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The space-time evolution of the hot and dense fireball of quarks and gluons produced in ultrarelativistic
heavy-ion collisions at nonzero baryonic chemical potential and temperature has been studied by using
relativistic dissipative hydrodynamics. For this purpose, a numerical code has been developed to solve the
relativistic viscous causal hydrodynamics in (3þ 1) dimensions with the inclusion of QCD critical point
(CP) through the equation of state and scaling behavior of transport coefficients. We compute the
transverse momentum spectra, directed and elliptic flow coefficients of pions and protons to comprehend
the effect of CP on these observables. It is found that the integration over the entire space-time history of
the fireball largely obliterates the effects of CP on the spectra and flow coefficients for the event averaged
initial conditions considered here.
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I. INTRODUCTION

Calculations based on lattice QCD and effective field
theoretical models at nonzero temperature (T) and baryon
chemical potential (μB) affirm a complex phase diagram
[1–6] (see Ref. [7] for a contemporary review). It is
established by lattice QCD calculations that at high T
and low μB ð→0Þ the quark-hadron transition is a crossover.
However, the transition may be first order in nature [5,8] at
low T and high μB. Therefore, it is expected that between
the crossover and the first-order transition there may exist a
point in the μB − T plane, called the critical end point or
simply critical point (CP) where the first-order transition
ends and the crossover begins [9]. The location of the CP is
not yet precisely known from lattice QCD based calcu-
lations [10] due to the well-known sign problem for spin-
1=2 particle (quark) [11] at nonzero μB.
However, there are several calculations based on effec-

tive field theoretic models at nonzero baryon density
[12–15] predicting diverse locations for the CP in the
μB − T plane [16]. The coordinates of the CP, (μBc; Tc),
depend on the values of the parameters of the model. In the
present work, we take ðμBc; TcÞ ¼ ð350 MeV; 143.2 MeVÞ
as a representing point for CP in the QCD phase diagram.
Experimental observables do not carry information of
a single point in the μB − T plane of the QCD but super-
position of all the points that the trajectory experiences from
the initial state to the final freeze-out. Therefore, it is expected
that the imprint of theCPwill be stronger if it is located near

the freeze-out boundary. Moreover, the size and shape of the
critical region may affect the observables [17].
It is generally accepted that the quark gluon plasma

(QGP) system formed with small μB and high T in nuclear
collisions at top Relativistic Heavy Ion Collider (RHIC) and
Large Hadron Collider (LHC) energies reverts to hadronic
phase via crossover transition. The ongoing Beam Energy
Scan (BES-)II program at RHIC, the upcoming Compressed
Baryonic Matter, and the Nuclotron Based Ion Collider
Facility experiments are projected to produce QGP at higher
μB and lower T, which revert to the hadronic phase through
a first-order phase transition. The QCD matter at different
values of T and μB can be produced in nuclear collisions by
regulating the center-of-mass energy per nucleon (

ffiffiffiffiffiffiffiffi
sNN

p
) of

the colliding nuclei and scanning through different rapidities
at a given colliding energy. Therefore, the colliding energy
and the rapidity (y) bin should judiciously be chosen to
approach the critical point at ðμBc; TcÞ.
Several signatures of the CP have been proposed in the

literature. An early work [18] predicts that the existence of
the CP will be associated with large event-by-event fluctua-
tions of lowmomentum pions and suppressed fluctuations in
T and μB. It has been shown inRef. [17] that theCP produces
a peak in the kurtosis of the net proton and creates lensing
effects [19] on the hydrodynamic trajectories subsequently
influencing the kurtosis. The nonmonotonic dependence of
multiplicity fluctuations on

ffiffiffiffiffiffiffiffi
sNN

p
[20], the y dependence of

cumulants of the event-by-event proton distributions [21] and
the multiplicity fluctuations of pions and protons [22], and
the appearance of negative kurtosis of the order parameter
fluctuation [23] are some of the proposed signals of the CP
(for a review, see Ref. [24] and references therein).
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Relativistic hydrodynamics (see Refs. [25,26] for review
and references therein) has been used extensively to
analyze various experimental data originating from
heavy-ion collisions over a wide range of

ffiffiffiffiffiffiffiffi
sNN

p
to extract

properties of the hot and dense QCD matter. It will be
interesting to study how the hydrodynamic evolution of
the QCD matter will be affected by the presence of CP.
The effects of CP enter into the relativistic viscous
hydrodynamics through the equation of state (EOS)
and transport coefficients. The CP changes the EOS
and various transport coefficients drastically. Therefore,
it will be useful to examine the effects of CP on some of
the observables, i.e., the transverse momentum (pT)
distribution of the hadrons and the pT and y dependence
of flow coefficients.
We will use relativistic viscous causal hydrodynamics of

Israel and Stewart [27] with EOS containing the effect of
CP and the scaling behavior of shear and bulk viscosities
near the CP. In a recent study, we have found that the CP
has the potential to substantially alter the spin polarization
of hadrons [28]. In the present work, we will investigate the
response of the pT and y distributions and directed and
elliptic flow coefficients of hadrons (proton and pion) to the
QCD critical point.
For this exercise, a numerical code in FORTRAN has been

developed to solve (3þ 1)-dimensional viscous relativistic
causal hydrodynamics using the algorithm detailed in
Ref. [29]. The code includes the effect of CP through the
EOS and the scaling behavior of the transport coefficients.
The subroutines used for the initial condition and the EOS to
solve hydrodynamic equations have been extensively tested
by reproducing the results available in Refs. [30,31], respec-
tively. The CORNELIUS code [32] has been used to find the
freeze-out hypersurface characterized by constant energy
density. The results from the code without CP have been
contrasted with the known analytical results of Ref. [33] and
numerical results from the codes AZHYDRO [34], MUSIC [35],
and VHLLE [29].
The objective of the present work is to apply the tools

that we develop to study the effects of CP on hadronic
spectra and flow coefficients and find out whether these
quantities carry any observable imprints of the CP.
The paper is organized as follows. In Sec. II, the method

for the numerical solution of hydrodynamic equations is
discussed. Relevant inputs, e.g., the initial condition, EOS,
and transport coefficients, are presented through different
subsections of this section. We present the results in
Secs. III and IV is devoted to summary and discussions.

