PHYSICAL REVIEW D 107, 074040 (2023)
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The boost-invariant longitudinal space, defined by the parameter ¢ = %b‘P*, can be studied from the

Fourier transformation of generalized transverse momentum distributions (GTMDs) over the conjugate
variable skewness £. We investigate quark Wigner distributions in the ¢ space in dressed quark model and
found diffraction patterns that are analogous to the single slit experiment of light in optics. The width of the
central maxima varies with energy transfer to the system and essentially & behaves like a slit-width.
Qualitatively similar diffraction pattern is reported recently in other models. In this model, we compute all
the leading twist GTMDs with nonzero skewness for quarks which provides Wigner distributions under

Fourier transformation.
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I. INTRODUCTION

The structure of the nucleon, one of the most significant
active areas of current research, requires both the pertur-
bative and the nonperturbative methods in quantum
chromodynamics (QCD). The nonperturbative method
usually uses the distributions function to describe the
various aspect of nucleon structure. The parton distribution
functions (PDFs) [1-4] were first defined that provide
information about the number density of partons carrying a
particular amount of the longitudinal momentum fraction of
nucleon. Generalized parton distributions (GPDs) [5-8],
and transverse momentum dependent PDFs (TMDs) [9-13]
were defined later to understand the three-dimensional
picture of a nucleon. The experimental measure measure-
ment of single spin asymmetries (SSA) indicate the
necessity of investigation of three-dimensional structure
of proton which involves spin-spin and spin-orbital angular
momentum (OAM) correlation among the constituent par-
tons and proton. Such 3D structures are encoded in the
distribution functions, e.g., GPDs, TMDs etc. Generalized
transverse momentum distribution (GTMDs) is even more
general five-dimensional distribution whose Fourier trans-
formation with respective conjugate variables provides
impact parameter space as well as longitudinal space infor-
mation in terms of Wigner distributions. The extraction and
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analysis of these higher dimensional distribution at certain
limits are the core goals of upcoming colliders, including
the electron-ion-collider (EIC) [14-16]. Both GPDs and
TMDs can be considered as a special case of more
generalized distributions GTMDs.

Generalized TMDs (GTMDs) are defined through the
most general, off-diagonal, quark-quark correlator [17-19].
It gained significant attention in recent times as it has
direct model-independent relation to the orbital angular
momentum and spin-orbit correlation of partons [20-29].
It may even be possible to access the GTMDs in future
experiments. GTMDs have been studied in different
models, for the zero skewness [26,30-34]. The kinemati-
cal variable skewness (£) measures the fraction of longi-
tudinal momentum transferred to the target state. Most of
the previous GTMDs and Wigner distribution studies have
been done with the assumption that momentum trans-
ferred to the target state during the interaction is purely
in a transverse direction. In experimental measurement,
the momentum transfer would be nonzero as well in the
longitudinal direction. To access the GTMDs in the
experiments, it is very important to have analysis of
the distributions at the nonzero skewness. This makes it
an interesting case to study the GTMDs at nonzero
skewness. In this article, we obtain the GTMDs of quarks
in the light-front dressed quark model for nonzero skew-
ness of the target.

Along with GTMDs, the Wigner distribution [35,36] is
also at the top of the distribution functions hierarchy related
to partons. The Wigner distribution are the Fourier trans-
form of the GTMDs and have been studied extensively in
recent times [30-34,37-42]. The 6-dimensional Wigner
distribution has been proposed recently as the relativistic
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version of the more popular 5-dimensional Wigner distri-
bution [43].

The boost-invariant longitudinal spatial coordinate (o),
also called impact parameter in longitudinal space, was
introduced in [44] as conjugate to the longitudinal momen-
tum transfer to the target. The GPDs were explored in the
o-space as it gives a complete 3-D picture of hadron when
studied along with the distribution in the impact parameter
space [45-49]. Recently, Wigner distribution in o-space
was studied for quark in the light-front quark-diquark
model [40]. This article analyzes the Wigner distribution
in the o space for quark in the light-front dressed
quark model.

The article is organized as follows: Sec. II contains the
notations, conventions, and kinematics of the dressed quark
system. In Sec. III, we briefly summarize the concept and
mathematical tools of the light-front dressed quark model
required for deriving the analytical expression of GTMDs
and Wigner distributions. Section [V presents the analytical
results of the leading twist GTMDs as well as the numerical
results obtained in the light-front dressed quark model.
Section V defines the Wigner distribution for different
polarization of quark and target state and expresses the
analytical as well as the numerical results of Wigner
distribution in the boost-invariant longitudinal space (o).
Finally, we conclude in Sec. VL.

