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In this work, the mass of the neutral pion is investigated in the presence of background magnetic fields
in the framework of the Nambu-Jona-Lasinio model. Taking into account the anisotropic four-fermion
interactions, a tensor current arises in the magnetized QCD system, which forms an anomalous magnetic
moment (AMM) coupling in the Dirac equation for the quarks. By solving the gap equations, we find that
the sign of the dynamically generated AMM is opposite to the sign of the quark’s charge and its magnitude
is definitely smaller than the constituent mass. We construct two generalized Nambu-Goldstone pions,
which emerge as combinations of the quantum fluctuations around the conventional scalar and the
emergent tensor chiral condensates. We analytically demonstrate that the Goldstone nature has been spoiled
by the dimensional reduction in the two-particle state and the corresponding decreasing mass of the lighter
generalized pionic mode is a remnant of the infrared dynamics.
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I. INTRODUCTION

Arising as a powerful probe in the study of vacuum
properties and phase structure under the influence of the
external magnetic field, the phase diagram of quantum
chromodynamics (QCD) matter is extensively explored due
to its relevance in the context of lattice gauge theories [1–4],
off-central heavy-ion collisions [5–7], and the merging
process of neutron stars [8]. As one of the fundamental
properties, the spectra of hadrons are used to describe the
confined, chirally broken QCD phase and to construct the
low-energy strong interactions. Among these quasipar-
ticles, the pseudo-Goldstone meson plays an essential role
since it is the degree of freedom carrying the chiral effective
theory [9]. Unlike thermal QCD systems, the presence of
the magnetic field breaks chiral symmetry from SU(2) to
U(1), thus, the identified Nambu-Goldstone (NG) boson is
reduced from the pseudoscalar triplet to the individual
neutral pion [10]. The magnetized masses of neutral and/or

charged pions have been calculated by a variety of model
approaches, found in [11–22].
In the present paper, the study of the energy dispersion of

π0 is motivated by the emergence of the tensor polarization
of the chiral condensates in magnetized QCDmatter [12]. It
is known that a spontaneous symmetry breaking appears
when the Lagrangian of a system is invariant under the
symmetry transformation, but the ground state is not. A
more precise description is that if several ground states
simultaneously break the same global symmetries, the
corresponding number of NG excitations is unchanged,
even though more gap equations are necessary to character-
ize the one-point particle state of the system. It is observed
that, while the scalar vacuum expectation value (VEV)
generates a dynamical fermion mass, the developed VEVof
the tensor current gives rise to a dynamical anomalous
magnetic moment (AMM) for the fermions [23–25].
We stress that our purpose is not to claim that previous
model calculations with fixed AMM are wrong. Indeed, the
eB field is not the only source responding to the spin-
dependent anomaly, but also several microscopic mecha-
nisms offer a momentum-dependent AMM for strongly
interacting fermions [26–31]. The effects of quark AMM
on the phase structure as well as mesonic properties are
found in the works of [32–40].
Although the infrared dynamics of quark condensation is

catalyzed by the influence of dimensional reduction in a
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strong magnetic field, it does not affect the motion of the
neutral NG mode, as explained in [41,42]. On the other
hand, the Nambu-Jona-Lasinio (NJL) model calculation
numerically shows that the AMM effect corresponds to a
monotonic decrease in the spectra of the neutral pion as the
strength of magnetic field grows [39], which is consistent
with lattice QCD simulations [1–4]. Once the magnitude of
AMM reaches a critical value, the energy of neural pions
vanishes and their condensation suggests a newly possible
superfluid state in the QCD vacuum. These infrared
phenomena are not in accordance with Goldstone’s theo-
rem. Also, the calculations in the low-energy effective
theories observed that, taking into account the single scalar
chiral condensate, the properties of the NG meson remain
valid [43,44]. Hence, one shall move towards an analysis of
how the unusual infrared behavior of π0 is enhanced by the
multiple ground states. In the present paper, we will further
study the scenario of the dimensional reduction, not
restricted to the one-point, but also occurring in the two-
point correlators. The relation among the current quark
mass, quark condensates, and the mass of a low-lying
meson is examined, as well.
In the framework of the NJL model, mesons are treated

as correlated quark-antiquark states in the random phase
approximation (RPA). However, corresponding to simul-
taneous fluctuations of two VEVs, meson modes must be
formed in terms of the excitation of hψ̄ψi and hψ̄σμνψi.
While the chiral mesons have been studied as quantum
fluctuations of the scalar order parameter, a quantitative
representation of pseudoscalar modes including the
tensor state of hψ̄σμνψi is still lacking. Another aim of
the present article is to study the behavior of the
generalized pions, contributing to the understanding of
the proper degrees of freedom in the presence of external
magnetic fields [45,46].
This paper is organized as follows: in Sec. II we

introduce the NJL model Lagrangian with tensor coupling
and compute the quark propagator as well as the gap
equations, with two order parameters. Then, we determine
the sign and the strength of hψ̄ψi and hψ̄σμνψi for the four-
fermion coupling constantsGS ¼ GT . Next, we identify the
collective modes in detail in Sec. III, where two pseudo-
scalar pionic modes are presented due to the scalar-tensor
mixing. We discuss the dimensional reduction appearing in
the meson kernel in Sec. IVand investigate the spectrum of
pions under the influence of the AMM. Finally, we discuss
the results in Sec. V.

