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The thermodynamics of finite size quark matter in the quasiparticle model is self-consistently
constructed by an effective bag function, which presents the medium effect to the confinement. We
obtained completely analytic surface tension in the strong magnetic field with the multiple reflection
expansion. The anisotropic structure is demonstrated by the splitting of the longitudinal and transverse
surface tensions. The anisotropy of the surface tension could be enhanced by an increase of the magnetic
field. The analytical surface tension is modified by an additional term related to the bag function. For strong
enough magnetic fields, the increase of the longitudinal surface tension is proportional to the magnetic
field. On the contrary, the transverse component vanishes due to all quarks locating in the lowest
Landau level.
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I. INTRODUCTION

Over the years, many works have been dedicated to the
effects of magnetic fields on the quantum chromodynamics
(QCD) phase transition [1,2] and the equation of state in
quark (neutron) stars [3–8]. The magnetic field modifies the
microscopic properties of quark matter with the correspond-
ing macroscopic implication in compact stars [9–12]. It is
well known that in the presence of a magnetic field, the
anisotropic effect becomes significant and non-negligible in
strong magnetic field, owing to the breaking of the spational
rotational symmetry [13–18]. To reflect the anisotropic
structure with a rapid longitudinal expansion of quark gluon
plasma created in heavy ion colliders, the anisotropic
Coulomb potential can be produced through an angle-
averaged screening mass [19]. Many theoretical works
presented the analytic expression for anisotropic pressures
under certain approximation [6,7,17,20]. Ferrer et al. showed
the anisotropic pressure and estimated the threshold field that
separates the isotropic and anisotropic regimes [17]. Later,
Isayev and Yang confirmed the splitting of the longitudinal
and transverse pressure in their articles [5,21]. The aniso-
tropic pressure will affect the determination of the compress-
ibility. The compressibility could manifest the anisotropic
structure due to the breaking of the rotation symmetry.
The discontinuity of longitudinal compressibility with the

chemical potential and the temperature captures the signature
of a first-order chiral phase transition [22]. With increasing
temperature, the appearance of the longitudinal instability
prevents the formation of a fully spin-polarized state in
neutron matter and only the states with moderate spin
polarization are accessible [5]. Recently, Lugones et al.
pushed the investigation of the surface tension in longitudinal
and transverse components with respect to the magnetic field
in the bag model [23–25]. In this paper, our aim is to
investigate the relevant anisotropic surface tension reflecting
the breaking of the Oð3Þ rotational symmetry in the decon-
finement process.
In principle, the surface tension together with the QCD

phase diagram should be investigated in the underlying
fundamental theory, lattice QCD (LQCD). However, cur-
rent LQCD methods are not sufficient to determine the
matter structure at larger chemical potentials. The only
available methods at relatively low energy are effective
models. In literature, the phenomenological models over-
come the difficulty of the QCD theory at finite chemical
potentials. In order to interpret the chiral phase transition
and dynamical symmetry breaking, the Nambu-Jona-
Lasinio (NJL) model is widely used in the QCD-like
investigation. The NJL model has proved to be very
successful in the description of the spontaneous breakdown
of chiral symmetry exhibited by the true (nonperturbative)
QCD vacuum. It explains very well the spectrum of the
low-lying mesons which is intimately connected with chiral
symmetry as well as many other low energy phenomena of
strong interaction. The quark quasiparticle model, as an
extended bag model, has been developed in studying the
bulk properties of the dense quark matter at finite density
and temperature. To describe the strong interaction effects
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in terms of effective fugacities, the effective fugacity quasi-
particle model is proposed by Chandra and Ravisankar
[26,27]. The advantage of the quasiparticle is the successful
description of the confinement mechanism by the density-
and/or temperature-dependent bag function, via which the
first-order deconfining phase transition was constructed and
the critical end point was determined [28]. The aim of this
work is to investigate the anisotropy of surface tension
modified by the medium effect in strong magnetic fields.
We also hope that the surface tension is helpful to investigate
the deconfinement transition, since the surface tension is
relevant for bubble nucleation of quark matter in supernovae
[29]. It can play an important role in the hadron-quark phase
transition in the presence of a magnetic field when the
anisotropic approach is followed as it was done recently [30].
This paper is organized as follows. In Sec. II, we present

the self-consistent thermodynamics of the magnetized
quark matter in the quasiparticle model. The medium effect
is included by introducing the effective bag function. The
surface tension is modified by an additional term dependent
on the bag function. In Sec. III, the numerical results for the
confinement bag function and surface tension are shown in
the strong magnetic field; detailed discussions are focused
on the anisotropy of the surface tension. The last section is
a short summary.