II. NUMERICAL SOLUTION OF RELATIVISTIC
HYDRODYNAMICS

Throughout the paper, we use natural units with c ¼ ℏ ¼
kB ¼ 1 where c is the speed of light in vacuum, h (¼2πℏ)
is the Planck constant, and kB is the Boltzmann constant. The
flat space-time metric is taken as gμν ¼ diagð1;−1;−1;−1Þ.

A. Hydrodynamic equations

The relativistic hydrodynamic equations governing the
evolution of the system are

∂μTμν ¼ 0;

∂μJ
μ
B ¼ 0; ð1Þ

where Tμν is the energy-momentum tensor and JμB is the
net-baryon number current. In the Landau frame of
reference, Tμν and JμB are given by

Tμν ¼ εuμuν − ðPþ ΠÞΔμν þ πμν; ð2Þ

JμB ¼ nBuμ þ Vμ; ð3Þ

where ε, nB, P, uμ, Π, πμν, Vμ, and Δμνð¼gμν − uμuνÞ
denote, respectively, the energy density, net-baryon number
density, thermodynamic pressure, 4-velocity, bulk pressure,
shear-stress tensor, baryon diffusion 4-current, and projec-
tor tensor onto the space orthogonal to uμ. We take Vμ ¼ 0
in the present study. In the Israel-Stewart framework, the
viscous terms obey relaxation-type equations, which are
taken as [29]

uγ∂γΠ ¼ −
Π − ΠNS

τΠ
−
4

3
Π∂γuγ; ð4Þ

huγ∂γπμνi ¼ −
πμν − πμνNS

τπ
−
4

3
πμν∂γuγ; ð5Þ

where h·i is defined as

hAμνi ¼
�
1

2
Δμ

αΔν
β þ

1

2
Δν

αΔ
μ
β −

1

3
ΔμνΔαβ

�
Aαβ ð6Þ

and ΠNS, π
μν
NS are the Navier-Stokes limit of Π and πμν,

respectively, and are given by

ΠNS ¼ −ζθ; ð7Þ

πμνNS ¼ 2ηh∂αuβi: ð8Þ

The transport coefficients are positive, i.e., η, ζ > 0, where η
and ζ are the shear viscosity and bulk viscosity, respec-
tively. As mentioned above, a numerical code has been
developed in FORTRAN programming language to solve the
hydrodynamic equations in Milne coordinates ðτ; x; y; ηsÞ,
using the relativistic HLLE algorithm as in Ref. [29], where
τ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − z2

p
and ηs ¼ tanh−1ðz=tÞ. The various inputs

to the numerical program needed for this study are detailed
below.
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B. Initial condition

In this work, we have used the event-averaged initial
condition for energy density and baryon density, and
all the dissipative fluxes are initialized to their corre-
sponding Navier-Stokes limit. The Glauber model is used
to estimate the energy density profile at the initial time, τ0,
required to solve the hydrodynamical equations. The
value of τ0, for the hydrodynamic simulation, is assumed
as the time taken by the two colliding nuclei to pass
through one another for

ffiffiffiffiffiffiffiffi
sNN

p ≤ 40 GeV, which is deter-
mined by the expression

τ0 ≈
2R
γzvz

; ð9Þ

where γz ¼ 1ffiffiffiffiffiffiffiffi
1−v2z

p and vz ¼ tanhðybÞ, with yb ¼
cosh−1ð ffiffiffi

s
p

=2mNÞ as the beam rapidity; mN is the mass
of a nucleon; and R is the radius of nucleus. The value of
τ0 is taken as 1 fm=c for

ffiffiffiffiffiffiffiffi
sNN

p
> 40 GeV.

The inelastic nucleon-nucleon cross section (σinNN)
required as an input to the Glauber model as a function
of the colliding energy

ffiffiffi
s

p
(in GeV) is taken from the

following parametrization [36,37]:

σtotNN ð ffiffiffi
s

p Þ ¼ 42.6s−0.46 − 33.4s−0.545 þ 35.5

þ 0.307ln2ðs=29.1Þ;
σelNNð

ffiffiffi
s

p Þ ¼ 5.17þ 12.99s−0.41 þ 0.09ln2ðs=29.2Þ;
σinNNð

ffiffiffi
s

p Þ ¼ σtotNN − σelNN: ð10Þ

Our model for the initial condition is based on the inputs
taken from Refs. [30,38]. The collision axis is assumed to
be along the z axis. Let nA and nB denote the number of
wounded nucleons per unit area in the transverse plane of
the two colliding nuclei A and B, respectively moving
along the positive and negative z axis. The nA (nB) is
given by

nA;B ¼ TA;B

�
1 −

�
1 −

σinNNTB;A

NB;A

�
NB;A

�
; ð11Þ

where NA and NB denote the total number of nucleons in
A and B, respectively, and the thickness functions
TAðx; yÞ and TBðx; yÞ are calculated as

TA;Bðx; yÞ ¼
Z

∞

−∞
ϱA;Bðx; y; z0Þdz0; ð12Þ

where ϱA;Bðx; y; zÞ is the nuclear density profile assumed
to have the Woods-Saxon shape,