II. MODEL AND FORMALISM

Integrating out the degrees of freedom of gluons and
large quark fluctuations, whose momenta are larger than
ΛQCD, the NJL model utilizes the simple four-fermion point
interactions to describe spontaneous chiral symmetry
breaking in QCD, which is a successful tool studied in
many previous works. We will apply it to investigate the

dynamics of strong interactions at low energies in a
constant and homogeneous magnetic fields, without includ-
ing the phenomenon of confinement, for simplicity.

A. Formalism of the quark propagator

The Lagrangian density of the NJL two-flavor model in
the presence of an external magnetic field is given by

L ¼ ψ̄ðD −mÞψ þ GS½ðψ̄ψÞ2 þ ðψ̄iγ5τ⃗ψÞ2�; ð1Þ

where the covariant derivative Dμ ¼ −i∂μ − qfAμ; qf ¼
diagðqu; qdÞ; ψ is the quark spinor with Dirac, color, and
flavor indices; Aμ ¼ ð0; 0; Bx; 0Þ for μ ¼ 0, 1, 2, 3 and the
particular constant and homogeneous magnetic field is
pointing in the x3 direction. As is customary, we assume
from the very beginning mu ¼ md for the bare quark mass
matrixm. τ⃗ is a vector of Pauli matrices in flavor space. The
conventional four-fermion scalar and pseudoscalar chan-
nels, shown in the bracket, with coupling strength GS are
employed.
Under the influence of a uniformmagnetic field, the tensor

structure of the gluon propagator separates into longitudinal
and transverse parts and so does the Lagrangian density of
NJL, based on the effective one-gluon exchange-type inter-
action, given as

Lint ¼ g2kðψ̄γkμψÞ
2 þ g2⊥ðψ̄γ⊥μ ψÞ2: ð2Þ

To take into account the fact that the rotation symmetry has
been reduced from Oð3Þ to Oð2Þ, presented in Ref. [34],
anisotropic Fierz identities have to be applied as

ðγkμÞilðγμkÞjk¼
1

2

�
ð1Þilð1Þjkþðiγ5Þilðiγ5Þjk

þ1

2
ðσμν⊥ Þilðσ⊥μνÞjk− ðσ03k Þ

il
ðσk03Þjkþ���

�
;

ðγ⊥μ Þilðγμ⊥Þjk¼
1

2

�
ð1Þilð1Þjkþðiγ5Þilðiγ5Þjk

−
1

2
ðσμν⊥ Þilðσ⊥μνÞjkþðσ03k Þ

il
ðσk03Þjkþ���

�
: ð3Þ

We note here that k;⊥ carry the Lorentz indices of (0, 3)
and (1, 2), respectively, regarding the direction of the
magnetic field. It obviously shows that the differences
between gk;⊥ will manifest themselves through the frozen
four-fermion interactions in the tensor channels rather than
the usual interactions of scalar and pseudoscalar couplings
in the NJL model. We conclude that

Lint ¼ GS½ðψ̄ψÞ2 þ ðψ̄iγ5τ⃗ψÞ2�
þGT

X
a¼0;3

½ðψ̄σ12τaψÞ2 þ ðψ̄iγ5σ12τaψÞ2�: ð4Þ
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GT ≤ GS since GS ∼ g2k þ g2⊥ and GT ∼ g2k − g2⊥ [34]. τa ¼
ðI2; τ⃗; Þ and τ⃗ ¼ τ1;2;3 are Pauli matrices. In a magnetic
environment, the vacuum state must be neutral to maintain
stability. Therefore, we have omitted the nondiagonal
components of the condensates in flavor space.
Consequently, terms in the summation over a are limited
to a ¼ 0, 3. The transverse index σ12 is selected with
respect to the magnetic field in the x3 direction. As
discussed in Ref. [34], the positive definiteness of GT
arises from the dominance of longitudinal contributions
from one-gluon exchange over transverse ones due to the
emergence of a dimension reduction effect caused by the
magnetic field; i.e., GS ∼GT for negligible g⊥ in strong
magnetic fields.
In the presence of an external magnetic field, the

SUð2Þ × SUð2Þ chiral symmetry of the two-flavor NJL
model is explicitly broken down to Uð1ÞI3 × Uð1ÞAI3. Both
a chiral condensate and a tensor condensate break the
invariant Lagrangian to Uð1ÞLþR. The chiral condensate
creates a mass gap for the quarks. The tensor condensate
generates an anomalous magnetic moment for the quarks.
We examine the phase structure of the model based on these
two condensates and their dependence on the quark charge,
written as

Σf ¼ −GShψ̄ψif; κf ¼ −GThψ̄σ12ψif; ð5Þ

for f ¼ u, d. We adopt the notation that Σ ¼ Σu þ Σd and
assume that the chiral condensate Σu ¼ Σd for maximal
flavor symmetry. As we mentioned before, a nontrivial
coupling constant κf of the anomalous magnetic moment is
produced through several microscopic mechanisms. The
coefficient of a quark AMM is not uniquely adopted in
many previous works [32–40], which is proportional to
either qf, or q2f, or charge independent if it is created via a
compensation of the color AMM. The main point in the
present investigation is that we will dynamically determine
and extract it from the gap equations in the following.
Performing the Hubbard-Stratanovich transformation in

the Lagrangian density of Eq. (4) and plugging into the
Eq. (5), we continue to derive the magnetized quark
propagator with the AMM coupling. Hence, the fermionic
Lagrangian density in the mean-field approximation is
rewritten as

Leff ¼ ψ̄ðD −M þ κ⃗ · τaσμνF̂μνÞψ ; ð6Þ

where M ¼ Σþm, σμν ¼ i½γμ; γν�=2. By summing over
a ¼ 0, 3, we obtain the two-vector κ⃗ ¼ 1