II. THERMODYNAMICS OF QUASIPARTICLE
MODEL IN STRONG MAGNETIC FIELDS

The main purpose of this paper is to study the properties
of the deconfined quark matter in strong magnetic fields.
The nonzero quark masses are explored and the exact chiral
symmetry are broken. The effective quasiparticle mass
should be introduced to include the interaction effect in the
quasiparticle approach. The total energy in the ensemble of
quasiparticle as a free and degenerate Fermion gas can be
written as

Heff ¼
Xd
i¼1

X
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm�

i
2

q
â†i;pâi;p þ B�ðμÞV; ð1Þ

where d denotes the degree of the degeneracy including the
flavor, color and spin. The chemical potential-dependent
bag function B� denotes the energy difference between the
physical vacuum and the perturbative vacuum, which is
necessary to ensure thermodynamic consistency.
For the medium dependence of the quark quasiparticle

model, the effective quark mass m�
i is derived at the zero-

momentum limit of the dispersion relation following from
the effective quark propagator by resuming one-loop self-
energy diagrams in the hard-dense loop (HDL) approxi-
mation [31]. The in-medium effective mass of quarks can
thus be expressed as [31–35]

m�
i ðμiÞ ¼

mi

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

i

4
þ g2μ2i

6π2

s
; ði ¼ u; d; sÞ; ð2Þ

where mi is the current mass of corresponding quarks and
the constant g is related to the strong interaction constant αs
by the equation g ¼ ffiffiffiffiffiffiffiffiffiffi

4παs
p

. The quasi-particle idea can be
recalled backward to the work by Fowler et al. [36] that the
particle mass may change with the environment parameters.
Following the original ideas, the quark mass density
dependent model is studied by Chakrabarty et al. [37].
Accordingly, as a phenomenological method, our quasi-
particle model has a similar treatment. They are apparently
different in approach but equally satisfactory in result. The
in-medium screening mass in Eq. (2) is merely a model
assumption on the quasiparticle mass in the present treat-
ment, and can not be justified field theoretically. The
effective mass depends on the leading term of quark
self-energy in the hard dense loop approximation. So the
expression is only valid for a large chemical potential.
In order to investigate the finite size effect, we apply the

multiple reflection expansion (MRE). It is originally
proposed by Balian and Bloch in the distribution of
eigenvalues of the wave equation inside the volume
bounded by a closed surface [38]. The eigenvalue density
is smoothed by the asymptotic expansion to eliminate its
fluctuation part due to the discrete eigenvalues on boundary
condition. Later the MRE is developed in finite-size quark
matter by Madsen [39], Farhi and Jaffe [40], and Berger
and Jaffe [41]. In the MRE framework, the finite-size
effects are considered in the modified density of state and
the thermodynamic potential density is

Ωi ¼ −di
2T

ð2πÞ3
Z n

ln
h
1þ e−ð

ffiffiffiffiffiffiffiffiffiffiffi
p2þm2

i

p
−μiÞ=T

i

þ ln
h
1þ e−ð

ffiffiffiffiffiffiffiffiffiffiffi
p2þm2

i

p
þμiÞ=T

io
ρMREd3p; ð3Þ

where T is the system temperature and di ¼ 3 is the color
degeneracy factor for i-type quarks. The density of state for
a spherical system is modified by the factor in the multi-
expansion approach by [42]

