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The fϱ=mϱ ratio is calculated at N3LO order within perturbative (p)non-relativistic quantum
chromodynamics (NRQCD) with Nf flavors of mass degenerate fermions. The massless limit of the
ratio is expanded á la Banks-Zaks in ε ¼ 16.5 − Nf leading to reliable predictions close to the upper end of
the conformal window. The comparison of the next-to-next-to leading order (NNLO) and N3LO results
indicate that the Banks-Zaks expansion may be reliable down to twelve flavors. Previous lattice
calculations combined with the Kawarabayashi-Suzuki-Riazuddin-Fayyazuddin (KSRF) relations provide
us with the same ratio for the range 2 ≤ Nf ≤ 10. Assuming a monotonous dependence on Nf leads to an
estimate for the lower end of the conformal window, N�

f ≃ 12, by matching the nonperturbative and our

perturbative results. In any case an abrupt change is observed in fϱ=mϱ at twelve flavors. As a cross-check
we also consider the fπ=mϱ ratio for which lattice results are also available. The perturbative calculation at
present is only at the NNLO level which is insufficient for a reliable and robust matching between the low
Nf and high Nf regions. Nonetheless, using the relative size of the N3LO correction of fϱ=mϱ for
estimating the same for fπ=mϱ leads to the estimate N�

f ≃ 13.

DOI: 10.1103/PhysRevD.107.074039

I. INTRODUCTION AND SUMMARY

How gauge theories with spontaneous chiral symmetry
breaking transition into conformal gauge theories as the
massless fermion content is increased á la Banks-Zaks is a
nontrivial QFT problem [1]. We propose dimensionless
ratios of meson decay constants and masses as promising
candidates to shed light on the particulars of the transition.
Concretely, we will study fϱ=mϱ and fπ=mϱ in this paper.
Our main objective is to estimate or constrain the critical
flavor number, N�

f, in other words the lower end of the
conformal window.
The nontrivial problem of finding or constraining N�

f in
gauge theories has been addressed by many different
approaches in the past [2–12]. Reviews concerning the
nonperturbative lattices studies include [13–15] and refer-
ences therein.
Clearly, a purely perturbative calculation, even at high

orders, is not sufficient to determine N�
f with any degree of

confidence. Some nonperturbative input is required since
just below the conformal window the theory is expected to
be strongly coupled. In our work we will carry out high
order perturbative calculations valid in the high Nf con-
formal region and combine it with nonperturbative results
from the low Nf region in a meaningful way.
Below the conformal window both the nominators and

denominators of our ratios have well-defined chiral limits
and are both OðΛÞ, the dynamically generated scale. The
ratios are finite and can be computed via nonperturbative
lattice calculations carefully extrapolated to the infinite
volume, chiral and continuum limits. Inside the conformal
window both decay constants and masses scale the same
with the fermion mass m and the ratios again have a well-
defined chiral limit. In this way the ratios can meaningfully
be compared across the transition covering the full range
of fermion content provided asymptotic freedom is present.
This observation is the main motivation for our study. The
gauge group will be SUð3Þ throughout.
Perturbation theory is clearly not applicable below the

conformal window, at low Nf, hence the need for non-
perturbative lattice simulations there. Continuum and
chirally extrapolated lattice results are available for
fπ=mϱ within the range 2 ≤ Nf ≤ 10 [16–18]. Using a
KSRF-relation [19,20] these can be reused for fϱ=mϱ. This
nonperturbative input is essential and will supplement our
perturbative results.
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Close to the upper end of the conformal window, at high
Nf where the fixed point coupling is small, perturbation
theory is unambiguously reliable. This occurs below Nf ¼
33=2 for SUð3Þ, the point at which asymptotic freedom is
lost. In this paper we calculate fϱ and mϱ in perturbation
theory at finite fermion mass within the framework of (p)
NRQCD to N3LO accuracy, and obtain fϱ=mϱ, followed by
the massless limit. The deviation between the NNLO and
N3LO results are very small down to twelve flavors indicat-
ing convergence of the perturbative series. Assuming fϱ=mϱ

is monotonous as a function of Nf we attempt to match the
nonperturbative low Nf region and the perturbative high Nf

region. At twelve flavors an abrupt change occurs which we
identify as an estimate of the lower end of the conformal
window, N�

