LL). The three-loop expression of the
static potential (energy) supplemented by the logarithms
α4þn
s lnnðμusrÞ (α4þn

s lnnαs) is said to provide the static
potential (energy) at next-to-next-to-next-to-leading loga-
rithmic accuracy (N3LL).
In lattice regularization, the constant Λ in Eq. (5.3)

accounts for the linear divergence of the self energy. In
dimensional regularization the linear divergence vanishes
but the constantΛ encodes a renormalon of orderΛQCD that
cancels against a renormalon of the same order in the color-
singlet static potential [6,7]. The renormalon in the static
potential is responsible for the poor convergence of the
perturbative expansion of E0ðrÞ. The poor convergence of
the static energy may be treated by subtracting the
renormalon of the static potential in a suitable renormalon
subtraction scheme and reabsorbing it into a redefinition of
Λ [65]. Another way to enforce the renormalon cancellation
in the perturbative expansion of the static energy is by
computing the force [64] defined in Eq. (1.1). The force is
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free of renormalons and therefore well behaved as an
expansion in αs. One then recovers the static energy by
integrating back over the quark-antiquark distance r,

E0ðrÞ ¼
Zr

r�

dr0 Fðr0Þ þ const: ð5:5Þ

The distance r� < r is arbitrary and contributes only
with an additive constant. This constant can be reabsorbed
into an additive shift when comparing with lattice data.
Equation (5.5) effectively amounts to a rearrangement of the
perturbative series enforcing the renormalon cancellation
[65]. The integral in Eq. (5.5) can be computed (numerically)
while setting the renormalization scale ν at 1=r. At two-loop
accuracy the static force with Nf massless quarks reads [68]

FðNfÞðr; ν ¼ 1=rÞ ¼ CFα
ðNfÞ
s ð1=rÞ
r2

	
1þ αðNfÞ

s ð1=rÞ
4π

�
aðNfÞ
1 þ 2γEβ

ðNfÞ
0 − 2βðNf Þ

0

�

þ
�
αðNfÞ
s ð1=rÞ
4π

�2�
aðNfÞ
2 þ

�
π2

3
þ 4γ2E

��
βðNfÞ
0

�
2

þ γE

�
4aðNf Þ

1 βðNfÞ
0 þ 2βðNf Þ

1

�

− 4

�
aðNfÞ
1 þ 2γEβ

ðNf Þ
0

�
βðNfÞ
0 − 2βðNfÞ

1

�

: ð5:6Þ

Resumming the ultrasoft leading logarithms in the expression of the static potential yields the expression of the force at
N2LL accuracy [68],

FðNf Þðr; ν ¼ 1=rÞ ¼ CFα
ðNfÞ
s ð1=rÞ
r2

	
1þ αðNf Þ

s ð1=rÞ
4π

�
aðNfÞ
1 þ 2γEβ

ðNf Þ
0 − 2βðNf Þ

0

�

þ
�
αðNf Þ
s ð1=rÞ
4π

�2�
aðNf Þ
2 þ

�
π2

3
þ 4γ2E

��
βðNf Þ
0

�
2

þ γE

�
4aðNf Þ

1 βðNfÞ
0 þ 2βðNf Þ

1

�

− 4

�
aðNf Þ
1 þ 2γEβ

ðNfÞ
0

�
βðNfÞ
0 − 2βðNf Þ

1

�
þ
�
αðNf Þ
s ð1=rÞ
4π

�2�
−

aL3
2βðNfÞ

0

ln

�
αðNf Þ
s ðμusÞ

αðNf Þ
s ð1=rÞ

��

; ð5:7Þ

where we have set the ultrasoft scale to be

μus ¼
CAα

ðNfÞ
s ð1=rÞ
2r

; ð5:8Þ

which is the difference between the Coulomb potential
in the adjoint and in the fundamental representation of

SU(3). The coefficients aðNfÞ
1 , aðNf Þ

2 , aL3 , β
ðNfÞ
0 , and βðNf Þ

1 can
be found in Appendix C 1; γE is the Euler–Mascheroni
constant.

B. Charm quark mass effects in perturbation theory

Effects due to the finite mass of a heavy quark, while
keeping Nf quarks massless, can be cast into a correction

δVðNfÞ
m ðrÞ to be added to the static potential or energy. This

correction has been computed at Oðα2s Þ in Ref. [114] and at
Oðα3s Þ in Refs. [115–117]. For a typo-free summary, see
Ref. [118] and Appendix C 2. In our case of interest, the
relevant massive quark is the charm quark.

The expression for the static energy that we use in this
work for comparison to lattice simulations with Nf ¼ 3
nearly massless quarks and a charm quark of mass m ¼
mc ¼ 1.28 GeV is

EðNfÞ
0;m ðrÞ ¼

Zr

r�

dr0 FðNf Þðr0Þ þ δVðNf Þ
m ðrÞ þ const; ð5:9Þ

where we have explicitly indicated for each quantity the
number of massless quarks. In particular, in the right-hand
side all couplings are computed with Nf massless flavors.
The expression of FðNfÞðrÞ at two loops is given in
Eq. (5.6), and the expression of FðNf ÞðrÞ at N2LL accuracy

is given in Eq. (5.7). The expression of δVðNfÞ
m ðrÞ up to two-

loop accuracy is given by

δVðNfÞ
m ðrÞ ¼ δVðNf Þ;½2�

m ðr; νÞ þ δVðNfÞ;½3�
m ðr; νÞ; ð5:10Þ

where ν is the renormalization scale, and δVðNfÞ;½2�
m ðr; νÞ and

δVðNfÞ;½3�
m ðr; νÞ are the one- and two-loop corrections, given
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in Eqs. (C10) and (C11), respectively. The renormalization
scale of the coupling is set to be 1=r. The integral over the
force FðNfÞðrÞ is performed numerically while keeping αs
running at three-loop accuracy using the RunDec package
[119–121].
The static energy with a massive quark and Nf massless

quarks reduces to the static energy with Nf massless

quarks, EðNf Þ
0 ðrÞ, for m ≫ 1=r, and it reduces to the static

energy with Nf þ 1 massless quarks, EðNfþ1Þ
0 ðrÞ, for

m ≪ 1=r. This is a consequence of the decoupling of
the static potential discussed in Appendix C 2.
Finally, we remark that since the finite mass corrections

to the static potential, δVðNfÞ
m ðrÞ, are known only up to two

loops, the available three-loop information on the force,
FðNf ÞðrÞ, cannot be used in a consistent manner. In
particular, adding the three-loop correction to FðNfÞðrÞ
without the three-loop correction to δVðNfÞ

m ðrÞ would lead
to a violation of the decoupling theorem in the static energy
at order α4s.