II. KINEMATICS

We choose to work in light-front coordinate system
(xT,x7,x ) where the light-front time and longitudinal
space variable are defined as x* = x° £ x? and all the other
conventions are listed in [50,51]. We consider a system
of a quark dressed by gluons interacting with a virtual
photon probing with energy transfer ¢ = A? into the
system. The longitudinal momentum transfer is defined
as £ = A" /2P*. The initial dressed quark is labeled by
momentum p and the final momentum of dressed quark
system is labeled by p’ can be expressed in the symmetric
frame [52] for kinematics as

- . m? + A% /4\

p((l—hf)P LA /2, (1+§)P+>’ (1)

, e m* + A% /4

p = ((1 g)P ’ AJ_/Z? (l—f)P-‘r )7 (2)

where, the average momentum of the system P =

(p+ p')/2. The four-momentum transfer from the target
state is

t+ A?
A=p-p = <2<§P+,AL,2§P+L>, (3)

where,

2,2 2
_ _4&m —|—2A i (4)

1-¢
can be easily derived from constraint A~ = p~ — p'~
provided by energy momentum conservation. The mass
of the system is represented as m. The struck quark carries a
momentum fraction x = k*/P* of the system and the
quark four-momentum can be written as

k=Pt k, k). (5)

III. LIGHT-FRONT DRESSED QUARK MODEL

A proton is a highly complex object at a partonic scale as it
is abound state of 3 valence quarks and gluons. Naturally, itis
challenging to analyze such a multiparticle bound state.
Some simplified model of the bound state of quarks has
been used to study the bound state of partons, like the
quark-diquark model [32,52-55], chiral quark soliton model
[37,38], AdS/QCD quark-diquark model [33,34,56], and
dressed quark model [57-59]. The dressed quark model has
significance as it contains a gluonic degree of freedom which
allows for studying the behavior of gluons in a bound state.
We use dressed quark model to analyze the GTMDs and
Wigner distribution in boost-invariant longitudinal space.
This article considers only the GTMDs and Wigner distri-
butions of quarks. A dressed quark can be considered a bound
state of a quark and a gluon. We represent a dressed quark
state with momentum p and helicity o as [59]

Pt ps,0) = D (PPN + 3 / (dp1]

0,0,

X /[dpz]\/ 167° p*8*(p — p1 — p2)
x ®F , (pi 1. P2)bi, (p1)ab, (p2)[0);  (6)

+ 2 - .
where [dp] = %. b" and a' are creation operators for
wp

quark and gluon respectively. ®7(p) represents single
particle wave function which contributes only when
x=1. @7 , is the two-particle wave function and ixts
amplitude gives the probability to find a bare quark with
momentum p; and helicity ¢; and a bare gluon with
momentum p, and helicity o, inside the target state. Both
®?(p)and @5 ,, canbe obtained using light-front eigenvalue
equation in the Hamiltonian approach. The boost invariant
LFWF and two-particle LFWF are related by the relation

Ye 5, (x.q, ) =D, VP Here we have used the Jacobi
momenta (x;, q; | ):
pi =xip”, gir =kip +x;py (7)

so that >, x; =1, > ,¢q;, = 0. The expression for two-
particle LFWFs can be calculated perturbatively as [60]:
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1 g
ng?m ()C, qJ_) = 2 2 2
[mz_m +th) _(Clii)z] 2<2ﬂ>3
1
xT")(i1
1—x
o |_n 4t _(5¢~(]¢)”¢+imﬂl(1—x)
1—x X X
X%o(eLog)*' (8)

We are using the two component formalism [59], where y is
the two component spinor, 7¢ are the color SU(3) matrices,
m is the mass of the quark, ¢ | (L = 1,2) is Pauli matrices

|
_l/dz d*z
- 2) 27 (27)?

where, the |p, 1) and |p’, ') represents the initial and final
state of the dressed quark system. The Wilson line
Wi_j2./2) 1s defined as a gauge link between the two
quark fields w(z/2) and y(—z/2) situated at two different
points. Here, the Wilson is reduced to unity in the light-
front gauge. In the both side of the correlator, I" stands for
the polarization structure and at leading twist it is an
element of the set {y*,y"y’,ic*/y>} corresponding to the
unpolarized, longitudinally polarized and transversely po-
larized cases respectively. All GTMDs are the function of
|

Wg}/(x’ gvkj_vAJ_)

e (p' Xp(=z/2)W

and € | ,, is the polarization vector of the gluon. The light-
front wave functions for quark are expressed as the function
Jacobi momenta (x', ¢’, ). We choose (x',¢’, ) and (y,q )
as the initial and final Jacobi momenta respectively for
dressed quarks.