ϱA;Bðx; y; zÞ ¼
ϱ0

1þ e
r−RðθÞ

δ

: ð13Þ

The constant ϱ0 is chosen to satisfy the relation

Z
ϱiðr⃗Þd3r⃗ ¼ Ni; i ¼ A; B; ð14Þ

and RðθÞ has been taken as a function of the polar angle,
θ, to account for any deformation of the nucleus and is
given by

RðθÞ ¼ R0½1þ β2Y2;0ðθÞ þ β4Y4;0ðθÞ�; ð15Þ

where Yl;mðθ;ϕÞ denotes the spherical harmonics. In this
study, we consider nuclei to be spherical and take β2,
β4 ¼ 0. For gold (Au) nucleus, R0 is taken as 6.37 fm. The
initial energy density is assumed to have the form

εðx; y; ηs; τ0Þ ¼ eðx; yÞfðηsÞ; ð16Þ

where fðηsÞ is given by [30]

fðηsÞ ¼ exp
�
−
ðjηs − yCMj − η0Þ2

2σ2η
θðjηs − yCMj − η0Þ

�
;

ð17Þ

where yCM is defined as

yCM ¼ arctanh

�
nA − nB
nA þ nB

tanhðybÞ
�
; ð18Þ

and eðx; yÞ ¼ N eMðx; yÞ with

Mðx; yÞ ¼ mN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2A þ n2B þ 2nAnB coshð2ybÞ

q
: ð19Þ

The normalization constantN e is determined by demand-
ing local energy-momentum conservation [30]. It is also
shown in Ref. [30] that such a choice is able to explain
the experimental data on charged particle multiplicity
and directed and elliptic flow for RHIC-BES collision
energies. These collision energies overlap with the
interest of the present work. Therefore, the model used
in Ref. [30] may be considered suitable for the present
purpose. Moreover, it may be important to mention here
that the data on spin polarization and bulk observables
can be simultaneously reproduced by using such initial
conditions [39]. The following profile for the initial
velocity distribution is assumed:

uμðx; y; ηsÞ ¼ ðcoshðηsÞ; 0; 0; sinhðηsÞÞ: ð20Þ

The assumption for the profile of uμ puts a constraint on
the normalization factor N e, making it a function of
transverse coordinates, x and y. We take the profile for the
initial baryon density
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nBðx; y; ηs; τ0Þ ¼ N B½gAðηsÞnAðx; yÞ þ gBðηsÞnBðx; yÞ�;
ð21Þ

where gAðηsÞ and gBðηsÞ are given by [38]

gAðηsÞ ¼ θðηs − ηB;0Þ exp
�
−
ðηs − ηB;0Þ2
2σ2B;out

�
þ θðηB;0 − ηsÞ

× exp

�
−
ðηs − ηB;0Þ2

2σ2B;in

�
; ð22Þ

gBðηsÞ ¼ θðηs þ ηB;0Þ exp
�
−
ðηs þ ηB;0Þ2

2σ2B;in

�
þ θð−ηB;0 − ηsÞ

× exp

�
−
ðηs þ ηB;0Þ2
2σ2B;out

�
: ð23Þ

For the initial 4-velocity given in Eq. (20), the ηs
component of the flow velocity is zero in Milne coor-
dinates, i.e., uμ ¼ ð1; 0; 0; 0Þ; therefore, the normalization
N B can be fixed by using the expression

Z
τ0dx dydηsnBðx; y; ηs; τ0Þ ¼ Npart; ð24Þ

⇒
Z

dηs nBðx; y; ηs; τ0Þ ¼
1

τ0
½nAðx; yÞ þ nBðx; yÞ�; ð25Þ

which gives

N B ¼ 1

τ0

ffiffiffi
2

π

r
1

σB;in þ σB;out
: ð26Þ

The initial condition, hence, is modeled through six
parameters ðτ0; η0; ση; ηB;0; σB;in; σB;outÞ, which are
chosen from Ref. [30] for Auþ Au collisions. The value
of impact parameter is chosen as 5 fm here, representing
collisions which are neither too central with vanishing
elliptic flow nor too peripheral to make thermalization
questionable. However, any other value of b can also be
chosen.

C. Equation of state

The EOS has been obtained by following the procedure
detailed in Ref. [31] by assuming that the CP in QCD
belongs to the same universality class as that of three-
dimensional (3D) Ising model. The procedure is briefly
reviewed below. The pressure at nonzero T and μB can be
obtained through a Taylor series expansion about μB ¼ 0 as

PQCDðT; μBÞ ¼ T4
X
n

c2nðTÞ
�
μB
T

�
2n
; ð27Þ

where

cnðTÞ ¼
1

n!
∂
nðP=T4Þ
∂ðμB=TÞn

����
μB¼0

¼ 1

n!
χnðTÞ: ð28Þ

If there were no singularity, then the series expansion
given in Eq. (27) would have been valid throughout the
QCD phase diagram. However, the presence of CP makes
some of the coefficients diverge. Hence, the pressure can
be written as a sum of a regular and a singular part.
Equivalently, the expansion coefficients in Eq. (27) are
replaced by

T4cnðTÞ → T4cNon-Isingn ðTÞ þ fðT; μBÞcIsingn ðTÞ; ð29Þ

where the superscripts “Non-Ising” and ”Ising” represent
the regular and the singular (or critical) contributions
respectively. fðT; μBÞ is chosen so that it does not add
any other singularity in the problem and can simply be

fðT; μBÞ ¼ T4
c: ð30Þ

The critical part is obtained by using the 3D Ising model
because the QCD critical point belongs to the same
universality class as the 3D Ising model. Hence, the two
models must show the same scaling behavior in the critical
region. The critical exponents of the 3D Ising model are
known through numerical simulations. Hence, by mapping
the parameters of the two systems in the critical region, it is
possible to extract the critical behavior of QCD near Tc.
The mapping from the Ising model phase diagram ðr; hÞ to
the QCD phase diagram ðμB; TÞ is done with the help of the
relations [31]

