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We examine the dual graph representation of simplicial manifolds in causal dynamical triangulations
(CDT) as a means to build observables and propose a new representation based on the finite element
methods (FEM). In particular, with the application of FEM techniques, we extract the (low-lying) spectrum
of the Laplace-Beltrami (LB) operator on the Sobolev space H1 of scalar functions on piecewise flat
manifolds and compare them with corresponding results obtained by using the dual graph representation.
We show that, except for nonpathological cases in two dimensions, the dual graph spectrum and spectral
dimension do not generally agree, neither quantitatively nor qualitatively, with the ones obtained from the
LB operator on the continuous space. We analyze the reasons for this discrepancy and discuss its possible
implications on the definition of generic observables built from the dual graph representation.
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I. INTRODUCTION

The search for a reliable set of observables to probe the
geometry of simplicial manifolds, allowing the exploration
and characterization of the phase diagram, has become one
of the central pursuits of causal dynamical triangulations
(CDT) [1,2] of quantum gravity in recent years.
This search has led to the introduction of new observ-

ables and techniques, many of which are based on the dual
graph representation of simplicial manifolds, where geo-
metric information is encoded in the adjacency relations
between the elementary units of volume, called simplices.
To mention a few, Hausdorff [3,4] and spectral dimen-
sions [5–7] are built from processes that take place on the
graph dual to CDTs; however, other quantities, like the
spectrum of the Laplace matrix of graphs dual to CDT
spatial slices [8,9] and the recently proposed quantum
Ricci curvature [10,11], are also based on dual graph
constructions.

These observables have been proven to be unquestion-
ably valuable in capturing some relevant geometric proper-
ties of simplicial manifolds. In particular, observables built
from the dual graph representation are given the same
geometric interpretation as the ones defined using the space
of functions on the piecewise continuous manifolds.
Therefore, as the main goal of the present work, we find
it interesting to investigate how these graph-theoretical
representations compare with the representations of observ-
ables on the same simplicial manifolds from which they are
built, at least at the larger scales.
In order to proceed in this direction, we propose the family

of finite elementmethods (FEM),which, besides beingbacked
by a well-grounded mathematical framework [12–16], allows
us to properly represent local observables and coupling terms
with other fields or with higher derivative metric terms in the
action. Finite element methods are not new in physics, and
they have been employed to model a huge variety of circum-
stances: Indeed, FEMareone of themain tools ofmultiphysics
simulations [17,18], and they have also been found in recent
applications in lattice quantum field theory [19,20]. The FEM
framework has many similarities to the discrete exterior
calculus (DEC), which has recently been investigated in
CDT to study approximate Killing symmetries [21] and
tensorial Laplacian spectra [22].
Despite the many possibilities which can be explored

(we mention one of them in Appendix B), in this work we
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mainly set the stage for future FEM studies by treating a
specific problem: the Laplace-Beltrami (LB) eigenvalue
problem on CDT simplicial manifolds. In particular, after a
presentation of the basics of the FEM formalism, we
examine its behavior in some test cases and also compare
new FEM results with the earlier results of spectral analysis
on dual graphs presented in [8,9] and reviewed in [23].
What we find, besides the expected convergence behavior
of the FEM results to the spectrum of the LB operator on
the simplicial manifold, is a disagreement with the dual
graph method from a quantitative point of view: we try to
explain the reason why this happens in Sec. IV D by
studying a highly pathological situation, in which the dual
graph method fails to detect even some qualitative large-
scale features of the manifold. This motivates us to again
take into careful consideration the results obtained via dual
graph methods found in the literature, starting from the
spectral ones.
The structure of the paper is the following. In Sec. II we

review some general, representation-independent concepts
about the spectrum of the Laplace-Beltrami operator and its
relation with the geometrical properties of manifolds; in
Sec. II C we also explicitly show how the Laplace matrix of
a dual graph approximates the Laplace-Beltrami operator of
a simplicial manifold since it proves helpful in discussing
some specific features of the dual graph representation. The
finite element method formalism is briefly introduced in
Sec. III, leaving a detailed description of its application to
the solution of the Laplace-Beltrami eigenvalue problem on
simplicial manifolds to Appendix A. In Sec. IV we consider
some test geometries, for which we compare the spectra of
dual graph and FEM representations, showing the con-
vergence of the latter to the spectrum of the LB differential
operator and addressing the reasons why the first, instead,
exhibits noticeable discrepancies. Numerical results are
shown in Sec. V, where we compare the FEM results with
the earlier ones obtained by using the dual graph repre-
sentation. Finally, in Sec. VI, we conclude by giving some
remarks about the dual graph and the FEM formalism and
discussing future perspectives.

II. USEFUL RELATIONS BETWEEN THE
SPECTRUM AND GEOMETRY

The LB operator ð−ÞDμDμ can provide us with very
useful information on the geometry of a manifold.1

Currently, two ways of expressing the relationship between
the geometric properties of a Riemannian manifold and the
spectrum of the Laplace-Beltrami operator associated with
its metric have proved useful: through the properties of
diffusion processes on the manifold and by studying the

(cumulative) density of “energy levels” of the manifold, as
we review in Secs. II A and II B. Both ways lead to the
identification of typical (length or energy) scales of the
manifold and a suitable definition of a scale-dependent
“spectral dimension”.
In order to study the spectral properties of simplicial

manifolds corresponding to CDT configurations, some form
of approximation of the spectrum of the LB operator is
necessary. In this respect, a careful assessment of the
accuracy of the approximation used is then of utmost
importance since the relations with the geometrical proper-
ties of the manifold involve the spectrum of the LB differ-
ential operator, which is defined on an infinite-dimensional
space of functions. In previous works, the spectrum of the
LB operator has been approximated by the spectrum of
the Laplace matrix of the dual graph associated with the
triangulation (i.e., the graph of the connections between the
centers of adjacent simplices), as discussed in Sec. II C.

A. Diffusion processes

Following [1], let us consider a diffusion process on a
boundaryless manifold M, described by the heat equation

∂tuðx; tÞ ¼ DμDμuðx; tÞ; ð1Þ

and write uðx; tÞ on the basis of the eigenfunctions of the
Laplace matrix for each t:

uðx; tÞ ¼
X∞
n¼0

cnðtÞfnðxÞ: ð2Þ

Substituting this into Eq. (1), one obtains, for the coef-
ficients cnðtÞ,

d
dt

cnðtÞ ¼ −λncnðtÞ → cnðtÞ ¼ cnð0Þe−λnt; ð3Þ

with the solution u for the heat equation (1):

uðx; tÞ ¼
X∞
n¼0

cnð0Þ fnðxÞe−λnt; ð4Þ

with the coefficients cnð0Þ fixed by the initial conditions of
the diffusion process. A diffusion process on a manifold
without a boundary can be seen as a continuous-time
stochastic process, as the integral of the density u is
conserved in time:

∂t

Z
M

ddx
ffiffiffiffiffiffiffiffiffi
gðxÞ

p
uðx; tÞ

¼
Z
M

ddx
ffiffiffiffiffiffiffiffiffi
gðxÞ

p
DμDμuðx; tÞ

¼
Z
M

ddx ∂μð
ffiffiffiffiffiffiffiffiffi
gðxÞ

p
gμν∂νuðx; tÞÞ ¼ 0; ð5Þ

1In this work, we implicitly deal with the Laplace-Beltrami
operators acting on scalar functions only. Generalizations to
tensor fields are possible and should be considered if one wants to
consistently introduce matter and gauge couplings.
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where we have exploited a well-known expression for the
LB operator applied to a scalar function in terms of the
underlying metric.
Now let us consider a process starting from a density

concentrated at one point:

uðx; 0Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðgðxÞÞp δdðx − x0Þ: ð6Þ

The solution to the diffusion process u can be expanded
[24] for small t in the form (adding the argument x0 as the
starting point for the process)

uðx;x0; tÞ ∼
�
e−d

2
gðx;x0Þ=4t

td=2

�X∞
n¼0

anðx;x0Þtn; ð7Þ

where dgðx;x0Þ is the geodesic distance between points x
and x0. The term inside the square brackets reproduces the
behavior of the diffusion process on a d-dimensional flat
space. This can be expected from the observation that a
smooth manifold is always almost flat on small enough
scales, and small diffusion times are related to small length
scales since from the last equation we can see that the
typical length scale of the diffusion process is l ∼

ffiffi
t

p
.

A key related quantity is the average return probability
[5–7,25], defined as

PðtÞ ≔ 1

V

Z
ddx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðgðxÞÞ

p
uðx;x; tÞ; ð8Þ

with analogous expansion for small t:

PðtÞ ≈ 1

td=2
X∞
n¼0

Antn; ð9Þ

where An have been obtained by integrating the coefficients
anðx;xÞ of Eq. (7), and they are related to geometric
quantities such as volume, curvature, and diffeomorphism
invariant scalars built from the Riemann tensor [24].
For an infinite flat space, the return probability reads

PðtÞ ¼ 1

ð4πtÞd=2 ; ð10Þ

from which one can extract the dimension d by computing
the logarithmic derivative:

d ¼ −2
d logPðtÞ
d log t

; ð11Þ

which is constant in diffusion time.
Taking inspiration from these observations, it is possible

to use Eq. (11) to define a diffusion-time-dependent (and
therefore scale-dependent) spectral dimension for generic
manifolds [5–7]. From Eq. (4), it can be seen that, for

t ≫ 1
λ1
, the solution of the heat equation (1) approaches the

constant mode (relative to the null eigenvalue), and then
the spectral dimension approaches zero: this happens if the
spectrum is discrete, as is the case for compact manifolds
(and unlike Rd, for example), which appear pointlike (i.e.,
zero dimensional) at scales much larger than their typical
size. From the expansion in Eq. (9), instead, it is apparent
that for small scales (i.e., short diffusion times) the spectral
dimension coincides with the geometric dimension of the
manifold. Thus, interesting geometric information is
obtained when this quantity is evaluated at intermediate
diffusion times: a diffusion mode gives its main contribu-
tion to the spectral dimension as long as t≲ 1

λ (thus having a
typical length scale 1ffiffi

λ
p ) and is, in general, exponentially

suppressed as the diffusion time increases.