f ≃ 12.
The same approach could be applied to the fπ=mϱ ratio

as well. On the nonperturbative side continuum and chiral
extrapolated lattice results are available in the literature as
already mentioned. On the perturbative side, inside the
conformal window, we are only able to calculate fπ to
NNLO order at present, one order lower than it is currently
possible for fϱ. Nonetheless, if we take the relative size of
the N3LO result found for fϱ=mϱ and estimate the
corresponding contribution to fπ=mϱ to be about the same,
we may extract N�

f using the same procedure. From fπ=mϱ

we obtain in this way N�
f ≃ 13 but of course this result

should be taken as indicative only, a genuine N3LO
calculation should be performed for fπ in the future to
validate it.
The organization of the paper is as follows. In the next

section we summarize the application of the Banks-Zaks
expansion to mesonic bound states in mass perturbed
conformal gauge theories. In Sec. III the leading order
expressions are presented which are rather straightforward
and are given only to fix notation and conventions.
Section IV details the (p)NRQCD calculation of the
NLO, NNLO and N3LO corrections. These are used in
Sec. V to attempt to match the nonperturbative low Nf and
perturbative high Nf regions. An assumptions is made
explicitly, namely that our decay constant to meson mass
ratios are monotonous as a function of Nf, allowing the
extraction of an estimate of N�

f, the flavor number where an
abrupt change occurs in the ratios. Finally in Sec. VI we
conclude and provide an outlook for future work.

II. BANKS-ZAKS EXPANSION FOR
BOUND STATES

In the massless case the theories inside the conformal
window are nontrivial interacting conformal gauge theories
with some fixed point g2� depending on Nf. At least
sufficiently close to Nf ¼ 33=2 there is a single relevant
SUðNfÞ-invariant perturbation of this conformal field
theory (CFT) given by the flavor singlet fermionic mass

term. Its anomalous dimension determines the dependence
of all RG invariant dimensionful quantities on the per-
turbing parameter m. Besides the mass dependence, there
is of course dependence on the fixed point coupling
(which depends on Nf) and further explicitly on Nf.
Schematically, a quantity of dimension k can be written
as mk=ð1þγÞFðεÞ where ε ¼ 33=2 − Nf and γ is the mass
anomalous dimension of the massless theory. A perturba-
tive expansion can then be developed for small ε, combin-
ing all Nf-dependence.
Depending on the quantity in question, the function FðεÞ

can be determined in perturbation theory through an
expansion in g2. The observables in question for us are
quantities related to bound states: mesons with various
quantum numbers. A rigorous perturbative treatment of
bound states is given in the nonrelativistic effective theory
framework (p)NRQCD, which will be our main method.
Inside the conformal window massive fermions are

always heavy in the (p)NRQCD language. Hence the setup
corresponds to zero flavors of light fermions andNf flavors
of heavy fermions in (p)NRQCD terms. Dimensionful
quantities, such as fπ , fϱ or mϱ are then given as being
proportional to m and a double series expansion in aðμÞ ¼
g2ðμÞ=ð16π2Þ with some RG scale μ and in 1=m2 once a
choice of RG scheme has been made. In the perturbed CFT
the natural scale is μ ¼ m which will be our choice as well.
Thus, we will find schematically,

fπ;ϱ ¼ ma3=2ðmÞðb0 þ b1aðmÞ þ…Þ
mϱ ¼ mðc0 þ c1aðmÞ þ…Þ ð1Þ

with some coefficients biðNfÞ and ciðNfÞ which only
depend on Nf and where… refer to higher order as well as
nonanalytic terms involving logðaðmÞÞ. Naturally, in the
massless limit all three quantities are vanishing. But the
massless limit can meaningfully can be taken for the ratios,

fπ;ϱ
mϱ

¼ a3=2� ðd0 þ d1a� þ d2a2� þ…Þ ð2Þ

where aðm → 0Þ ¼ a� is the fixed point of the massless
theory and the coefficients diðNfÞ again depend only on
Nf. The (p)NRQCD calculation will provide all the
coefficients above in the MS scheme.
Now the fixed point a� can trivially be expanded in ε

also,

a� ¼ εðe0 þ e1εþ…Þ ð3Þ

up to 5-loop order [21–26] where the corrections do not
contain logarithms only higher orders in ε. Once all the
explicit Nf-dependence of the coefficients diðNfÞ is
replaced by Nf ¼ 33=2 − ε we can expand the final result
in ε, leading to,
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fπ;ϱ
mϱ