C. Charm quark mass effects on the lattice

In this section, we study how a finite charm quark
mass affects the determination of the static energy on
lattices with (2þ 1þ 1) flavors. In particular, we focus
on the short distance behavior of the static energy
and compare it with the expectation from perturbation
theory, i.e., Eq. (5.9). In principle, we could use this
comparison to extract αs, as this is the only free parameter
(up to the constant shift) in Eq. (5.9). For the argument
given at the end of the previous section, this would lead
to a determination of αs accurate at two loops. A
two-loop determination of αs would, however, not be

competitive with respect to existing three-loop determi-
nations based on (2þ 1)-flavor lattices [17,68,70,122].
Hence, we will refrain from a determination of αs in this
work, while we will limit ourselves to some observations
on the impact of finite charm quark mass effects on the
static energy. This is a first time study of this kind of
effects.
In Fig. 20, we show (2þ 1)-flavor and (2þ 1þ 1)-

flavor lattice data for rE0ðrÞ,18 which correspond to differ-
ent discretizations and to light quark mass over strange
quark mass ratios ml=ms ¼ 1=20 and ml=ms ¼ 1=27,
respectively. For the (2þ 1þ 1)-flavor data we use the
scale afp4s in Table I to convert the abscissa to physical
units; for the (2þ 1)-flavor data, we use the published
value r1=a ¼ 7.690ð58Þ combined with the published
value of r1 in Eq. (3.1), both from Ref. [16]. We add a
mass independent constant to the (2þ 1þ 1)-flavor E0ðrÞ
such that the shifted data at physical mass (in blue color)
are rather flat in the range of interest to facilitate the
visualization of the small finite mass effects that we are
investigating. We additionally show another (2þ 1þ 1)-
flavor data set (in orange color) with larger light quark mass
ml=ms ¼ 1=5, whose data set has not been shifted relative
to the physical one. Therefore, the difference between the
two (2þ 1þ 1)-flavor data sets is due to the different light
quark masses. We match the (2þ 1)-flavor data (in green
color) to the (2þ 1þ 1)-flavor data of the similar ml=ms-
ratio, whose additive shift is different due to the difference
in discretizations, at large distances, r ≫ 1=mc ∼ 0.15 fm,
where they must agree up to a constant due to the
decoupling of the charm quark. This matching of the
(2þ 1)-flavor data to the (2þ 1þ 1)-flavor data is done
by minimizing their difference over the range r ∈
½0.18; 0.27� fm and by varying the range to estimate the
matching error. This corresponds to a relative shift of the
(2þ 1)-flavor data compared to the (2þ 1þ 1)-flavor data
by an amount of 0.028� 0.001 at r ¼ 0.15 fm. The
difference in the light quark mass between the (2þ 1)-
flavor data and the (2þ 1þ 1)-flavor data is smaller than
the one between the two sets of (2þ 1þ 1)-flavor data.
Since the latter are hardly distinguishable, we deduce that
the light quark mass difference should be irrelevant in this
entire range and that the difference between the (2þ 1)-
flavor data and the (2þ 1þ 1)-flavor data is due to the
dynamical charm quark in the sea. The effect of the
dynamical charm is therefore significant and visible in
the data.
Comparison between (2þ 1)-flavor and (2þ 1þ 1)-

flavor lattice data using different ensembles with ml=ms ¼
1=5 (the β 7.28 M iii ensemble compared to two

FIG. 20. The dimensionless quantity rE0ðrÞ for two different
(2þ 1þ 1)-flavor ensembles using different light quark masses
and one (2þ 1)-flavor ensemble of similar lattice spacing. The
latter has been matched to the (2þ 1þ 1)-flavor ensemble of the
similar light quark mass ratio at large distances.

18We prefer to show rE0ðrÞ rather than E0ðrÞ because rE0ðrÞ is
a dimensionless quantity. Moreover, it has no Coulomb singu-
larity, which facilitates plotting and comparisons.
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(2þ 1)-flavor ensembles with r1=a ¼ 10.653ð60Þ or 8.905
(60) from Ref. [11]) gives qualitatively similar results.
As discussed in Sec. V B and Appendix C 2, the

effective number of active flavors that enters the running
of αs and the static energy changes at different distances
with mc fixed. At large distance, r ≫ 1=mc, the charm
quark decouples, and in this region the static energy
behaves effectively as with three massless flavors. At
short distance, r ≪ 1=mc, the charm quark contributes as
an active massless flavor, and thus, in this region the static
energy behaves effectively as with four massless flavors.
One expects to see this behavior realized by the
(2þ 1þ 1)-flavor lattice data of the static energy. In
the following, we will superimpose Fig. 37 to the lattice
data and verify that this is indeed the case in the distance
region for which we expect perturbation theory to
work: r < 1=ΛQCD ≈ 0.2 fm.
In order to compare with perturbation theory, we need

first to determine ΛMS.
19 We determine ΛðNf¼3Þ

MS
by fitting

Eq. (5.9) to the physical (2þ 1þ 1)-flavor ensemble. We
leave out data at r=a ¼ 1 from all the fits and vary the fit

range up to r ≈ 0.19 fm usingmMS
c ðmMS

c Þ ¼ 1.28 GeV and
the three-loop running of αs. To account for the residual
discretization artifacts, see Fig. 3, we enlarge the error to
3‰ of the raw data at r=a ≤

ffiffiffi
8

p
, or to 1‰ of the raw data,

otherwise. The numerical running of αs and the conversion
between the three-flavor and the four-flavor values of
ΛMS is performed using the RunDec package [119–121].

The value of ΛðNf¼3Þ
MS

that we obtain using the N2LO

expression of the force, Eq. (5.6), is ΛðNf¼3Þ
MS

≈ 326 MeV.20

The static energy at N2LO, including N2LO massive
charm loop effects, is shown by the black curve in the left
panel of Fig. 21. Lattice data are the blue dots. Omitting the
data point at the smallest distance, we obtain χ2red ≈ 0.5. We
use r ≤ 0.19 fm. The static energy, Eq. (5.5), with four
massless active flavors, Nf ¼ 4, which is the orange dashed
curve, is matched to the black curve at 0.08 fm to
compensate for truncation effects of order α4s. It begins
to deviate from the lattice data at distances r≳ 0.12 fm.
The static energy, Eq. (5.5), with three massless active
flavors, Nf ¼ 3, is shown by the green dashed curve. In this
case no shift is performed to match with the black curves, as
the two overlap exactly by construction at large distances.
The green dashed curve shows a systematic overshooting of
the data at distances r≲ 0.12 fm (with the exception of the
first data point, corresponding to one lattice spacing, which
is possibly affected by large discretization artifacts). The
(2þ 1þ 1)-flavor lattice data behave therefore accordingly
to the decoupling theorem. At large distance they are well
described by the perturbative static energy with three

FIG. 21. Comparison of the (2þ 1þ 1)-flavor data with curves obtained from different perturbative expressions of the static energy

times the distance. Left: in black, green, and orange we show rEð3Þ
0;mðrÞ, rEð3Þ

0 ðrÞ, and rEð4Þ
0 ðrÞ, respectively. The perturbative curves have

been obtained from the static force at two loops [next-to-next-to-leading order (N2LO)], Eq. (5.6), using three-loop running of αs. Charm

mass effects have been included in the black curve at two-loop accuracy using mMS
c ðmMS

c Þ ¼ 1.28 GeV. Right: as in the left panel but at
N2LL accuracy, i.e., the force is given by Eq. (5.7).

19Although we do not attempt to give a precision extraction of
αs or ΛMS, we need to determine a reference value and use it
throughout the analysis.