B. Energy level density

Another useful definition of dimension is based on the
integrated spectral density nðλÞ, defined as the number of
eigenvalues below a certain threshold s:

nðλÞ ¼
X
λi∈S

θðλ − λiÞ; ð12Þ

where S is the spectrum under consideration and θ is the
Heaviside step function.
An interesting result, involving nðλÞ, is the so-called

Weyl’s theorem [26]: the LB operator on smooth compact
manifolds is such that asymptotically (i.e., for large
eigenvalues) the integrated spectral density behaves as

nðλÞ ∼ ωd

ð2πÞd Vλ
d
2; ð13Þ

where d is the chart dimension of the manifold and ωd is
the volume of the d-dimensional ball of unit radius. This
relation can be interpreted as the dependence between the
integrated density of energy levels of the manifold and the
energy, as in quantum mechanics the LB operator repre-
sents the kinetic energy.
The asymptotic relation in Eq. (13) holds only for the

higher part of the spectrum; nonetheless, extending its
range of validity turns out to be useful in describing
manifolds whose dimensionality at some scale (corre-
sponding to a certain region of the LB spectrum) appears
different from its chart (UV) dimension d, leading us to the
definition of another kind of effective spectral dimension,
introduced in [8]:

2

dEFF
≡ d log λ

d logðn=VÞ : ð14Þ

In general, then, we assume that by studying the
behavior of λ as a function of n=V, we can detect the
appearance of particular structures related to a specific
dimensional behavior when the related length scale is

SPECTRAL ANALYSIS OF CAUSAL DYNAMICAL … PHYS. REV. D 107, 074501 (2023)

074501-3



reached. This length scale, let us refer to it as l, is related to
n=V by the relation n=V ∼ l−d, where d is the chart
dimension of the manifold, not only for dimensional
reasons but also because of this simple consideration:
suppose that the low part of the spectrum has effective
dimensionality D < d and that some the other “transverse”
dimensions d −D have typical scale l; then the behavior of
nðλÞ—up to the minimum value to excite the transverse
dimensions of about π2=l2 is reached—is something like
nðλÞ ¼ ωdðV=ld−DÞλD=2; substituting the turning-point
value of λ, we obtain what is stated above. Some additional
care is required with this relation when there are transverse
dimensions with different associated typical scales.

C. Laplace matrix of the dual graph

The eigenproblem of the LB operator on the simplicial
manifolds involved in CDT is not generally solvable by
analytical means; thus a proper approximation technique is
needed. The method used in earlier spectral studies consists
in substituting the real LB operator with the Laplace matrix
of the dual graph associated with the triangulation—that is,
the graph obtained by connecting the centers of the
d-simplices sharing a (d − 1)-simplex—and it is based
on the following idea, exemplified for convenience in two
dimensions: let us consider an equilateral triangle with
sides a and the center in the origin O of a Cartesian plane,
adjacent to three other equilateral triangles, whose centers
have coordinates fðxi; yiÞgi¼1;2;3, respectively; these points
are at a distance a=

ffiffiffi
3

p
from the origin, as depicted in Fig. 1.

The Taylor approximation to second order in a around O
for a function f evaluated at the points fðxi; yiÞgi¼1;2;3 reads

∀ i ¼ 1; 2; 3 fðxi; yiÞ ¼ fð0; 0Þ þ ðxi; yiÞ · ∇fð0; 0Þ
þ 1

2
½∂2xfð0; 0Þx2i þ ∂

2
yfð0; 0Þy2i þ 2∂x∂yfð0; 0Þxiyi�

þ oða3Þ: ð15Þ

Then, substituting the coordinates of the points

ðx1; y1Þ ¼
affiffiffi
3

p
� ffiffiffi

3
p

2
;
1

2

�
;

ðx2; y2Þ ¼
affiffiffi
3

p ð0;−1Þ;

ðx3; y3Þ ¼
affiffiffi
3

p
�
−

ffiffiffi
3

p

2
;
1

2

�
; ð16Þ

and summing the three formulas in Eq. (15), one obtains

fðx1; y1Þ þ fðx2; y2Þ þ fðx3; y3Þ − 3fð0; 0Þ

¼ 1

4
a2△fð0; 0Þ þ oða3Þ; ð17Þ

implying

△fð0; 0Þ ¼ 1

a2
4½fðx1; y1Þ þ fðx2; y2Þ þ fðx3; y3Þ

− 3fð0; 0Þ� þ oðaÞ: ð18Þ

A similar relation holds for the center of each triangle of
the simplicial manifold, so the LB operator is approximated
through a matrix acting on a vector space of dimension
equal to the number of triangles (the space of the possible
values of the function in the centers):

−△ ↔ L ¼ 3 · 1 − A; ð19Þ

where A is the adjacency matrix, whose entry Aij is 1 if the
triangles labeled with i and j are adjacent and 0 otherwise.
The factor 1

a2 is ignored since it is used as a measure unit,
while the factor 4 is an overall scale factor whose value will
be useful to compare the results with the new method that
we introduce in the next section.
In higher dimensions, analogous calculations that are

possible only for regular (i.e., equilateral) simplices lead us
to approximate the Laplace-Beltrami operator (forgetting
the overall constant) with the matrix

−△ → L ¼ ðdþ 1Þ · 1 − A: ð20Þ

It is straightforward, though quite tedious, to prove that in
generic dimensions d the overall numeric constant appear-
ing in the analog of Eq. (18) equals d2.
The matrix L in Eq. (20) shares many properties with the

LB operator: it is symmetric and positive-semidefinite,2

with a unique eigenvector associated with the zero

FIG. 1. Construction of the approximation of the LB operator
with the dual graph method.

2The positive-semidefiniteness of L comes from the fact that it
has positive elements on the diagonal and that it is diagonally
dominant; i.e., the absolute value of each diagonal element is
greater than or equal to the sum of the absolute values of the other
terms in the same row.
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eigenvalue, the uniform function.3 Moreover, L is sparse
(most of its entries are 0), thus making it possible to
numerically calculate its spectrum using specifically opti-
mized algorithms.

III. INTRODUCTION TO FINITE ELEMENT
METHODS FOR SPECTRAL ANALYSIS

As is apparent from the discussion in the previous
section, one reason we introduce an alternative method
to approximate the LB spectrum is that a faithful corre-
spondence between the spectrum of the Laplace matrix of
the graph dual to a triangulation and its exact Laplace-
Beltrami spectrum requires, at least, the simplices to be
regular, which is not the case for full CDTs, where generic
values of the parameter Δ encode the asymmetry between
spacelike and timelike links in Euclidean space.
Moreover, for the method we introduce, it is always

possible to set up an iterative procedure (Appendix A 3)
whose convergence to the exact spectrum of the LB
operator is guaranteed by standard theoretical results in
the literature. In the following, we outline the basic ideas
that the finite element method relies upon, leaving the
technical details of our application to CDT to Appendix A.
FEM are a family of approximation techniques for the

solutions of partial derivative equations that are widely
studied and applied in many fields where complex model-
ing is necessary [12–16]. Complex objects are decomposed
into simpler smaller parts to reduce the number of degrees
of freedom to a finite one, which is far easier to deal with.
The application of FEM in the context of the spectral

analysis of manifolds relies upon a weak formulation of the
Laplace-Beltrami eigenproblem, which, on a (simplicial)
manifold M without a boundary, takes the form4

−△fðxÞ ¼ λfðxÞ: ð21Þ

By multiplying both sides of this equation by an arbitrary
test function ϕ, and integrating over the whole manifold,
we obtainZ

M
ddx∇ϕðxÞ∇fðxÞ ¼ λ

Z
M

ddxϕðxÞfðxÞ; ð22Þ

where a step of integration by parts has also been
performed.
This second form, where f is assumed to be a reasonable

object (like a Sobolev function or a distribution), is
equivalent to the one in Eq. (21). Nonetheless, it is useful

to see the problem in this form because its natural
environment of definition is wider. The usual environment
for these kinds of problems is the Sobolev space H1ðMÞ,
the space of L2 scalar functions that admit weak first
derivatives, as it is a set of quite regular functions in which
it can be proved that solutions exist for the problem. In the
following, we refer to the spectrum of the LB operator on
the class of H1ðMÞ scalar functions as the exact LB
spectrum.
FEMs consist in solving a problem similar to the one

shown in Eq. (22) in a sequence fVrg∞r¼0 of particular
finite-dimensional subspaces of H1 with increasing dimen-

sion Vr → H1, whose eigenvectors fðrÞn and eigenvalues λðrÞn

converge to the exact LB eigenvectors and eigenvalues of
the infinite-dimensional problem (22) in H1.
In these finite-dimensional subspaces, as outlined in

Appendix A 1, the problem consists in nothing but an
eigenproblem of a finite-dimensional matrix, whose entries
are calculated in Appendix A 2.
Because of the (quite natural) choices we make to define

our sequence of subspaces for our simplicial manifolds, this
progression can be seen as a series of subsequent refine-
ments of the starting triangulation: each step consists in
subdividing every simplex of the triangulation into smaller
ones, while preserving a simplicial manifold structure. For
details, see Appendix A 3.