IV. GENERALIZED TMDs OF QUARK

In the light-front gauge AT =0, the quark-quark corre-

lator for GTMDs W z b (x &£,k | ,A ) is defined through

the nondiagonal matrix element of the bilocal quark field
[18] as

=222/ (2/2) 1P A) |+ o> 9)

(x,&,k% ,A% k| -A ). However, we suppressed these
arguments while writing the final expression of GTMDs.
So, when we are writing F'; ; in the following sections, it
must be understood as Fy(x, & k% A% kA ). Us-
ing the dressed quark state from Eq. (6) and the particle
sector of quark fields w(+z/2), one can express the
correlator in terms of the overlap representation of light-
front wave functions defined in Eq. (8). The quark-quark
correlator for unpolarized, longitudinally polarized and
transversely polarized quarks read as

W ek LA = Y W (g e, (v g ) (10)
01.02.4
WEJJ ()C 'f kJ_»AJ_) Z Tsz-Z(x,’q/ ))(1163)(01\116162(}} q ) (11)
01,02,
icity® *
WB/V ()C 5 kiﬁ Z ‘P 216, )C q ])(o'llymﬁz(y q ) (12)
01,02,

where, initial (final) struck quark carries longitudinal momentum fraction y(x’) and transverse momentum ¢ ; (¢’, ) and the
chosen kinematics are parametrized as

, x—=¢ B (1- x)A_J_
Time TR taTgn
_x+é _ (I-x)A,
YTy TR Ty

where x is the momentum fraction corresponding to the quark average momentum k as defined in Eq. (5). The bilinear
decomposition of the quark-quark correlator of Eq. (9), at the leading twist, leads to the sixteen GTMDs [18] and the
explicit expansion is listed in Appendix-A for completeness. We derived the analytical expression for all the 16 GTMDs
using Egs. (10)—(12) and (A1)—(A3) (see Appendix B) and the analytical results in this dressed quark model is as follows:
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(a) For unpolarized quark,

a(1-¢)
2(1 —x)3
+4(1=x)E(1+x* =2k, - A — (1 —x)*(1 +x* —2&)A% ]
Fio = =pl(1 +x)&(kyAr = ki Ag) = 2m°x(1 = x)) A% +4m*E(1 +x)ky - A ]
s e = kb )(1+22 = 28)(-1 + )0

+ (=1 +x)28% ) =8(=1 + E) (=1 +x)&k, - A —dm* (=1 +x)*)
+8m?(=1 +x)>(2(1 + x)ék | + (=1 +x)xA | )k ]

Fi = [4(1 4+ x> = 3+ x)E +2EMK% +4m*(1 —x)*

Fi3=

Fiq= (1 fx) 2m*(1 +x)(1 = &)]
(b) For longitudinally polarized quark,
Guy = oy P21+ 0)(1 =)
Gio = pm* (1 =x)¢A% =2(x + &)k - AL ) = (1 +x) (koA —kjAy)A% |
G1a = gy et = k) E(1 4 ~28)(4(1 - )82 - (1 -8

+4(1 =) (1 =x)(1 =x* +28)k | - A ) +4m*(1 —x)*(4(x + E)k%,
—&(1=x)(2k - A + (1 =x)(kaA; =Kk 1Az)))]

a(1-¢)

Gig=——3
M1 - )’

[(1+x*=28)(4(1 = )KL + (1 —x)(4sk L — (1= x)A ) Ay ) —4m?(1 - x)]

(c) For transversely polarized quark,
Hyy = p2m*(1=&)(4k, - A = (1-x)A% )]
Hy, = —p2m*(1 = &)(4&k* — (1 -x)k -A )]

: [k, AL )(x—E)(1 = +2(1 —x)2EB + &) (kiAy —kyA )k, - A

(I—x)Pk, -A,
+ (1= x)(x = &) (4 AT + k343) = (1 = x)A% (ky - A1) +&(1 —x)*(4(k]A7 + K3A7)
—E(1—x)A% (k1 Ay — kA1) = 8(1 — x)(1 = 2x + E2)Ek kA A,

H ;=

Hyy= [mEA% (2(14 &)k - AL +4(kAy —kAy) — (1 —x)EA% )]

p
ki Ay
Hys = —pm*(2E(3 + )k - Ay + 8&(kjAy — kyAy) — (1 —x)(1 4 E2)A? ]

Hg [m*(4Ek2% (k| - A — (kA — ki Ay)) — (1 —x) (K} (AT + £2A2)

Tk AL
+ K3 (EA7 + A3)) — (1 —x)(1 = E)kikr A A,)]
Hi;=—-pm*(1-)2(1+ &)k, Ay — (1 —x)EA%)]