20This value is about 3.8% higher than the (2þ 1)-flavor
determination of Ref. [17], yet still covered within the perturba-
tive truncation error. Note that the determination in Ref. [17],
based on (2þ 1)-flavor lattice data, is accurate up to three loops,
although the central value is the same between two or three loops
with leading ultrasoft resummation. If we compare, instead, the
values for r1Λ

ðNf¼3Þ
MS

, then we see a partial compensation between

the smaller value of r1 and the larger value of ΛðNf¼3Þ
MS

in
(2þ 1þ 1)-flavor QCD—the difference shrinks to the level
expected from combined lattice uncertainties.
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massless flavors and at short distance by the perturbative
static energy with four massless flavors. The static energy
with three massless flavors and one massive charm inter-
polates smoothly between these two curves and on the
overall describes well the data. We have seen, indeed, in
Fig. 20 that the lattice data are sensitive to finite charm
mass effects in the intermediate region r ∼ 1=mc.
A similar analysis can be done using the N2LL expression

of the force, Eq. (5.7). We get, in this case, ΛðNf¼3Þ
MS

≈
342 MeV.21 As before, the black curve, which includes
the charm mass effects, reproduces the data with χ2red ≈ 0.5,
while the orange dashed curve with four massless flavors
deviates significantly from the data at r≳ 0.12 fm, and the
green dashed curve with three massless flavors overshoots
the data at r≲ 0.12 fm, with the possible exception of the
first data point. Again, we see that the lattice data reflect the
expectations from the decoupling theorem, i.e., at large
distance they are well described by the perturbative static
energy with three massless flavors and at short distance by
the perturbative static energy with four massless flavors,
while the static energy with three massless flavors and one
massive charm interpolates smoothly between these two
curves and describes well the data.

VI. CONCLUSIONS

In this paper, we present results for the static energy in
(2þ 1þ 1)-flavor QCD over a wide range of lattice
spacings and several quark masses, including the physical
quark mass. To gain better control of the statistical errors in
the static energy at large distances, the calculations have
been performed using bare links, or links after one level of
HYP smearing. This enabled us to obtain reliable results for
the static energy also at relatively large distances. We
perform a simultaneous determination of the scales r1 and
r0, as well as the string tension σ, and for the smallest three
lattice spacings, we also determine the scale r2. For the
scales, direction-dependent discretization uncertainties
dominate over statistical errors. Our values of r1=a on
the coarser lattices are marginally lower than previous ones
from the MILC Collaboration [18,19] and have larger
uncertainties due to the differences in the procedure for
obtaining r1=a. Our results on r0=r1 and r0

ffiffiffi
σ

p
agree with

published (2þ 1)-flavor results. On the other hand, our
result for r1=r2 differs significantly from the value obtained
in the (2þ 1)-flavor case [11], which is most likely due to
the effect of the charm quark.
We study in detail the effect of the charm quark on the

static energy by comparing our results on some of the finest
two lattices with previously published (2þ 1)-flavor QCD
results at similar lattice spacing. Significant influence of the

different light quarkmasses can be ruled out.We have found
that for r > 0.2 fm our results on the static energy agreewith
the (2þ 1)-flavor results, implying the decoupling of charm
quark for these distances. For smaller distances, on the other
hand, we find that the effect of the dynamical charm quark is
noticeable. The behavior of the (2þ 1þ 1)-flavor lattice
data for the static energy is well reproduced by the
perturbative expression of the static energy incorporating
the charm mass effects at two loops. This shows at a
quantitative level how the (2þ 1þ 1)-flavor lattice data
smoothly interpolate between the large distance region,
where the charm quark decouples, and the short distance
region, where the charm quark may be treated as massless.
A precision extraction of αs from lattice QCD data of the

static energy with (2þ 1þ 1) flavors is at the moment
problematic if data are included for distances around 1=mc.
At such distances, as we have seen, finite charm mass
effects have to be included in the fitting perturbative
expression. Since these are known up to two loops, this
is also the maximal precision one may obtain at present for
the strong coupling from these data. The computation of
finite charm-mass corrections to the static energy at three
loops is certainly challenging.
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APPENDIX A: WILSON LINE CORRELATION
FUNCTION AT DIFFERENT LEVELS

OF GAUGE FIXING

As stated in Sec. II A in the body of this paper, different
gauge-fixing schemes were unintentionally mixed during

the simulations. On the one hand, we utilized the original
scheme with a tolerance of ϵ ¼ 2 × 10−6 for the coarser
ensembles with β ≤ 6.30. On the other hand, we have
employed a fixed number (320) of steps for the finer
ensembles with β ≥ 7.00. Lastly, we could use gauge-fixed
ensembles for β ¼ 6.72 with unphysical masses (β 6.72 M
ii or β 6.72 M iii) with a tolerance of ϵ ¼ 2 × 10−6.
However, for β 6.72 M i we could use only a fraction of
the ensemble gauge fixed with a tolerance of ϵ ¼ 2 × 10−6

and had to gauge fix the rest ourselves. Due to an initial
misunderstanding, we used a prescription with a fixed
number (320) of steps instead. These lead to slight
deviations in the final gauge-fixing precision, as the
procedure usually stopped O(1) steps before reaching the
tolerance of ϵ ¼ 2 × 10−6 (usually less than 10% level

FIG. 22. The effective mass aEeffðτÞ has been calculated on the two subsets of the ensemble β 6.72 M i with different gauge-fixing
schemes, which are labeled tol for fixed tolerance (red) and iter for fixed number of iterations (teal). aEeffðτÞ differs at small τ but
approaches the same plateau at large τ. Note, that the ordering of the two gauge-fixing schemes changes in a statistically significant
manner with τ. At least two crossings occur for larger r=a; the first of these occurs at smaller τ for larger r=a. We show the effective mass
for one iteration of HYP smearing since the errors and fluctuations are larger without smearing. Jackknife errors are obtained from the
distribution of the resamples.

FIG. 23. The correlation function (without smearing) has been analyzed on the two subsets of the ensemble β 6.72 M i with different
gauge-fixing schemes via three-state fits (for the schemes and the color code, see Fig. 22 and text). Left: both overlap factors, C0;1, of the
ground state or first excited state, respectively, decrease as the volume-averaged final gauge-fixing functional is reduced towards a lower
tolerance. The relative decrease of the ground state overlap factor C0ðr; aÞ increases quite dramatically from 0.3% at r=a ¼ 1 to 30% at
r=a ¼ 12. For the excited state, the overlap factorC1ðr; aÞ changes mildly by about 40% at r=a ¼ 1 to 25% at r=a ¼ 12; however, since
C1ðr; aÞ increases for large r=a, this is statistically significant only for large enough r=a. Right: the change of the energy levels between
the two smearing schemes is statistically insignificant. E1ðr; aÞ represents in this plot the full first excited state energy. Thick error bars
represent Hessian errors, while thin error bars represent jackknife errors obtained from the distribution of the resamples.
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deviation between the volume-averaged final gauge-fixing
functional). Since the time history mostly consisted of
consecutive segments that used either tolerance or step
number as criteria, this led to unexpectedly large autocor-
relations in the correlator size in some streams that were,
however, practically absent in the effective mass.
As a consequence, we analyzed the subsets of the β

6.72 M i ensemble with different gauge-fixing schemes
separately and confirmed the independence of the energy
levels. We show the results of this analysis on the level of
the effective mass in Fig. 22 and on the level of the fit
parameters in Fig. 23.

APPENDIX B: ADDITIONAL PLOTS AND
TABLES OF NUMERICAL DATA

This appendix contains additional material in which we
discuss further details of the analysis. In Appendix. B 1 we

provide further details on the correlator fits. We tabulate the
tree-level corrections in Appendix. B 2. Appendix B 3
extends the discussion of the systematic uncertainty and
the discretization effects of the scales and string tension.

1. Fit ranges, quality, and stability

Table III shows the actual time ranges used in the
correlator fits. The choices have been informed by keeping
similar time ranges in physical units across all ensembles
accounting for the number of states used, see Eq. (2.5), with
an extra variation to check for systematic effects.
We show representative plots of p value distributions for

correlator fits with different numbers of states on the
physical β 7.00 M i ensemble in Fig. 24. We show
stability plots for the ground state energy on the same
ensemble under variation of the time range or of the number
of states in Fig. 25.

