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We study the thermoelectric response of a hot and magnetized QCD medium created in the noncentral
events at heavy-ion collider experiments. The collisional aspects of the medium have been embedded in the
relativistic Boltzmann transport equation (RBTE) using the Bhatnagar-Gross-Krook (BGK) collision
integral, which insures the particle number conservation, unlike the commonly used relaxation time
approximation (RTA). We have incorporated the thermal medium effects in the guise of a quasiparticle
model, where the interaction among the quarks and gluons is assimilated in the medium dependent masses
of the quarks, which have been evaluated using imaginary-time formalism of thermal QCD with a
background magnetic field. In the absence of B, the Seebeck coefficient for individual quark flavors gets
slightly reduced in the BGK term in comparison to naive RTA, while it gets enhanced for the composite
partonic medium. In the strong magnetic field (B), the BGK term enhances the Seebeck coefficient for the
individual flavors, as well as that for the medium. The medium Seebeck coefficient rises with the strength
of quark chemical potential () in the absence, as well as that in the strong B. We observe chirality
dependence in the transport coefficients in the weak B as the masses of chiral modes become
nondegenerate. In the case of the L modes, the BGK collision term causes a slight reduction in the
Seebeck coefficient, while for R modes both the collision integrals produce the same results. The Nernst

coefficient gets reduced (enhanced) for L (R) chiral modes in the BGK term.

DOI: 10.1103/PhysRevD.107.074034

I. INTRODUCTION

A transition from the hadronic matter to a deconfined
phase of quark gluon plasma (QGP) takes place in heavy-ion
collision experiments at the Relativistic Heavy Ion Collider
(RHIC) and the Large Hadron Collider (LHC). In noncentral
collisions, a magnetic field (around m2 at the RHIC [1] and
15m2 at the LHC [2]) is also produced, which persists in the
medium for a considerable amount of time, due to the finite
electrical conductivity of the medium. This magnetic field
leads to the modification in the thermodynamical [3,4] and
transport properties [5—11] of the hot and dense quark matter
and also induces novel phenomena such as the chiral
magnetic effect [1,12], magnetic and inverse magnetic
catalysis [13-16], axial magnetic effect [17,18], chiral
vortical effect in rotating QGP [19,20], the conformal
anomaly, and production of soft photons [21,22]. In addition
to this, the dilepton production rate [23-25], dispersion
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relations [26], refractive indices, and decay constants [21,27]
have been explored in the magnetic field background.
Transport coefficients are crucial input parameters needed
in the dissipative hydrodynamics and transport simulation to
describe the evolution of the partonic medium created
postcollision at the RHIC and LHC. Shear viscosity quan-
tifies the response of the medium to the transverse momen-
tum gradients, while bulk viscosity to the pressure gradients.
Both shear and bulk viscosities have been studied in the
magnetic field extensively in different models [5,7-10].
Electrical and thermal conductivities measure the response
of the system to the electromagnetic fields and thermal
gradients in the medium, respectively. Electrical conduc-
tivity plays an important role in the elongation of the lifetime
of the magnetic field created in noncentral collisions,
while thermal conductivity controls the attenuation of
sound through the Prandtl number. Both electrical and
thermal conductivities have been extensively studied in
phenomenological models, as well as using perturbative
methods [6,28-33]. On the other hand, the transport
coefficient corresponding to the thermoelectric response is
known as the Seebeck coefficient, which measures the
ability of any material to convert the thermal gradient into
the electric current. Thermoelectric properties of the materi-
als have been mainly studied in the context of condensed
matter physics over the years. There have been numerous
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studies regarding the thermoelectric properties of the various
condensed matter systems such as superconductors [34-37],
the graphene superconductor junction [38], correlated quan-
tum dots coupled to superconducting electrodes [39], high
temperature cuprates [40], a ferromagnet-superconductor
hybrid junction [41], and low dimensional correlated organic
metals [42].

We have recently explored the charge, heat, and
momentum transport coefficients [43,44]. Motivated by
our earlier studies, we are now interested in thermoelectric
effects in the strongly interacting matter produced in the
heavy-ion collisions, where a thermal gradient is present
between the central and peripheral regions of the fireball.
In addition to the temperature gradient, a finite baryon
chemical potential is also needed to observe the thermo-
electric effect in strongly interacting matter, unlike the
condensed matter systems where only one type of the
charge carriers participate in the transport process.
Contrary to that, in a strongly interacting medium, both
positive and negative charge carriers take part in the
transport phenomena. In the absence of the quark chemical
potential, both particles and antiparticles have equal
numbers, so no net thermoelectric effect is observed.
The Seebeck effect, in the absence of a magnetic field,
has been studied recently for a hot hadron gas in a hadron
resonance gas model [45] and for the QGP phase in the
ambit of the Nambu—Jona Lasinio (NJL) model [46]. In the
magnetic field background, the thermoelectric response of
the hot QCD medium has been explored earlier in [47-52].
In the earlier works, authors have used the relativistic kinetic
theory approach, where the collisional effects of the medium
have been incorporated with the relaxation time approxi-
mation (RTA). But, the widely used RTA collision integral
has a drawback in that it violates the conservation of the
particle number and current. Taking this fact into consid-
eration, we have used a more realistic Bhatnagar-Gross-
Krook (BGK)-type collision integral, which insures the
particle number and current conservation in the medium.
The BGK collision integral has been used earlier to study
dielectric functions, dispersion relations, and damping rates
of longitudinal and transverse modes of a photon in the
electromagnetic plasma [53]. The authors noticed a small
shift in the dispersion relations towards the lower energies
for the collisional case in comparison to the collisionless
case. Schenke et al. [54] have studied the effects of the
collisions using the BGK kernel on the collective modes of a
gluon in the anisotropic QCD medium and have observed
that incorporation of the BGK collision integral slows down
the growth of the unstable modes. The gluonic collective
modes have been also studied in anisotropic medium
within the effective fugacity model [55], and suppression of
the instabilities were reported there also. The effects of the
collision have been investigated using the BGK term on the
square of the refractive index (n?) and Depine-Lakhtakia
index (npp ) for the QGP medium in Ref. [56]. It was noticed