Hyg = plm*(1-&)2(1 + &)k — (1 -x)¢k A )]
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We define the function D(k |, , x), and a(x, & k% , A% k| -
A) as

2 k2 k2
D(k, .x)= <m2—u——l>

X 1—x
N
and a(x.&.k% A% kA )= .
. D(q..y)D*(¢' .x)(x*=&?)
(29)
where N = 29(22—5)@ with the strong coupling constant g

and color C;. We again suppress the arguments of
a(x, & k% , A% ,k, - A ) and write it simply as a. Intro-
ducing another function f as

(I =x)(kyAy =k Ay)

p= (30)

We express the form of GTMDs in a more convenient form,
in terms of f, that will be helpful to compare with the
GTMDs results of the limit & — 0. One can also rewrite the
GTMDs results by separating the vanishing and nonvan-
ishing terms at the zero skewness limit as

)(l,j(xvf’kzivAzL’kJ_ ‘A)
:)?I’j(x,é,kz ’Ai’kl AJ_)
+§fl,j(x7§’k2 ’A2L7kJ_'AJ_) (31)

where, y, ; = {F, ;.G ;. H, ;} with j =1,....4 for F,
Gy; and j=1,...,8 for H;; The GTMDs expressions
obtained are long and complicated. The results for zero
skewness are not immediately obvious from these expres-
sions. To get the results immediately for zero skewness, we
can separate the vanishing and nonvanishing terms of
GTMDs in the limit £ — 0. So, Eq. (31) is not some
special factorization, but just writing the same expression
of GTMDs as the sum of vanishing and nonvanishing terms
in £ — 0 limit. The motivation is to obtain the GTMDs for
zero skewness in just one step. For example, the GTMD
F| 4 can be written as

Fra = o210 - &)
= =) [2m (1—|—x)]+(1_x) [=2m*(1 + x)&7]
=Fia+Ef1a4

Now if we take & — 0O limit, second term simply vanishes
and we have Fy4 = 714 = 525 [2m?(1 + x)]. In the first
term F 4, & dependence comes only from the factor
D(q,,y)D*(¢',,x')(x* = &) in the denominator (ab-
sorbed in a), which reduces to D(q, )D*(q', )x*. All the
GTMDs [Eqgs. (13)—(28)] satisfy the definite symmetry

relations mentioned in [18]. That is, under the operation
E— —¢and k| — —k |, a becomes +a, and f§ becomes
—p, implying that

X*(x,E k% A% kA ) =+X(x,—E K3 A%~k A )

for the GTMDs Fy;,F3,F14.G11.G12.G14,H2,
Hy3,H4.H 6. H, 7, and

X*(x,f,kﬁ_,Aﬁ_,kJ_ AJ_) :—X<x,—€,k2 ’Ai_’_kl- AJ_)

for the GTMDs FI,Z’ G1’3, Hl,l’ qus, qug.

To illustrate the numerical results for nonzero skewness,
we concentrate on those GTMDs which have some phy-
sical implications at certain limit, e.g., Iy, F'1 4, G 1, and
H, ;. The three-dimensional variation in the x, A? plain of
F\,, F 4 GTMDs for unpolarized dressed quark system are
shown in the Figs. 1(a) and 1(b) respectively. The trans-
verse momentum of the struck quark is fixed along x-axis
(k| =0.2i GeV)and A | is chosen along the y-axis. This
particular choices of transverse directions are made aiming
to avoid contribution from the k| - A | terms in Eq. (13).
We also fixed the longitudinal momentum transfer at
£=0.2, and choose the mass of bare quark to be
3.3 MeV. We noticed that, the distribution is negative
and the peak shifts toward higher value of x with the
increasing A% . At the TMDs limit, A | =0, & =0, the
GTMDs F| ; reduces to the Sivers TMDs that plays crustal
role in the spin-transverse momentum correlation which
leads to the breaking of axial symmetry and provide left-
right axial shifting in the transverse momentum plain.
Figure 1(b) shows the three-dimensional variation for
F,4 GTMD. The distribution is positive and becomes
flatten at higher values of A% . At the limit ¢ =0, F,4
contributes to the correlation between quark orbital angular
momentum(OAM) and spin of the system given by

k2
1= —/dxcﬂkl m—gFM. (32)

If I > 0, quark OAM tends to align along the spin of the
system and for /¢ < 0 they are tending to anti-align. The
numerical integration was performed over the & | . Ideally,
the upper limit of k| integration should be infinite. But
according to the standard practice of numerical integration,
we took an upper cutoff and chose the upper and lower limit
of k | integration as Q and 0, respectively. In our model the
11 = —0.125074 for Q = 5 GeV, Q is large scale involved
in the process, which indicates that the quark OAM is
antialign to the spin of the dressed quark system.