IV. COMPARISON BETWEEN FEM AND DUAL
GRAPH METHODS ON TEST GEOMETRIES

Before delving into the application of FEM to real CDT
cases, it is useful to investigate its behavior in some simple
exemplar situations. Besides providing us with some
checks on the expected convergence of the method to
the exact LB spectrum of the manifolds, this also allows a
useful comparison between the FEM and the dual graph
method.
We proceed as follows:
(1) We check the convergence of the method in some

cases where the exact LB spectrum on the manifold
is known analytically.

(2) We consider two-dimensional simplicial manifolds
made of regular simplices, where a refinement
procedure is also available for the dual graph
method, in order to show how both approaches
converge to the exact LB spectrum.

(3) We notice that our results imply that the standard
(not refined) application of both methods yields
estimates of the eigenvalues which can be signifi-
cantly at variance with the ones of the exact LB
spectrum, while the refined version (generally
unavailable with the dual graph method) shows
good convergence behavior.

(4) Finally, by means of a toy model, we provide a
reason why the eigenvalues obtained with the dual

3The zero mode is unique for manifolds with a single
connected component. In the case of the matrix L, it comes
from the fact that each row adds up to 0 since each d-simplex has
exactly dþ 1 neighbors.

4The minus sign is a convention mainly adopted in math-
ematics, which we follow since it makes the spectrum non-
negative.
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graph method typically undershoot the ones of the
exact LB spectrum.

A. Convergence of the method for manifolds
with known spectrum

First, we check the convergence of FEM to the exact LB
spectrum for some manifolds that can be seen as simplicial
manifolds and whose spectrum is known: flat toruses.
Indeed, these are nothing but flat parallelepipeds with
properly identified boundaries, and it is apparent that they
can be covered with simplices, though not with regular
ones, except for some specific ratios of their “sides”.
For a generic d-dimensional smooth torus, with lengths

fLμgdμ¼1, the LB spectrum reads

Sd½Lμ�≡
(
4π2

Xd
μ¼1

�
nμ
Lμ

�
2
����nμ ∈ Z; μ ¼ 1;…; d

)
; ð23Þ

where we order the eigenvalues in a nondecreasing fashion
and consider degenerate eigenvalues as distinct elements.
Figure 2 displays the eigenvalues obtained with FEM at

four subsequent refinement levels (see Appendix A 3) in
comparison with the exact LB eigenvalues from Eq. (23),
for a two-dimensional flat torus with arbitrarily chosen
sides Lx ¼ 3.1 and Ly ¼ 1.2. As expected from a theo-
retical point of view (see Appendix A 1), the FEM
eigenvalues converge to the exact LB spectrum from above
and are more accurate in the lower part of the spectrum (i.e.,
for larger scale modes).
The same behavior is observed for a flat torus in three

dimensions; the only difference found is in the computation
time needed to achieve the same precision, which becomes
greater the higher the dimension because the convergence
rate depends on the maximal diameter h among the

simplices [13,14] while the computation time depends,
given our choices, on the number of vertices, which, for the
same decrease in h, grows faster in higher dimension.
Results obtained for a 3D flat torus with Lx ¼ 1.4,
Ly ¼ 1.9, and Lz ¼ 1.2 are shown in Fig. 3. A similar
behavior is also observed for higher-dimensional toruses,
which, however, do not add interesting information to what
we have already shown.

B. Focus on dimension two: Refinement
for the dual graph method and convergence
of FEM for irregular simplicial manifolds

Here, we investigate what happens with two-dimensional
toruses which can be covered by equilateral triangles
(those with Ly ¼

ffiffiffi
3

p
Lx), as they allow a direct comparison

between FEM and the dual graph method. Notice that, for
such a comparison, the overall numeric factor in Eq. (18)
(4, in two dimensions) becomes relevant.
As anticipated above, a particularity of dimension two

is that we can think of a refinement procedure of the
simplicial manifold that allows us to iterate the dual graph
method: it consists in dividing each equilateral triangle into
four new ones by connecting the middle points of the sides
of each triangle with three new links. Figure 4 shows the
spectra in the case of a two-dimensional flat torus made of
20 rows of 20 equilateral triangles of unit sides (Lx ¼ 10)
with properly identified boundaries. At increasing refine-
ment levels, besides the expected convergence of the FEM
spectrum to the exact LB spectrum (from above), we also
observe a convergence of the dual graph spectrum from
below, even if we do not have a well-settled theory ensuring
this behavior (unlike in the FEM case). The interpretation
of this behavior is fundamental (see Sec. IV D).
The dual graph method behaves in the sameway as in the

previous example on a less regular object, like a typical
two-dimensional CDT configuration, whose exact LB
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n

0
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800

n

FEM, ref. 0
FEM, ref. 1
FEM, ref. 2
FEM, ref. 3
Real spectrum

FIG. 2. Convergence of the first 100 eigenvalues, obtained
through FEM, to the exact spectrum for a 2D flat torus with spatial
sizes Lx ¼ 3.1 and Ly ¼ 1.2. We show that a sufficient number of
refinement levels reach convergence to the real spectrum within
1% of relative error in the lowest part of the spectrum.
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FIG. 3. Convergence of the first 100 eigenvalues obtained via
FEM to the exact spectrum for a 3D flat torus with spatial
dimensions Lx ¼ 1.4, Ly ¼ 1.9, and Lz ¼ 1.2.
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spectrum cannot be computed by analytical means. This
helps us check the convergence properties of FEM even on
such an irregular object: in Fig. 5, indeed, we can compare
the two methods as they progressively reach an agreement,
following two opposite trends (FEM from above and dual
graph from below), on guessing the exact LB spectrum on
this real-life CDT object. Not very surprisingly, computa-
tion times are worse than for more regular geometries.

C. General inaccuracy of the dual graph method
in the case of no refinement steps

Besides being a check for the convergence of FEM, the
two examples of the previous section testify to the fact that

the spectrum of the Laplace matrix of the original unrefined
dual graph quantitatively differs in a non-negligible way
from the exact LB spectrum: indeed, we stress again that,
in more than two dimensions, no refinement for the dual
graph is available, so the situation one faces is the same as
in Fig. 5 but with only the zeroth refinement (the original
triangulation). An example of this is shown in Fig. 6,
depicting the spectrum obtained with the two methods on a
spatial slice of a 4D CDT configuration coming from a
point in the CdS phase (using 9 as the overall factor for the
dual graph method).
In the next section we show that the difference of the dual

graph spectrum from the exact one can be so large that it
could lead to a misrepresentation of even some important
(large-scale) qualitative features of the simplicial manifold.

D. Issues of the dual graph method:
Discussion and a toy model

In order to understand the reasons for the quantitative
discrepancies shown in the previous section between the
(unrefined) dual graph spectrum and the exact LB spectrum,
it is important to establish why the first seems to systemati-
cally underestimate the second, as apparent from Figs. 4–6.
Regarding this observation, we have a tentative explan-

ation, which we think may prove to be quite compelling
after we show a simple toy model serving as a worst-case
scenario.
As explained in Sec. II A, if we consider a diffusion

process on a manifold, the eigenvalues of the LB operators
are associated with the typical time rates of the diffusion
modes and to the typical length scales of the manifold.
When we build the dual graph associated with a simplicial
manifold, we lose part of the metrical information that is
relevant to a diffusion process on that object, which is not
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FIG. 4. Convergence of the first 100 eigenvalues, obtained via
FEM and the dual graph method, for a 2D flat torus made of 20
rows of 20 equilateral triangles with unit sides, with appropriate
identification. Dual graph eigenvalues have been multiplied by 4
for comparison with FEM ones, as explained in the text.
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FIG. 5. Convergence of the first 100 eigenvalues of the LB
operator, discretized by means of the two methods, on a random
test CDT configuration in two dimensions. The configuration has
a total volume of 2602 and 1301 vertices. Dual graph eigenvalues
have been multiplied by a prefactor 4 for comparison with the
FEM ones, as explained in the text.
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FIG. 6. Convergence of the first 100 eigenvalues of the LB
operator, obtained by means of the two methods, on a spatial slice
(with VS ¼ 2631) of a random test CDT configuration in four
dimensions. Dual graph eigenvalues have been multiplied by 9
for comparison with the FEM ones, as explained in the text.
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merely made of the adjacency relations between simplices.
A diffusion process on a simplicial manifold takes place in
the whole physical space of which it is constituted and not
only along the segments connecting the centers of adjacent
simplices: the main consequence of this fact is that in the
dual graph case the distance between the two centers
“perceived” by a diffusing particle is incorrectly repre-
sented by the adjacency matrix, as if the particle was
constrained to diffuse along the segments joining the
centers instead of going from one point to another along
the shortest path (i.e., a geodesic of the simplicial mani-
fold). This happens because we have lost the memory of the
metrical information (and, in some sense, also of the
topology, as we will show in the toy model) of everything
except the centers, the edges between them, and the angles
between the edges (which the correspondence to the LB
operator relies upon). Therefore, we claim that all typical
length scales are overestimated, and the error depends on
how badly the geodesics are approximated by broken lines
passing through the centers, thus resulting in the under-
estimation of the eigenvalues they are associated with; this
idea is depicted in Fig. 7.
In light of these considerations, the observed conver-

gence, from below, of the eigenvalues in two dimensions,
where a meaningful refinement procedure is available, can
be naturally understood as the fact that shortest paths
connecting centers in the dual graphs continue to approach,
at increasing refinement levels, the true geodesics of the
simplicial manifold.
The information we lose by neglecting the flat interior of

simplices does not have to be taken into account when we
set up simulations using the Einstein-Hilbert action in the
coordinate-free Regge formalism because that requires only
the total volume and the total curvature, information that
can be represented in terms of combinatorial observables.
However, in order to describe the geometry of a simplicial
manifold in terms of local observables (like the propagation
or diffusion of test fields), one has to take into consideration
the whole geometrical structure, including that information.