that the real and imaginary parts of the n> gets changed
dramatically compared to the collisionless case. For a small
collision rate, np; becomes negative in a certain frequency
range and as the collision rate increases, the frequency range
for np;. < 0 becomes narrower. The wake phenomenon has
been explored for both isotropic [57] as well as anisotropic
mediums [58], and it is observed that the wake structure
becomes less pronounced in both the cases in comparison
to the collisionless plasma. The effect of collisions on the
heavy quark energy loss has been investigated via the BGK
kernel, and it is found that for the same momentum and
collision frequency, energy loss gets increased in the BGK
case in comparison to the collisionless case for both charm
and bottom quarks and further increases as the collision rate
is increased [59]. Authors in [60] perform a similar study
using the effective fugacity model and consider the RTA as
well as BGK collision terms. They observed that the energy
loss gets reduced in the BGK case as compared to RTA. In
addition to these works, the response of stationary and
homogenous quark gluon plasma to the background electro-
magnetic field has been studied in [61]. It was found that the
late-time magnetic field is mainly determined by the static
electrical conductivity of the medium. A similar kind of
study was made for the electron positron plasma with time
and space dependent magnetic fields [62]. The electric
charge transport in a weakly magnetized hot QCD medium
in the presence of a time varying electric field has been
investigated in [63]. Both Ohmic and Hall conductivities get
enhanced in the BGK term as compared to RTA. Similar
observations were noticed in the strong magnetic field,
where longitudinal electrical conductivity becomes larger in
the BGK term [43]. The momentum transport coefficients
have been studied in a strong magnetic field with the BGK
kernel by us in Ref. [44], and we notice that the shear
viscosity gets enhanced, while bulk viscosity is reduced
slightly in comparison to RTA.

Motivated by the earlier works, our main objective here is
to investigate how the current conserving BGK collision
integral modifies the thermoelectric transport coefficients
namely Seebeck and Nernst coefficients of the hot QCD
medium. We include the medium effects in the framework of
a quasiparticle model [64], where medium dependence
enters through the dispersion relations of the quark and
gluon quasiparticles. Quasiparticle models are widely used
to study the thermodynamical and transport properties of the
hot QCD medium. The masses of the quarks have been
computed from the pole of the propagator resummed using
the Dyson-Schwinger equation. We have employed the
perturbative thermal QCD in magnetic field background
to calculate the self-energy of the quark. We compare the
BGK results with those obtained using RTA. We have
explored two regimes of the magnetic field, the strong
(|g;B| > T? > m?) and the weak magnetic field regime
(T? > |g;B| > m?). In the magnetic field, the motion of the
quarks is quantized in the transverse direction leading to the
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discrete energy spectrum in terms of the Landau levels.
When the strength of the magnetic field is large, the energy
separation between the consecutive Landau levels become

large (of the order +/|gB|), consequently, the quarks get
confined in the lowest Landau level (LLL) only. Moreover,
in the weak magnetic field case, the magnetic field depend-
ence enters through the cyclotron frequency. We found that
in the absence of the magnetic field, the magnitude of the
Seebeck coefficient for the individual u, d, and s quarks
gets reduced in the BGK collision integral, while for the
composite medium, it gets enhanced. In the strong B, it gets
enhanced in the BGK collision term for individual flavors,
as well as for medium. In the case of the weak magnetic
field, the Seebeck coefficient is not very sensitive to the
collision integral and found to be almost similar in both
collision terms. In addition, a hall type Nernst coefficient
also appears, which quantifies the thermoelectric response in
the transverse direction. The Nernst coefficient gets reduced
(enhanced) in the BGK term in the case of L (R) modes for
individual flavors, as well as for the medium.

The present manuscript has been organized as follows: In
Sec. II, we discuss the quasiparticle model and thermal
mass of the quarks in the thermal and magnetic field
backgrounds obtained using the perturbative thermal QCD.
In Secs. Il A and III B, we calculate the Seebeck coef-
ficient without and with a magnetic field background,
respectively. We discuss the results in Sec. 1V, and finally
we conclude in Sec. V.

II. QUASTIPARTICLE MODEL

The central feature of quasiparticle models is that a
strongly interacting system of massless quarks and gluons
can be described in terms of the massive weakly interacting
quasiparticles originated due to the collective excitations
in the medium. There are many quasiparticle models, such
as the NJL and Polyakov-Nambu-Jona-Lasinio models
[65-68], which are based on the respective effective QCD
models, the effective fugacity model [69], and the model
based on the Gribov-Zwanziger approach [70-72]. Such a
kind of model was first proposed by Goloviznin and Satz
[73] to study the gluonic plasma and then by Peshier et al.
[74,75] to study the equation of state of QGP obtained from
lattice QCD at finite temperature. At the same time, authors
in Refs. [76-79] used a quasiparticle picture to explain the
lattice data by using a suitable quasiparticle description for
QGP with temperature and chemical potential dependent
masses. These results suggest that the high-temperature
QGP phase is suitably described by a thermodynamically
consistent quasiparticle model. In the present study, we
have used the quasiparticle model by Bannur [64], where
the total effective mass of the ith quark flavor with bare
quark mass m; , has been parametrized as [64,80,81]

mi = mi, + \/Emi,omi,T + m?;, (1)

to explain the lattice data with finite bare quark masses.
The thermal mass (m;7) of the quark in Eq. (1) can be
calculated using the hard-thermal-loop perturbation theory

as [82]
272 2
wy =L (14 ). @)

72 T?

where ¢ = \/4ra, refers to the coupling constant which
depends on the temperature as

(%4
a (1) =4 = SNE)
47 (33-28))In(32;)

Aqcp
. 2
and Q is set at 274/ T? + 5.

Now, we will include the strong magnetic field in the
quasiparticle description. The quasiparticle mass in the
presence of strong B can be generalized as

mi, = mp + V2mgmp 7 + miy 7. (4)

where m;g 7 is the medium dependent quark mass, which is
obtained from the pole of the resummed propagator. We
know from the Dyson-Schwinger equation

S py) = rpy. — Z(py)- (5)

where X(p) refers to the self-energy of the quark at finite
T and strong B, which has been calculated as [83]

2 2 4
g’ lg;B| [ =T TuE(3)  31u*{(5)
S(py) = —In(2 -
(P1) =352 {2mi,o M2t 2 T e
0 3 0,5 3,5
X{r z;o+71272+7 VZPZ+7 721)0} ()
P P P P

where g = \/4za, is the running coupling which depends
on T, B, and yu as

2 A2
a, (A2, eB) =L = o (A7) —.
An 1+blas(A2)1n(A2A+eB)
with
1
a,(N?) =

- ®
bl In (AAT>
MS

and A is set at 27y/T? +’;—§ for quarks, b, = 111\/;.2—712Nf
and Ay = 0.176 GeV.