¼ ε3=2ðh0 þ h1εþ h2ε2 þ…Þ; ð4Þ

where again … is short hand for both higher orders in ε as
well as powers of log ε. The coefficients of the above series
are constants and will be our main result up to N3LO order
in (p)NRQCD for fϱ=mϱ and up to NNLO order for fπ=mϱ.
The order-by-order results for fϱ=mϱ are shown in Fig. 1
where the nonperturbative results for 2 ≤ Nf ≤ 10 are also
indicated. Clearly, the deviation between the NNLO and
N3LO approximations is not large down to Nf ¼ 12. The
same results for fπ=mϱ are shown in Fig. 2 but since the
N3LO correction is not available we cannot conclude firmly

one way or another about the convergence of the perturba-
tive series in this case.

III. LEADING ORDER

The perturbative calculation of fπ in the NRQCD [27,28]
and pNRQCD [29–31] formalism is done by first matching
the axialvector current of the heavy quark and antiquark
pair to NRQCD operators, and then computing the
NRQCD matrix elements in pNRQCD in terms of the
bound-state wave functions [32,33].
The matching of the decay constant in NRQCD is

expressed in terms of NRQCD operator matrix elements
which scale with powers of v, the velocity of the heavy
quark and antiquark inside the bound state. In the pertur-
bative case, v ∼ g2, so that in order to obtain expressions at
NNLO accuracy, it suffices to keep corrections up to
relative order v2. To relative order v2, fπ can be written
as [34]

fπ ¼
1ffiffiffiffiffiffi
mπ

p
�
cph0jχ†ψ jπi −

dp
2m2

�
0

����χ†
�
−
i
2
D
↔
�

2

ψ

����π
��

;

ð5Þ
where ψ and χ† are operators that annihilate a heavy quark
and antiquark, respectively, D ¼ ∇ − igA is the covariant

derivative, A is the gluon field, χ†D
↔
ψ ¼ χ†Dψ − ðDχÞ†ψ ,

jπi is the relativistically normalized π state at rest, and cp ¼
1þOðaÞ and dp ¼ 1þOðaÞ are the matching coefficients
that are given by a series in a. The NRQCD matrix
elements can be computed in pNRQCD in terms of the
bound-state wave function ψðrÞ and the binding energy E,
which satisfy the Schrödinger equation

�
−
∇2

m
þ VðrÞ

�
ψðrÞ ¼ EψðrÞ; ð6Þ

where the potential VðrÞ is obtained by perturbatively
matching pNRQCD to NRQCD. The mass of the bound
state is given in terms of the binding energy E by

mπ ¼ 2mþ E; ð7Þ
and the matrix elements are given by

h0jχ†ψ jπi ¼
ffiffiffiffiffiffiffiffi
2Nc

p
jψð0Þj;�

0

����χ†
�
−
i
2
D
↔
�

2

ψ

����π
�

¼
ffiffiffiffiffiffiffiffi
2Nc

p
jψð0ÞjmE; ð8Þ

where Nc ¼ 3 is the number of colors. These lead to the
following expression for fπ

fπ ¼
ffiffiffiffiffiffi
Nc

m

r �
cp −

�
cp
4
þ dp

2

�
E
m

	
jψð0Þj; ð9Þ

which is valid up to corrections of order a4.
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FIG. 1. The fϱ=mϱ ratio in increasing perturbative order as
obtained from the Banks-Zaks expansion in ε ¼ 33=2 − Nf. The
nonperturbative result from combined lattice calculations [16–18]
and the KSRF-relation is also shown. The smaller error band
corresponds to the uncertainty of the lattice calculation, the wider
one combines this with a conservative estimate of the uncertainty
of the KSRF-relation itself.
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FIG. 2. The fπ=mϱ ratio in increasing perturbative order as
obtained from the Banks-Zaks expansion in ε ¼ 33=2 − Nf. The
nonperturbative result from lattice calculations [16–18] is also
shown.
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Analogously, fϱ is given in NRQCD by [32,35–37]