T − TC

TC
¼ wðrρ sin α1 þ h sin α2Þ;

μB − μBC
TC

¼ wð−rρ cos α1 − h cos α2Þ; ð31Þ

where α1 (α2) is the angle between the horizontal axis for
constant T and the h ¼ 0 (r ¼ 0) Ising model axis. w and ρ
determine the overall and relative scale between r and h,
respectively. The size and shape of the critical domain in
the μB − T plane depend on the values of these mapping
parameters. For the present study, we have used w ¼ 1,
ρ ¼ 2, α1 ¼ 3.85°, and α2 ¼ 90° − α1.
The Ising pressure in the critical region is given by

PIsingðR; θÞ ¼ h0M0R2−α½θh̃ðθÞ − gðθÞ�; ð32Þ

where h̃ðθÞ¼θð1þaθ2þbθ4Þ and gðθÞ¼ c0þc1ð1−θ2Þþ
c2ð1−θ2Þ2þc3ð1−θ2Þ3; h0, M0, a, b, c0, c1, c2, and c3
are constants, some given in terms of critical exponents.
The numerical values of these constants are same as
in Ref. [31]. ðR; θÞ are related to ðr; hÞ through the
transformations
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h ¼ h0Rβδh̃ðθÞ; ð33Þ

r ¼ Rð1 − θ2Þ; ð34Þ

where β and δ are critical exponents. Hence, the coefficients
contributing to the critical part are determined through

cIsingn ðTÞ ¼ 1

n!
Tn∂

nPIsing

∂μnB

����
μB¼0

: ð35Þ

The Non-Ising coefficients are chosen in such a way that at
μB ¼ 0 the expansion coefficients must match the results
obtained from lattice QCD, i.e.,

T4cLATn ðTÞ ¼ T4cNon-Isingn ðTÞ þ fðT; μB ¼ 0ÞcIsingn ðTÞ:
ð36Þ

Having determined the Ising and Non-Ising coefficients,
the full pressure is then obtained as

PQCDðT; μBÞ ¼ T4
X
n

cNon-Ising2n ðTÞ
�
μB
T

�
2n

þ T4
cPIsingðRðT; μBÞ; θðT; μBÞÞ: ð37Þ

The procedure as detailed above gives various thermody-
namic observables as a function of T and μB. However,
for our numerical hydrodynamic code, we require pressure
(P) as a function of energy density (ε) and baryon number
density ðnBÞ. To construct such a table, we follow a
procedure similar to that in Ref. [40]. The ε − nB plane
is discretized with the following scheme:

ΔεðGeV=fm3Þ ¼

8>>><
>>>:

0.002 if 0.001≤ ε< 1.001;

0.02 if 1.001≤ ε< 11.001;

0.1 if 11.001≤ ε< 61.001;

0.5 if 61.001≤ ε< 101.001:

ð38Þ

ΔnBðfm−3Þ ¼

8>>><
>>>:

0.0005 if 0 ≤ nB < 0.15;

0.001 if 0.15 ≤ nB < 0.3;

0.01 if 0.3 ≤ nB < 1;

0.025 if 1 ≤ nB < 5.

ð39Þ

A small value for discretization is chosen to correctly
reproduce the critical behavior and discontinuity in thermo-
dynamic quantities due to the first-order transition beyond
the critical point. For other values of ðε; nBÞ, the pressure
and other thermodynamic variables are obtained through
two-dimensional linear interpolation. For all those ðε; nBÞ
where T and μB lie outside the range (5, 450) and
(0, 450) MeV, respectively, the thermodynamic variables
are put to zero.

D. Transport coefficients

Before providing expressions for the transport coeffi-
cients, we shall give an account of how the equilibrium
correlation length is obtained from the equation of state
with CP. The procedure of Ref. [41] has been followed to
calculate the equilibrium correlation length, ξ, which is
computed in the Ising model by taking the derivative of
equilibrium magnetization, Mðr; hÞ, with respect to h at
fixed r as follows:

ξ2 ¼ 1

H0

�
∂Mðr; hÞ

∂h

�
r
: ð40Þ

Here, H0 is a dimensionful parameter to get the correct
dimensions of ξ. We shall take H0 ¼ 1 in our calculations.
In fact, the derivative of Mðr; hÞ with respect to h is the
magnetic susceptibility (χM) in the Ising model, which,
near a critical point, goes as ξ2−η

0
, where the value of η0 is

found to be small (η0 ≈ 0.036). In this work, we have taken
η0 ¼ 0. The equilibrium magnetization is parametrized in
terms of variables R and θ as

MðR; θÞ ¼ M0Rβθ; ð41Þ

where R and θ are related to r and h through Eqs. (33) and
(34). Now, using the identity

�
∂M
∂h

�
r
¼

�
∂M
∂R

�
θ

�
∂R
∂h

�
r
þ
�
∂M
∂θ

�
R

�
∂θ

∂h

�
r
; ð42Þ

and the expressions for ð∂R
∂hÞr and ð∂θ

∂hÞr given in Ref. [31],
we have

ξ2 ¼M0

h0

Rβð1−δÞ

2βδθh̃ðθÞ þ ð1− θ2Þh̃0ðθÞ ½1þ ð2β− 1Þθ2�: ð43Þ

Near the critical point, the transport coefficients are
expected to vary with the correlation length as follows:

ζ ∼ ξ3; η ∼ ξ0.05; κT ∼ ξ: ð44Þ

We define the region in the μB − T plane bounded by the
curve ξðμB; TÞ ¼ ξ0 as the critical region; i.e., for ξ < ξ0,
the transport coefficients are regular functions of T and μB,
but for ξ > ξ0, the transport coefficients must satisfy the
scaling laws as defined above. It may be pointed out here
that ξ0 is a parameter which controls the size of the critical
region. It has not yet been calculated from the first
principles. Different values of ξ0 have been considered
in the literature; e.g., it is taken as 1 and 0.5 fm respectively
in Refs. [42,43]. Here, we choose ξ0 ¼ 1.75 fm, but some
results for other value of ξ0 are also shown below. In this
work, we only consider bulk viscosity (ζ) and shear
viscosity (η). The critical behavior of these transport
coefficients can then be modeled as
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ζ ¼ ζ0

�
ξ

ξ0

�
3

; η ¼ η0

�
ξ

ξ0

�
0.05

; ð45Þ

where ζ0 and η0 denote the values outside the critical region
which are chosen as [38,44]

η0ðμB; TÞ ¼ 0.08

�
εþ p
T

�
;

ζ0ðμB; TÞ ¼ 15η0ðμB; TÞ
�
1

3
− c2s

�
2

:

The relaxation times in Eqs. (4) and (5) also diverge near
the critical point. This is included by using the following
expressions for the relaxation times of shear (τπ) and bulk
(τΠ) viscous effects,

τπ ¼ τ0π

�
ξ

ξ0

�
0.05

; τΠ ¼ τ0Π

�
ξ

ξ0

�
3

; ð46Þ

where τ0π and τ0Π are the relaxation times outside the critical
region, which we take as follows (with Cη ¼ 0.08) [44]:

τ0π
5
¼ τ0Π ¼ Cη

T
: ð47Þ

It may be noted here that τ0π is five times larger than τ0Π.
The critical domain is delineated in the μB − T plane by

setting ξðμB; TÞ ¼ ξ0 ¼ 1.75 fm. The critical point indi-
cated by the black dot and the critical domain enclosed by
the green line are shown in Fig. 1. The trajectories of the
system in the μB − T plane formed at two

ffiffiffiffiffiffiffiffi
sNN

p
with and

without CP have been displayed. The trajectories of the
fluid cells at lower

ffiffiffiffiffiffiffiffi
sNN

p
pass through the critical region,

but for higher
ffiffiffiffiffiffiffiffi
sNN

p
, the trajectories remain away from the

critical region. But for the event-averaged initial condition

used here at fixed collision energy, the fluid cell at larger
space-time rapidity, ηs, lies closer to the critical point and
will feel the effect of EOS and enhanced values of transport
coefficients more. In other words, the fluid cells closer to
the boundary of the fireball encounter larger viscous effects
induced by CP. The evolution of fluid cell at ðx; y; ηsÞ ¼
ð0; 0; 1.4Þ at ffiffiffiffiffiffiffiffi

sNN
p ¼ 14.5 GeV is displayed in Fig. 1. The

results clearly show that the trajectories at higher ηs get
attracted toward the critical point. The correlation length as
obtained in Eq. (43) is shown in Fig. 2 as function of μB and
T. The drastic increase in the transport coefficients is
conspicuous due to the divergent nature of the correlation
length ξ.

E. Numerical implementation

We perform the hydrodynamical simulation on a 201 ×
201 × 71 space grid such that Δx ¼ Δy ¼ Δη ¼ 0.2 fm.
Also, the time step for the evolution is chosen as Δτ ¼
0.05 fm. This choice satisfies the Courant-Friedrichs-Lewy
(CFL) criterion for the stability of the code. Further, the
time-evolved quantities are written to a data file after
evolving for 0.5 fm time from the previous step. To prevent
instabilities due to large viscosity or due to large gradients
of uμ, we follow the regularization scheme of Ref. [29],
which is to rescale πμν and Π whenever they exceed a
certain upper limit. As the fraction of cells encountering
large viscosity is small and mostly appears toward the
boundary of the fireball, this regularization scheme is not
expected to change the results significantly. We use the
CORNELIUS [32] code to find a constant energy density
surface within a computational (fluid) cell. The CORNELIUS

code provides the coordinates ðτf; xf; yf; ηsfÞ and area
elements dΣν of the freeze-out surface. The quantities like
T, ε, etc. at ðτf; xf; yf; ηsfÞ are calculated through four-
dimensional linear interpolation using the values at the
corners of the cell. We shall analyze the effects of theCP on
the surface ε ¼ 0.3 GeV=fm3, henceforth denoted as ΣCFO.

FIG. 1. Trajectories traced by the fluid cell at x ¼ y ¼ 0 in the
T − μB plane for different space-time rapidities for two colliding
energies (14.5 and 62.4 GeV) and for impact parameter
b ¼ 5 fm, for the purpose of illustration here. The critical point
is indicated in solid black dot at ðT; μBÞ ¼ ð350; 143.2Þ MeV,
and the boundary of the critical region is indicated by the solid
green line.