Due to the heat bath and magnetic field, the Lorentz
(boost) and rotational invariance of the system get broken.
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In such a nontrivial background, the covariant form of the
quark self-energy X(p) can be written as [4,84]

Here ©#(1,0,0,0) and b#(0,0,0,—1) correspond to the
heat bath and the magnetic field, respectively. A, A,, A,
and A, refer to the structure functions, which are given in

(py) = Air'u, + Axy'b, + A3y u, + Agy’y*b,.  (9)  the LLL approximation as [83]
|
2 2 4
g'l9:B| | =T TuE(3) 31u*¢(5)] po
A, =-Tr|Zy'u,| = — —1In(2 - -, 10
1= g T ] = [2m,-,0 "2t er T R P (10
1 FlaBI [ aT TLG) 3LS)) p
Ay = —-Tr|Zy*b,| = — |=———In(2 - ==, 11
2 =g T =T T e " e | 2 4D
1 g'lg:B| [ =T TW(3) 31(5)] p
Ay = -Tr[pPZpfu,) = — d —In(2 — =, 12
2 = g Tl 32 |omy M g T 3 P (12)
1 gla:B| [ T 72E(3) _31u*C(5)] po
Ay = —-Tr[PZptb,| = — : —1In(2 - =, 13
4= =7 Tl Zr'h,] 322 |2my, ")+ o T R P (13)
|
where {(3) and {(5) correspond to the Riemann zeta y2 | 1
functions. We can further cast the quark self-energy (9) 5= Y? :E[po_ (A} +A,)]? _E[pz + (A, +A)]2. (21)

using the chirality projection operators as

Z(py) = Pgl(A; = Ao)y*u, + (A, — Ay )y*b, )P,
+ PL[(AI +A2)}/”uﬂ + (A2 +A1)}’”bﬂ}PR, (14)

where Pp and P; are the right- and left-handed chiral

projection operators, respectively,
1 5
Pp = w (15)
2
1-— 5
P, = % (16)

We obtain the resummed quark propagator in terms of Pp
and P; from (5),

1) =5 [P Pact PP (1)
where
Xy = 1P — (A = Apy'b, — (Ay = Ay, (18)
MY, =v"pl— (Ay +A)r'b, — (Ay + Ad)r*u,,  (19)
and
XZ 2 1 2 1 2
7:X1:§[P0—(A1—A2)} —i[Per(Az—Al)] . (20

The static limit (pyg =0, p, = 0) of the poles of the
propagator (17) (of either X2 or Y?) gives the mass of
the quark as

,  9*la:B|[ T

TW*(3) 31u*(5)
Mis = 322 B

8721?3277 |’

~In(2)+ (22)

2m;

which depends on the magnetic field, temperature, and
quark chemical potential.

The effective quark mass for the ith flavor in the case of a
weak magnetic field can be parametrized like the earlier
cases as

mlzw = mlzo + \/imiOmLL/R + m%L/R, (23)

where m; ;  refers to the thermal mass for the left- or right-
handed chiral mode of the ith flavor, which can be
evaluated from the Dyson-Schwinger equation,

S=1(P) = p-2(P). (24)
Here X(P) represents the self-energy of the quark
in the weakly magnetized thermal medium, which

can be written in the covariant form at finite 7 and B
as [85]

I(P) = —a, P — arih — azysih — asysp, (25)
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where a;, a,, as, a, are the structure functions, which can
be evaluated by taking the appropriate contractions of
Eq. (25) as [85],

ai(po. p|) = %Ql <%>, (26)

ax(plpl) = 47 o B 0 (l%]) 28)

aulpo o) = 47 C 0 (%) (29)
where

B| ( #T Tu*(3)
VAT B) = |9 —1In2 . (30
(T.n.B) =T <2m,-0 Nt e (30)

and Qg and Q, are given by

0u(1) =§1n<tf;), G1)

t

0,(f) =L <Z+—1> =10y = 1. (32)

Self-energy (25) can be written in the basis of right- and
left-hand chiral projection operators as

I(P) = —Pg(a\P + (ay + a3)ff + a4§) P,
= Pr(a\P + (ay — a3)ff — asp)Pg.  (33)

We calculate the effective quark propagator from (24),

1 L R

T2
where

L2 = (1 + a1)2P2 +2(1 +a1)(a2 + a3)p0
—2ay(1 +a)p. + (ay + a3)* = aj, (35)

R* = (14 a;)*P* +2(1 4 a)(ay — a3) po
+2a,(1 + ay)p, + (ay — a3)* — aj. (36)

Now in order to get the quark thermal mass in weakly
magnetized thermal QCD medium, we take the static limit

(po =0, |p| = 0) of L2/2 and R%/2 modes,' and we get
L2
5 =m} +4g°CrM?, (37)
Po=0.[p[—>0
RZ
= = m3, — 42 C M. (38)
2 Po=0.[p|—>0

The masses of the left- and right-handed modes are
given by

mi = m? + 4¢*CrM?, (39)
my = mg, —4g°CpM?, (40)

respectively. We will use these medium generated masses in
the dispersion relation of the quarks to calculate the Seebeck
and Nernst coefficients in the forthcoming sections.

III. THERMOELECTRIC RESPONSE
OF A THERMAL QCD MEDIUM

In the kinetic theory approach, the evolution of the phase
space distribution function is given by the relativistic
Boltzmann transport equation (RBTE), which reads as

O . o O

Pﬂﬁ‘i‘qF Paa—ppzc[fL (41)

where f = f.,+6f; 6f is a small deviation from the
equilibrium, and F*° corresponds to the electromagnetic
field strength tensor. Note that C[f] corresponds to the
collision integral, which provides microscopic input to the
RBTE. In general, C[f] is nonlinear in f, but Anderson and
Witting proposed a simple collision integral, which is
known as RTA,

—_ p” u”
T

Clfl =

(f = fea): (42)

where 7 is the relaxation time. The RTA collision term
violates the particle number and current conservation. This
shortcoming is the artifact of the linearization of the
collision term otherwise, in principle, the full collision
term respects all the conservation laws. Later this short-
coming was circumvented by BGK by modifying the RTA
as [54,86]

'We have expanded the Legendre functions appearing in the
structure functions in the power series of % and have considered
only up to O(g?).
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p* u, n
Clfl=—"—f—-— , 43
1 =-= ( feq) 43)
where n and n. are the out of equilibrium and equilibrium

number densities, respectively. The collision term (43)
respects the conservation of the particle number, i.e.,

dp B
/ Sasclf=o. (44)

In what follows, we will apply the framework discussed
herewith to examine the thermoelectric response of the
thermal medium of quarks and gluons with and without
external magnetic field background.