TABLE III. Time intervals used in the correlator fits, see Sec. II B; t ¼ τ=a. And open-ended dash means “until upper or lower end of
available data”, respectively. Entries marked as “� � �” indicate that the fit was not possible.

≈a (fm) β tmax Operator rI=a tð1;−Þmin tð2;−Þmin tð3;−Þmin tð1;0Þmin tð2;0Þmin tð3;0Þmin tð1;þÞ
min tð2;þÞ

min tð3;þÞ
min

0.15 5.8 9 Bare All 1 1 � � � 2 2 � � � 3 3 � � �
HYP –3.5 1 1 2 2 2 2 3 3 2

3.5– 1 1 1 2 2 1 3 3 1

0.12 6.0 6 Bare –1.6 2 2 � � � 3 2 � � � � � � � � � � � �
1.6– 2 2 � � � 3 2 � � � � � � � � � � � �

HYP –3.5 2 2 1 3 2 1 � � � � � � � � �
3.5– 2 2 � � � 3 2 1 � � � � � � � � �

0.088 6.3 8 Bare –1.0 3 1 2 4 2 2 5 3 2

1.0–3.5 3 2 2 4 3 2 5 3 2

3.5– 3 2 1 4 3 1 5 3 1

HYP –3.5 3 3 2 4 3 2 5 3 2

3.5– 3 3 1 4 3 1 5 3 1

0.057 6.72 10 Bare –1.6 4 3 2 5 3 2 6 4 2

1.6–1.9 5 3 2 6 4 2 7 4 2

1.9–3.0 5 3 2 6 4 2 7 5 2

3.0–3.5 5 3 2 6 4 2 7 5 3

3.5– 5 3 1 6 4 2 7 5 3

HYP –1.6 4 3 2 5 3 2 6 4 2

1.6–1.9 5 3 2 6 3 2 7 4 2

1.9–3.0 5 3 2 6 4 2 7 5 2

3.0–3.5 5 3 2 6 4 2 7 5 3

3.5– 5 3 1 6 4 2 7 5 3

(Table continued)
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TABLE III. (Continued)

≈a (fm) β tmax Operator rI=a tð1;−Þmin tð2;−Þmin tð3;−Þmin tð1;0Þmin tð2;0Þmin tð3;0Þmin tð1;þÞ
min tð2;þÞ

min tð3;þÞ
min

0.042 7.0 20 Bare –1.0 5 3 2 6 3 2 7 4 2

1.0–2.4 6 3 2 7 4 2 8 5 2

2.4–2.7 6 3 2 8 4 2 9 5 2

2.7–3.0 7 4 2 8 5 2 9 6 2

3.0–3.5 7 4 2 8 5 2 9 6 3

3.5–3.8 7 4 1 8 5 2 9 6 3

3.8–6.0 7 5 1 8 6 2 9 7 3

6.0–9.0 7 5 2 8 6 3 9 7 4

9.0– 7 5 3 8 6 4 9 7 5

HYP –2.5 6 3 2 8 4 2 7 4 2

2.5–3.0 7 4 2 8 5 2 8 5 2

3.0–3.5 7 4 2 8 5 2 8 5 2

3.5–3.8 7 4 1 8 5 1 8 5 2

3.8–6.0 7 5 1 8 6 1 8 6 2

6.0–9.0 7 5 2 8 6 2 8 6 3

9.0– 7 5 3 8 6 3 8 6 4

0.032 7.28 28 Bare –1.0 7 3 2 8 4 2 9 5 2

1.0–1.6 7 4 2 8 5 2 9 6 2

1.6–2.5 8 4 2 9 5 2 10 6 2

2.5–2.8 9 4 2 9 5 2 10 6 2

2.8–2.9 9 4 2 10 5 2 11 6 2

2.9–3.0 9 5 2 10 6 2 11 7 2

3.0–3.5 9 5 2 10 6 2 11 7 3

3.5–4.3 9 5 1 10 6 2 11 7 3

4.3–5.8 9 6 1 10 7 2 11 8 3

5.8–6.0 9 7 1 10 8 2 11 9 3

6.0–9.0 9 7 2 10 8 3 11 9 4

9.0–12.0 9 7 3 10 8 4 11 9 5

12.0–15 9 7 4 10 8 5 11 9 6

15.0– 9 7 5 10 8 6 11 9 7

HYP –1.7 7 4 2 8 5 2 9 6 2

1.7–2.5 8 4 2 9 5 2 10 6 2

2.5–2.8 9 4 2 9 5 2 11 6 2

2.8–2.9 9 4 2 10 5 2 11 6 2

2.9–3.0 9 5 2 10 6 2 11 7 2

3.0–3.5 9 5 2 10 6 2 11 7 3

3.5–4.3 9 5 1 10 6 2 11 7 3

4.3–5.8 9 6 1 10 7 2 11 8 3

5.8–6.0 9 7 1 10 8 2 11 9 3

6.0–9.0 9 7 2 10 8 3 11 9 4

9.0–12 9 7 3 10 8 4 11 9 5

12–15 9 7 4 10 8 5 11 9 6

15– 9 7 5 10 8 6 11 9 7
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2. Tree-level corrections

We collect the tree-level corrections for bare or
smeared links in Table IV, which are part of an ongoing
project aiming at a full one-loop calculation [92] using
the HiPPy software package and the HPsrc software frame-
work [90,91].

3. Detailed definition of the scales
and the string tension

We show the fit range dependence of the extracted values
of a2σ for the physical β 7.00 M i ensemble (with bare
links) using two different fixed values of the Coulomb
coefficient in Fig. 26. The distribution with the random

picks is fairly Gaussian. For the determinations of the
scales ri=a, the corresponding distributions are in Fig. 5 in
Sec. III B. These distributions for ri=a clearly exhibit non-
Gaussian characteristics and, in some cases, correlations
between Rmin and the obtained value of ri=a, see Fig. 27.
The string tension in physical units shows a fairly mild
lattice spacing dependence, much smaller than the depend-
ence on assumptions about the Coulomb coefficient,
see Fig. 28.

4. Relative scale setting

In this section, we collect additional material relevant
for the relative scale setting, namely the scales ri=a,

FIG. 24. Distribution of p values for fits to the correlator on the physical β 7.00 M i ensemble. The horizontal dashed line
corresponds to a flat distribution at Pðp valueÞ ¼ 1=20, while colored lines serve as guides to the eyes. We separately show results at
small distances, i.e., jrj ≤ 0.2 fm (left) or at large distances, i.e., jrj > 0.2 fm (right). The former constitutes a much smaller sample of
fits (fewer combinations of jrj=a). Left: at jrj ≤ 0.2 fm, the p value distribution is reasonably flat in the case of bare links and Nst ≤ 2,
while fits with Nst ≥ 2 in similar ranges fare similarly well for smeared links. Right: at jrj > 0.2 fm, the p value distribution with bare
links is quite flat. Fits with Nst ¼ 1 in similar intervals are disfavored for smeared links.