Figure 2(a) shows the x, A% variation of Gypaté=0.2,
k, = 0.2] GeV. This is one of the GTMDs at leading twist
corresponding to the longitudinally polarized dressed quark
system. Again the peak of the distribution goes to the large
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Fy ,4(X’:£i5J_21AJ.2-kJ.-AL)
k=027 GeV: N TS
Ag=AjGeV 1 -

S o 0.0005
0.0004
0.0003
0.0002

|
| 0.0001

(b)

FIG. 1. GTMDs (a) Fy,, and (b) F 4 as function of x and Ai for fixed values of ¢ = 0.2 and k| = 0.27 GeV.

x region for higher value of A% . Comparing the analytical
results of Egs. (16) and (17), we find that the relation
Fi4= -G is still valid for nonvanishing skewness in
other words the model dependent result Fy 4 = =Gy ; is
also satisfied even for the finite longitudinal momentum
transfer to the process [30]. The GTMD G ; also provides
the correlation between quark spin and OAM by

k2
Cc! = /dxanLm—éGH, (33)

at zero skewness limit. For C? > 0 quark spin and OAM
lends to align and they are antialigned for C? < 0. In this
model we have found a antiparallel correlation between
quark spin and OAM with strength C? = —0.125074 for
Q =5 GeV. H is one of the GTMDs found for trans-
versely polarized dressed quark system and is shown in
Fig. 2(b) for £ = 0.2, k;, =0.2) GeV and A | is along .

-0.0075

-0.0100

i -0.0125

For this transverse axes choice, the term containing the dot
product k | - A | will vanish in Eq. (21). This kind of terms
leads to a dipolar distribution in the transverse momentum
plain as shown in the [42] for the £ = O limit. The TMD
limit of this distribution provides the Boer-Mulders TMDs.

A. GTMDs in limit £ — 0

GTMDs of unpolarized and longitudinally polarized
quark in the dressed quark model has already been
calculated for £ = 0 limit [30] and it is important to obtain
the GTMDs in the limit £ — O to ensure or check the
results’ correctness. Our results agree with the results of
[30] for unpolarized and longitudinally polarized case
(F'1;, Gy ;). There are no previous results for transversely
polarized quarks (H ;) for £ — 0 limit in this model. Thus
for completeness, we list up the results of the GTMDs H | ;
corresponding to the transversely polarized dressed quark
system at £ — O limit as

0.006
0.004

0.002

(b)

FIG. 2. GTMDs (a) G, , and (b) H; ; as function of x and A% for fixed values of £ = 0.2 and k| = 0.27 GeV.
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Ho_ 2m>NAY (34)
"D (g )D(g L) (koA — ki Ay)
2m2NkJ_ . AJ_
H ,= , 35
2 DDl ) By )
L N@R (102 50
7 D¢ )D(gL)(1—x)x’
H 4 =0, (37)
H o — m*NA? (38)
b D*(q' )D(q 1 )x*(kyAy — ki Ay)’
m>Nk | - A |
Hyg=- . (39
b D*(q', )D(q 1 )% (ko Ay — ki A) (39)
H 2m2Nkl . AL (40)
7 D*(q', )D(q 1 )x*(1 = x)(ky Ay — ki Ay)’
2m2Nk?
H].g — L (41)

D*(q/J_)D(CIJ_)xz(l = x)(ky Ay = k1 A,) .

In the limit £ — 0, the second term of GTMDs vanishes
with contribution only coming from the first term, where
the factor (x> — ¢?) is replaced by x? in the denominator.
The factor D(q, ,y)D*(q', ,x") present in a also changes
accordingly to D(q , ,x)D*(q’, ,x) which can be simply
written as D(q, )D*(q',).

V. WIGNER DISTRIBUTION IN SIGMA SPACE

Wigner distribution contains the information on the
momentum space (x,k ) as well as the position equiva-
lent spaces o,b |, and thus is useful to investigate the
nonperturbative structures of a system. The transverse
impact parameter b | is Fourier conjugate to the transverse
momentum transfer D, = A /(1 — &) [61-64] and
longitudinal boost invariant space variable o :%b‘PJr
is the Fourier conjugate to the longitudinal momentum
|

transfer £ [44,45]. The Wigner distribution in the transverse
impact parameter space W'[’Aﬂ,] (x,&,b,,p,) can be
found from the Fourier integration of GTMDs correlator
of Eq. (9) over D | . Note that at £ =0 limit, D | = A | .
For this dressed quark system, quark and gluon Wigner
distributions in transverse impact parameter space