An objection to the necessity of the FEM representation
as a substitute for that of the dual graphs could be that, since
the interior of a simplex in the original triangulation is flat
and its sizes are comparable with the lattice spacing, the
results expected using dual graph techniques (including
nonspectral ones) would have no substantial effect on large-
scale observables, whose correlation lengths are assumed to
be much larger than the lattice spacing, therefore making
dual graph results inaccurate only for small-scale features
which would be discarded anyway. However, even if this
argument works sometimes (e.g., for hypercubic lattices
representing flat spaces), it does not hold in this case. The
key fact is that the length scales provided by the dual graph
method do not correspond to actual physical scales of the
manifold in a clear way, and the relation depends on the
geometric properties of the manifold under analysis, as
the geodesic overestimation resulting from the dual graph
representation can severely and differently impact the
observables, even at large scales. This geodesics overesti-
mation can be responsible for arbitrarily poor estimates
when the total volume goes to infinity5 since it is possible
for the dual graph method to detect the biggest length scale
as going to infinity when it is actually staying finite. This
would result in the dual graph method yielding a vanishing
spectral gap in the infinite volume limit, with the real LB
spectrum actually having a lasting nonzero gap.
Indeed, it is not hard to realize that the worst case of

distance overestimation happens in the neighborhood
of (d − 2)-simplices with high coordination numbers (i.e.,
those associated with a high local negative curvature): the
geodesic distance between the centers of two “opposite”
d-simplices sharing a (d − 2)-simplex with many d-simplices
surrounding it, which is roughly the diameter of the
d-simplices, is very badly estimated by a broken line
passing through the centers—a very long (half) loop around
the (d − 2)-simplex. This observation inspires the con-
struction of a simple 2D model that we now discuss: we
consider an arbitrary number of triangles all sharing the
same vertex, with each of the coordinated links in common
between the two of them; then, in order to make the
manifold boundaryless, we take a second identical “sheet”
of triangles, forcing each triangle of the first sheet to share its
third side with the third side of the corresponding triangle of
the second sheet. In this setting, we show how, by increasing
the total volume, the FEM correctly detects an almost
constant nonvanishing spectral gap, while the dual graph
method yields a vanishing one since it represents this object
essentially as a discretization of S1 × f0; 1g.
Because of the highly pathological geometry, it is not

easy to push the FEM to convergence, which, in this
particular case, is slower for lower-order eigenvalues than
for higher-order ones: within reasonable computation times

FIG. 7. Example of the physical distance between two centers
being overestimated by the path through centers connecting them.

5A situation we have to deal with in the application to CDT,
where it represents the infinite volume limit.
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we could achieve stable estimates (within 1%) of the orders
between, say, n ¼ 10 and n ¼ 20, but not of the spectral
gap. Given that we have a specific interpretation of the
meaning of the spectral gap, we prefer to focus on it rather
than on other orders: even without explicit achievement of
convergence, in Fig. 8 we can see how when the volume
increases (we use the progression V ¼ 100, 200, 400, 800,
1600), the spectral gap seen at each refinement step by the
FEM is almost constant, with values that become more and
more similar at increasing volumes, as can be seen in the
inset plot. The exact LB spectral gap, i.e., the one at the
infinite refinement level, gets the same nonzero value
independently on the volume. This is expected, with the
diffusion rate being more related to the finite manifold

diameter (the maximum of minima among path lengths)
than to its volume.
The dual graph method, instead, detects a spectral gap

quadratically decaying to zero for the same volume pro-
gression as above, as one can predict by considering the
aforementioned S1 structure of the dual graph of this
simplicial manifold. This is shown in Fig. 9.
We have seen that the dual graph method gives estimates

that not only quantitatively differ from the exact LB
spectrum on the manifold (with the consequent different
estimates for related spectral observables, as we show
below) but can also fail to reveal some important qualitative
geometrical features such as a finite diameter for infinite
volume, a situation that might even be irrelevant for CDT,
where infinite volume represents the thermodynamic limit,
even if the randomness of geometry prevents such extreme
situations from happening.

V. NUMERICAL RESULTS

Having explained our motivations for applying the FEM
to the study of the LB spectrum on simplicial manifolds,
here we show it in action on CDT, where we obtain results
that significantly differ from the analogous ones obtained
by using the dual graph method. In particular, for the sake
of comparison, we consider the large-scale dimension of
spatial slices in the CdS phase and the critical index of the
Cb-CdS transition along the line k0 ¼ 0.75, which were
already investigated in [9] using dual graph methods.
Both of these results involve the spectral analysis of

spatial slice submanifolds, for which the thermodynamic
limit is assumed to coincide with the behavior at large
spatial volume VS: the underlying assumption is that the
overall volume fixing, if large enough (in all of our
simulations, VS;tot ¼ 80k), does not significantly affect
the features of spatial slices. This assumption should be
verified by checking the stability of the results under the
increase of the total spatial volume, a computationally
demanding operation that we postpone to future works; our
main aim here is to show the potential of these methods.
Furthermore, since computational costs for even the low
part of the FEM spectrum grow rapidly when the refine-
ment level increases, we need to resort to an extrapolation
at the infinite refinement level, as we discuss next.
In summary, the three limiting procedures should be

performed in the following specific order:
(i) For each simplicial manifold M, first perform an

extrapolation of the individual FEM eigenvalues to

the “infinite refinement level” λðrÞn ½M�⟶r→∞
λð∞Þ
n ½M�,

in order to obtain an accurate enough approximation
of the spectrum of the exact LB differential operator
on M.

(ii) For each ensemble of configurations at specific
values of the parameters, perform an average of
the eigenvalues at each specific order n and then take
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FIG. 8. Estimate for the spectral gap as a function of the
refinement step for the toy model at various volumes. For a given
refinement step, the estimates for the spectral gap are very similar
for big volumes; thus, the exact value is expected to be essentially
the same, too.

FIG. 9. Spectral gap detected via the dual graph method for the
toy model at various volumes. The value vanishes quadratically
as expected. Both scales are logarithmic.
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the thermodynamic limit (i.e., infinite volumes in

lattice units) hλniV≡ 1
jCV j

P
M∈CV λ

ð∞Þ
n ½M� ⟶V→∞ hλni∞

by considering the spectra of ensembles CV with
increasing volumes.

(iii) Study the critical scaling of the twice-extrapolated
eigenvalues hλni∞ðk0;ΔÞ observed as the phase
transition is approached.

A. Extrapolation to infinite refinement

Both of the results we show are relative to the LB
spectrum on the spatial slices, so there is great variability in
the volumes: first, we group the slices in a proper number of
volume bins (excluding ones that are too small). This is
necessary, regardless of the extrapolation step,6 in order to
study the thermodynamic limit; indeed, this was also done
when the dual graph method was used (see [9]). Then, for
each fixed refinement level, we average the eigenvalues
of each fixed order n of the slices in each volume bin,
using the standard deviation of the mean as a measure of
uncertainty; finally, we extrapolate the value for the infinite
refinement level for each order and bin, which we read as a
reasonable estimate of the average in that volume bin of the
exact LB eigenvalues of that order.
The functional form we use for our extrapolation is

λðrÞn ¼ λð∞Þ
n þ Ane−r=Bn ; ð24Þ

where r is the refinement level, An and Bn are two
parameters that depend on the order of the eigenvalue

and on the volume bin, and λð∞Þ
n is the extrapolated value.

The reason why we use this form is that the most relevant
parameter for the convergence of FEM is the maximal
diameter h among the simplices of the triangulation: the
convergence to the exact LB eigenvalues [13,14], given that
the simplices are not too pathological (e.g., having very
acute angles), can actually be faster than a power of h.
Assuming our “average” convergence happens exactly
according to a power of h, from the fact that in our case
h is halved at each refinement step, we obtain

λðrÞn ¼ λð∞Þ
n þ hk ¼ λð∞Þ

n þ h02−rk; ð25Þ

which can be rewritten in the form of Eq. (24). We show
below that our data are in good agreement with this picture.