2
ðκu þ κd; κu − κdÞ

that represents κ⃗ · τa ¼ diagðκu; κdÞ in flavor space. F̂μν ¼
Fμν=jjFjj is the dimensionless electromagnetic (EM) ten-
sor. Note here that we let the energy scale of κf be the same

as the mass, which was scaled to a dimensionless quantity
in some works.
To study the behavior of κ⃗, we examine its dependence

on the quark charge in the one-flavor model and neglect the
vector symbol. It is important to note that κf is a flavor-
dependent parameter in both the one- and two-flavor
models. This is pointed out throughout the manuscript.
Following Schwinger’s proper time method, we obtain the
quark propagator as

G ¼ 1

D −M þ κσF̂
¼ DþM þ κσF̂

D2 −M2 þ κ2 þΩ

¼ iðDþM þ κσF̂Þ
Z

dseisðD2−M2þκ2þΩÞ; ð7Þ

where D2 ¼ D2 − qfσF=2. The formula is given in matrix
notation, e.g. Fμν ¼ ðFÞμν, σF ¼ σμνFμν. The additional
AMM term gives

Ω ¼ −2iκðγ3γ5∂0 − γ0γ5∂3Þ: ð8Þ

ΩcommuteswithD2with⊥¼1,2, since ½ðσμνÞ⊥;γð0;3Þγ5�¼0.
At this point, it allows for an expansion of the exponen-
tial [47]

eiΩs ¼ cosh ðiΩsÞ þ Ω
Ω
sinh ðiΩsÞ; ð9Þ

with constant matrix Ω ¼ jjΩjj ¼ 2jκj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−∂20 þ ∂

2
3

p
. Finally,

the Green’s function takes the form

Gðx; yÞ ¼ ϕðx; yÞ
4π2

X
�

Z
ds
s2

eisðΠ2−M2þκ2�ΩÞ−LðsÞ

×

�
1

2
γμðfðsÞ þ qfFÞμνðx − yÞν þM þ κσF̂

�

×

�
1� Ω

Ω

�
; ð10Þ

where ϕðx; yÞ is the well-known phase factor [48,49] and

Π2 ¼ 1

4s
ðx − yÞfðsÞðx − yÞ þ qfσF

2
;

fðsÞ ¼ qfF coth ðqfFsÞ;

LðsÞ ¼ 1

2
tr ln

sinh ðqfFsÞ
qfFs

: ð11Þ

The position dependence of Gðx; yÞ has been attributed to
the Schwinger phase factor ϕðx; yÞ and the left term in
Eq. (10) is translation invariant. It is convenient to trans-
form it to momentum space and further decompose over the
Landau pole, representing it as
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G̃ðqf; kÞ ¼ exp
�
−

k2⊥
jqfjB

�X
�

X∞
n¼0

ð−1Þn DnðqfB; kÞΛ�
k2k − 2njqfjB −M2 þ κ2 � 2jκkkj

ð12Þ

with

Λ� ¼ 1

2
� γ3γ5k0 − γ0γ5k3

2jkkj
signðκÞ; ð13Þ

and

Dnðqf; kÞ ¼ ð=kk þM þ κσF̂Þ½P−Lnð2zfÞ
− PþLn−1ð2zfÞ� þ 4=k⊥L1

n−1ð2zfÞ: ð14Þ

We note here that P�¼1�iγ1γ2signðqfÞ, zf¼k2⊥=ðjqfjBÞ,
kk ¼ ðk0; k3Þ, k⊥ ¼ ðK22; K12Þ, γk ¼ ðγ0; γ3Þ and γ⊥ ¼
ðγ1; γ2Þ as usual.

We derive the gap equations with respect to the order
parameters Σ and κ for a fixed electrical charge qf, and the
dynamical solutions are given as

M −m
2iGS

¼ Nc trG; ð15Þ

κ

2iGT
¼ Nc tr½σ12G�: ð16Þ

The notation of (tr) runs in Dirac and coordinate spaces,
and one has

trGðkÞ ¼
X
�

X∞
n¼0

ð−1Þn
Z

d4k
8π4

e−zf
MðLn − Ln−1Þ − ξjκjðLn þ Ln−1Þ ∓ ξjkkjðLn þ Ln−1Þ

ðjkkj � jκjÞ2 −M2
n

; ð17Þ

where jkkj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 − k23

p
, M2

n ¼ M2 þ 2njqfjB and
ξ ¼ signðκ · qfÞ. Since the role of κ’s sign has been
attributed to a function of ξ, from now on, we abbreviate
jκj to κ. It is known that Ln−1 vanishes for n ¼ 0 and

Z
d2k⊥
4π2

e−zfð−1ÞnLn ¼
jqfjB
4π

;

Z
d2k⊥
4π2

e−zfð−1ÞnLn−1 ¼ −
jqfjB
4π

: ð18Þ

After integrating over the transverse momentum space,
one has

trGðkÞ ¼ jqfjB
8π3

X
�

Z
d2kk

�
M − ξκ ∓ ξjkkj
ðjkkj � κÞ2 −M2

þ
X∞
n¼1

2M
ðjkkj � κÞ2 −M2

n

�
: ð19Þ

B. Sign of the AMM

While κ < M, the double degenerate roots of the denom-
inators ðjkkj� κÞ2−M2

n are k0 ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k23þðMn ∓ κÞ2

p
− iaϵ

for a ¼ �1. For the real roots of fðxÞ located at x0, one has to
apply the Jacobian feature of the Dirac-delta function,