FIG. 2. Correlation length, ξ, plotted as a function of μB and T.
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The aim here is not to compare and reproduce the
experimental data but to pinpoint the effects that CP will
induce on various hydrodynamic quantities, and hence on
the experimental observables.
To calculate the space averaged quantity, say transverse

velocity, vT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2x þ v2y

q
, we use the expression

hvTiðτÞ ¼
R
d3xεðτ; x; y; ηsÞvTðτ; x; y; ηsÞR

d3xεðτ; x; y; ηsÞ
; ð48Þ

where εðτ; x; y; ηsÞ is the energy density. The pT spectrum
of the hadrons, dN

d2pTdy
, can be calculated by using the

Cooper-Frye formula as

dNi

d2pTdy
¼ gi

ð2πÞ3
Z

dσμpμfiðx; pÞ; ð49Þ

where fiðx; pÞ is given by

fiðx; pÞ ¼
1

eðpμuμ−μB;FÞ=TF þ ai
: ð50Þ

Here, TF and μB;F denote the temperature and chemical
potential on the surface ΣCFO, ai ¼ −1 for bosonic sta-
tistics, ai ¼ þ1 for fermionic statistics, and ai ¼ 0 for
classical (Boltzmann) statistics. In Sec. III, the effects of
viscous correction ðδfiÞ to the equilibrium distribution fi
are exhibited on the elliptic flow of pions.
The other experimental measurable quantities, like

flow coefficients, are calculated by using the following
expression:

vnðpT; yÞ ¼
R
dϕ dN

d2pTdy
cosðnϕÞR

dϕ dN
d2pTdy

: ð51Þ

The pT-integrated flow coefficient is obtained as

vnðyÞ ¼
Z

pT;max

pT;min

dpT vnðpT; yÞ; ð52Þ

where we take pT;min ¼ 0.2 GeV and pT;max ¼ 3 GeV.
Similarly, the rapidity integrated flow coefficient is
obtained as

vnðpTÞ ¼
Z

ymax

ymin

dy vnðpT; yÞ; ð53Þ

where we have chosen ymin ¼ −1 and ymax ¼ 1.

III. RESULTS AND DISCUSSIONS

In this section, we present our results. As a test of our
code, we present a comparison of our numerical results
with the analytical Gubser solution in the next subsection.
We have compared our results with publicly available
MUSIC code and with experimental data in Ref. [28].
We also display some results from our code, with and
without dissipative effects, to understand the evolution
history of the system but which are not directly measured
in experiments.

A. Space-time evolution of QGP

The numerical results from our code and the analytical
Gubser solution are displayed in Fig. 3. The Gubser
solution is given by [33,38]

εðτ; rÞ ¼ ε0
τ4

ð2qτÞ8=3
½1þ 2ðτ2 þ r2Þ þ ðτ2 − r2Þ2�4=3 ; ð54Þ

nBðτ; rÞ ¼
nB0
τ3

ð2qτÞ2
½1þ 2ðτ2 þ r2Þ þ ðτ2 − r2Þ2� ; ð55Þ

vxðτ; rÞ ¼
2q2τx

1þ q2r2 þ q2τ2
; ð56Þ

vyðτ; rÞ ¼
2q2τy

1þ q2r2 þ q2τ2
; ð57Þ

FIG. 3. Comparison of the output from our code with analytic Gubser solution. The results are plotted at y ¼ 0 after setting q ¼ 1 in
Eqs. (55) and (56).
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where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. The numerical solution is in perfect

agreement with the analytical result. Next, we show the
time evolution of the average temperature of the fireball
formed in Auþ Au collisions (

ffiffiffiffiffiffiffiffi
sNN

p ¼ 14.5 GeV at
impact parameter b ¼ 5 fm) in Fig. 4 using ideal hydro-
dynamics (all transport coefficients set to zero) and EOS

with (red solid line) and without (blue dashed line) the
critical point.
For a given initial condition, the addition of the critical

part to the regular pressure leads to a larger value of the
net pressure and hence a large gradient of the pressure with
respect to the vacuum outside. This leads to a faster
expansion and a faster rate of cooling as shown in the
left panel of Fig. 4. Higher pressure introduced by the CP
leads to higher flow, too, as reflected in vT , as shown in the
right panel of Fig. 4.
In Fig. 5, we show the time evolution of vx of fluid cells

at two space-time rapidities for Auþ Au collision atffiffiffiffiffiffiffiffi
sNN

p ¼ 14.5 GeV and impact parameter b ¼ 5 fm. The
results indicate that a gradient of vx along the ηs direction is
generated, which is due to our choice of shifted initial
condition. The presence of CP marginally increases this
gradient.
Similarly, the transverse and longitudinal expansions

with averaged initial condition also increase marginally due
to the presence of the critical point for ideal hydrodynamics
as shown in Fig. 6. It should, however, be noted that the
profile is mostly monotonic.
Now, we discuss results with the inclusion of the viscous

effects in the QGP fluid. As the viscous fireball of QGP

FIG. 4. Time evolution of (left) average temperature and (right) transverse velocity using ideal hydrodynamics and EOS with (CP, red
solid line) and without (noCP, blue dashed line) the critical point for Auþ Au collision at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 14.5 and impact parameter b ¼ 5 fm.

FIG. 5. Time evolution of the x component of velocity ðvxÞ of
the fluid cell at x ¼ y ¼ 0 and at different space-time rapidities
using ideal hydrodynamics for Auþ Au collision at

ffiffiffiffiffiffiffiffi
sNN

p ¼
14.5 and impact parameter b ¼ 5 fm.