B. Large-scale spectral dimension
of spatial slices in CdS phase

In previous studies with dual graphs [8,9,23], the large-
scale effective dimension of the spatial slices in phase CdS
seemed to be almost independent of the point in the CdS
phase and compatible regardless of the definition of
dimension: the diffusive one and the one based on energy
levels, both introduced in Sec. II.
It is reasonable to choose to analyze two of the phase

space points in which the known estimates are obtained,
that is, ðk0;ΔÞ ¼ ð2.2; 0.6Þ and ðk0;ΔÞ ¼ ð0.75; 0.7Þ. The
maximum number of refinements levels we can analyze
with the resources available is r̄ ¼ 3 (besides the starting
triangulation, labeled as r ¼ 0). In both cases, the bins we
use are of equal volume extent and are chosen in such a way
that the slices are, more or less, equally distributed;
moreover, we exclude from the analysis slices with
volumes VS < 500, for which finite volume effects could
be significant. The best fit of the extrapolations performed
for each volume bin, according to the functional form in
Eq. (24), shows, in almost every case, a good agreement
between data and our chosen heuristic form, with χ2

ranging from 0.5 to 3.5 (1 degree of freedom). Then, for
both of the points, we perform two different best-fit
procedures to find an estimate of the large-scale spectral
dimension. The first form we consider is

hλni ¼ AnV
−2=dEFF
S ; ð26Þ

for a global fit using the first ten eigenvalue orders with
dEFF and fAng10n¼1 as free parameters (with dEFF in
common for every order n).
The second form we consider is

hλni ¼ ðn=VSÞ2=dEFF ; ð27Þ

which, like the previous one, can be obtained from Eq. (14),
again for the first ten orders, where the effective dimension
dEFF is the only free parameter, corresponding to the
dimension of the simplicial manifold at the largest scale
(lowest part of the spectrum).
At each point, we also perform the same two procedures

by using the values that can be extrapolated from the first
two refinements only, in order to have a further indication
of the goodness of our heuristic extrapolation method by
confronting the obtained results with (r̄ ¼ 3) and without
(r̄ ¼ 2) using the third refinement. We find general com-
patibility of the extrapolated values of hλni, with a slight
systematic overestimation in the case without refinement 3
with respect to the other.
Fit results for the point ðk0;ΔÞ ¼ ð2.2; 0.6Þ are shown in

Table I, where the functional forms in Eqs. (26) and (27)
with refinements up to r̄ ¼ 2 and r̄ ¼ 3 have been
considered independently. Figure 10 represents extrapo-
lated eigenvalues and the best fit with the function in

6Since the systematical error of the extrapolation for each order
n and on each single slice is expected to be smaller than the
statistical error due to the variability of the eigenvalue estimate on
a volume bin, it is useful to proceed by extrapolation only after
volume binning instead of as described ideally in the scheme
outlined in the list above.
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Eq. (26) including the third refinement (r̄ ¼ 3), while
Figure 11 shows the same in the case of a fit with
the function in Eq. (27). The compatibility between the
estimates with (r̄ ¼ 3) and without (r̄ ¼ 2) the third
refinement is not exceptional but also not terrible, and,
in general, the first estimate is preferred, of course, as it
involves a broader data set.
In general, as can be seen, data fit a large-scale finite and

fixed effective dimension well, and the two different best-fit
procedures return compatible estimates for the effective
dimension; however, this dimension significantly differs
from the previously known value of about 1.6 found in [8].
We choose as our conservative estimate the average of the
two most reliable estimates (r̄ ¼ 3): dEFF ¼ 2.088ð18Þ
(with the semidispersion as the error).
As for the point ðk0;ΔÞ ¼ ð0.75; 0.7Þ, we perform the

same kind of analysis, obtaining the results shown in
Table II. The plots for this point of the phase diagram
are qualitatively similar to 10 and 11, and will not be
shown. As before, the results are somewhat compatible, and
the estimates with r̄ ¼ 3 are preferred. Again, we see the
expected fixed and finite-dimensional behavior, and the
estimated dimension significantly differs from that of
about 1.6 found in [9]: our conservative estimate is
dEFF ¼ 2.202ð16Þ.

Interestingly, the two final estimates, besides being
incompatible with the ones previously known in the
literature, appear to be quite different for the two phase
space points; up to now, it has been believed that this
dimension is almost constant across the CdS phase. This
may be worthy of further inquiry as it might turn out to be
significant, for example, for the study of the RG flow
properties in that phase.

C. Critical index of Cb-CdS transition

The most interesting result from [9] is the analysis of the
critical behavior of the low spectrum of B-type slices in
phase Cb while approaching the Cb-CdS transition along
two lines of constant k0. Here, we compare the results
from [9], obtained using dual graph methods, with the
application of FEM to the same configurations, in particu-
lar, checking the value of the critical index ν in the shifted
power law:

hλni∞ ¼ AnðΔcrit − ΔÞ2ν: ð28Þ

We analyze some points along the line k0 ¼ 0.75 only and
consider the critical scaling of the first ten orders of
eigenvalues at the same time. First, we extrapolate to the
infinite refinement level, in the same way as described
above using Eq. (24) on data coming from refinements 0 up

TABLE I. Fit results of the functional forms in Eqs. (26) and
(27) for the FEM extrapolations of the first ten orders of
eigenvalues (see Figs. 10 and 11) for spatial slices of configu-
rations at the point ðk0;ΔÞ ¼ ð2.2; 0.6Þ.
Fit function dEFF [χ2=dof], Eq. (26) dEFF [χ2=dof], Eq. (27)

r̄ ¼ 2 2.129(34) [4=99] 2.14(3) [5=108]
r̄ ¼ 3 2.084(16) [15=99] 2.091(12) [16=108]

FIG. 10. Extrapolated first ten orders of eigenvalues vs 1=VS
for big enough slices (VS > 500), with best-fit curves according
to Eq. (26) (common dEFF). The phase space point is k0 ¼ 2.2,
Δ ¼ 0.6, and the volume fixing is VS;tot ¼ 80k.

FIG. 11. Same as in Fig. 10, but using Eq. (27) as the fitting
function, and the data collapse by using n=VS as an independent
variable.

TABLE II. Fit results of the functional forms in Eqs. (26) and
(27) for the extrapolations of the first ten orders of eigenvalues for
spatial slices of configurations at the point ðk0;ΔÞ ¼ ð0.75; 0.7Þ.
Fit function dEFF [χ2=dof], Eq. (26) dEFF [χ2=dof], Eq. (27)

r̄ ¼ 2 2.28(3) [7=99] 2.25(2) [10=108]
r̄ ¼ 3 2.216(15) [23=99] 2.187(11) [34=108]
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to r̄ ¼ 3, and then to the thermodynamic limit (VS → ∞)
for each order. For this second procedure, not having
precise expectations on the large-scale behavior but using
the fact that each order should not approach zero, we
follow [9] and use the simplest form compatible with data,
that is, a quadratic polynomial in 1=VS:

hλni ¼ hλni∞ þ An

VS
þ Bn

V2
S
: ð29Þ

For every phase space point taken into account, both
procedures give satisfactory results in terms of the agree-
ment between data and the model: for the infinite refine-
ment extrapolations, the chi-squared is 2 in the worst case
(with 1 dof), while the thermodynamic limit extrapolations
always yield χ2=dof < 1. For illustration purposes, Fig. 12
displays the extrapolation to the thermodynamic limit for
the first ten eigenvalue orders in the phase space point
k0 ¼ 0.75, Δ ¼ 0.575. We then analyze the first ten
eigenvalue orders by fitting our data with Eq. (28), forcing
the critical index ν and the critical point Δcrit to be the same
for every order. We use data from eight phase space points
with Δ ranging from 0.45 to 0.625: we choose not to go too
deep inside the Cb phase because of the influence of the
expected subdominant terms of the critical scaling, and we
exclude them by checking the stability of our estimate of ν
under the removal of the points with lower Δ parameters.
We obtain, as best-fit parameters, ν ¼ 0.293ð10Þ and
Δcrit ¼ 0.6316ð15Þ, with χ2 ≈ 67 (68 dof); our data and
best-fit curves are displayed in Fig. 13.
It is apparent that data (from a bigger data set) are still

compatible with the critical scaling found in [9], but, while
the estimated location of the transition line agrees with the
previous findings, the value we find for the critical index
significantly differs from the previous estimate. We remark

that a difference like this may be of great importance if
critical indices of different observables have to be com-
pared to find a physical continuum limit in the phase
diagram.

VI. SUMMARY AND CONCLUSIONS

In this work, we have reviewed some concepts about
spectral analysis on simplicial manifolds using the dual
graph representation, discussing its domain of definition
(triangulations with equilateral simplices, which can be
mapped to undirected graphs), and its limitations, being an
approximation to the Laplace-Beltrami operator (in the
sense recalled in Sec. II C) acting on the whole infinite-
dimensional H1 space on the simplicial manifold.
In order to extend the use of the spectral observables

beyond this domain, we introduced the finite element
method formalism and its application to the solution
of the LB eigenproblem (Sec. III, with details left to
Appendix A). The two representations, the dual graph
and FEM, were compared on a series of test geometries in
Sec. IV, showing that, while the dual graph method and
FEM display convergence to the same spectrum when a
refinement procedure is applicable in both cases (that is,
only for two-dimensional equilateral triangulations), when
this procedure is not available, the results provided by the
two methods differ in a non-negligible way.
We tried to explain this disagreement between the dual

graph and FEM representation by identifying the main
reasons in the phenomenon of geodesics overestimation,
and in the lack of a general procedure ensuring convergence
to the exact spectrum of the LB differential operator (which
is linked to the geodesics of the simplicial manifold in the
way outlined in Sec. II A); this spectrum was instead

FIG. 12. First ten eigenvalue orders of spatial slices (with
VS > 500) vs 1=VS, with extrapolation to the thermodynamic
limit (VS → ∞) in the Cb phase. The phase space point is
ðk0;ΔÞ ¼ ð0.75; 0.7Þ, and the total spatial volume is VS;tot ¼ 80k.