W'Sﬂv] (x,& b, p ) is extensively studied in this model

for £ = 0 limit only [30,41,42]. In this work, we concen-
trate on the Wigner distribution in the boost invariant
longitudinal space W[yﬂ[ﬂ,l (x,6,A |, p ) which is found
from the Fourier integration of Eq. (9) over the skewness £.
The quark sector is presented in this section only and the
gluon sector is beyond the scope of this work and kept
reserved for the future works. Recently some works came
out addressing the boost invariant longitudinal position
space [40,65] and have attracted major attention of the
community. The Wigner distribution in longitudinal impact
parameter (o) space is defined as

gl‘ﬂaxd
pm(x,a,Al,kL;S)z/ e

0 T

eiri-SW[F](x, ¢, Al s kL;S)
(42)

where upper limit of the integration is restricted by the
energy transfer ¢ to the system as

—t 4m? 452,“2_'_A2L
x==—|\/1+—=1]; and —ft=—"——5—.
Emax 22 ( + —; ) an 1— gz
(43)

Here S is the polarization of the dressed quark system state.
The different polarization projection of Wigner distribu-
tions are denoted by the symbol pyy, where X and Y
represent the polarization of dressed quark state and the
struck quark respectively and the subscripts X, Y = U, L, T
for the unpolarized, longitudinally polarized and transverse
polarization respectively. For the different polarization
combination of X and Y, the Wigner distributions reads as

1 . .

puy(x,06,A k) :E[p[r](va’AJnkJ_’"i_ez) +p(x, 0,0,k —2,)] (44)
1 . A

pLY<vavAJ_ka_) :E[P[F](x’f’vakL,"‘ez) _pm<x76vAJ_ka_’_ezH (45)
. 1 . R

Pry(x,o, A k) :EL"[F]()@G’ALJQ,*'&) _p[r](va’AJ_’kJJ_ei)] (46)

Each of the above equations Egs. (44)—-(46) is a composite form of three Wigner distributions corresponding to the three
different polarization of quark Y = {U,L, T} corresponding gamma structures I' = {y*,y*y>, 67/y°} respectively. In
Egs. (46), the flouting index i = X, § represent the direction of the transversely polarized dressed quark system in the
transverse plane. The details expressions of spin dependent Wigner distributions are listed in the Appendix A. One can also
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find the pretzelocity Wigner distribution when quark and dressed quark both are transversely polarized but in the mutually
orthogonal direction and defined as

j 1 ij +J )5 A +j5 ~
pTLT](x’UvAL’kL) :Eeiwa ys](va,ALakarei)—P[a 7](X’G’Akai’_ei)]- (47)

Here +¢; is the polarization vector corresponding to the transverse polarization of the target state and can be expressed as
the superposition of the longitudinal polarization vector +é,, and —é,,

|£2) = (| +2,) £] - 2.)) (48)

V2

Wigner distribution are defined as the Fourier transform of the most general quark-quark correlator of Eq. (9). Using the
bilinear decomposition of Eqs. (A1)—-(A3), pxy can further be parameterized in terms of different GTMDs [40]. Here we list
up the four of them pyy, pr1, prr. and pi in terms of GTMDs which read as

Y

ot k)= A — 49

pUU(x 9 J_) /) 272_3 m 1,1 ( )
émﬂx dg . 2

otk )= [ St £ 50

pLL(x o J_) \/O‘ 27[6 \/1_—52 1.4 ( )

. émax d: . ‘s . 1 . . .
I (x,o.t, k)= / —2 plode (—1)J [4 kAL H,  + (AL ))2H
pTT( J_) 0 o J_( ) 2m2ﬂ( 1=1411 ( J_) 1,2)
J1 gj o
+ V1 -8H 3+ —5— (kj )*H, 4+ K| A (1 -8)H,5—EH, 7)

1
1= 8

1 4
+m(Aﬁ)2((1 —&)H 6 §H1,8)] (51)
4 b dE 1
pit o) = [ 5100 |-k 80 (b =200 )0
1 o
e AUA (Hi,—2(1-&)H, - ¢H
7 zm 1 J.( 1,2 ( ) 1,6 1,8)
1- 52 éf
pUU(X,kJ_,o',t) pLL(x,kJ_,o',t)

IONANC NN T MLLWVOONAD o NN N
-100 -50 50 100 -100 -50 50 100

(a) (b)

FIG. 3. The first moment of quark Wigner distribution in the o-space for different values of —¢. (a) when quark and dressed quark
system both are unpolarized py; and (b) longitudinally polarized p; ;.
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prT(xykJ.yo.yt)
1x107

~t=0.05 GeV?
-t=0.1 GeV?
~t=0.6 GeV?