FIG. 25. Stability plots of the correlation function fits for the physical β 7.00 M i ensemble. Differences between extracted ground
state energy values E0ðr; aÞ from different fits are usually covered by the statistical errors corresponding to our canonical choice of fits,

i.e., with Nst ¼ 2 and τð2;0Þmin =a. Dotted error bars represent Hessian errors, while solid error bars represent jackknife errors obtained from
the distribution of the resamples. Left: for fits with Nst ¼ 2, we vary τmin=a by �1 against our canonical fit. We clearly see that the fit

stability breaks down at a few small r=a values for the choice τð2;−Þmin =a. Right: we compare the fits with Nst ¼ 3 and τð3;þÞ
min =a to our

canonical fits Nst ¼ 2 and τð2;0Þmin =a. For τð3;0Þmin =a we already see that the fit stability breaks down in a few cases.
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i ¼ 0, 1, 2, and the string tension a2σ from the direct
fits in Table V, two different parametrizations in terms
of Allton fits in Table VI, and the smoothened scales
ri=a, i ¼ 0, 1 and σr20, respectively, in Table VII.
Finally, in Fig. 29, we show the Allton fits for the
scales with smeared links.

5. Continuum extrapolations

In this section, we collect additional material relevant for
the continuum extrapolations. The continuum extrapola-
tions of bare- or smeared-link data for r0=r1 as a function of
ða=r1Þ2 are shown in Fig. 30. We show the continuum
results and the approach to the continuum limit for

TABLE IV. Spatial Euclidean distance jrj=a and tree-level improved distances rI=a for bare links or for links after one step of HYP
smearing in the fourth, fifth, and sixth column. Each row corresponds to any permutation of the three spatial coordinates xi=a since these
belong to the same representation of the cubic group W3. For bare links the improved distance is smaller than the corresponding
Euclidean distance for on-axis vectors with jrj=a < 5 and for a few off-axis vectors in the same range; the relative modification is at most
0.3% for jrj=a >

ffiffiffiffiffi
12

p
. For smeared links the improved distance is larger than the corresponding Euclidean distance except for

r=a ¼ ð2; 2; 1Þ or (2, 2, 2); the relative modification is at most 0.3% for jrj=a >
ffiffiffiffiffi
10

p
.

x1=a x2=a x3=a jrj=a rI=a (bare links) rI=a (smeared links)

1 0 0 1.0 0.959904� 0.000003 1.409072� 0.000027
1 1 0 1.414214 1.433383� 0.000013 1.634790� 0.000047
1 1 1 1.732051 1.786648� 0.000031 1.846760� 0.000072
2 0 0 2.0 1.940264� 0.000049 2.086964� 0.000109
2 1 0 2.236068 2.225023� 0.000081 2.282411� 0.000149
2 1 1 2.449490 2.465341� 0.000119 2.469253� 0.000197
2 2 0 2.828427 2.827621� 0.000208 2.832540� 0.000319
2 2 1 3.0 3.012822� 0.000264 2.996896� 0.000390
3 0 0 3.0 2.979371� 0.000265 3.019798� 0.000401
3 1 0 3.162278 3.151661� 0.000327 3.174122� 0.000479
3 1 1 3.316625 3.315550� 0.000396 3.323076� 0.000565
2 2 2 3.464102 3.477834� 0.000467 3.457683� 0.000649
3 2 0 3.605551 3.604281� 0.000550 3.608266� 0.000761
3 2 1 3.741657 3.746234� 0.000637 3.742821� 0.000868
4 0 0 4.0 3.994281� 0.000855 4.009312� 0.001140
3 2 2 4.123106 4.131366� 0.000932 4.123893� 0.001236
4 1 0 4.123106 4.118891� 0.000960 4.130599� 0.001270
3 3 0 4.242641 4.244320� 0.001049 4.245404� 0.001382
4 1 1 4.242641 4.240985� 0.001072 4.248958� 0.001406
3 3 1 4.358899 4.363650� 0.001165 4.361678� 0.001525
4 2 0 4.472136 4.472231� 0.001313 4.477483� 0.001703
4 2 1 4.582576 4.584957� 0.001442 4.587801� 0.001860
3 3 2 4.690416 4.698346� 0.001549 4.694392� 0.001997
4 2 2 4.898979 4.904615� 0.001863 4.904903� 0.002375
4 3 0 5.0 5.003469� 0.002027 5.006342� 0.002573
5 0 0 5.0 5.000618� 0.002127 5.010612� 0.002666
4 3 1 5.099020 5.104096� 0.002184 5.105849� 0.002764
5 1 0 5.099020 5.100262� 0.002286 5.109318� 0.002860
3 3 3 5.196152 5.205202� 0.002313 5.203278� 0.002930
5 1 1 5.196152 5.198344� 0.002452 5.206361� 0.003060
4 3 2 5.385165 5.392954� 0.002689 5.393750� 0.003380
5 2 0 5.385165 5.388792� 0.002802 5.395594� 0.003484
5 2 1 5.477226 5.481937� 0.002983 5.487994� 0.003703
4 4 0 5.656854 5.663307� 0.003299 5.667292� 0.004106
4 4 1 5.744563 5.752137� 0.003495 5.755734� 0.004344
5 2 2 5.744563 5.751750� 0.003562 5.756765� 0.004404
4 3 3 5.830952 5.841093� 0.003653 5.842952� 0.004549
5 3 0 5.830952 5.837748� 0.003783 5.843586� 0.004667
5 3 1 5.916080 5.923874� 0.003991 5.929386� 0.004919
4 4 2 6.0 6.009986� 0.004115 6.013449� 0.005097
6 0 0 6.0 6.006756� 0.004501 6.017224� 0.005441
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FIG. 26. The distribution of the results obtained on the NJ jackknife pseudoensembles for each set of NP random picks (designated by
the color) is not dissimilar to a Gaussian distribution. However, the distribution of the jackknife means over the NP sets of random picks
is usually not similar to a Gaussian distribution. The data are shown for the bare physical β 7.0 M i ensemble. The gray vertical line and
the gray band represent the corresponding mean value and error estimate in Table V.

FIG. 27. Dependence of the fit results on the Rmin of theNP randomly selected data points for the first jackknife pseudoensemble of the
bare physical β 7.00 M i ensemble (top) and the bare physical β 6.30 M i ensemble (bottom). There are correlations between the
extracted ri=a and Rmin that are similar between the different ensembles but strongly vary with the considered R range.
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TABLE V. ri=a, i ¼ 0, 1, 2 and a2σ for all ensembles with the two different choices of A. The first of each row is for bare links, the
second one for smeared links. The smeared-link values in brackets are replaced with the bare ones as explained in the text. Entries
marked as “� � �” indicate that the fit was not possible.