FIG. 6. Time evolution of vx (left) for the fluid cell at y ¼ 0, ηs ¼ 0 at different x and time evolution of vη (right) for the fluid cell at
x ¼ y ¼ 0 at different space-time rapidities for Auþ Au collision at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 14.5 and impact parameter b ¼ 5 fm.
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expands, the fluid cells toward the boundary, which are
closer to the critical region, undergo slower expansion due
to enhanced viscosity. The expansion of the fluid cells in
the bulk is not strongly affected by the critical point. This
leads to the buildup of matter somewhere in between, due
to which the expansion results in a nonmonotonic profile
for the initial condition used here. This is reflected in

the variation of vx with τ for different values of x (Fig. 7)
and ηs (left panel of Fig. 8). The variation of τvη with τ for
different values of ηs displays similar nature (right panel of
Fig. 8). The nonmonotonicity is prominent for larger values
of ηs, which corresponds to the evolution trajectory closer
to the CP (see Fig. 1). The effect of CP on vx at ηs ¼ 1.4
gives rise to a hornlike structure. We will check below
whether such structure survives in the space-time integrated
observables. It is to be stressed further that as the critical
point is approached these effects get enhanced. To further
confirm this argument, we also show the velocity profile forffiffiffiffiffiffiffiffi
sNN

p ¼ 62.4 GeV in Fig. 9. The trajectories in this case
are far away from the critical region, and thus the effects of
EOS and enhanced viscosities are small. Therefore, the
nonmonotonicity observed in the time evolution of vx
and τvη can be attributed to the CP. However, it will be
interesting to examine whether such effects of CP survive
in experimental observables like pT spectra and various
flow coefficients which are obtained by integrating over the
entire space-time history of the fireball. This exercise has
been carried out below.

FIG. 7. Time evolution of vx at different x for the fluid cell at
y ¼, ηs ¼ 0 for

ffiffiffiffiffiffiffiffi
sNN

p ¼ 14.5 GeV and b ¼ 5 fm.

FIG. 8. Time evolution of vx at different values of x (left panel) and τvη at different ηs for the fluid cell at x ¼ y ¼ 0, for
ffiffiffiffiffiffiffiffi
sNN

p ¼
14.5 GeV and b ¼ 5 fm.

FIG. 9. Same as Fig. 8 for
ffiffiffiffiffiffiffiffi
sNN

p ¼ 62.4 GeV.
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B. Effects of CP on the spectra and flow coefficients

In this subsection, we display the effects of CP on
quantities which are commonly measured in experiments.
These quantities are the pT spectra and directed and elliptic
flow coefficients of pion and proton, which are estimated
by including the effects of CP on the EOS and transport
coefficients. ThepT spectra ofπþ and proton are displayed in
Fig. 10 for two colliding energies, i.e.,

ffiffiffiffiffiffiffiffi
sNN

p ¼ 14.5 (left
panel) and 62.4 GeV (right panel). The rapidity distribution
of the pion and proton are shown in Fig. 11 for two colliding
energies, i.e.,

ffiffiffiffiffiffiffiffi
sNN

p ¼ 14.5 GeV and
ffiffiffiffiffiffiffiffi
sNN

p ¼ 62.4 GeV;
no distinguishable effect of CP is found. The results
displayed in Fig. 11 demonstrate the change in dN=dy
due to differential change in viscosities induced by CP.
The fluid cells toward the boundary of the fireball, which are
closer to the CP, encounter larger dissipation compared to
fluid cells in the bulk. On the other hand, the gradient of
pressure becomes steeper due to the addition of critical
contribution to pressure. This results in matter being
pushed from the bulk toward the boundary, for example,
from midrapidity to forward rapidity. This suggests that the

entropy density is carried away frommidrapidity, resulting
in a decrease of dN=dy around midrapidity and a corre-
sponding increase at forward rapidity. These effects
are clearly visible when the simulation in performed in
1þ 1 dimensions (Ref. [41]). However, in the present
(3þ 1)-dimensional case, the increase in forward rapidity
might not even be visible due to the tiny fraction of cells
encountering enhanced viscosity at the fireball boundary.
Consequently, we observe a slight decrease in dN=dy at
all rapidities. Moreover, the effects of CP on the spectra
are found to be insignificant because both the pT and y
distributions are obtained by integration over the space-
time evolution history of the fireball produced in these
collisions; i.e., results are a superposition of all the temper-
atures and densities through which the system passes, and
results do not depend on the point (μBc, Tc) alone.
The rapidity distribution of v1 of the proton and pion are

displayed in Fig. 12 as a function of y for
ffiffiffiffiffiffiffiffi
sNN

p ¼ 14.5 and
62.4 GeV. The effects of CP on both πþ and the proton are
seen to be insignificant as expected. The elliptic flow of both
protons and πþ increases marginally around pT ∼ 2 GeV

FIG. 10. Transverse momentum spectra of πþ and proton are obtained by integrating over ϕ and rapidity (y) (for −1 ≤ y ≤ 1 forffiffiffiffiffiffiffiffi
sNN

p ¼ 14.5 (left panel) and 62.4 GeV (right panel).

FIG. 11. The rapidity distribution of pion and proton for
ffiffiffiffiffiffiffiffi
sNN

p ¼ 14.5 (left panel) and 62.4 GeV (right panel).
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compared to the case when there is no CP (left panel of
Fig. 13) for

ffiffiffiffiffiffiffiffi
sNN

p ¼ 14.5 GeV. For
ffiffiffiffiffiffiffiffi
sNN

p ¼ 62.4 GeV,
there is no shift inv2 due to the inclusion ofCP (right panel of
Fig. 13), which is expected because the trajectory in this case
remains away from the critical domain.
A faster expansion leads to a rapid fall in temperature

and chemical potential, which leads to a slight reduction in
the yield of both πþ and protons as shown in Fig. 10. These
effects will definitely get enhanced as we approach the
critical point. However, within the current model, the effect
is only marginal and might not even be detected exper-
imentally. As has been shown in Ref. [28], the thermal
vorticity which depends on the velocity gradient of the
fluid is suppressed by the presence of CP. Consequently,
the rapidity dependence of the spin polarization of the Λ
hyperon was shown to be drastically affected by theCP due
to the coupling of the spin with the thermal vorticity.
The CP may be detected by measuring the rapidity
distribution of the spin polarization by tuning the beam
energy. Therefore, one expects that those observables
which depend on the gradient of velocity to be efficient
signatures of the CP.
Next, we study the sensitivity of some of the results on

the critical domain size, determined by the value of ξ0

and on the viscous corrections to phase-space distribution
function. The results displayed below are obtained forffiffiffiffiffiffiffiffi
sNN

p ¼ 14.5 GeV. In Fig. 14, the multiplicity distribution
of πþ as a function of rapidity is depicted for ξ0 ¼ 1.75
and 1.2 fm. The ξ0 dependence of η (∝ ðξ=ξ0Þ0.05) and
ζ (∝ðξ=ξ0Þ3) indicates that the dissipation increases with
the decrease in ξ0. This leads to the reduction of multiplicity
due to enhanced dissipation confronted by the system.