fϱ ¼
1ffiffiffiffiffiffimϱ

p
�
cvh0jχ†ϵ · σψ jϱi −

dv
6m2

×

�
0

����χ†ϵ · σ
�
−
i
2
D
↔
�

2

ψ

����ϱ
��

; ð10Þ

where σ is a Pauli matrix, ϵ is the polarization vector for the
ϱ, and jϱi is the relativistically normalized ϱ state at rest.
Similarly to the case of fπ , the NRQCD matrix elements
appearing in the expression for fϱ can be computed in
pNRQCD, which lead to the following expressions

h0jχ†ϵ · σψ jϱi ¼
ffiffiffiffiffiffiffiffi
2Nc

p
jψð0Þj;�

0

����χ†ϵ · σ
�
−
i
2
D
↔
�

2

ψ

����ϱ
�

¼
ffiffiffiffiffiffiffiffi
2Nc

p
jψð0ÞjmE; ð11Þ

and mϱ ¼ 2mþ E. From these we obtain

fϱ ¼
ffiffiffiffiffiffi
Nc

m

r �
cv −

�
cv
4
þ dv

6

�
E
m

	
jψð0Þj; ð12Þ

which is again valid up to corrections of order a4.
At leading order in a, it suffices to solve the Schrödinger

equation for the Coulomb potential VðrÞ ¼ −4πaCF=r,
where CF ¼ ðN2

c − 1Þ=ð2NcÞ ¼ 4=3. In this case the
bound-state solutions are known exactly and we obtain
for the ground state

ψð0Þ ¼ ð4mπaCFÞ3=2=ð8πÞ1=2½1þOðaÞ�;
E ¼ −mð4πaCFÞ2=4þOða3Þ; ð13Þ

for both the spin-triplet and spin-singlet states. From these
we obtain the following expressions for fπ, fϱ, and mϱ that
are valid at leading orders in a.

fπ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8NcC3

F

q
πma3=2½1þOðaÞ�;

fϱ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8NcC3

F

q
πma3=2½1þOðaÞ�;

mϱ ¼ 2m½1þOða2Þ�: ð14Þ

Note that the order-a correction to mϱ is absent because E
begins at order a2.

IV. NLO, NNLO, AND N3LO CORRECTIONS

Now we discuss the sources of radiative corrections
needed to obtain expressions at NNLO accuracy. We first
note that because E begins at order a2, the leading-order
expression for E suffices for obtaining mϱ at NNLO
accuracy. The corrections at higher orders in a to NNLO
accuracy to the decay constants come from the radiative

corrections to the matching coefficients cp and cv, as well
as the corrections to the wave function at the origin. The
corrections to cp have been computed analytically in [34] at
NLO and in [38] at NNLO. Likewise, analytical expres-
sions for the radiative corrections to cv are available in
[35,36] at NLO and in [39,40] at NNLO. As is well known
from heavy quarkonium phenomenology, the NNLO cor-
rections to cv and cp contain logarithms of the NRQCD
factorization scale, which must cancel with the logarithms
coming from the renormalization of the NRQCD matrix
elements [41,42]. The corrections to jψð0Þj have been
computed to NNLO accuracy in [32,43] for the S-wave
spin-triplet case. For the spin-singlet case, the corrections to
jψð0Þj to NNLO accuracy can be obtained from the results
in Ref. [44]. The NNLO corrections contain the logarithms
of the NRQCD factorization scale that cancel against
the logarithms coming from cv and cp, so that the decay
constants are free of dependencies on the factorization
scale. These are sufficient ingredients for computing fπ and
fϱ to NNLO accuracy. We note that the dependence on Nf

only comes from the matching coefficients, because all Nf

flavors are heavy and are integrated out from the effective
field theory. Also note that a nonvanishing imaginary part
of the matching coefficients can be discarded at our current
level of accuracy.
Additionally, the N3LO correction to cv has been

computed in Refs. [45,46], and the N3LO correction to
jψð0Þj has been computed for the S-wave spin-triplet case
in [47,48]. Together with the NLO correction to E available
in [43,49] and the NLO correction to dv available in
[50,51], these make possible the computation of fϱ and
mϱ to N3LO accuracy. At N3LO accuracy, in addition to
NNLO and N3LO corrections to cv, the NLO correction to
dv also contains a logarithm of the factorization scale,
which cancels against the ultrasoft correction to jψð0Þj at
N3LO accuracy [52]. Because only part of the N3LO
correction to cv is analytically known, we only obtain
numerical results for the coefficients of the order-a3 terms
in fϱ.
We present below the results of the NLO and NNLO

corrections for fπ and also the N3LO correction for mϱ
and fϱ.