A. Seebeck coefficient in the absence
of the magnetic field

In this subsection, we will evaluate the Seebeck coef-
ficient of the thermal QCD medium composed of u, d,
and s quarks (and their antiparticles). In the presence of
the thermal gradient, the charge carriers will move from the
hotter regions to the colder ones. As a result, a current is
induced in the medium, which can be written as

qlﬁf,(x p) +q5fi(x.p)). (45)

where &f;(x,p) (8f;(x,p)) refers to the infinitesimal
deviation in the phase space density of quarks (antiquarks)
|

of the ith flavor, and g; corresponds to the degeneracy
factor.

The Boltzmann transport equation (41) in the presence of
the temperature gradient with the BGK collision integral
can be written as

af i - of; afi
E. E.
o i pa 5+ aipo %
=—-p uyyi(fi Mg, zfeql) (46)
where f; = f.q; + 6f;, and
d3p
n; :gi/W(feq,i"_éfi)» (47)
d3
Negi = Gi /( )';feql (48)

Note that f; is the Fermi-Dirac distribution function, and
v; is the collision frequency, which is estimated by inverse
of the relaxation time [87]

(1) = 1 L9

5.1Ta? 10g<als) [1+0.12(2N, + 1)]

where a; is the running coupling constant (3).
The RBTE (46) can be recast after some simplification as
(see Appendix A)

. p 1 . E-p
ofi— gineql,ifeq,i / ofi = ; -(wi —ﬂ)Ti (‘ F)fcq.i(l - feq,i)v?T(r) + 2qiﬂ7i7feq,i(l - feq,i)v (50)
P L i
which can be further solved for of; as
o, = o1 + gnclifeas [ 317 (51)
P
where
0 p 1 o, 2PqiTi 2 -
o1 = L o= )51 2 ) sl = Fad BT () 4 I B i1 = ). (52)
Following similar steps, 5f; can be calculated as
Py Q) (0) 53
fl f[ +gl equeql f[ 4 ( )
P
where
i p 1\ - i} .  Ep- i}
70 = L+ (= 32 ) Fas 1 = T VAP 290,52 o1 = T (54)
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Now substituting 5f; and 8f; in Eq. (45) to obtain the space part of the induced current, due to a single quark flavor, it reads

d3 2 -1 .
Jk,i = {4i9T; / (27[];3 [{% w; — ﬂ) <_2>feq,i(1 - feq,i)v7T(r) 2 qukﬁfeq l( - feq.i)}

_lfeqt/{p_k'(wi ﬂ)( )feqt( _feq,i)VFT(;;)+2;];qiEkﬁfeq,i(1_feq,i)}:|

neqz W;
& 2 1\ - - . 2 _
+ Zligﬂ-i/# [{% w; +ﬂ) (F)feq,i(l _feq,i)v7T(r) + 2%‘11‘Ekﬁfeq,i(1 _feq,i)}
, 1\ - ; ) B}
neqz;zfeql/ {5)_]: (wi+/’£) <_F>feq.i(l _feq,i>v7T( ) +2&qukﬁfeqz(1 feq,i)}:|- (55)

In the state of equilibrium, the resultant current due to the ith quark flavor becomes zero, i.e., J ; = 0. Putting the induced
current (55) to zero, we get a relation between the thermal gradient in the medium and electric field as’

- - 1 Ll + L2 ~ .
£= 2Tq <L3 + L4> VAR,
= SV;:T(7). (56)
Here S is the Seebeck coefficient, which is given by
1 (Li+ L,
- 27q (L3 + L4> ’ (57)
where
d3
b= [ S L -l - s 4L p / L0l = (1= )} (58)
& 2 _
L= [ s {1 =T + 2L [ G+ T T . (59)
d3 2
Ly = / (27[];3 {%feq( feq __feq/ feq feq)} (60)
&p 2 -
L= [ G5 g T+ ”feq/ L Tall=Fu) . (61)

Up to this point, we have only considered a single quark flavor, we will now focus on the hot QCD medium
with multiple quark flavors. In our case, we have considered three flavor (u,d, and s quarks and their antiparticles)
quark gluon plasmas. The total induced current can be written as the sum of the currents because of individual
flavors as

2 2
- - q79:171 429272 E
J = E Jl:<lT(L3+L4)1+ 2T (L3+L4)2+>E
T T 7
- (Ch;i; L(Ly + L), + qz%qé 2(Ly+ L)y + - )V;T(r). (62)

*We have omitted the flavor label i here for simplicity as we are interested in the Seebeck coefficient, due to a single quark flavor. It s,
again, taken when the Seebeck coefficient of the medium is considered in Eq. (63).
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In the steady state condition, the total induced current
vanishes, i.e., / = 0. As a result, we get

> 1 - q,0,T; L
E=_—— Zl qégl 1( |+ 2)! V- T( ) (63)
2r Zi qi 9it l(L3 + L4)

which gives the Seebeck coefficient for the medium as

1 Y qigini(Ly + L),
2T 32, qigiwi(Ls + Ly),;

Since all the flavors have the same relaxation time and
degeneracy factor, the total Seebeck coefficient for the
medium can be expressed in terms of the Seebeck coef-
ficient of the individual flavor as

Slot = (64)

22847 (Ls + Ly);
3247 (L3 + Ly),;
In the next subsection, we will explore how the presence of

the background magnetic field modulates the thermoelec-
tric response of the hot QCD medium.

Stot = (65)

B. Seebeck and Nernst coefficient in the presence
of the magnetic field

Now we will calculate the Seebeck coefficient in the
magnetic field background. Firstly, we will consider
the strong field regime, where the energy of the quark is
quantized via Landau quantization. Then, we will explore
the weak field limit, where the magnetic field dependence
in the transport coefficients enters through the cyclotron
frequency, which manifests a classical description of the
motion of the charged particle in the magnetic field.

1. The strong magnetic field case

In the presence of strong B, the quark energy gets
quantized as [88]

0 = \/ P+ m? + 2nlq;B (66)
where n =0, 1,2.... correspond to the discrete Landau
levels, and the phase space factor takes the form [88]

/ Z|‘1213|

Since we are interested in the strong magnetic field limit
with scale hierarchy (|gB| > T? > m;*), the quarks are
confined to the lowest Landau levels, i.e., n=0. A
dimensional reduction in the quark dynamics takes place
from 3+ 1 to 1+ 1 dimensions rendering the induced
current along the z direction as

Pab). (67

J3:ZQ
i

where 6f2 and 8fF are the deviations in the quark
and antiquark distribution functions, respectively. The
RBTE (46) in the strong B becomes

|Q'B|/ P3 .
k) dn- 22 (g.5F8 5fB), (68
14”2 p3wi(QI f1+41 fz) ( )

of? oft oft of?
0 Ji 370 ,FOS i ~F30 “Ji
ax() +p 0x3 + g, P3 ap() + g, Po ap3
= _pﬂu”le (fB - angq il gq,i)’ (69)
where f7 = f5 4+ 6f7; fu,; is given by
B 1
eq,i eﬂ‘”" + 1 . (70)