δ½fðxÞ� ¼ δðx − x0Þ
jf0ðx0Þj

: ð20Þ

Then, we close the contour of the semicircle in the upper half
plane to complete the integral of Eq. (19) with respect to k0,
shown as

trGðkÞ ¼ −i
jqfjB
4π2

Z
dk3

�
M þ ξκffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k23 þ ðM þ ξκÞ2
p

þ
X
�

X∞
n¼1

M
Mn

Mn � κffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k23 þ ðMn � κÞ2p

�
: ð21Þ

It is noticed that only one of the Zeeman splitting states,
Λ�, has been survived in the lowest Landau evel (LLL),
which is not determined by the charge of quarks but
with the product of ξ instead. From the right-hand side of
the above equation, we can see that ði trGÞ is positive
when M > κ.
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Similarly, we obtain the related trace of κ as

tr½σ12GðkÞ� ¼
X
�

X∞
n¼0

ð−1Þn
Z

d4k
8π4

e−zf
ðκ � jkkjÞðLn − Ln−1ÞsignðκÞ −MðLn þ Ln−1ÞsignðqfÞ

ðjkkj � jκjÞ2 −M2
n

¼ jqfjB
8π3

X
�

Z
d2kk

�ðκ � jkkjÞsignðκÞ −MsignðqfÞ
ðjkkj � κÞ2 −M2

þ
X∞
n¼1

2ðκ � jkkjÞsignðκÞ
ðjkkj � κÞ2 −M2

n

�
: ð22Þ

Adopting the sign function signðxÞ, which satisfies signðxÞ · x ¼ AbsðxÞ for x ≠ 0, we can determine the sign of κ as
follows:

signðκÞtr½iσ12GðkÞ� ¼ jqfjB
8π3

X
�

Z
d2kk

�ðκ � jkkjÞ −MsignðξÞ
ðjkkj � κÞ2 −M2

þ
X∞
n¼1

2ðκ � jkkjÞ
ðjkkj � κÞ2 −M2

n

�

¼ jqfjB
4π2

Z
dk3

�
−κ − ξMffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k23 þ ðM þ ξκÞ2
p þ

X
�

X∞
n¼1

∓ Mn − κffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k23 þ ðMn � κÞ2

p
�
: ð23Þ

It is observed that the left-hand side of Eq. (23) is positive
definite, thus, one needs ξ ¼ −1 to get a nontrivial solution
of κ. Using the LLL approximation and taking the chiral
limitm → 0, we recover the result thatM=κ¼GS=GT [34].
Moreover, the contribution from finite Landau levels (i.e.,
the second term in the above bracket) is negative since the
absolute values coming from ðMn þ κÞ are larger than those
from ðMn − κÞ.
In the second case of M2

l < κ2 < M2
lþ1, there is no root

in the denominators ðjkkj þ κÞ2 −M2
n for n ≤ l; on the

contrary, the root is four-fold degenerate in the term of
ðjkkj − κÞ2 −M2

n, known as k0 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k23 þ ðκ þ aMnÞ2

p ∓
iaϵ with a ¼ �1. Hence, two poles, −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k23 þ ðκ þMnÞ2

p
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k23 þ ðκ −MnÞ2

p
, will contribute while taking the

Cauchy integral in the upper half plane [50]. For n ≥ lþ 1,
the root behaviors of ðjkkj � κÞ2 −M2

n reduce to double
degenerate states as usual. Without loss of generality, let
l ¼ 1, signðξÞ ¼ −1, and then

Sσ ¼ trGðkÞ

¼ −i
jqfjB
4π2

Z
dk3

�
κ −Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k23 þ ðκ −MÞ2
p þ

X
�

M
M1

κ �M1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k23 þ ðκ �M1Þ2

p þ
X
�

X∞
n¼2

M
Mn

Mn � κffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k23 þ ðMn � κÞ2

p
�
; ð24Þ

Sκ ¼ signðκÞtr½σ12GðkÞ�

¼ −i
jqfjB
4π2

Z
dk3

�
κ −Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k23 þ ðκ −MÞ2
p þ

X
�

∓ κ −M1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k23 þ ðκ �M1Þ2

p þ
X
�

X∞
n¼2

∓ Mn − κffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k23 þ ðMn � κÞ2

p
�
: ð25Þ

Since

fðxÞ ¼
Z

Λ

−Λ
dk3

xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k23 þ x2

p ¼ x log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þ x2

p
þ Λffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Λ2 þ x2
p

− Λ
; ð26Þ

one notices that fðxÞ is increasing as x is growing and then
Sκ < Sσ. Therefore, it means that no solution exists in the
second case for GS ≥ GT after comparing between the
dynamical solutions of M and κ. The same conclusion can
be drawn if we let ξ ¼ 1.

Taking into account our earlier-reached conclusion in the
first case of κ < M, it requires that ξ ¼ −1. Returning to a
two-flavor quark state consisting of up and down quarks,
we find that the allowed nontrivial solution has a gener-
alized form of diagð−κusignðquÞ;−κdsignðqdÞÞ, which is
equivalent to κ⃗ · τa, where κu and κd are defined as non-
negative. Here we restrict ourselves to keeping the maxi-
mum chiral condensate, namely, κu ¼ κd ¼ κ. With
qf ¼ diagðe=3;−2e=3Þ, we obtain the solution as κ⃗ ¼
ð0;−κÞ where the only nonzero component of the Pauli
matrix is τ3. It also allows us to convert the gap equa-
tion (16) to a absolutely definite κ, presented as

DIMENSIONAL REDUCTION AND THE GENERALIZED PION IN … PHYS. REV. D 107, 074038 (2023)

074038-5



jκj
2iGT

¼ −Tr½τ3σ12GðkÞ�; ð27Þ

where the notation of capital trace (Tr ¼ Nc
P

qf¼u;d tr)
runs in color, flavor, Dirac, and coordinate spaces. Hence,
the first conclusion in the present work is that the sign of
the dynamically generated AMM is not arbitrary, and it
must be opposite the sign of the quark charge. Besides, the
magnitude of κ is smaller than the dynamically generated
quark mass, if no other sources are taken into account in the
current two-flavor NJL model approach.