A. ϱ mass

From the binding energy E we have, to N3LO accuracy,

mϱ ¼ c0m½1þ c2a2ðmÞ þ c30a3ðmÞ
þ c31a3ðmÞ log aðmÞ þOða4Þ�: ð15Þ

The order-a term inmϱ is zero because E begins at order a2.
The first two coefficients are determined by the leading-
order binding energy and to NNLO and N3LO we obtain
the further coefficients,
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c0 ¼ 2

c2 ¼ −2C2
Fπ

2

c30 ¼
4

9
π2CAC2

Fð66 logð4πCFÞ − 97Þ

c31 ¼
88

3
π2CAC2

F; ð16Þ

with CA ¼ Nc ¼ 3.

B. ϱ decay constant

From the corrections to cv and jψð0Þj available to NNLO accuracy, we obtain

fϱ ¼ bϱ0ma3=2ðmÞ
�
1þ

X3
n¼1

Xn
k¼0

bϱnka
nðmÞlogkaðmÞ þOða4Þ

�
: ð17Þ

The coefficients bϱnl up to relative order a2 are known analytically and are given by

bϱ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8NcC3

F

q
π;

bϱ10 ¼
161

6
−
11π2

3
þ 33 log

�
3

16π

�
;

bϱ11 ¼ −33;

bϱ20 ¼
�
−
64π2

27
þ 704

27

�
Nf þ

9781ζð3Þ
9

−
27π4

8
þ 1126π2

81
þ 9997

72
þ 1815 log2 π

2
þ 1815

2
log2

�
16

3

�

þ log

�
16

3

��
−
2581

2
þ 605π2

3
þ 1815 logðπÞ

�
þ
�
4325π2

27
−
2581

2

�
logðπÞ − 256

81
π2 logð8Þ

−
1120

27
π2 log

�
8

3

�
−
512

9
π2 logð2Þ;

bϱ21 ¼
4325π2

27
−
2581

2
þ 1815 log

�
16π

3

�
;

bϱ22 ¼
1815

2
: ð18Þ

The results for the relative order a3 terms are only obtained numerically because the analytical result for cv at N3LO is only
partially known,

bϱ30 ¼ 0.8198N2
f − 362.7Nf − 1.0901ð1Þ × 106;

bϱ31 ¼ −88.42Nf − 7.7493 × 105;

bϱ32 ¼ −2.1651 × 105;

bϱ33 ¼ −2.3292 × 104: ð19Þ

C. π decay constant

From the corrections to cp and jψð0Þj available to NNLO accuracy, we obtain

fπ ¼ bπ0ma3=2ðmÞ
�
1þ

X2
n¼1

Xn
k¼0

bπnka
nðmÞlogkaðmÞ þOða3Þ

�
; ð20Þ
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and the coefficients bπnk are given by

bπ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8NcC3

F

q
π;

bπ10 ¼
59

2
−
11π2

3
þ 33 log

�
3

16π

�
;

bπ11 ¼ −33;

bπ20 ¼ Nf

�
−
32π2

9
þ 344

9

�
þ 961ζð3Þ − 27π4

8
þ 1310π2

27
þ 23053

72
þ 1815 log2 π

2
þ 1815

2
log2

�
16

3

�

þ log

�
16

3

��
−
2757

2
þ 1271π2

9
þ 1815 log π

�
þ
�
1271π2

9
−
2757

2

�
log π −

272

9
π2 log 2;

bπ21 ¼
1271π2

9
−
2757

2
þ 1815

2
log

�
256π2

9

�
;

bπ22 ¼
1815

2
: ð21Þ

Unfortunately at present the N3LO corrections for fπ are
not available.