FIG. 13. Critical behavior of the first ten eigenvalue orders
along the line at fixed k0 ¼ 0.75 and varying Δ, with best-fit
curves of the form shown in Eq. (28) with common ν and Δcrit.
Curves of increasing eigenvalue order are shown from bottom to
top in the plot.
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obtained as the limit of the FEM procedure at the infinite
refinement level, “curing” the geodesic overestimation. We
showed that this overestimation can also affect the large-
scale behavior of observables, in particular, when large
loops in the dual graph are involved (a loop being made of
many d-simplices encircling a d − 2-simplex), as discussed
using an illustrative toy model in Sec. IV D.
Finally, in Sec. V, we compared some earlier dual graph

spectral results on CDT spatial slices with the results of the
application of the FEM approach. We showed that the FEM
effective dimension observed on spatial slices in two points
of the phase diagram in theCdS phase region is significantly
different from the one observed using dual graph tech-
niques and that while the dimensions for the two points
seemed to be compatible in the dual graph case, with
dEFF ≃ 1.6, they are detected as incompatible in the FEM
case. We have also investigated again, but using FEM
techniques, the critical behavior near the Cb-CdS transition
along a line in the Cb phase at k0 ¼ 0.75 as in [9]: while our
estimation of the critical parameter Δcrit is compatible with
the earlier result, we found that the critical index signifi-
cantly differs from the previous estimate.
We regard this last result as the most relevant of ours, as

it points out that the use of the dual graph method might be
questioned in some cases. Observing different critical
indices in the approach to a phase transition line indeed
implies that the length scales found by using the two
methods cannot be simultaneously compared with other
length scales coming from different observables to look for
a continuum limit.
While the FEM, extrapolated at high refinement levels,

gives access to large-scale properties of the full simplicial
manifold, one big advantage of the dual graph approach is
its relatively low computational cost. It might well be that
in approaching a CDT continuum limit the two methods
would show an agreement or that their disagreement could
be corrected by studying the scaling of some dimensionless
parameters that may connect the length scales provided by
the two methods. Nevertheless, we believe our warning
should be taken into account by future studies, and the
FEM should remain as a useful tool for CDT investigations.
The broadness of the finite element method framework

allows for extensions and variations for which we had no
time or resources to consider in this work. For example, the
freedom in the choice of the refinement procedure can
make for faster convergence by using higher-order basis
functions, or a mix of these with mesh refinements, or other
types of FEM representations. Furthermore, in this work,
we have only considered the application of FEM to the LB
eigenproblem, but the formalism is powerful enough to
undertake more general tasks, like a properly defined
representation of the introduction of new coupling terms
in the action, both gravitational [fðRÞ extensions] and with
matter and gauge fields (whose propagation properties
would be unbiased by the geodesic overestimation of the
dual graph representation), or the study of observables

which have been limited in their definition by the attempts
of embedding them in a dual graph structure, like the
Wilson loop observable introduced in [27]. In general,
having access to the true geodesics of the simplicial
manifolds (or at least to an arbitrarily good approximation
of them) can also be useful, for example, to build and
describe light cone observables, which may have, in
principle, interesting phenomenological implications.
We plan to discuss the more challenging task of applying

FEM techniques to the LB eigenproblem of full four-
dimensional CDT configurations in a future work, as the
refinement procedure requires more computational resour-
ces at higher dimensions. Apart from the geodesic over-
estimation, for the analysis of the four-dimensional CDT
configuration there is also the problem that the dual graph
cannot faithfully represent the metrical properties of trian-
gulations but only their adjacency relations since the Wick-
rotated spacelike and timelike links do not have, in general,
the same length (apart for Δ ¼ 0); we stress again that
the Laplacian matrix of the dual graph has a clear relation
with the LB operator only for equilateral triangulations.
Therefore, the FEM formalism (or any other formalism
taking into consideration the anisotropy in four-dimen-
sional 4-simplices) could be used instead, and this may
have, for example, important effects on the form of the
dimensional reduction pattern [6]. We have also left out
an analysis of the structure of FEM eigenvectors, which,
together with the eigenvalues, contain complete informa-
tion on the geometrical properties of the manifolds. A
possible application of the eigenvectors is briefly discussed
in the Appendix B, where we define a Fourier transform of
the local curvature observable, which can be useful, for
example, for the construction of a smoothed curvature
observable (by truncating contributions from eigenvectors
associated with eigenvalues above a threshold).
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APPENDIX A: TECHNICAL DETAILS
OF THE APPLICATION OF FEM

TO CDT SIMPLICIAL MANIFOLDS

In the following, we explain in detail how we apply the
FEM to our case of interest—the calculation of the LB
eigenvalues on a simplicial manifold. In Appendix A 1 we
show that each step of the method consists in solving the
eigenproblem of a finite-dimensional, symmetric matrix; in
Appendix A 2 we explain how we calculate the matrix
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elements and solve this problem for each step; in
Appendix A 3 we outline the way we choose the sequence
fVrg∞r¼0 of subspaces of H

1 we need for the application of
the FEM, which, in our case, turns out to be a refinement
procedure for our simplicial manifold.

1. LB eigenproblem in a FEM
finite-dimensional subspace

As stated in Sec. III, in each step of the FEM the LB
eigenproblem is reduced to the eigenproblemZ

M
ddx∇ϕðxÞ∇fðxÞ ¼ λ

Z
M

ddxϕðxÞfðxÞ; ðA1Þ

in a generic finite-dimensional subspace V. The method
requires that, besides f, the test functions are picked from
this subspace, which means that the problem (A1) reduces
to a finite set of linear conditions. Indeed, let fϕigi¼1;…;N be
a basis of this subspace. In this way, any function f ∈ V can
be written as

fðxÞ ¼
XN
i¼1

ciϕiðxÞ: ðA2Þ

For each basis function ϕi, Eq. (A1) can be rewritten in
the form of a finite-dimensional generalized eigenvalue
problem:

Lc⃗ ¼ λMc⃗ ðA3Þ

where we have introduced the two matrices L and M with
matrix elements

Li;j ≡
Z
M

ddx∇!ϕiðxÞ · ∇!ϕjðxÞ; ðA4Þ

Mi;j ≡
Z
M

ddxϕiðxÞϕjðxÞ: ðA5Þ

Bothmatrices are symmetric;M is positive-definite (c⊤Mc is
nothing but the integral of the square of a function),
and L is positive-semidefinite (c⊤Lc is the integral of the
squaregradient of a function, and it can be zero if the constant
function belongs to the subspace). After invertingM, this can
be seen simply as the eigenproblemof a positive-semidefinite
matrix in the following way: since M is symmetric and
positive, it admits a (symmetric positive, then invertible)
square root M1=2, and Eq. (A3) is equivalent to

M−1=2LM−1=2ðM1=2cÞ ¼ λðM1=2cÞ; ðA6Þ

which is the eigenproblem of the symmetric non-negative
matrix M−1=2LM−1=2 (non-negativity is obvious) with the
eigenvectors simply read on a different basis through the

coordinate change M1=2. The eigenvectors v ¼ M1=2c are
orthonormal, so the vectors c that solve the problem (A3) are
not orthonormal with respect to the canonical scalar product
but to that induced by M.
An interesting observation (see [13,14]) is that the

eigenvalues of the finite-dimensional problem (A3) always

overestimate the exact LB eigenvalues λðexactÞn ≤ λðFEMÞ
n ;

thus, we expect that the eigenvalues λðFEM;rÞ
n obtained as the

solution to the eigenproblems in a sequence of subspaces
Vr → H1 would converge from above, as indeed observed
in the numerical results of Sec. IV.

2. Matrix elements and solution
of the FEM eigenproblem

In order to proceed, we need to choose our sequence of
subspaces of H1, calculate the respective matrix elements,
and solve the eigenproblem (A3). As a starting point, we
choose to restrict ourselves to the subspace V0 generated by
piecewise linear functions located at each of the vertices of
the triangulation, in such a way that every basis function ϕi
has value 1 on the vertex labeled vi and value 0 on the
border of the union of d-simplices to which the vertex vi
belongs and outside this region.7 The reason for this choice
is that it implies that off-diagonal elements Lij and Mij,
i ≠ j, are nonzero if and only if the vertices i and j
are connected by a (1D) link of the triangulation, thus
associating matrix elements and links; as a result, the two
matrices are sparse as in the case of the dual graph, with the
aforementioned benefits.
For the following steps, since we want to keep the

matrices sparse, we use subsequent enlargements of this
subspace obtained by considering similarly defined piece-
wise linear functions after having refined the triangulation,
that is, having subdivided each simplex into smaller
simplices (notice that this procedure will produce some
simplices that are not similar to any of the starting ones, as
argued below). It is not hard to realize that this means that
the size of the matrices L and M grows exponentially, thus
raising the main practical issue, the long computational
time needed to achieve convergence.
At this point, we need to calculate the general form of the

matrix elements ofL andM for these subspaces of functions.
We need to perform integrals that extend onmany simplices:
on every simplex to which the vertex belongs, for diagonal
elements, and on every simplex that shares the link ði; jÞ, for
off-diagonal elements. For generic simplices, the contribu-
tions to a given matrix element coming from the integrals on
each simplex are, in general, different; for this reason,we find

7In algebraic topology, the subcomplex made of the union of
all the d-simplices containing a given k-subsimplex σðkÞ is called
the closed star of σðkÞ. In our definition of basis functions, the
support of ϕi coincides with the closed star of the vertex labeled
as vi.