Ensemble r0=a r1=a r2=a a2σ (A ¼ Ar0 ) a2σ (A ¼ π=12)

β 5.80 M i 3.09640� 0.01286 � � � � � � 0.11952� 0.00206 0.13035� 0.00118
3.02320� 0.09242 � � � � � � 0.11153� 0.00949 0.13128� 0.00383

β 6.00 M ii 3.83872� 0.01950 2.56673� 0.03562 � � � 0.07564� 0.00258 0.08468� 0.00025
3.77465� 0.08278 [2.41291� 0.07079] � � � 0.07769� 0.00499 0.08685� 0.00143

β 6.00 M i 3.85113� 0.01557 2.56844� 0.04089 � � � 0.07428� 0.00266 0.08343� 0.00011
3.81394� 0.04370 [2.42701� 0.12536] � � � 0.07595� 0.00379 0.08591� 0.00151

β 6.30 M iii 5.15895� 0.03287 3.47263� 0.03436 � � � 0.04258� 0.00061 0.04663� 0.00041
5.18334� 0.05663 [3.42049� 0.09021] � � � 0.04251� 0.00052 0.04708� 0.00012

β6.30 M ii 5.22042� 0.03414 3.49545� 0.02301 � � � 0.04163� 0.00065 0.04577� 0.00023
5.26352� 0.08370 [3.52911� 0.06433] � � � 0.04257� 0.00115 0.04584� 0.00013

β 6.30 M i 5.26708� 0.02218 3.50938� 0.01723 � � � 0.04128� 0.00039 0.04565� 0.00020
5.27320� 0.10936 [3.45729� 0.11000] � � � 0.04131� 0.00059 0.04623� 0.00038

β 6.72 M iii 7.88980� 0.08546 5.29637� 0.03357 2.45044� 0.06290 0.01866� 0.00190 0.02014� 0.00126
7.85715� 0.14605 5.27694� 0.07599 [2.12384� 0.19803] 0.01912� 0.00025 0.02067� 0.00028

β 6.72 M ii 7.92209� 0.05545 5.32775� 0.02521 2.45062� 0.07633 0.01880� 0.00074 0.02027� 0.00070
7.93435� 0.13460 5.30683� 0.06247 [2.12747� 0.16083] 0.01865� 0.00026 0.02020� 0.00021

β 6.72 M i 8.03302� 0.07694 5.38261� 0.02038 2.46825� 0.07423 0.01790� 0.00071 0.01940� 0.00094
8.00053� 0.16195 5.38097� 0.07864 [2.14853� 0.18989] 0.01810� 0.00025 0.01970� 0.00022

β 7.00 M iii 10.55417� 0.38163 7.06784� 0.12644 3.19097� 0.13449 0.01041� 0.00186 0.01106� 0.00226
10.58371� 0.10773 7.06499� 0.08959 3.10774� 0.03702 0.01035� 0.00025 0.01105� 0.00040

β 7.00 M i 10.72634� 0.15351 7.16677� 0.08142 3.20894� 0.14144 0.01024� 0.00070 0.01093� 0.00066
10.81068� 0.11230 7.18318� 0.10637 3.13717� 0.06911 0.00992� 0.00022 0.01066� 0.00027

β 7.28 M iii 13.58998� 0.28745 9.26165� 0.12521 4.21509� 0.02629 0.00668� 0.00066 0.00700� 0.00067
13.93468� 0.27129 9.38512� 0.10500 4.21051� 0.08218 0.00613� 0.00028 0.00647� 0.00023

FIG. 28. The string tension
ffiffiffi
σ

p
for all ensembles (indicated by colors) and bare (circles) and smeared (diamonds) gauge links and for

the different choices of A. We use the lattice scale afp4s to convert to physical units and a2fp4s for the x coordinate. Filled symbols

correspond to physical light quark mass ensembles, while open symbols represent larger than physical quark masses.
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TABLE VI. Coefficients of the Allton fits, Eq. (3.7). For each of r0=a or r1=a, the first of the two rows shows bare results, while the
second one shows smeared results.

Linear in amtot

C00 C01 C20=105 D2=103 χ2red

r0=a 21.94181� 1.68077 0.08587� 0.02668 1.08538� 0.49989 2.86204� 1.48991 6.03305=8 ¼ 0.75413
20.50314� 2.06333 0.10875� 0.03774 0.36230� 1.13404 0.57839� 3.37576 1.30035=8 ¼ 0.16254

r1=a 34.72718� 1.76851 0.08556� 0.02828 3.13605� 2.24815 5.78128� 4.79208 1.24069=7 ¼ 0.17724
32.21438� 2.83572 0.12787� 0.05211 3.04080� 2.67043 5.77559� 5.62018 0.43440=7 ¼ 0.06206

Quadratic in amtot

C00 C02 C20=105 D2=103 χ2red

r0=a 25.82044� 0.53306 0.15358� 0.04626 1.28496� 0.54074 5.02550� 1.69661 3.70085=8 ¼ 0.46261
25.59835� 0.46671 0.18195� 0.06659 0.26569� 1.27393 2.03565� 3.54790 1.49736=8 ¼ 0.18717

r1=a 38.65447� 0.74486 0.15049� 0.05064 3.28647� 2.38685 7.10549� 5.08679 1.01596=7 ¼ 0.14514
38.05123� 0.77302 0.22051� 0.09517 3.41874� 2.93632 8.03369� 6.03171 0.49725=7 ¼ 0.07104

TABLE VII. ri=a, i ¼ 0, 1, and
ffiffiffiffiffiffiffi
r20σ

p
for all ensembles with the different choices of A using the smoothened r0=a from the Allton fits.

The values in brackets stem from the Allton fits, but we do not have a direct determination. The first of each row is for bare links, the
second one for smeared links. Entries marked as “� � �” indicate that the fit was not possible.

Ensemble r0=a r1=a
ffiffiffiffiffiffiffi
σr20

p
(A ¼ Ar0 )

ffiffiffiffiffiffiffi
σr20

p
(A ¼ π=12)

l3248f211b580m00235m0647m831 3.09673� 0.01204 � � � 1.07061� 0.01013 1.11805� 0.00666
3.01140� 0.07614 � � � 1.00569� 0.04979 1.09112� 0.03185

l3264f211b600m00507m0507m628 3.83628� 0.00856 2.56244� 0.02403 1.05509� 0.01812 1.11634� 0.00299
3.79648� 0.03130 2.56593� 0.02591 1.05822� 0.03509 1.11882� 0.01302

l4864f211b600m00184m0507m628 3.84897� 0.00986 2.56725� 0.02304 1.04899� 0.01895 1.11173� 0.00293
3.81537� 0.03320 2.57260� 0.02423 1.05150� 0.02777 1.11832� 0.01383

l3296f211b630m0074m037m440 5.19001� 0.01869 3.48020� 0.01224 1.07091� 0.00853 1.12073� 0.00641
5.17709� 0.03704 3.47017� 0.01736 1.06741� 0.01007 1.12328� 0.00816

l4896f211b630m00363m0363m430 5.24553� 0.01325 3.50231� 0.01153 1.07022� 0.00878 1.12227� 0.00396
5.25407� 0.04198 3.50118� 0.01247 1.08402� 0.01702 1.12492� 0.00914

l6496f211b630m0012m0363m432 5.25416� 0.01396 3.50572� 0.01203 1.06745� 0.00573 1.12265� 0.00389
5.26608� 0.04551 3.50598� 0.01362 1.07037� 0.01202 1.13231� 0.01081

l48144f211b672m0048m024m286 7.86707� 0.04293 5.30732� 0.02156 1.07467� 0.05516 1.11633� 0.03541
7.86948� 0.08455 5.28136� 0.04660 1.08820� 0.01372 1.13151� 0.01430

l64144f211b672m0024m024m286 7.89244� 0.03821 5.31806� 0.01868 1.08215� 0.02194 1.12375� 0.02018
7.90203� 0.07380 5.29661� 0.04068 1.07905� 0.01252 1.12321� 0.01195

l96192f211b672m0008m022m260 8.05163� 0.03896 5.38486� 0.01662 1.07731� 0.02207 1.12140� 0.02783
8.10762� 0.04793 5.39212� 0.02820 1.09084� 0.00982 1.13805� 0.00929

l64192f211b700m00316m0158m188 10.57092� 0.07717 7.08912� 0.03450 1.07880� 0.09674 1.11155� 0.11400
10.63795� 0.06414 7.10727� 0.04002 1.08239� 0.01456 1.11827� 0.02148