D. Banks-Zaks expansion of ratios

Now that all three quantities of interest are available in
perturbation theory we may expand the ratios in ε ¼
33=2 − Nf as outlined in Sec. II.
Using the 5-loop β-function [21–26] for the expansion of

a� and the perturbative series (15), (17) and (20) we obtain
the two meson decay constant to mass ratios in numerical
form as,

fϱ
mϱ

¼ ε3=2C0

�
1þ

X3
n¼1

Xn
k¼0

Cnkε
n logk εþOðε4Þ

�

fπ
mϱ

¼ ε3=2C0

�
1þ

X2
n¼1

Xn
k¼0

Dnkε
n logk εþOðε3Þ

�
;

with the coefficients,

C0 ¼ 0.005826678

C10 ¼ 0.4487893

C11 ¼ −0.2056075

C20 ¼ 0.2444502

C21 ¼ −0.1624891

C22 ¼ 0.03522870

C30 ¼ 0.10604ð3Þ
C31 ¼ −0.1128420

C32 ¼ 0.03695458

C33 ¼ −0.005633665 ð22Þ

D10 ¼ 0.4654041

D11 ¼ −0.2056075

D20 ¼ 0.2845697

D21 ¼ −0.1737620

D22 ¼ 0.03528692: ð23Þ

Even though the coefficients (16), (18), and (21) are
dangerously increasing in the series (15), (17), and (20),
the above coefficients of the ratios are much better behaved.
This will be important for the reliability and robustness of
our findings.
The coefficients (22) and (23) are the main results of

this paper.

V. MATCHING ACROSS THE CONFORMAL
WINDOW

The perturbative calculations are valid close to the upper
end of the conformal window where ε ¼ 33=2 − Nf is
small. Nonperturbative results are available in the low Nf

region, specifically for 2 ≤ Nf ≤ 10, all extrapolated to the
chiral and continuum limit.
With the perturbative results for fϱ=mϱ and fπ=mϱ up to

N3LO and NNLO order, respectively, at hand we attempt to
match them to the nonperturbative ones. The latter shows
that below the conformal window both of our ratios are
constants as a function of Nf to high precision. At Nf ¼
33=2 both ratios are vanishing, and it is natural to expect
that both reach zero in a monotonous fashion. Assuming it
is indeed the case we may attempt to interpolate.

A. fϱ=mϱ

In order to match our perturbative fϱ=mϱ results to the
nonperturbative (low Nf) region, continuum and chirally
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extrapolated lattice results for fϱ would be needed. These
are not available at the moment, but they are [16–18] for fπ
in the range 2 ≤ Nf ≤ 10 and the KSRF-relations [19,20]
can be used to relate fπ and fϱ. The relation we need is
simply fϱ ¼

ffiffiffi
2

p
fπ. One does not expect this relation to

hold exactly, but even in QCD at finite quark masses it
holds to about 12% and toward the chiral limit it is expected
to hold to even higher precision. We conservatively assign
the 12% uncertainty as the inherent uncertainty of the
KSRF-relation throughout. Note that in supersymmetric
QCD the KSRF-relations have actually been rigorously
derived [53].
Hence by combining the nonperturbative lattice results

and the KSRF relations we will have access to fϱ=mϱ for
2 ≤ Nf ≤ 10. This is shown, together with the Banks-Zaks
expansion (22) order-by-order in Fig. 1. The smaller error
band displayed for the nonperturbative result corresponds
to the uncertainty of the lattice result while the wider one
combines this with the estimated 12% error of the KSRF-
relation itself. The dominant uncertainty is from the latter.
Clearly, the deviation between the NNLO and N3LO results
for Nf ≥ 12 is not substantial. And curiously, close to
Nf ¼ 12 the perturbative result reaches the nonperturbative
one almost exactly. More quantitatively, in the range
11.9 ≤ Nf ≤ 12.1, the deviation between the NNLO and
N3LO results is at most 4%, or in the range 11.5 ≤ Nf ≤
12.5 at most 13%. Hence we conclude that in the region of
interest, Nf ∼ 12, the N3LO result is robust and reliable.
Assuming fϱ=mϱ is a monotonous function of Nf and

that around Nf ∼ 12 the perturbative result is indeed
reliable we are led to conclude that the combination of
nonperturbative and perturbative results cover the entire Nf

range. And at twelve flavors an abrupt change occurs in the
ratio which is tempting to identify with the lower end of the
conformal window. Concretely, we obtain N�

f ¼ 12.00ð4Þ
and N�

f ¼ 12.08ð6Þ from the NNLO and N3LO approx-
imations, respectively, if only the uncertainty of the lattice
calculation is taken into account. If the estimated much
larger uncertainty of the KSRF-relation is also taken into
account we obtain 12.0(3) and 12.0(5) from the NNLO and
N3LO approximations, respectively. Clearly, the NNLO
and N3LO approximations agree and lead to N�

f ¼ 12 for
integer flavor numbers. Our line of reasoning cannot of
course determine where exactly the twelve flavor theory
lies, whether [54–63] it is just below the conformal window
and is hence spontaneously broken or just inside and is
hence conformal.