Here w; = /p3 + m7; m; is the quasiparticle mass (4),

and 8 is computed by the inverse of the relaxation
time [89],
. ﬂa’i_l dn’ -1
8 (ps:T.|gB|) = w'(i ) </ Ps > :
a,Cpmi (e + 1) \J wl(e/ +1)

(71)

In Eq. (69), ng,,; and n} are the equilibrium and non-
equilibrium number densities of quarks in strong B, which

are given as

s 9ila:Bl

eq,i A2 3feq i (72)
9i1q:B
Ly N AR T R )

In order to obtain §f%, we simplify Eq. (69) as
5fB -9 gqt_l gq,i/ 6f?
pP3

et P, ) (— ;) 81— 18 )(VT),

P3Es

W

+2q,p7} cai): (74)

eql( “ Jeqi

which is further solved for §f# up to first order in
iteration as

B(0

5fB—5f +gl i eql/ 5f, (75)
P
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where Similarly, we can write for the antiquarks as
BO) _ P 1
57 = 22w - ) <—T2> cai(l = feqi)(VT);3 578 = 577 4 ginf ! eql/ 5720 (77)
2q;p8 B
+ o; P3Es eql(l - eq.i)‘ (76) where

2g,p7}
w;

l

- 1)\ - _ -
o1 = P2 (o + ) (- g2 ) 1 = TR + 220 e (1= 7). (78)

1

Now substituting §/% and 5]7? in Eq. (68) to obtain the induced current in the strong magnetic field due to a single ith quark
flavor,

:B -1 2
J3i =49 ,|q | Hp3 P(w; = p) <_2)fgq,i(1 — f5)(VT); +§2ﬂE3qﬂ?(p3)

i

<P = 180 b= [ { Dot (32 ) 1 = 12,007

il e o)

< Tl = PRV, + B (p 78,1 - ) | + 227,

w; eqz

p/
+;:32ﬁE3qlTlB(pg) eql(l - eql)}:| +qgl

i

P -1\ - LI Z
< [ {Bettar o (32780 - 720D + Boprast o0 -150 ) 9
3 ! i
In the state of equilibrium J3; becomes zero, and we get the relation (omitting label i for simplicity),
1 (H, +H,
Ey=—|——"=1(VT),, 80
+= 507 (i) (77 (50)
=S,(VT),. (81)

Sp here corresponds to the Seebeck coefficient in the strong B background, which reads

1 (H +H
Sp=—— g, + , (82)
ZC]T H3+H4

where the integrals H;, H,, H3, and H, are given by

B fg ; ’
_lg I/ {P3 B (w—pu)f5 (1 - f5) + %n_g;l/pg%ﬁ(w —u)ffq(l—fgq)}, (83)
B e
o=l [an{ G it -0 w0l [ Beowenima-inf. o
IqBI pafe [ 15
B [an (B +o208 [ Do), 83
B fe
_la I/ {p3 BFE (1~ ] ”9%%/,? BFB (1 - J )}. (86)
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For the hot QCD medium consisting of u, d, and s quarks, the third component of the induced current can be written as the

vector sum of the individual currents as

Js=) Jsi

(87)

2 B 2 B
_ (qlgllfh Lty by, + 22 DB gy )E3

T

B
- (7%91;21 | (Hy + Hy), +

which vanishes in the steady state, i.e., J; = 0 and gives

_ 1 >i4i9i(Hy + Hy),;
2T Y7, qig;(Hy + Hy);

E; (VT)s. (89)

We extract the Seebeck coefficient for the composite
medium as

B :LZiQi|CIiB|(H1+H2>i
“ 2T 3 q;lqiBI(Hs + Hy),’

(90)

which can be expressed in terms of the Seebeck coefficient
of the single quark flavor as

ZZS |q1| (HS +H4)i
Zz |Ql| (H3 + H4)i

SB = (91)

In the strong magnetic field, there is no current in the
transverse direction due to the one-dimensional (LLL)
quark dynamics. Hence the Nernst coefficient, which
measures the thermoelectric response in the transverse
direction, vanishes. In the next subsection, we will explore
the weak magnetic field regime, where the quark dynamics
is not affected by the Landau quantization, rather the
magnetic field dependence enters via the cyclotron fre-
quency, which manifests the semiclassical description. In
this scenario, the Nernst coefficient would also appear.

2. The weak magnetic field case
In the weak magnetic field, the dispersion relation of the
charged particle is not directly affected by the magnetic
field, rather B acts as a perturbation. So the 1 + 1 dimen-
sional Landau level kinematics is not applicable. The
induced four current in the medium is given by

- [ 55

where €; = /p? + m?. The RBTE (41) in the presence of
the Lorenz force can be written as (see Appendix)

qtéf, +g:5f,).  (92)

6]292|¢12B| (
T2

Hy + Hy), +- -->(VT)3, (88)

+

aof; .0 0 1
S5 g _L(,
ot " oF op T;

n;
—@fo,l-), (93)

where F = ¢;(E + ¥ x B). Since the magnetic field is not a
dominant energy scale here, we have used the same
relaxation time calculated in the absence of B (49). The
magnetic field and chemical potential dependence in z; will
enter through the strong coupling constant (7). Note that n;
and n) ; are given by Eqgs. (47) and (48), respectively, except
the mass in the dispersion relation will be replaced by the
thermomagnetic mass calculated in weak magnetic field
in Sec. IIL

Without the loss of generality, let us consider the electric
field in the xy plane, i.e., E = E, X + E,J and the magnetic
field in z direction, i.e., B= BZ. Then for QCD medium,
which is homogeneous in time, Eq. (93) takes the form

- af i

B af i af i - 0f, B
Bt v, —v —7,0. = =
4i5% Yop, op, ivoF T R op

= <5fi - gi”&%fo,i/fsfi)’ (94)

which can be solved for df; up to first order as

o, = o+ gmilfos [0 ©9)
where
a 9 i 9 i = 9 i 9 i
6f1()_quTi<Ux /. Uy f>—7iv'i~—fl%Ei-
6py op, or op
(96)