ρMREðp;mi; RÞ ¼ di

�
1þ 2π2

p
S
V
fSðxiÞ

�
: ð4Þ

Here xi ≡m�
i =p is the ratio of the quark mass mi over the

kinetic moment p. The dimensionless function fSðxiÞ ¼
− 1

4π2
arctanðxiÞ would play an important role in the modi-

fication of the density of state [41,43]. In conventional form
of MRE, the expansion includes the boundary surface and
its curvature the density of states for a volume of arbitrary
shape. In our work, the curvature term has no influence on
our subject and is omitted. For the extremely relativistic
particle with m ≪ p, the density modification is not
modified significantly [41]. Generally, the modification
of the density of state in the MRE framework constrain the
low limit on the infrared cutoff due to the fact that ρMRE
becomes negative at small momenta [44].
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In the integrations of the thermodynamic potential, the
following replacement should be applied

Z
d3p
ð2πÞ3 →

jqiBmj
2π

X
ν

X
s¼�1

Z
∞

0

dpz

2π
; ð5Þ

where the magnetic field strengths the degeneracy factor
jqBj together with the dimensional reduction. At zero
temperature and strong magnetic fields, Eq. (3) is simpli-
fied as

Ωi ¼
dijqiBmj
2π2

Xνmax
i

ν¼0

ð2 − δν0Þ
Z

pF

ΛIR

ðEi − μiÞρMREdpz; ð6Þ

where the single-particle energy eigenvalue Ei ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m�

i
2 þ p2

z þ 2νijqiBj
p

sensitively depends on the mag-
netic fields. The infrared cutoff of the momentum ΛIR is
required to obtain the non-negative density of state. At zero
temperature, the upper limit νmax

i of the summation index νi
can be understood from the positive value requirement on
Fermi momentum and is defined by

νmax
i ¼ μ2i −m�

i
2

2jqiBmj
: ð7Þ

A. The effective bag function

In the framework of the quasiparticle model, the total
thermodynamic potential with effective mass m�

i ðμiÞ
should be self-consistently written as

Ω ¼
X
i

½Ωiðμi; m�
i ðμiÞÞ þ B�

i ðμiÞ� þ B0; ð8Þ

where the additional term B�
i ðμiÞ is the medium dependent

quantity to be determined. The vacuum energy density B0 is
medium-independent. It has been interpreted as a back-
ground field, zero-point energy density, or bag pressure
[45]. In the standard statistical mechanics, the Hamiltonian
or the thermodynamic potential depends on the temperature
and the chemical potential related to the conserved charges.
If the thermodynamic potential depends on the state
variable implicitly via phenomenological parameters
m�

i ðT; μiÞ, the corresponding stationarity condition should
be required as [46]

∂Ω
∂m�

i

����
T;μi

¼ 0; ð9Þ

which has been widely employed in the quasiparticle model
at finite temperature and density [33,47–49]. The condition
respects the chiral symmetry restoration in the plasma [50].
At zero temperature, we get the bag function through the
integral

B�
i ðμiÞ ¼ −

dijqiBmj
2π2

Xνmax
i

ν¼0

ð2 − δν0Þ
Z

μi

m�
i

Z
pF

ΛIR

×

�
m�

i

Ei
ρMRE −

3

2R
Ei − μi
Ei

2

�
dm�

i

dμi
dpzdμi; ð10Þ

where the lower limit means the allowed chemical
potential. Specially, the equality μi ¼ m�

i would lead to
the vanishing Fermi momentum and the zero bag function.
According to the geometric dependence, namely, the

power of the radius dependence, the thermodynamic
potential density can be considered as