B. f π=mϱ

A similar analysis can be performed for fπ=mϱ as well.
Here nonperturbative lattice results are available directly
without reliance on any further input. The perturbative
calculation could unfortunately be only carried out to

NNLO order though. The increasing perturbative orders
are shown in Fig. 2 which also shows the nonperturbative
result obtained from continuum and chirally extrapolated
lattice calculations.
The N3LO correction for fϱ=mϱ was essential to estab-

lish the reliability of the perturbative series hence we cannot
make a similar statement for fπ=mϱ. We may however
estimate the size of the N3LO correction by assuming that
relative to the NNLO result it is comparable to the case of
fϱ=mϱ. Assuming this is the case we obtain a very similar
picture; the perturbative series seems reliable down toN�

f ¼
13 where it matches the nonperturbative result. The only
difference relative to fϱ=mϱ is the shift in the estimate of
the lower end of the conformal window, from N�

f ≃ 12 to
N�

f ≃ 13. This latter estimate should of course be checked
by a genuine N3LO calculation of fπ in the future.

VI. CONCLUSION AND OUTLOOK

In this paper we introduced two quantities we believe are
useful proxies for the transition between chirally broken
and conformal gauge theories as the flavor number is
varied. A minimal requirement for any such quantity is that
it should be well-defined and calculable in the massless
limit both outside and inside the conformal window.
Outside the conformal window lattice calculations offer
a way to obtain results whereas close to the upper end
perturbative ones. Our quantities are related to bound states
defined in the mass perturbed models and the chiral limit is
meaningful for both ratios.
It appears the bridge between the lowNf nonperturbative

and high Nf perturbative regions may not be as large as one
might have expected. Current lattice results are available up
to Nf ¼ 10 and the main result from this paper is that at
Nf ¼ 12, 13 the perturbative series might be reliable if
calculations are performed up to N3LO order leaving only
the Nf ¼ 11 model to be interpolated. Interestingly, at
least for the fϱ=mϱ ratio, the perturbative N3LO result at
Nf ¼ 12 agrees with the nonperturbative Nf ¼ 10 lattice
calculation (and the ratio is approximately constant for
2 ≤ Nf ≤ 10). If we assume the ratio is a monotonously
decreasing function of Nf, which is a natural assumption
based on the behavior at Nf ¼ 10 and Nf ¼ 33=2, we
conclude that a matching between the low Nf nonpertur-
bative and high Nf perturbative regions is possible with an
abrupt change at Nf ≃ 12. It is tempting to identify this
with the lower end of the conformal window N�

f ≃ 12.
Our other ratio, fπ=mϱ offers a similar analysis, but

unfortunately at the moment only NNLO perturbative
results are available. The reliability of the perturbative
series cannot be judged from the NLO and NNLO
corrections alone, in fact it is clear from the behavior of
fϱ=mϱ that the N3LO correction is mandatory in order to
conclude. Such a calculation of fπ within (p)NRQCD
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seems feasible and will be pursued in the future.
Meanwhile, we have estimated the relative size of the
unknown N3LO correction for fπ=mϱ from that of fϱ=mϱ.
Assuming that this is justified we are led to believe that a
matching between the nonperturbative and perturbative
regions is possible at Nf ≃ 13 with a similarly abrupt
change at this value. Hence the estimate shifted to N�

f ≃ 13,
however it is important to stress that a genuine N3LO
calculation of fπ should be sought first.
Needless to say, we have nothing firm to conclude about

the Nf ¼ 12 model, whether it is just inside or just outside
the conformal window.
In general it is important to remember a key assumption

underlying our entire calculation; namely that the only
SUðNfÞ-invariant relevant perturbation of the conformal
field theories we discuss is the fermionic mass term. This is

certainly correct for small ε but might not hold for a
sufficiently strongly coupled CFT, for instance it is con-
ceivable that a 4-fermi term becomes relevant. Addressing
this potential situation is beyond the scope of the present
paper but we hope to return to it in the future.
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