In order to solve Eq. (95), we take an ansatz [90],
o, = of" + gmilfo [ of (o)
p

where
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5 fl(b) = fi— foi = —Tid; i dfo.i _7 > of 0. (98) where -a)C = g is the cyclotron frequegcy. Equating the
ap ap coefficient of v, and v, on both sides gives
Equating Eqgs. (95) and (97), we get
x oT
5 0 ofi of\ - ofs 7, CetidiEy — oy +< T >0x 0. (102)
—q;B7;{ v, — v, —T,0.—=
op op  “p, or
= g;naifoJ- (/ 5f§“> +/ 5f§b))- (99) Ay e —p\oT
' P P 2 + a)cTi('IiEx + wcﬁx + —=0. (103)
T; T ady
We calculate 3;: - and 31{ L using the ansatz (97) as
We solve the above Eqs. (102) and (103) to get 4, and 4, as
) 0
<1}x fl ) fl) = (vy/lx + UVTiQiEx - /lely
dpy d ’ J s
; i —u\ oT
0fo: 1 A:LE_ % i~ H\ oL
- 0,7,q;E,) 627 P (100) x 1 + w?c? 9i=x 77 + w21} T ) ox
w,7? w, 7} €, —u\ oT
where we have retained terms which are linear in the + 1+t 2611 YT ¥ w22 T oy’ (104)
velocity only. o
Now substituting Eq. (100) in (99), and after doing some
rearrangement, we get
] .7 - w7} (ei —/l) oT
Ay oT y 2 q ) E™
Ux[_—wcfz% — Wy _|_< > ] 1w T 1 + wgt; T 0x
Ti T jox w213 T € —u\ oT
] 1 /’l
Ay 22‘1! y T 22< > (105)
+ v, [—} + 0. 7,q,E, + 0.4, + ( 1t Il +awcy \ T ) dy
7

€i—H E
T ay
T
+ 2 (/ 5f;" /5ff-b)> =
no,iT; !

Now we substitute A,
which reads

(101) and A, in (97) to obtain 5f,

o, = o+ amifos [ or1 (106)
where
5f(b) ofo.i i + WDc 12 E +af0 Ti wc’fz E
i de 1+ 22‘11x 1+60%7.'%qu X de 1+Cl)2 2Qt) 1+ zzth y
dfo 7 € —H w1 [(ei—p oT
T ) U oo\ T )| 5
oe |1+ wir; T 1 + w;z; T 0x
9f0.i Ti € —H o} € —H or
: , L —. 107
e L + w?t? < T )T +a2?\ T Ux dy (107)

Similarly, deviation in the antiquark distribution function can be evaluated as [replacing ¢; with —¢g; and @, with —w,.
in Eq. (107)]

5fi = 5?517) + 951 fo. // 5J_C§b), (108)
P

where
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7 2
2(b) 9f o, i i fO,i Ti

S = e [1+wgfgql”x+1+ o) ”‘] T 0 [T+ a2 ™

0f01 €i—H or

v | ==

—l—wr 1—|—a)212 T 71 ox

()fol w7 (e —p oT

v Vel —.

1—|—a) Yo 1 + wl7? T ay

V., —

0,22

14+ i

y

(109)

We substitute §f; and §f; in (92) to get the x and y components of the induced current density, due to ith quark flavor,

oT oT
s = | @B+ @By + PL) 5+ (P10 5. (10)
aT aT
Jyi =49 |:(_Qiﬂ12,i)Ex + (gL ) Ey + (=f714) == Ep + (ﬂ213.i)5:| . (111)
The integrals Iy, I,, I3, and I, in the above equations are given by (omitting label i for simplicity)
Iy =1, + 1y, (112)
Iy = I, + Iy, (113)
13:I3q+13?]’ (114)
Iy = Iy, + I, (115)
where
B d3p p2 T p/
Iy, /(27[)3 {@(1+w272)f0(1—f0)+—0—f0/p mfo( fo)},
[ &p [ p? T - - P’ -
Iy /(271)3 {@(1+w%12)f0(1—f0)+—0;f0/ ﬁfo( fo)}’
B &p (p? oz w7
2 /(2”)3 {g(l—l—wgrz)ﬂ)( f0)+——fo/ e z)fo( fo)}y
& 2 22 / _
== [ e 1= Fo 4+ 2250 [ B2 Tt =T,
d3 2 /
13(1:_/(27:;3 {%(1—1—2}3 2)( )fo(l—fo)+——fo/ m( M)fo(l—fo)}v
d3 2 _ _ ! B B
I3 = / (27[1)73 {%(1 _i_;zrz) (e +u)fo(1=fo) +ﬁ—0;fo/ P ﬁ(d + ) fo(l —fo>}’
& 2 2 2
iy == [ G5 s e ifal1 = fo)+ 2210 [ G = a1 - £},
&b 2 2 B B / 2 B B
141? = _/ (27:)73 {31)?(1 _T_)C;%l_z) (6 +:“)f0(1 —fo) +ﬁ_0sz /p/%%(e’ +ﬂ)f0(1 —fo)}-

In the state of equilibrium, the components of the induced current density along the x and y directions vanish, i.e.,

Jei=J,;=0. We can write from Egs. (110) and (111)

orT
CiE, + CE, +Cy—

or
G

03
ady
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or oT
+C =0,
o 357

_CZE)C + ClEy — C4 ay

(117)

provided C] = qll, C2 = 6]12, C3 :ﬁlg,, and C4 :ﬁ14
Thermoelectric transport coefficients are related to the
electric field components and temperature gradients via a
matrix equation

E, S N|B|\ /%
= o |- (118)
E, —N|B| S &
We solve Egs. (116) and (117) for E, and E| as
E _ GG+ GG\ oT GG -GG\ oT
o c2+c2 )ox A+ Joy’
(119)
GG+ GG\ oT C,C3 — CCy\ OT
Ey,= 2 2 - 2 2
Ci+C3 0y Ci+ G35 ox’
(120)
which give the Seebeck and Nernst coefficients
S__(C1C§+C§C4)7 (121)
i+ G
C,CG-CC
N|B| =1 ©2E =G 1 ), (122)
Ci+ G35

respectively. The integrals C, and C, vanish in the absence
of the magnetic field, as a result the Nernst coefficient
would also vanish.