l144288f211b700m000569m01555m1827 10.64095� 0.09157 7.11895� 0.03886 1.07678� 0.03771 1.11245� 0.03490
10.72618� 0.07495 7.15068� 0.04681 1.06813� 0.01416 1.10769� 0.01581

l96288f211b728m00223m01115m1316 13.90017� 0.15482 9.31454� 0.08267 1.13621� 0.05777 1.16337� 0.05728
14.00094� 0.12505 9.37267� 0.08271 1.09633� 0.02682 1.12639� 0.02226
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smeared-link data, in particular, for r0=r1 and r1=r2 in
Fig. 31, for afp4sr0=a and afp4sr1=a in Fig. 32, or for

ffiffiffiffiffiffiffi
σr20

p
with two different coefficients for the Coulomb term
in Fig. 33.
We provide further information regarding the distribu-

tion of errors from the different continuum extrapolations,
in particular, for r0=r1 and r1=r2 in Fig. 34, for afp4sr0=a
and afp4sr1=a in Fig. 35, or for

ffiffiffiffiffiffiffi
σr20

p
with two different

coefficients for the Coulomb term in Fig. 36. We show the
histogram of the Hessian regression errors together with
the error estimate from the width of the central values’
histogram and, in further panels, correlation plots between
the central values and the regression errors. In the case of

r0=r1, 64 instances in the left-most bin are due to fits with
zero degree of freedom (where we use zero for the error). In
all three cases among r0=r1, afp4sr0=a, and afp4sr1=a we
see a fairly sharp drop of the error distribution beyond
the bin containing our error estimate. While there is no
obvious correlation between central values and regression
errors for r0=r1, there are correlations between larger
regression errors and larger central values for afp4sr0=a
and afp4sr1=a. For r1=r2, this is quite different. Our error
estimate is significantly larger than the majority of regres-
sion errors. Although all regressions with large errors
correspond to high central values, not all regressions with
central values entail large errors. Lastly, for the string

FIG. 29. The potential scales ri=a, i ¼ 0, 1 multiplied by the two-loop β-function, fβ as in Eq. (3.8), for all ensembles (indicated by
colors) and smeared links. Any further details about the plot can be found in the caption of the corresponding figure for bare links in
Fig. 9 in Sec. III C.

FIG. 30. Continuum extrapolation of the parametrization of r0=r1 evaluated at the physical ml=ms-ratio for 6.0 ≤ β ≤ 7.28 as a
function of ða=r1Þ2. The black points show the bare-link data (left) and the smeared-link data (right) with the corresponding continuum
results shown in red. The lines and bands show the fit curves and errors, within the fit range in cyan, as extrapolations towards the
continuum or coarser lattices in red/orange, respectively. The gray solid line and band indicate the HotQCD result in (2þ 1)-flavor QCD
[16]. Note that the weighted average is absent in this figure since it is the same that is already shown in the corresponding panels for
extrapolation as a function of ða=r0Þ2 in Fig. 11 in Sec. IVA.
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FIG. 31. Continuum results (red) and smoothened data (other colors) for the ratios r0=r1 or r1=r2 are shown in the left or right
columns, respectively, as functions of ða=r0Þ2, using smeared-link data. The gray solid line and band show the (2þ 1)-flavor QCD
reference values [11,16]. The corresponding plot for bare links is shown in Fig. 13 in Sec. IV.

FIG. 32. Continuum results (red) and smoothened data (other colors) for afp4s r0;1=a are shown in the left or right columns,
respectively, as functions of ða=r0Þ2, using bare links. The gray solid line and band show the published (2þ 1þ 1)-flavor QCD values
[25,34] for r0 and r1, respectively. The corresponding plots for bare links are shown in Fig. 15 in Sec. IV.

FIG. 33. Continuum results (red) and smoothened data (other colors) for
ffiffiffiffiffiffiffi
σr20

p
assuming two different coefficients A for the Coulomb

term are shown in the left or right columns, respectively, as functions of ða=r0Þ2, using smeared links. The gray solid line and band show
the published (2þ 1)-flavor QCD value [14]. The corresponding plots for bare links are shown in Fig. 16 in Sec. IV.
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tension our error estimate is marginally larger than
the bulk of the distribution of errors, and there is no clear
pattern of correlation between the central value and the
regression error.

APPENDIX C: PERTURBATIVE QCD
FORMULAS

In this appendix, we collect various formulas obtained
in perturbative QCD that are used in Sec. V. Appendix C 1
contains the perturbative expansion coefficients for the
force in the case of massless quarks, Appendix C 2
provides the one- and two-loop corrections due to a
massive charm quark, and in Appendix C 3 one may find
the definitions of some special functions showing up in
Appendix C 2.

1. Coefficients in the force and coupling at two loops

The one- and two-loop coefficients, ai, appearing in
Eqs. (5.6) and (5.7) have been computed in

Refs. [110,135–138] and the three-loop coefficients, which
go beyond our accuracy, in Refs. [139–142]:

aðNf Þ
1 ¼ 31CA

9
−
10

9
Nf ; ðC1Þ

aðNfÞ
2 ¼

�
4343

162
þ4π2−

π4

4
þ22

3
ζ3

�
C2
A−

�
899

81
þ28

3
ζ3

�
CANf

−
�
55

6
−8ζ3

�
CFNfþ

100

81
N2

f ; ðC2Þ

aL3 ¼ 16π2

3
C3
A; ðC3Þ

where CA ¼ Nc ¼ 3, and CF ¼ ðN2
c − 1Þ=ð2NcÞ ¼ 4=3.

Note that ζn ≡ ζðnÞ ¼ P∞
i¼1 1=i

n is the Riemann zeta
function. The logarithmic terms affecting the static force
and potential are most conveniently extracted in an effective
field theory framework [4,5,143], as discussed in Sec. V, and

FIG. 34. Distribution of the errors (top) and correlation plots between central values and regression errors (bottom) for the ratios r0=r1
and r1=r2, respectively. The gray lines indicate our error and central value also shown in the histogram Fig. 14.
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FIG. 35. Distribution of the errors (top) and correlation plots between central values and regression errors (bottom) for the scales r0
and r1, respectively. The gray lines indicate our error and central value also shown in the histogram Fig. 17.

FIG. 36. Distribution of the errors (left) and correlation plots between central values and regression errors (right) for the string tensionffiffiffiffiffiffiffi
σr20

p
for the two different choices of the Coulomb parameter, respectively. The lines indicate our errors and central values, respectively,

also shown in the histogram Fig. 18.
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have been computed and resummed to all orders at N2LL and
N3LL accuracy in Refs. [4,112,113,144,145].