III. ASPECTS OF THE GENERALIZED PIONS

In this section, we show the essential features of the
mixing of the generalized pseudo-Goldstone modes in the
description of the NJL model.
Following the discussions of Refs. [45,46], while the low-

energy effective Lagrangian is written in terms of the two
order parameter fields, its associated collective modes are
presented by two condensates as a model-independent
consequence. While scalar and tensor condensates break
chiral symmetries, in this context, it is also instructive to
describe the pion as the generalized one, which is the
excitation of the simultaneous fluctuations on account of
hψ̄ψi and hψ̄σ12ψi. Iterating the vertex of the four-fermion
interactions, themeson is defined as the solution to theBethe-
Salpeter equation for the bound states. The equation reads

1 − 2GSΠpsðm2
πÞ ¼ 0; ð28Þ

whereΠps is the ordinary quark-antiquark polarization tensor
for the (pseudo)scalar. While the tensor condensate exists,

another meson correlation arises through the (pseudo)tensor
channels [45,46].As a result,we have two sets of pion triplets.
Besides, these two sets are mixed by the interaction, see the
off-diagonal Feynman diagram in Fig. 1. Here, the lighter
neutral pion π0 remains as the pseudo-NG mode of sponta-
neous chiral symmetry breaking.
When the scalar-tensor mixing vanishes, its properties

can be calculated one-by-one, which is exactly the situation
of κ ¼ 0. However, considerable differences are caused
when nonvanishing and one has to calculate the two-by-two
matrix of the polarization tensor to correctly describe the
NG modes.
Now, the NG mesons are superpositions of ordinary

quark-antiquark fluctuations ΠSS, plus the fluctuations of
tensor quark-antiquark ΠTT [22]. Note that S and T label
the Lorentz index. As demonstrated by Fig. 1, in terms of
two fields ðπÞ≡ ðπ; π̃ÞT , the T-matrix in the random phase
approximation is extended as

1

i
Πps ¼

1

i

�
ΠSS ΠST

ΠTS ΠTT

�
ð29Þ

where

1

i
ΠAB

α ¼ −Nc

X
qf

tr½iGðpÞiγ5ΓA
α iGðqÞiγ5ΓB

α �; ð30Þ

for A; B ¼ S and T. Here, G is the fermion propagator and

ΓðA;BÞ
α ¼ ðI4τα; σ12τ�αÞ, respectively. For α ¼ 0;�1, 3, the

quark bubble corresponds to the meson polarization func-
tion of σ and pion triplet (π�; π0). As we demonstrate
below, mixing makes one of the two pions heavier while the

FIG. 1. Characteristic diagrams corresponding to the quark-antiquark T-matrix with two ground states. The red dot vertex denotes
ðψ̄ iγ5τ3ψÞ2 and the blue dot vertex denotes ðψ̄iγ5σ12τ3ψÞ2. The four-fermion coupling ðψ̄ iγ5τ3ψÞðψ̄ iγ5σ12τ3ψÞ and its conjugate term
are absent in the leading order (i.e., the off-diagonal elements in the numerator of the right top corner).
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other becomes lighter. We write down the mass spectra of
π̂α and π̄α, which are described as the two eigenvalues
corresponding to the transformation of

�
π

π̃

�
¼ F

�
π̂

π̄

�
; ð31Þ

where the rotation matrix F−1 is applied to diagonalize the
T-matrix of Πps.

IV. DIMENSIONAL REDUCTION IN THE
TWO-PARTICLE STATE

In this section, we complete the calculation of the
T-matrix of Eq. (29) and demonstrate the dimensional
reduction in the NG meson kernel. In this section, we
computed the neutral pion and τα ¼ τ3. The subscript α of
Π is omitted.

A. Polarization tensor

Since ξ ¼ −1, one has

ΠSS ¼ Nc

X
qf;�

jqfjB
16π3

Z
d2kk

��
1 −

p0q0 − p3q3
jpkqkj

� ðM þ κ � jpkjÞðM þ κ � jqkjÞ
½ðjpkj � κÞ2 −M2�½ðjqkj � κÞ2 −M2� ð32aÞ

þ
�
1þ p0q0 − p3q3

jpkqkj
� ðM þ κ � jpkjÞðM þ κ ∓ jqkjÞ
½ðjpkj � κÞ2 −M2�½ðjqkj ∓ κÞ2 −M2� ð32bÞ

þ 2
X∞
n¼1

�
1 −

p0q0 − p3q3
jpkqkj

�
M2

n þ ðjpkj � κÞðjqkj � κÞ
½ðjpkj � κÞ2 −M2

n�½ðjqkj � κÞ2 −M2
n�

ð32cÞ

þ 2
X∞
n¼1

�
1þ p0q0 − p3q3

jpkqkj
�

M2
n − ðjpkj � κÞðjqkj ∓ κÞ

½ðjpkj � κÞ2 −M2
n�½ðjqkj ∓ κÞ2 −M2

n�
�
; ð32dÞ

where p ¼ kþ Mπ
2
, q ¼ k − Mπ

2
, and Mπ ¼ ðmπ; 0; 0; 0Þ in

the center-of-mass frame. The influence of the flavor matrix
τ3 is trivial in constructing the neutral pion. After a tedious
but straightforward calculation, one gets