Now we will compute the Seebeck and Nernst coeffi-
cients for the medium. In the medium composed of u and d
light quarks, the x and y components of the current can be
written as the sum of the individual contributions as

Jx:izu’d|:qi(11)iEx"’CIi(IZ)iEy+ﬁ(13)i(;§+ﬁ(l4)ig§:|7
(123)

Z{% L)E, + qi(1),E, ﬂ(l4)lgT+ﬂ(13)i‘;_T}

= y
(124)

The Seebeck and Nernst coefficients of the medium can
be extracted by imposing the steady state condition (i.e.,
putting J, = J, =0) as

(K K5 + K>Ky)

SE = — : (125)
tot K%"—K%
(K2K3 — K Ky)
N|B| = =22 o1 (126)
K7+ K3

where

=S ) =Y ah), (27)

i=u,d i=u,d
Ky = .:Zdﬂ(ls)n Ky = .:Zdﬂaét)i' (128)

IV. RESULTS AND DISCUSSION

In this section, we will discuss the results obtained in
the previous sections numerically. In Fig. 1(a), we display
the variation of the Seebeck coefficient with 7 in the BGK
and RTA collision terms for u quarks at 4 = 60 MeV. It
was found that the magnitude of the Seebeck coefficient
decreases with 7 in both the collision terms. We have
computed the ratio of the Seebeck coefficients in the BGK
collision term to that calculated with the RTA (BGK/RTA)
to get the numerical estimates of the relative competition
between the two collision integrals. The ratio is found to
be around ~ 0.98 for the individual flavors in the temper-
ature domain 160-400 MeV, which indicates that the
Seebeck coefficient is slightly reduced in the BGK term.
The sign of the Seebeck coefficient for d and s quarks gets
reversed due to their negative charges [see Fig. 1(b) and
Fig. 2(a)]. In the case of the composite medium, the
Seebeck coefficient (S,,) [see Fig. 2(b)] has been found to
be positive. We notice a considerable enhancement in the
magnitude of S, in the BGK collision term, which is
around 12% at lower T (160 MeV) and 26% at high T
(400 MeV) [see Fig. 3(b)]. We further study the effects of
the quark chemical potential (x) on the medium Seebeck
coefficient in the BGK collision term in Fig. 3(a), taking
the strength of y = 40, 60, and 80 MeV and have found
that Sy, increases as we raise y. Similar results of u
dependence in the Seebeck coefficient have been found in
Ref. [50] with RTA collision integral. We can conclude
that both the BGK collision term and baryon asymmetry
in the medium enhance its ability to convert the temper-
ature gradient into the current.

In Figs. 4 and 5, we explore the effects of the
BGK collision integral on the Seebeck coefficient of a
strongly magnetized hot QCD medium. We have chosen
the strength of the magnetic field as eB = 15m2 and 10m2
with u = 60 MeV. The Seebeck coefficient for the indi-
vidual quark flavors, as well as for the combined medium,
gets enhanced in the BGK collision integral considerably.
The enhancement is around 18%-25% (for u quarks) and
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FIG. 1. Temperature dependence of the Seebeck coefficient in the B = 0 case: (a) for u quarks and (b) for d quarks.
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FIG. 2. Temperature dependence of the Seebeck coefficient for the B = 0 case: (a) for s quarks and (b) for composite medium.
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FIG. 3. Left panel: temperature dependence of the Seebeck coefficient for the medium with the BGK collision term in absence of
magnetic field for different strengths of u. Right panel: ratio of Seebeck coefficients in BGK to that in RTA collision integral with
temperature.
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FIG. 4. Temperature dependence of the Seebeck coefficient in the strong B: (a) for u quarks and (b) for d quarks.
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FIG. 5.

16%-27% (for d quarks) in the temperature range
160 < T < 400 MeV. For the s quark, the enhancement
is between 21% to 37% in the same domain of 7. In the
case of the medium, it is around 16% near T, but decreases
as we go towards higher temperatures [see Fig. 6(b)]. SZ,
increases with the strength of u like the B = 0 case [see
Fig. 6(a)], which is in agreement with the study made in
Ref. [51] in the RTA framework.

In Fig. 7, we investigate how the BGK collision term
modifies the thermoelectric response in the presence of
weak magnetic field (eB = 0.3m2) for u (left panel) and d
(right panel) quarks. We notice that the magnitude of the
Seebeck coefficient depends on the chirality of the quark
quasiparticles. For the left-handed chiral modes, the ratio
BGK/RTA is less than 1 for individual quark flavors, as
well as for composite medium. The ratio is found in the

35 —

— BGK eB=15m",
-— BGK eB=10m’,

— - RTA eB=15m’,

- RTA eB=10m’,

Total Seebeck coefficient

0
0.16 02 024 028 032 036 04
T (GeV)

(b)

Temperature dependence of the Seebeck coefficient in strong B: (a) for s quarks and (b) for composite medium.

range 0.97-0.98 for the u quarks in the temperature range
160 < T < 400 MeV. In case of d quarks and medium,
this ratio is around ~0.98 [seen in Fig. 9(a)]. This
concludes that the BGK collision integral causes reduction
in the Seebeck coefficients in comparison to the RTA [52].
On the other hand, BGK to the RTA ratio is very close to
unity in the case of right-handed modes, which manifests
that both the collision terms produce almost similar results
[seen in Fig. 9(b)]. We have also studied the effects of the
baryon asymmetry on the thermoelectric phenomenon in
Fig. 8(b) for u = 40, 60, and 80 MeV and have noticed an
increase in the Seebeck coefficient with y for both L and
R modes.

Since the BGK collision integral shows an improve-
ment over RTA, it gives more realistic estimates of the
transport coefficients like electrical conductivity (o),
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FIG. 6. Left panel: temperature dependence of the Seebeck coefficient for the medium with the BGK collision term in strong
magnetic field for different strengths of y. Right panel: ratio of the Seebeck coefficient in BGK to that in RTA collision integral with

temperature.
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thermal conductivity (x), shear (), and bulk ({)
viscosities as compared to RTA [43,44]. The nonzero
value of the Seebeck coefficient modifies the electric
current (J = 64FE —6,4SVT) and thermal conductivity
(k = kg — To4S?) of the medium. Therefore, the BGK
collision term will indirectly influence the charge and heat
transport in the medium. Electrical conductivity plays an
important role in the time evolution of the electromagnetic
fields produced in the noncentral collisions. Hence, the
estimation of the electrical conductivity with realistic
collision integrals is of paramount importance to under-
stand the strength and lifespan of the magnetic field
during the various stages of its evolution in the medium.
The magnetic field influences the particle production,

¢B=0.3m’ , u=60 MeV

—— BGKL
- BGKR
—— RTAL

. RTAR

-7

d quark Seebeck coefficient
(=)}

84

Q06 02 024 028 032 036 04
T (GeV)

(b)

Variation of the Seebeck coefficient with T in the weak magnetic field: (a) for u quarks and (b) for d quarks.