FABIO CACEFFO and GIUSEPPE CLEMENTE PHYS. REV. D 107, 074501 (2023)

074501-14



it convenient to first calculate the contributions of the
integrals on a single simplex (as functions of its geometrical
characteristics) to the matrix elements relative to each of its
vertices and links, and then sum up these contributions to
build the matrix elements.

For future convenience, we denote by MðσÞ
ij and LðσÞ

ij the
respective contributions to the M and L matrix elements
integrated on a single d-simplex σ. In order to actually
compute these contributions, we have to choose a chart for
the simplex σ such that we can represent the linear behavior
of the basis functions fϕig in that chart. For this purpose,
we adopt an absolute barycentric coordinate system, which
we now define.
Let us consider a d-simplex σ where the vertices are

labeled by fvigi¼0;…;d. We can always place the vertex v0 at

the origin x⃗0 ¼ 0⃗ of an Rd chart and the other vertices at
respective Cartesian coordinates fx⃗igi¼1;…;d, such that
jlijj≡ kx⃗i − x⃗jk (i ≠ j) are the lengths of the links lij;
these constraints uniquely define the coordinates up to a
rotation and possibly a permutation (if some links have the
same length). The absolute barycentric coordinates
fξigi¼0;1;…;d are subjected to the constraints ξi ≥ 0 andP

d
i¼0 ξ

i ¼ 1, so a generic point in the simplex Cartesian

chart can be written as p⃗ ¼ P
d
i¼1 ξ

ix⃗i ¼ Aξ⃗, where the
matrix A≡ ðxαi Þ represents the linear map between bar-

ycentric and Cartesian charts and ξ⃗ ¼ ðξ1;…; ξdÞ.8
The reasonwhy the barycentric chart is so useful is that the

basis FEM functionsϕi with a linear bump on thevi vertex of
the simplex σ are simply ϕiðAξ⃗Þ ¼ ξi, where, again, ξ0 ¼
1 −

P
1≤i≤d ξi has to be considered as a function of the

independent variables ξ1≤i≤d. Therefore, the single simplex
contributions to L and M matrix elements in Eqs. (A4)
and (A5) can be computed by changing the integration
variables from Cartesian to barycentric coordinates,
mapping the simplex σ to the standard simplex: σ0≡
fξ⃗ ∈ Rdþ1jPd

i¼0 ξ
i ¼ 1; ξi ≥ 0; i ¼ 0;…; dg,

MðσÞ
ij ¼ jAj

Z
σ0
ddξ ξiξj ðA7Þ

and

LðσÞ
ij ¼

Z
σ
ddx

X
α

∂

∂xα
ϕiðx⃗Þ

∂

∂xα
ϕjðx⃗Þ

¼ jAj
Xd
m;n¼1

½ðA⊤AÞ−1�mn

Z
σ0
ddξ

∂

∂ξm
ξi

∂

∂ξn
ξj; ðA8Þ

where jAj is the determinant of the linear application
A introduced above, and we use the relation ∂

∂xα ¼P
m ðA−1Þmα ∂

∂ξm.
The integrals in the variables ξ1; ξ2;…; ξd in Eqs. (A7)

and (A8) are completely independent on the metric proper-
ties of the simplex σ, while all the metric dependence is
encoded in the A matrix. Notice also that jAj, the deter-
minant of the linear map between the standard simplex σ0
and the original simplex σ, is equal to their volume
ratio jAj ¼ d!volðσÞ.
Computing the straightforward integrals in Eqs. (A7) and

(A8), we obtain the following expressions for the M and L
matrix elements:

MðσÞ
ij ¼ volðσÞ 1þ δi;j

ðdþ 2Þðdþ 1Þ ∀ i; j ¼ 0;…; d; ðA9Þ

LðσÞ
00 ¼ volðσÞ

Xd
m;n¼1

½ðA⊤AÞ−1�mn; ðA10Þ

LðσÞ
0i ¼ LðσÞ

i0 ¼ −volðσÞ
Xd
m¼1

½ðA⊤AÞ−1�mi ∀ i ¼ 1;…; d;

ðA11Þ

LðσÞ
ij ¼ volðσÞ½ðA⊤AÞ−1�ij ∀ i; j ¼ 1;…; d: ðA12Þ

From its very definition, it is straightforward to show that
the matrix elements of A⊤A are all the scalar products
between the position vectors of the vertices of σ different
from v0: x⃗⊤i x⃗j ¼ ξ⊤i ðA⊤AÞξj ¼ ðA⊤AÞij; therefore, by the
cosine rule we obtain

ðA⊤AÞij ¼ jl0ijjl0jj cosðβijÞ

¼ 1

2
ðjl0ij2 þ jl0jj2 − jlijj2Þ ∀ i; j ¼ 1;…; d;

ðA13Þ

where βij is the angle (in the Cartesian chart) between x⃗i
and x⃗i, and jlijj is the length of the link connecting the
vertices of σ labeled by vi and vj.
Since ðA⊤AÞ is a positive-definite and Hermitian d × d

matrix, the fastest method to obtain the matrix elements
of its inverse is to first compute its Cholesky decomposi-
tion [28,29], which returns the unique upper triangular
matrix A with positive diagonal elements, and then invert A
by forward substitution.
Finally, the generalized eigenproblem (A3) can be

numerically solved by means of standard techniques on
symmetric sparse matrices. Due to its robustness and
scalability, for our numerical results, we choose to employ
the Krylov-Shur algorithm [30] implemented in the SLEPc
library [31].

8Notice that since x⃗0 ¼ 0⃗, the vector ξ⃗ does not involve the
barycentric coordinate ξ0, which is completely fixed by the
constraint

P
d
i¼0 ξ

i ¼ 1. Therefore, A is an invertible square
matrix.
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As argued in Sec. III, in order to obtain arbitrarily
accurate estimates on the simplicial manifold T , we must
build a sequence of approximating subspaces fVrðT Þg
such that VrðT Þ ⊂ Vrþ1ðT Þ and VrðT Þ ⊂ H1ðT Þ for all
r ≥ 0, solve the eigenproblem on each subspace (up to a
certain threshold r̄), and then extrapolate the results in the
limit r → ∞.
The procedure of building a subspace Vrþ1ðT Þ starting

from VrðT Þ in a sequence with the properties stated above
is called refinement, and r is referred to as the refinement
level. Our problem must be solved for such number of
refinement levels r̄ that the estimates of the eigenvalues
reach convergence, which is signaled by a sufficiently small
relative variation between two subsequent estimates.
However, in general, whether the convergence has been
reached or not may depend on the order n of the eigenvalue
(or on the generic observable) under consideration.

3. Refinement procedure

We argue that the initial subspace V0ðT Þ of piecewise-
linear functions on the original simplicial manifold T is
just an approximation to H1ðT Þ. There are a plethora of
strategies which can be employed in order to obtain better
approximations of the full Hilbert space: for instance,
higher-order finite element methods consist in using piece-
wise polynomials of maximal degree r as the approximat-
ing basis instead of the piecewise-linear ones; this makes
the approximating space VrðT Þ ⊂ H1ðT Þ r times bigger
than its subset V0ðT Þ, and the results obtained are more
accurate (in particular, arbitrarily accurate for r → ∞). The
very simple technique that we employ is called mesh
refinement, and it consists in again using a basis of
piecewise-linear bump functions but for a new triangulation
T ðrþ1Þ [i.e., VrðT Þ≡ V0ðT ðrÞÞ], where the d-simplices of
the triangulation in the previous refinement level T ðrÞ have
been partitioned into smaller d-simplices.
In general, the dimension of the approximating space

grows as the number of new vertices. However, this does
not always imply convergence; i.e., not every sequence of
approximating spaces fVrg with strictly increasing dimen-
sions is guaranteed to converge to the infinite-dimensional
Sobolev space H1ðT Þ.
For example, three possible partitions of a triangle in a

two-dimensional triangulation are shown in Fig. 14: the A
type of refinement, even if iterated an infinite number of
times on its subsimplices, cannot represent functions with
generically varying values on the original links, while this
is possible for both the B and C types of refinement.9 In
general, the convergence of a sequence of refinements is
guaranteed whenever the maximum of the diameters of the

elements vanishes at the infinite refinement level [13,14]
(this does not hold for the type A refinement). There are
many ways to refine a triangulation because there is much
freedom in the choice of positions for the new vertices and
shapes for the subsimplices.10

In order to reach a better convergence rate, minimizing
the maximum link lengths (and therefore the simplex
diameters) at each step, it is customary to refine by adding
new vertices on the center of the links of the previous
iteration, connecting all of them with new links, and then
filling up the remaining space; in two dimensions, this
procedure corresponds to the refinement type shown as B in
Fig. 14, where the remaining space is another (upside-
down) triangle and therefore the original triangle is parti-
tioned into four triangles. Starting from a two-dimensional
triangulation made of equilateral triangles, this type of
refinement produces another triangulation with 4 times the
number of triangles, and these are still equilateral and all
have the same sides (halved with respect to the previous
ones). This observation will be useful in Sec. IV since it
makes it possible to build a refinement procedure also for
dual graphs of two-dimensional triangulations and allows
us to compare both FEM and dual graph methods in a
regime where both would converge to the exact LB
spectrum. As we will discuss in a moment, preserving
the regularity of the subsimplices in the partitions is
actually impossible in dimensions higher than two.
Another interesting fact that we would like to point out
about this type of refinement is that adding a vertex in the
middle of a preexisting link (as for the types of refinement
B and C in Fig. 14) also forces a partitioning on neighbor-
ing simplices; thus, it is not possible, for example, to refine
only a certain region of the triangulation, but this process
has to occur globally.11

In dimensions higher than two, this procedure becomes
more complicated, as we now argue. Let us consider a
single vertex v of a d-simplex σ, which is connected to d

FIG. 14. Three possible types of refinements of a two-dimen-
sional simplex. The new vertices added are dotted.