P VARG, VA0 VS o
-100 -50 50 100

P rr(x,k1,0)

~t=0.05 GeV?
-t=0.1 GeV?

0.8-. —
~t=0.6 GeV?

0.6

-100  -50 50 100

(b)

FIG. 4. The first moment of quark Wigner distribution in the o-space for different values of —z—(a) when quark and dressed quark
system both are transversely polarized py. along %, (b) when quark and dressed quark system both are transversely polarized but they are

mutually perpendicular p7, struck quark is along %.

The explicit form of the GTMDs in this dressed quark
model are given in Eqgs. (13)—(28). Using those GTMDs, the
numerical results of above Wigner distributions in the o space
are shown in Figs. 3 and 4. Note that, the right-hand side
of Egs. (50)—(52) (including GTMDs) are functions of
x1,;(x,6,A | k) and we replace the argument A | by ¢
using the relation between them as given in Eq. (43) and then
performed the Fourier transformation to o-space. In Fig. 3,
we illustrated the distributions p;;; and p; ; as a function of &
at fixed x = 0.3 and k|, = 0.2 GeV. These distributions
involves F'| ; and G ; when both struck quark and dressed
quark system are unpolarized and longitudinally polarized
respectively. The three plots in each subfigures are for
different values of —t = 0.05,0.1,0.6 GeV? and the corre-
sponding &, found from Eq. (V). Wechose A | 1 k| and
reduces the contribution from the terms containing A | -k | .

The ¢ variation shows a oscillatory behavior that can be
considered as diffraction type pattern. This diffraction pattern
is found to be similar to the single slit diffraction of lights in
optics. The width and peak of the central maxima reduces
with the increasing value of —¢ and essentially the skewness
plays role analogues to the slit-width in single-slit diffraction
of optics. A similar pattern is reported for Wigner distribution
in longitudinal boost invariant space in the other model
results for different process [40,65].

Figure 4 represent the o-space variations for p;; and p7
that shows a similar diffraction pattern.

VI. CONCLUSION

In this work, we present leading twist GTMDs for
nonzero skewness and study Wigner distributions in the
boost-invariant longitudinal space in light-front dressed
quark model. Here we concentrate on the quark sectors and
investigated the distributions for different polarization
combination of struck quark and the dressed quark system.
We obtained the analytical expression for 16 GTMDs at
twist 2 for quark in the light-front dressed quark model at
nonzero skewness and discussed the numerical results of

few GTMDs which has physical significance at certain
limit. The obtained results for unpolarized and longitudi-
nally polarized quark in the limit £ — O agrees with [30],
where the GTMDs has been calculated at zero skewness. At
the forward limit and £ — 0, GTMDs F; ; and H ; reduces
to Sivers and Boer-Mulders function, respectively. The
model result for both GTMDs F , and H, ; show that the
distribution peak shifts toward large x with the increase of
A% . The GTMDs F, 4 and G, provides the spin-OAM
and spin-spin correlation among the struck quark and the
dressed quark system. The £ dependence of GTMDs does
not make any difference to the orbital angular momentum
and spin-orbit correlation of quark as both the quantities
are defined for the limit £ — 0. To include the effect of
skewness, one must modify the definition of orbital angular
momentum and spin-orbit correlations for nonzero skew-
ness from the first principle. However, the £ dependent
expression of GTMDs are significant to define the Wigner
distribution of quarks in boost-invariant sigma space. A
total of 16 Wigner distributions have been defined depend-
ing on the polarization of quark and dressed quark. All the
Wigner distributions show an oscillatory pattern and a few
of them are analogous to the single slit diffraction pattern
found in optics. The light-front quark-diquark model has
obtained a similar result in boost-invariant longitudinal
space [40] for quark distribution inside a proton. This
diffraction pattern is not surprising as such behavior has
previously been seen for GPD in the o-space. An essential
feature of dressed quark model is that it allows for studying
gluon behavior in a bound state and the gluon sector is
going to be presented in next work.
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APPENDIX A: BILINEAR DECOMPOSITION AND WIGNER DISTRIBUTIONS
AS THE FUNCTION OF GTMD

The quark-quark correlator are written in terms of bilinear decomposition as

W/[{jl,] = ﬁﬁ(l?',/l/) {Fm - iai;]fl Fiy— iai;ﬁil Fis+ iaijk;néAjL F1.4} u(p, ), (A1)