1

i
ΠSS ¼ I1

M − κ
þ I2
M

−m2
πhJi0 −m2

πhK11in ð33Þ

where

I1 ¼ Nc

X
qf

jqfjB
8π3

Z
d2kk

jkkj −M þ κ
;

I2 ¼ 2MNc

X
qf

jqfjB
8π3

X
�

X∞
n¼1

Z
d2kk

ðjkkj � κÞ2 −M2
n
: ð34Þ

The term of I1=ðM − κÞ is derived from Eq. (A3), and
further explanation is provided below. Here we have
introduced the brackets as

hXðkk; mπÞi0 ¼ Nc

X
qf

jqfjB
16π3

Z
d2kk

2jpkqkj
Xðkk; mπÞ;

hXðn; kk; mπÞin ¼ Nc

X
qf

jqfjB
16π3

X
�

X∞
n¼1

Z
d2kk

2jpkqkj
× Xðn; kk; mπÞ ð35Þ

to denote the associated summation and integration in k
space. The detail forms of J; K11 are shown in the Appendix.
Before doing a full computation, we show the resulting

expressions and conclusions for zero κ and zeroM. First, it
is easily found that TrG ∼ ðI1 þ I2Þ, read off from Eq. (19).
Here, the term of I1 is rewritten as

I1ðM; κÞ ¼ 2ðM − κÞNc

X
qf

jqfjB
8π3

Z
dD−2kk

k2k − ðM − κÞ2 ; ð36Þ

which is the pole contribution in the fermion propagator
from the famous lowest Landau level. In 2þ 1 dimensions,
I1 remains finite in the limit of ðM; κÞ → 0. This suggests
that the infrared dynamics appearing in the one-point
correlator is in response to enhancing fermion masses by
a strong magnetic field in 3þ 1 dimensions. It also means
that the motion of charged fermions is restricted in the
lower dimensions, i.e., D → D − 2. Moreover, π0 is deter-
mined by the original polarization tensor ΠSS in Eq. (33)
while κ ¼ 0. Continuing to solve the Bethe–Salpeter
equation, one observes that π0 becomes massless in the
chiral limit, as presented in Ref. [44]. We emphasize here
that it is consistent with the conclusions drawn in Ref. [42],
that the dimensional reduction catalyzes the condensate
hψ̄ψi but does not affect the dynamics of the neutral meson
excitation since it is the same infrared term that arose in
the one- and two-point correlators. We can attribute the
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IR-divergent I1 in meson kernels to the dynamical quark
massM. Therefore, the Goldstone nature of π0 is preserved
and the propagators of neutral hadrons are well behaved in
D dimensions.
Returning to our procedure with nonvanishing κ, the

other analogous expressions of polarization tensors are
presented as

ΠTT ¼ I1
M − κ

−
I2
M

−m2
πhJi0 −m2

πhK22in; ð37Þ

and

ΠST ¼ ΠTS ¼ I1
M − κ

−m2
πhJi0 −m2

πhK12in: ð38Þ

Again, the detailed forms of K12;22 can be found in the
Appendix.

B. Matrix of the meson kernel

Regarding the fluctuations of two mean fields, the BS
equation of meson modes converts to

�
1 − 2gΠSS −2gΠST

−2gΠTS 1 − 2gΠTT

�
¼ Aþm2

πB ð39Þ

where

A ¼ 1 − 2gΠpsjm2
π¼0

¼
�
η 0

0 2 − η

�
−
2igI1
M

1

1 − ζ

�
ζ 1

1 2 − ζ

�
; ð40Þ

B ¼ 2 ig

� hJi0 þ hK11in hJi0 þ hK12in
hJi0 þ hK12in hJi0 þ hK22in

�
; ð41Þ

GS ¼ GT ¼ g, η ¼ m
M and ζ ¼ κ

M.
In the polarization tensor Πps, all elements acquire the

pole contribution of the LLL, seen in Eq. (A3), which take
the form

Ĩ1ðM; κÞ ¼ Nc

X
qf

jqfjB
8π3

Z
dD−2kk

jkkjðjkkj −M þ κÞ

¼ Nc

X
qf

jqfjB
4π3

Z
dD−2kk

k2k − ðM − κÞ2 : ð42Þ

For D ¼ 2þ 1, Ĩ1 is governed by the diverging integrand
dk=k2 in the limits of ðM; κÞ → 0, while it retains loga-
rithmic singularity in IR limits for D ¼ 3þ 1, demonstrat-
ing the emergent dimensional reduction in the neutral
mesonic excitations. Under the LLL approximation, it is
observed that M ¼ κ þm and I1 ∼M ∼m lnm2. Thus, the
infrared dynamics has a strong hierarchy of meson and
quark sectors, where Ĩ1 ∼ lnm2 differs from that of I1 with

m → 0. The NG bosons are formed in the infrared region,
which cannot be washed out by the dynamical quark mass
and results in a remarkably lighter meson mass. Since
M − κ > m in regard to the contributions from the finite
Landau levels, as we used above, we have a weaker infrared
expression Ĩ1 ¼ I1=ðM − κÞ in the present work.
Here I2, which is related to the contributions from the

finite landau levels, is canceled out by the valence quark
mass M. For simplicity, we rewrite the expression of