9It is even possible to mix different refinement strategies: for
example, alternating type A, B, and C refinements from Fig. 14
could be useful.

10One could also allow for non-simplicial elements like
bounded convex polytopes, but the expressions for the L and
M matrix elements would be overly complicated without par-
ticular advantages; thus, we always consider simplicial elements
in our discussions.

11Except for refinements such as the type A in Fig. 14, which
alone, however, do not guarantee any convergence.
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links of σ. When we put new vertices v01; v
0
2;…; v0d in the

middle of these links (and connect them with new links),
we automatically obtain a subsimplex with v and the v01≤j≤d
as vertices. In this way, the original simplex σ is partitioned
into dþ 1 subsimplices (one for each vertex), plus the
remaining region of space left inside σ; the shape of this
region is a polytope called the rectification of the d-simplex
σ or the critical truncation of σ (see [32] for more details),
and it corresponds to a genuine d-simplex only in two
dimensions (i.e., the inner triangle between new vertices in
type B of Fig. 14).
In three dimensions, the rectification of a 3-simplex

produces an octahedron, which has to be partitioned into
tetrahedra. The simplest, most symmetric way to partition
this octahedron into 3-simplices is to create a new vertex in
its center and connect it to the vertices of its faces in order
to form eight new tetrahedra, as shown in the left diagram
of Fig. 15. As another possible refinement procedure, we
can also choose not to add the central vertex on the
octahedron in the center of each simplex but, instead, to
add only a diagonal link between two of its antipodal
vertices,12 as shown in the right diagram of Fig. 15; thus,
the number of new tetrahedra into which it can be
partitioned becomes 4 (the ones around the selected
diagonal). This choice makes the subspace dimension grow
at an increasing refinement level with a slightly slower rate
than with the addition of a central point and without a
substantial loss in accuracy.
The refinement procedure of four-dimensional triangu-

lations will not be used in this work since its aims are to
present the method and show a comparison with previous
data obtained with a spectral analysis of dual graphs of
spatial slices [8,9], which requires only three-dimensional
refinements. Moreover, spectral analysis of four-dimensional
triangulations becomes computationally demanding at
higher refinement levels, due to the large rate of growth
of the subspace dimension.13 For these reasons, we inves-
tigate full four-dimensional triangulations with due care in a
future work. Nevertheless, for completeness, in the rest of
this section we briefly discuss which refinement procedures
are possible for four-dimensional triangulations.
The rectification of a 4-simplex is more complicated than

for lower dimensions since it does not produce a regular
polytope but instead what is usually called a rectified 5-cell,
whose faces are 5 regular tetrahedra and 5 octahedra.
Again, adding a new vertex at the center of the inner
rectified 5-cell and one new vertex at the center of each
octahedral face (as in the first of the refinement strategies

discussed above in three dimensions), it is possible to
symmetrically partition the original 4-simplex into 50
new 4-simplices. As in the three-dimensional case, it is
also possible not to add a central vertex to the 5 inner
octahedral faces, by anisotropically splitting them into 4
new 3-simplices each, making the total count of 4-simplices
of the partition of the original one 30. This still amounts to
a fast rate of growth of the Hilbert space dimension for
an increasing refinement level, but this rate is definitely
slower (therefore better for the computational cost) than the
one obtained with the addition of central vertices on the
octahedral faces of rectified 5-cells; it also comes with no
substantial loss in accuracy. Additionally, it is possible to
anisotropically partition the rectified 5-cell without the
addition of an inner central point, but this becomes overly
complex and not particularly helpful.

APPENDIX B: CURVATURE OBSERVABLES
IN FEM

In the FEM framework, it is not hard to introduce a very
useful new tool to study the curvature of CDT simplicial
manifolds, which will hopefully help to identify unknown
properties of the various phases of CDT: the “Fourier
transform” of the scalar curvature R.
The eigenvectors of the LB operator are a complete

basis; then, any function can be decomposed into a
superposition of them, with Fourier coefficients given by
the scalar products between the function and the LB
eigenvectors. The Fourier coefficients of R contain infor-
mation on its overall distribution, mostly on its typical
scales.
As the approximate eigenvectors we find at each refine-

ment step converge to the real ones, to find the Fourier
coefficients it is enough to know how to calculate the scalar
products between R and the approximate eigenvectors.
Since the curvature has support on (d − 2)-simplices and
the discretized version of the integral of R over the whole
manifold is

P
σd−2 2εσd−2Vσd−2 , the most natural way to write

FIG. 15. Rectification of the tetrahedron (inner octahedron) and
two types of octahedral partitions: with a central vertex (left)
and without a central vertex (right). The new vertices added are
dotted.

12Choosing the largest diagonal as a new link turns out to be
the optimal choice since it minimizes the maximum element
diameter and ensures a better convergence.

13It may be possible to mitigate the computational efforts by
using a multiscale technique, where the eigenspaces found for a
triangulation at a certain refinement level are used as ansatz for
the next refinement level.
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the curvature relative to each (d − 2)-simplex in a func-
tional form is

Rðσd−2ÞðxÞ ¼ 2εσd−2δðx1 − x1;σd−2Þδðx2 − x2;σd−2Þ; ðB1Þ

where the variables in the Dirac deltas are identified,
for each of the d-simplices that share the (d − 2)-simplex,
with two coordinates that run orthogonally to the
(d − 2)-simplex in local coordinates relative to a d-simplex.
In simpler words, the integration of the L2-scalar product,
when the Fourier transform is computed, has to be
performed only on the restricted domain given by the
union of (d − 2)-simplices. The whole function RðxÞ is
then nothing but the sum of these contributions over the
(d − 2)-simplices.
Given that the approximate LB eigenvectors found with

the FEM are of the form

unðxÞ ¼
XN0

i¼1

un;iϕiðxÞ; ðB2Þ

where the ϕs are functions of that step’s basis, it is not hard
to perform the scalar products, obtaining the simple
expressions we show in the following.

1. Case d = 2

In two dimensions the scalar curvature lives on the
vertices of the triangulation, so the part left after integrating
out the Dirac deltas is particularly simple to evaluate
(remembering that ϕi has value 1 on the vertex i and 0
on the others):

R̂ðnÞ ¼
Z
M

XN0

i¼1

un;iϕiðxÞ
XN0

j¼1

RjðxÞd2x ¼
XN0

i¼1

2εiun;i:

ðB3Þ

2. Case d = 3

In three dimensions, R is associated with 1D links; thus,
after integrating out the Dirac deltas, we are left with
integrals in one dimension on the links:

R̂ðnÞ ¼
Z
M

XN0

i¼1

un;iϕiðxÞ
XN1

j¼1

RjðxÞd3x

¼
XN0

i¼1

un;i
X
jji∈lj

Z
lj

2εjϕiðxÞdx; ðB4Þ

where the summations have been simplified thanks to the
property of each ϕi of being 0 outside the simplices sharing
the vertex i. Also considering their piecewise linearity,
the integrals left are easily evaluated to 1

2
measðljÞ (this is

simply the area of a triangle), yielding, for the total Fourier
components,

R̂ðnÞ ¼
XN0

i¼1

un;i
X
jji∈lj

εjmeasðljÞ: ðB5Þ

3. Case d = 4

In four dimensions the scalar curvature has support on
the 2-simplices (triangles); thus, after integrating out the
Dirac deltas, there remain two-dimensional integrals on the
triangles:

R̂ðnÞ ¼
Z
M

XN0

i¼1

un;iϕiðxÞ
XN2

j¼1

RjðxÞd4x

¼
XN0

i¼1

un;i
X
jji∈Tj

Z
Tj

2εjϕiðxÞd2x; ðB6Þ

where the summations have been reduced in a similar way
to the previous case. Again, the piecewise linearity of the
ϕs allows us to straightforwardly evaluate the integrals to
1
3
measðTjÞ (this time, it is the volume of a pyramid), thus

obtaining, for the Fourier components,

R̂ðnÞ ¼
XN0

i¼1

un;i
X
jji∈Tj

2

3
εjmeasðTjÞ: ðB7Þ

Notice that the generalization is straightforward: in
arbitrary dimensions for each vertex i, one is left with a
summation of integrals on the (d − 2)-simplices sharing i,
which evaluate to 1

d−1measðσd−2j Þ every time. This corre-
sponds to the (a priori) naive idea of considering each ϕi
having “support” only on vertex i and redistributing the
(integrated) curvature associated with each (d − 2)-simplex
in equal parts between its (d − 1) vertices. Linearity ensures
that this works.
The expressions we have found for the Fourier coef-

ficients do not require much further computational effort
once the problem in Eq. (A3) has been solved; then, from
this point of view, it would be easy to include them in the
analysis tools we use in CDT, once it becomes clear how to
build truly physically meaningful curvature observables.
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