W%rs] _ ﬁﬁ(p’,/l’) [—igii’]:;; Al G\ - igi+};)/ik,»l s ia”]};iAil Gist ia*‘y5G1‘4} u(p. ) (A2)
el _ ﬁ —_ [_ ic'] pi, - ie'l AT} L it mi;f:yS . Lzo";fp" H,,

PP S P S D

The explicit form of the Wigner distributions in the boost-invariant longitudinal space ¢ reads in terms of GTMDs as
for unpolarized quark,

b dE 1
pUU(X,G,AL,kL) _A %ew‘fﬂFl,l’ (A4)
s dE o
x,0,A | k)= eloe €Tk AN Gy, A5
puL( 1.ky) A 2ﬂ m\/—J_J_J_l.l (AS)
j S dE e =L g ;
pur(x.0,A k)= T meL[kLHl,l'i_AlHll]’ (A6)
for longitudinal polarized quark,
b dE i Lo
_ =5 o U 1. J
pru(x,0, A1 k) —/0 2wl = l_gzej_kJ_AJ_FlA’ (A7)
gn]dx dg 2
pro(x,o, A k) :A 22¢ et —z G4, (A8)
. ‘fmax d& . 2 . .
prr(x.0. A k) :A Ee’”fm[kﬁH”qLAﬁHw], (A9)
and for transversely polarized quark,
. gmax d§
(o ALk, ) = eirt e [N (F, —201-&)F
IOTU(xo- 1 L) \/0 2” 2mm J_ 1,1 ( é) 13)
=21 =, Fip+— E okl 3k Al A F14] (A10)
t. b dE I .
pTL(vavAJ_ka_)_/O 2. ‘f{mdeﬁlkﬁAﬁAﬁGu
Tl TSR BN, (1-=8)G,5 - &G )} (Al1)
G+t —F—=A (I - 13— ¢G14) |,
m my/1 — &
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, b dE i . D l,
pJTT(x’G’ALJCL) —A —eméei(—l)] (k' Ay Hy +(AJ_)2H1,2)

1
2m*\/1 =&
Ny VI8 0 N
+V1-E&H 5+ ) (kJL)HIA—szm

1 4

+m(Ag)2((1 —E)H, ¢ —EH,g)|. (A12)

K\ A ((1-8)H, 5 - EH, ;)

the pretzelocity Wigner distribution is given in Sec. V.

APPENDIX B: CALCULATION OF GTMDs

GTMDs F,F;,,F;3,Fi4 can be derived as follows:
(i) For unpolarized quark, we have I' = y™, and can use Eq. (10) to obtain the following combination of quark-quark
correlator

N4k2l(1 +x2) +4m?>(1 —x)* = (1 = x)>(1 + x2)AY + H(Q)

") () _
Wi/ +wi = -
U= D(g 1. 0)D (g x) (1 = %) (2 = &)

, (B1)

WS}:_) _ W(},+> - N 41(1 + X)(klAz - kZAI) ’ (BZ)

i — :
(=5D(q L. y)D (¢ ¥) (& = &)

. . 4im(2(1 + x)¢k; + (=1 + x)xA
W) wlr) =y HmO 00k T (oA (B3)

—x)? .
=D (gL, y)D (¢ ¥) (& = )

. . Am(2(1 + x)Cks + (=1 + x)xA
wir) _wor) - _y_4mCa+ 0k + (Z1 4+ 0)xh) (B4)

(= D(g L, 0)D (g, ¥) (2 = &)

(ii) We can also use Eq. (Al), the bilinear decomposition of quark-quark correlator for unpolarized quark to get the

following
) e — 2P
WY+ Wi = , B5
++ m ( )
W) i) - 2kt~ o8 )P (B6)
m>y/1 — &
w L wth) i(m*AyF 1y = 2m*(1 = &) (kaF1p + Ay Fy3) + EA (ki Ay — kaAy)Fy) (B7)
- -t m3 /1 — 52 ’
W<y+) _ W(y+) _ mzAlFll - 2m2(1 _— 52)(1{1F12 + A1F13) + ZjAz(szl - klAz)F14 (BS)
= -t m3\/1 — 52
(iii) To obtain the above equations, we choose the Dirac spinors as
pt+m
P (B9)
u =— ,
e 2pT | pt—m
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—p' +ip?
1 pt+m
uy(p) = Lo (B10)
2pt | p —ip
_p+ +m

(iv) Using Egs. (B1)=(B8), the GTMDs Fy;,F,,
Fy3,Fy4 can be obtained.

(v) The GTMDs G ;.G,G13.G14, and Hy g, Hy o,
H1,3,H1,4,H1,5,H1,6,H1.7,H1.8 can be derived
following the same procedure for I'=y*y> and
I =ic/ty.
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