B ¼ 2 igJ̃

�
1 1 − α

1 − α 1 − β

�
; ð43Þ

where J̃ ¼ hJi0 þ hK11in. α; β are functions of hJi0 and
hKð12;22Þin and α, β ≪ 1 if the magnitude of hJi0 from the
LLL is much larger than hKð11;12;22Þin for n ≥ 1.
We obtain the roots of two pionic modes, π̂0 and π̄0, in

the approximation of ðη; ζ; α; βÞ ≪ 1. Their perturbed
masses take the forms of

m2
π̂ ¼

1

−2igJ̃
m
M

þmþ κ þ igI1
M

I1
MJ̃

þOðα; βÞ; ð44Þ

m2
π̄ ¼

1

−igð2α − βÞJ̃ þOðα0; β0Þ: ð45Þ

Here iI1 and iJ̃ are positive and negative definite, respec-
tively, since they originate from the loop integrations with
one- and two-quark propagators. For the lighter pionic
mode π̂, its leading structure m2

π̂ ¼ m=ð−2igJ̃MÞ clearly
reflects Goldstone’s theorem, as found earlier [42,44].
According to the second term of the right-hand side of
Eq. (44), the spectra of π̂ is dramatically lowered by κ,
which is in accordance with the numerical calculations in
the work of [39]. It is interesting to remark that such mode
behavior raises an interesting possibility of Bose conden-
sation when the critical value

κcr ≃
mM
2igI1

− igI1 −m ð46Þ

is reached. It is well known that in pion superfluidity the
critical isospin chemical potential is equal to the pion mass
at zero temperature and chemical potential [51]. Therefore,
in the limit μcI ¼ 0þ, where the pion mass disappears due
to massless quarks, the system immediately enters a Bose-
Einstein condensate (BEC) pion state. Similarly, regardless
of how small κ is, the conventional hadronic gas state
becomes unstable and a new phase emerges in the chiral
limit at eB ≠ 0. Since several possible states have been
proposed for strongly magnetized QCD matter [52,53], a
sophisticated investigation of the vacuum state with more
model parameters will be explored elsewhere.
Due to the finite κ, the neutral pion fails to manifest itself

as the Nambu-Goldstone boson. Such special nature is
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broken by a two-fold aspect. First, the zero- and two-form
pions couple to each other through the pseudoscalar-tensor
bubbles, induced by the additional Dirac structures in the
modified fermion propagator. Second, a newly developed
infrareddynamics forms, asEq. (42) in themesonkernels.As
κ → M, the related LLL term is strongly enhanced, which
reveals that the dimensional reduction is not restricted to the
quark condensates but is also present in the motion of the
neutral excitation.Asa remnantof the infrareddynamics, it is
reasonable to recognize that a very small κ is sufficient to
reduce the mass of π0 to zero. Of course, presented by the
lattice simulations [1–4], the Bose condensation of a neutral
pion does not occur until the ultrastrong limit is reached,
where eB ∼ 3.5 GeV2. Other additional factors are under
exploration for a stronger strengthof the anomalouscoupling
in a magnetized environment.

V. CONCLUSION

In the present work, we have employed the two-flavor
NJL model to examine the properties of the generalized
neutral pion in a constant background magnetic field.
Taking into account the backreaction from the gluon sector,
it allows us to decouple the longitudinal and transverse
space and introduce the extra tensorlike four-fermion
interactions in the model construction. The novelty of
the employed framework lies in that there are two order
parameters emerging in the vacuum, described by hψ̄ψi ∼
M and hψ̄σ12ψi ∼ κ. Here κ plays a role similar to the
anomalous magnetic moment in the quark Dirac equation.
As a spin-dependent coupling, it is no wonder that κ is not
degenerate under the operation of charge conjugation like
mass is. We prove its allowed sign is opposite to the sign
of the quark’s electric charge. Restricting to the model
parameters where the coupling constants GS ¼ GT , we
examine that the magnitude of κ is smaller than the
dynamical solution of the quark mass, as well.
Second, we revisit the qualitative description of the

neutral pion under the influence of the AMM coupling. The
key observation is that the ordinary meson is no longer the
collective excitation of the system with multiple order
parameters. A simultaneous treatment of fluctuations has
to be implemented to realize the degrees of freedom of
the meson modes. To the best of our knowledge, such a
generalized neutral pion has not been examined in strong
magnetic fields before. Properly including the pseudotensor
vertex in RPA loop calculations, the spectra of the two
pionic meson modes are presented after diagonalization. It
is found that the familiar Goldstone nature is corrupted for
the lightest chiral meson π̂0. Moreover, κ strongly reduces

its mass on two sides. On the one hand, the existence of the
mixing always lowers one eigenvalue, but enhances another
massive mode. On the other hand, we observe that a unique
infrared dynamics arises in the meson correlator, which
cannot be labeled as the catalyzed dynamical quark mass.
Hence, we point out that the treatment of the infrared cutoff
will be very sensitive in the case of the nonrenormalized
model calculations. Under a simple assumption, where the
reduction from D → D − 2 affects only the charged chan-
nels, it is implied that the neutral π0 is free to move in the
original 3þ 1 dimension and acts as an NG boson [42].
However, as the system behaves like a 1þ 1 dimension
described by both one- and two-point correlators, it is likely
that an inhomogeneous phase emerges, such as a chiral
density wave state [52] or a chiral soliton lattice [53]. A full
numerical simulation is required to determine the phase
state under the dimension reduction effect of the AMM
coupling and will be calculated in the future.
According to our results, the generalized pion continu-

ously becomes lighter while κ increases. Eventually, we
expect that the interesting BEC of the generalized pion
occurs when κ is strong enough. Such exotic phase may be
realized in a more complicated magnetized system [54,55].
We will discuss such a possibility in a future publication.
Rich phenomena have been reported in the present