The running of the strong coupling αðNf Þ
s ðμÞ is deter-

mined by the β-function. The first two coefficients of the β-
function, β1;2, are scheme independent and given by

βðNf Þ
0 ¼ 11

3
CA −

2

3
Nf ; ðC4Þ

βðNfÞ
1 ¼ 34

3
C2
A −

10

3
CANf − 2CFNf : ðC5Þ

The coupling αðNf Þ
s ðμÞ with Nf massless flavors is related to

αðNf−1Þ
s ðμÞ with Nf − 1 massless flavors via

αðNfþ1Þ
s ðμÞ

¼ αðNf Þ
s ðμÞ

	
1þ

X∞
n¼1

½αðNfÞ
s ðμÞ�n

�Xn
l¼0

cnllnl
�
μ2

m2

��

:

ðC6Þ

Following [118] (see Refs. [146,147] for the four-loop
decoupling), we have for the first terms

c11 ¼
1

6π
; c10 ¼ 0; ðC7Þ

c22 ¼
1

36π2
; c21 ¼

19

24π2
; c20 ¼ −

11

72π2
; ðC8Þ

when m is the MS mass renormalized at the MS mass

scale: m ¼ mMSðmMSÞ.22

2. Finite-mass corrections

Adding the effect of a quark of mass m to Nf massless
flavors modifies the order αNs term in the static potential
from VðNfÞ;½N� into

VðNfÞ;½N�
m ¼ VðNfÞ;½N� þ δVðNfÞ;½N�

m : ðC9Þ

The correction due to the quark of finite mass m is known
up to two-loop accuracy. The Oðα2s Þ corrections have been
computed in Refs. [114–117,148]. At Oðα3s Þ, the correction
was computed first in momentum space in [115]. The
Fourier transform was performed (the coordinate-space
potential was studied using different integral representa-

tions in [115]) and δVðNfÞ;½3�
m ðrÞ was obtained also in one-

parameter integral form in [116,117]. Many of the original
references contain misprints; corrected formulas can be
found in Ref. [118].
At one-loop accuracy, the finite mass correction to the

static potential reads

δVðNfÞ;½2�
m ðr; νÞ ¼ −

CFα
ðNf Þ
s ðνÞ
r

αðNfÞ
s ðνÞ
3π

Z∞

1

dx fðxÞe−2mrx;

ðC10Þ

where fðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 1

p
=x2ð1þ 1=2x2Þ. At two-loop accu-

racy, the finite mass correction to the static potential is
given by

δVðNfÞ;½3�
m ðr; νÞ ¼ −

CFα
ðNf Þ
s

r

�
αðNf Þ
s

3π

�2

×

	�
9π2ðc20 − 2 lnðmrÞðc21 − 2c22 lnðmrÞÞÞ − ln2ðmrÞ þ 57

4
lnðmrÞ þ 11

8

�

þ 57

4
½f1Γð0; 2f2mrÞ þ b1Γð0; 2b2mrÞ� þ

�
−2 lnðmrÞ − 5

3
Nf þ

83

6

� Z∞

1

dx fðxÞe−2mrx

þ
�
33

2
− Nf

�Z∞

1

dx fðxÞðe−2mrx Eið2mrxÞ þ e2mrx Eið−2mrxÞ − 2 lnð2mrxÞÞ

−
Z∞

1

dx fðxÞe−2mrx

�
1

x2
þ 2 lnð2xÞ þ 8mrxþ fðxÞx ln x −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 1

p

xþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 1

p
�


; ðC11Þ

22In the PDG [99] and in Refs. [146,147] the coefficient c21 reads 11=ð24π2Þ because there the MS mass m in the decoupling relation
(C6) is taken at the renormalization scale μ. We follow Ref. [118] and understand the MS mass m in Eq. (C6) as computed at the MS
mass scale.
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where23

f1 ¼
lnA − ln b2
ln f2 − ln b2

; b1 ¼
lnA − ln f2
ln b2 − ln f2

;

f2 ¼ 0.470� 0.005; b2 ¼ 1.120� 0.010;

lnA ¼ 161=228þ 13ζ3=19 − ln 2: ðC12Þ

In Eq. (C11), Ei denotes the exponential-integral function
and Γ with two arguments denotes the incomplete gamma
function. Their definitions and some useful properties can
be found in Appendix C 3. The mass m in the above
formulas is the MS mass renormalized at the MS mass

scale: m ¼ mMSðmMSÞ.24
Decoupling requires that

VðNfÞ;½N�
m ðr; νÞ → VðNfÞ;½N�ðr; νÞ; for m → ∞; ðC13Þ

and

VðNfÞ;½N�
m ðr; νÞ → VðNfþ1Þ;½N�ðr; νÞ

þ OððαðNfÞ
s ÞNþ1Þ; for m → 0: ðC14Þ

One can verify analytically from the above expressions
that the expected decoupling conditions hold in the limits
m → ∞ and m → 0 at one (N ¼ 2) and two (N ¼ 3) loops.
For a numerical verification at two loops see Fig. 37. Since
we use expressions with Nf flavors in the right-hand side of
Eq. (C9), the decoupling (C13) is exact in them → ∞ limit.

Hence, in Fig. 37 theNf ¼ 3 green curve overlaps exactly at
large distances with the black curve obtained from theNf ¼
3 static energy plus charm-mass corrections. In contrast, the
decoupling in Eq. (C14) gets higher-order corrections when
expressing the three flavor coupling in terms of the four
flavor one. In order to account for these higher-order
corrections, in Fig. 37 we have matched the Nf ¼ 4 orange
curve with the black one at 0.08 fm by adding a small
constant to the static energy. The curves show the expected
behavior, i.e., the curvewith charm-mass effects interpolates
smoothly between the Nf ¼ 4 one at the short distances
(mc ≪ 1=r) and the Nf ¼ 3 one at large distances
(mc ≫ 1=r).

3. Special functions

The exponential-integral function is given by

EiðxÞ ¼ −
Z∞

−x

dt
e−t

t
¼

Zx

−∞

dt
et

t
; ðC15Þ

fulfilling (for x > 0) the relation

Eið−xÞ ¼ −Eið1; xÞ; ðC16Þ

where

Eið1;xÞ¼
Z∞

x

dt
e−t

t
¼
Z∞

1

dt
e−tx

t
¼
Z1

0

dt
e−x=t

t

¼−γE− lnðxÞþ
Zx

0

dt
1− e−t

t
⟶
x→0

− γE− lnðxÞ:

ðC17Þ

FIG. 37. Left: static energy obtained from integrating the static force at two loops, Eq. (5.6), for Nf ¼ 4 (orange curve), Nf ¼ 3 (green

curve), and for Nf ¼ 3 plus the two-loop charm-mass correction using mMS
c ðmMS

c Þ ¼ 1.28 GeV (black curve); all curves using three-
loop running of αs. The Nf ¼ 4 curve has been matched to the Nf ¼ 3 plus the two-loop charm-mass correction curve at 0.08 fm by
shifting the static energy by a constant. Right: like left but with the static force computed at N2LL accuracy, Eq. (5.7).

23This parametrization matches the one from Ref. [117] when
renaming f → c and b → d.

24For the numerical evaluation of the above integrals, it is
convenient to introduce the coordinate transformation
x → 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
, dx → vð1 − v2Þ−3=2dv, that transforms the in-

tegral boundaries from ð1;∞Þ to (0, 1).
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Note that Eið1; xÞ is the n ¼ 1 case of the general
En-function defined via

EnðxÞ≡ Eiðn; xÞ ¼
Z∞

1

dt
e−xt

tn
¼ xn−1Γð1 − n; xÞ: ðC18Þ

Γ with two arguments is the (upper) incomplete gamma
function,

Γða; xÞ ¼
Z∞

x

dt ta−1e−t⟶
a→0

Eið1; xÞ: ðC19Þ

It can be expressed in terms of the regular gamma function
and the lower incomplete gamma function as

Γða; xÞ ¼ ΓðaÞ − γða; xÞ; ðC20Þ

where

γða; xÞ ¼ xa

a
þ
X∞
k¼1

ð−1Þk
k!ðaþ kÞ x

aþk; ðC21Þ

such that

Γða; xÞ ¼ ΓðaÞ − xa

a
−
X∞
k¼1

ð−1Þk
k!ðaþ kÞ x

aþk

⟶
x→0

−
xa

a
; for a < 0: ðC22Þ
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