dynamics of the heavy quarks and their bound states
(quarkonium), and many aspects of the QCD phase
diagram [91,92]. Similarly, a more accurate understanding
of the thermal conductivity is necessary to study the
dynamics of the first-order phase transition [93] and the
chiral critical point in the heavy ion collisions [94]. It also
governs the attenuation of the sound in the medium via the
Prandtl number. In addition to charge and heat transport,
momentum transport also gets affected by the BGK
collision integral so the hydrodynamic evolution of the
medium may get influenced as shear and bulk viscosities
act as input to the dissipative hydrodynamical equations.
In principle, the BGK collision term can affect the
phenomenology of the heavy ion collision in many ways.
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In Fig. 10, we have examined the collision integral
dependence of the Nernst coefficient for u (left panel) and
d (right panel) quarks. We observe that the magnitude
of the Nernst coefficient gets changed drastically in the
BGK collision term in comparison to RTA. The ratio
BGK/RTA for the Nernst coefficient is less than 1 in the
case of left-handed modes, which shows that the BGK
collision integral causes a reduction in the magnitude
of the Nernst coefficient [see Fig. 12(a)]. The ratio is
in the range 0.67-0.65 for the u quarks, while in the
range 0.67-0.64 and 0.68-0.65 for the d quarks and for
the medium, respectively. In the case of R modes, ratio
becomes greater than unity, and its value is found to be in
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the range 1.89-1.23 for u quarks, 2.00-1.26 for d quarks,
and 1.83-1.23 for the medium [see Fig. 12(b)]. One
important observation we notice is that there is no
difference in the Nernst coefficient corresponding to
the L and R modes in RTA for u and d quarks, but in
the BGK the magnitude of the Nernst coefficient is
greater for R modes. In Fig. 11(b), we study the u
dependance of the medium Nernst coefficient in the
BGK collision integral. It is not very visible in the case
of L modes except near the transition temperature, where
it gets slightly reduced as u increases. In the case of R
modes, the Nernst coefficient increases with u at a fixed
value of temperature.
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V. CONCLUSION

To conclude, we have investigated the thermoelectric
response of a hot and magnetized QCD medium produced in
the noncentral collisions at the RHIC and LHC. We have
employed the Boltzmann transport equation linearized by
the BGK collision integral, which conserves the particle
number and current instantaneously. We incorporate the
medium effects via dispersion relation wherein 7', u, and B
dependent masses have been calculated using the imaginary-
time formalism of the finite temperature QCD. In the
absence of B, the Seebeck coefficient gets reduced in the
BGK collision term for u, d, and s quarks, whereas it gets
enhanced for the composite medium. In the strong B
background, the magnitude of the individual, as well as
the medium Seebeck coefficient, gets lifted in the BGK
collision term. The Seebeck coefficient of the medium gets
enhanced with the quark chemical potential in both the
cases. In addition to the Seebeck coefficient, the Nernst
coefficient also appears in the weak B. The Seebeck
coefficient gets slightly reduced in the BGK collision
integral for L modes, while for R modes, both the collision
integrals give the same results. On the other hand, the Nernst
coefficient gets changed drastically in the BGK collision
term, and its magnitude gets reduced (enhanced) for L (R)
modes in comparison to RTA. Both Seebeck and Nernst
coefficients increase with y for both L and R modes.

A nonvanishing Seebeck coefficient will modify the
electric, as well as heat, current in the medium. The electric
current in the presence of the Seebeck effect becomes
J = 64E — 64SVT, while thermal conductivity gets modi-
fied as x = kg — T S?. Both electrical and thermal con-
ductivities should take positive values in accordance with the
second law of thermodynamics, i.e. T&MS” > (. Hence, a
positive Seebeck coefficient will always reduce the electric
current and the thermal conductivity. It will be also interest-
ing to take the thermoelectric effects into account in the
calculation of the entropy production, which has been
completely neglected in [95,96]. Moreover, thermoelectric
coefficients could also be relevant in the context of the spin
Hall effect (SHE). In the SHE, a transverse spin current is
generated due to the external electric field but the lifetime of
such an electric field produced in the heavy ion collisions
could be too small to observe the SHE. The electric field
produced due to the temperature gradients in the medium
may induce spin Hall effect in a hot and dense strongly
interacting matter produced in heavy-ion collisions [97]. So,
the study of the various implications of thermoelectric effects
in the hot and dense medium needs further investigation.
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APPENDIX A: DERIVATION OF EQUATION (50)
The BGK collision term is given by (46) as

C[ft} :_pﬂuyl/i<fi_ feqt)

eqz
eqi 10
fq f)feq>

= —plu;

= —pluy;

1 el+l 5
(f gffq gfffeq'l)

Neq,i

M oo / 6f,)

APPENDIX B: BOLTZMANN EQUATION
IN THE WEAK MAGNETIC FIELD

The RBTE (41) can be written with the BGK collision
integral as

= _pﬂuyyl <5fl (Al)

of; (;afi n;
p"—ax,,+q,-F’ Fr —pu V< i ‘feq.,), (B1)
eq.i

0

-

where F'* = qFp, = (pOTJ.f?, p'F) is the covariant form

of the Lorenz force F = q;(E+ ¥ x B). We can write
Eq. (B1) using F = —E' and 2F;; = ¢;3B* (¢, is the

antisymmetric Levi-Civita tensor) as

of: | - ofi F.pofi = 9fi
= F.= v, i
o TRt thop T ulfim eq,fq
(B2)
considering p° as an independent variable,
o op’ o 0 p 0 0
- — L_.—O £0—0 +—=. (B3)
op dpodp” dp p'dp’ Ip

Equation (B2) takes the form

o Ofi = Of; n;
e+ Fo——==—v | fi——feai | B4
voom TS v <fl neq’l_feq,l> (B4)

APPENDIX C: SEEBECK COEFFICIENT
IN RELAXATION TIME APPROXIMATION

The Seebeck coefficient in the RTA collision term in the
B = 0 case has been calculated as [50]

1 (L
C2Tg \L,)’

(C1)
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b= [E8 2 0-mfati- 1)

(@4 )l - feq>}, (2)

d3 2 _ -
L2:/@Tpfﬁ{feq(l_feq)+feq(1_feq)}v (C3)

and for the case of strong B as [50]

1 (H,
-— (= 4
=7 (1) ©
where
P3
H, :/dp3373{(a)—,u) fq(l— gq)
o7 -7} (c5)

2
sz/dp3%1'8{ gq(l_ qu>+}gq(l__qu)}‘ <C6)

In other work [51], the thermoelectric response of the hot
QCD medium has been studied in the weak magnetic field,
where Seebeck and Nernst coefficients are found to be

§— (GG + GGy)

G+ G (€7)

(C,C3 = CCy)

N|B| =
Ct+C3

, (C8)

provided Cl = qll’ CZ = qlz, C3 :ﬁlg,, and C4 :ﬁ14
The integrals /,, I,,15, and I, are given by

_ [ dpp 7 } )
e / (22) 3¢ (1 + wi7) {fo(l = fo) +fol1 —fo)},
(C9)

&p p* o7
]2 == ( by
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