QCD × QED environment. For example, the debate on
the superconducting QCD vacuum [56,57], the puzzle of
magnetic susceptibility [32,39,58], the understanding of the
role of the pion mass in first-principles’ simulations [59,60],
and the strange metal phase of QCD in 1þ 1 dimen-
sions [61]. Our approach including the effect of the AMM
coupling has a potential to shed light on these discussions.
We leave these projects to future works.
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APPENDIX: TECHNICAL DETAILS OF THE
MESON KERNEL MATRIX ELEMENT

CALCULATION

Considering the allowed kinematic regions of the pole,
the first line (32a) in the bracket simplifies to

ð32aÞ ¼
�
1 −

p0q0 − p3q3
jpkqkj

�
1

ðjpkj −M þ κÞðjqkj −M þ κÞ

¼ −ðjpkj − jqkjÞ2 þm2
π

2jpkqkj
1

jpkj − jqkj
�

1

jqkj −M þ κ
−

1

jpkj −M þ κ

�
: ðA1Þ
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Similarly, one has

ð32bÞ ¼
X
�

�
1þ p0q0 − p3q3

jpkqkj
�

−1
ðjpkj ∓ ðM − κÞÞðjqkj � ðM − κÞÞ

¼ ðjpkj þ jqkjÞ2 −m2
π

2jpkqkj
−1

jpkj þ jqkj
�

1

jpkj ∓ ðM − κÞ þ
1

jqkj � ðM − κÞ
�
: ðA2Þ

To sum the two terms together, one has

ð32aÞ þ ð32bÞ ¼ −1
jpkjðjpkj −M þ κÞ þ

−1
jqkjðjqkj −M þ κÞ þ

m2
π

2jpkqkj
J ðA3Þ

where

J ¼ 4jpkqkj
½p2

k − ðM − κÞ2�½q2k − ðM − κÞ2� : ðA4Þ

Stepping to the terms of finite Landau levels, it contains

ð32cÞ ¼
X
�

X∞
n¼1

�
1 −

p0q0 − p3q3
jpkqkj

��
−1

ðjpkj � κÞ2 −M2
n
þ −1
ðjqkj � κÞ2 −M2

n

�

þ
X
�

X∞
n¼1

m2
π

2jpkqkj
�
1 −

4k20
ðjpkj þ jqkjÞ2

� ðjpkj þ jqkj � 2κÞ2
½ðjpkj � κÞ2 −M2

n�½ðjqkj � κÞ2 −M2
n�
; ðA5Þ

and from the last line of

ð32dÞ ¼
X
�

X∞
n¼1

�
1þ p0q0 − p3q3

jpkqkj
��

−1
ðjpkj � κÞ2 −M2

n
þ −1
ðjqkj ∓ κÞ2 −M2

n

�

þ
X
�

X∞
n¼1

m2
π

2jpkqkj
�

4k20
ðjpkj − jqkjÞ2

− 1

� ðjpkj − jqkj � 2κÞ2
½ðjpkj � κÞ2 −M2

n�½ðjqkj ∓ κÞ2 −M2
n�
: ðA6Þ

Combining them together, one obtains that

ð32cÞ þ ð32dÞ ¼
X
�

X∞
n¼1

�
−2

ðjpkj � κÞ2 −M2
n
þ −2
ðjqkj � κÞ2 −M2

n
þ m2

π

2jpkqkj
K11

�
; ðA7Þ

where

K11 ¼
�
1 −

4k20
ðjpkj þ jqkjÞ2

� ðjpkj þ jqkj � 2κÞ2
½ðjpkj � κÞ2 −M2

n�½ðjqkj � κÞ2 −M2
n�

þ
�

4k20
ðjpkj − jqkjÞ2

− 1

� ðjpkj − jqkj � 2κÞ2
½ðjpkj � κÞ2 −M2

n�½ðjqkj ∓ κÞ2 −M2
n�
: ðA8Þ

Tracing in Dirac space, it is easy to get the mixed meson-meson correlators in the mixture of iγ5σ12 ⊗ iγ5σ12 and
iγ5σ12 ⊗ iγ5, described in terms of
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K22 ¼
�
1 −

4k20
ðjpkj þ jqkjÞ2

�
4M2 − ðjpkj − jqkjÞ2

½ðjpkj � κÞ2 −M2
n�½ðjqkj � κÞ2 −M2

n�

þ
�

4k20
ðjpkj − jqkjÞ2

− 1

�
4M2 − ðjpkj þ jqkjÞ2

½ðjpkj � κÞ2 −M2
n�½ðjqkj ∓ κÞ2 −M2

n�
ðA9Þ

and

K12 ¼
�
1 −

4k20
ðjpkj þ jqkjÞ2

� �2Mðjpkj þ jqkj � 2κÞ
½ðjpkj � κÞ2 −M2

n�½ðjqkj � κÞ2 −M2
n�

þ
�

4k20
ðjpkj − jqkjÞ2

− 1

� �2Mðjpkj − jqkj � 2κÞ
½ðjpkj � κÞ2 −M2

n�½ðjqkj ∓ κÞ2 −M2
n�
: ðA10Þ

We note here that the term ðjpkj − jqkjÞ2 in the bracket will not lead to a new discussion of regularization for mesons,
since its poles are located at (i) k0 ¼ 0 for anymπ, which is not contributing due to the k20 in the nominator, and (ii) mπ ¼ 0

for any k0. In the latter case, the massless property of the neutral pion is guaranteed by the chiral quark and zero κ, hence, the
explicit value of K is not important at all.
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