FIG. 12. Rapidity dependence of directed flow for two colliding energies, 14.5 (left) and 62.4 GeV (right) for b ¼ 5 fm.

FIG. 13. The pT dependence of elliptic flow for two colliding energies, 14.5 (left) and 62.4 GeV (right) for b ¼ 5 fm.

FIG. 14. The variation of multiplicity with rapidity for different
values of ξ (ξ0 ¼ 1.75 and 1.2 fm) at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 14.5 GeV.
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We have estimated the elliptic flow of pion with
viscous correction to equilibrium phase space distribu-
tion, δf [38]. It is found that v2 reduces due to viscous
correction and the reduction is more at higher pT (Fig. 15)
as found in Ref. [38] also. The effects of δf on v2 of the
proton are found to be smaller than that of the pion.
For smaller ξ0, the elliptic flow of pions is found to be

larger (Fig. 16), whereas the effect on directed flow is
negligible (Fig. 17).

IV. SUMMARY AND DISCUSSIONS

We have developed a computer code to solve the
relativistic viscous causal hydrodynamics in (3þ 1) dimen-
sions. The effects due to the QCD critical point have been
included in the code through the equation of state and
scaling behavior of the transport coefficients. We study the
evolution of the fireball of quarks and gluons formed at
two colliding energies,

ffiffiffiffiffiffiffiffi
sNN

p
. The pT spectra and directed

and elliptic flow coefficients of pions and protons have
been evaluated to understand the effects of CP on these
quantities. We find that the integration over the entire
space-time history of the fireball mostly wipes out the
effects of CP on the spectra and flow coefficients, which
indicates that the detection of CP by using the hadronic
spectra may not be useful. The effects of viscous correc-
tions to equilibrium distribution functions have been
estimated and found to be negligible on the pT spectra
of hadrons and directed flow. However, a non-negligible
effect of δf on v2 is seen at higher pT. However, it is shown
in Ref. [28] that the CP has the potential to substantially
alter the rapidity distribution of spin polarization of
hadrons; therefore, the measurement of spin polarization
as a function of rapidity can be considered as an efficient
tool to detect the CP.
Some comments on the scope of extension of the

present work are discussed below. It is well known that
the fluid dynamics becomes invalid near the CP because
the fluctuating modes do not relax faster than the time-
scale of changes in slow/conserved variables due to
which the local thermal equilibrium cannot be main-
tained. However, the results obtained in this work may be
considered reasonable because of the following reasons.
First, the validity of the fluid dynamics can be extended
by adding a scalar field representing the slow nonhy-
drodynamic modes connected to the relaxation rate of
the critical fluctuation (see Refs. [45,46] for details).

FIG. 15. The variation of elliptic flow of pions (left panel) and proton (right panel) with transverse momentum is displayed atffiffiffiffiffiffiffiffi
sNN

p ¼ 14.5 GeV with the inclusion of viscous correction to the phase-space distribution for ξ0 ¼ 1.75 fm. δf denotes viscous
correction to the equilibrium distribution function.

FIG. 17. The variation of directed flow with rapidity at
ffiffiffiffiffiffiffiffi
sNN

p ¼
14.5 GeV for ξ0 ¼ 1.75 and 1.2 fm.

FIG. 16. The elliptic flow of pions is shown as a function of
transverse momentum at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 14.5 GeV for ξ0 ¼ 1.75 and
1.2 fm.

SUSHANT K. SINGH and JAN-E ALAM PHYS. REV. D 107, 074042 (2023)

074042-12



In a simple picture describing the evolution of a system
near the CP, it has been explicitly shown that the
modes associated with the scalar fields lag behind the
hydrodynamic modes, resulting in backreactions on
the hydrodynamic variables; however, it was found that
the backreaction has negligible effects on the hydro-
dynamic variables [42]. Second, one may recall that if
a system is not too close to CP then hydrodynamics
can still be applied in a domain around the CP [47].
Regardless of these arguments, the investigation of the
effect of the scalar field on (3þ 1)-dimensional hydro-
dynamic evolution near the CP will be useful for future
study in its own right.
In the present work, the EOS is obtained by mapping the

3D Ising model in (r, h) plane to the QCD in (μB; T) plane,

as they belong to the same universality class [31]. It is
assumed here that both the chemical potentials correspond-
ing to strangeness (μs) and electric charge (μQ) are zero.
However, this mapping cannot be used if μQ ≠ 0 and
μs ≠ 0 (constrained by strangeness neutrality [48]). The
roles of μs and μQ on the EOS near CP are ignored here for
simplicity, although they may have interesting effects on
the critical behavior of the system.
In this work, the hydrodynamic equations are solved

for event averaged (nonfluctuating) initial condition. Under
these conditions. the effects of CP on the transverse
momentum spectra and flow coefficients are not significant.
However, the signature of CP through these observables
may emerge for an event-by-event fluctuating initial con-
dition, which we leave to future work.
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