Ωi ¼ ΩV;i þ BV;i|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
volume

þΩS;i þ BS;i|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
surface

: ð11Þ

The surface terms proportional to the 1=R are

ΩS;i ¼ −
dijqiBmj
2π2

Xνmax
i

ν¼0

ð2 − δν0Þ
3

2R

Z
pF

ΛIR

×
Ei − μi

p
arctanðxiÞdpz; ð12Þ

BS;i ¼
dijqiBmj
2π2

Xνmax
i

ν¼0

ð2 − δν0Þ
3

2R

Z
μi

m�

Z
pF

ΛIR

×

�
Ei − μi
E2
i

þ m�
i

Eip
arctanðxiÞ

�
dm�

i

dμi
dpzdμi: ð13Þ

In the bulk limit R → ∞ and for the light quark mass
m ¼ aμ with a ¼ g=

ffiffiffiffiffiffiffi
6π2

p
, the bag function in Eq. (10) has

the analytical expression as

B�
i ðμiÞ ¼

dijqiBmj
4π2

Xνmax
i

ν¼0

ð2− δν0Þa2μ2
�
1

2
ln

�
1þ kz
1− kz

�

þ k2 − k2z
a2

tanh−1
�
1

kz

�
−
k2− k2z
a2

tanh−1
� ffiffiffiffiffiffiffiffiffiffiffiffi

1− k2z
p
akz

�

þk2− k2z
a2

ln

�
k

ffiffiffiffiffiffiffiffiffiffiffiffi
1− k2z

p
þakz

kþ kz

�
− ð1− k2zÞ

× ln

� ffiffiffiffiffiffiffiffiffiffiffiffi
1− k2z

p
þakzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1− k2z −a2k2z
p

��
; ð14Þ

where we define a dimensionless momentum k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
and its z-component in the magnetic field kz ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2 − 2νjqiBmj=μ2i

p
. If the magnetic field is so strong

that all quarks are lying on the lowest Landau level (LLL),
the bag function can be simplified as

B�
i ðμiÞ ¼ −

dijqiBmj
4π2

a2μ2ð1 − a2Þ ln
�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p

a

�
:

ð15Þ
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B. The anisotropic surface tension

In literature the surface tension was investigated with the
two main approaches. One is the multiple reflection
expansion approximation [51]. The other method is the
geometric approach [52,53]. The surface tension is char-
acteristic of the two phase. For example, the amount of the
surface tension between the liquid drop and the gas phase is
dominant to the raindrop formation. The surface tension
between true vacuum and perturbative phase was usually
neglected in comparison to the confinement bag constant.
The early work is typically traced back to the paper [41] by
Berger et al. They suggested that the surface tension
parameter can be calculated from the surface modification
of the fermion density of states with larger values of the
surface tension could survive the early Universe. The
surface tension also depends strongly on the dynamical
effects and the skin thickness [54]. In contrast, there is a
suggestion that the surface tension for the interface sepa-
rating the quark and the hadron phase should be smaller to
make the mixed phase occur [55,56]. Recently, in order to
employ the excess energy associated with inhomogeneous
configurations, the definition of a differential surface
tension from the bubble formation in the discrete case to
systems with continuous symmetry [57]. The special value
of the surface tension is poorly known. At least, it is
possible that there is a critical surface tension, above which
the structure of the mixed phase will become unstable [58].
Once the thermodynamic potential is known, the longi-

tudinal pressure is obtained as

Pk ¼ −Ω; ð16Þ
As is mentioned that in the presence of the strong magnetic
field, the rotational symmetry breaking would be demon-
strated not only by the anisotropic pressure structure but
also by the surface tension for the finite volume matter.
Therefore, the longitudinal surface tension can be derived
by the longitudinal pressure [59],

σki ¼
R
3
ðΩS;i þ BS;iÞ: ð17Þ

The electromagnetic contribution of Maxwell term B2
m=2 is

omitted to the pressure due to that it has no influence on the
surface tension. The transverse pressure is usually defined as
P⊥ ¼ Pk −MBm, where the magnetization susceptibilityM
can be derived by the relationM ¼ − ∂Ω

∂B. In the presentwork,
we have the transverse pressure from the i-flavor quarks

P⊥
i ¼ dijqiBmj2

2π2
Xνmax
i

ν¼1

ν

	Z
pF

ΛIR

ρMREdpz

Ei
−
Z

μi

m�

Z
pF

ΛIR

×

�
m
E3

þ 3

R

�
1

p2Ei
− 2

μi
E4
i
þ m
p3E3

i
ðE2

i þ p2Þ

× arctan

�
mi

p

���
dm�

i

dμi
dpzdμi



: ð18Þ

Similar to the expression of the longitudinal surface
tension σk, the transverse surface-tension contribution per
flavor can be divided into two parts as

σ⊥i ¼ R
3
ðΩ0

S;i þ B0
S;iÞ; ð19Þ

where the notation O0 stands for a transformation of the
quantity O, namely, O0 ¼ Oþ Bm

∂O
∂Bm

. Applying the oper-
ation on both the free term Ω and the bag function B�, one
can find the following expressions

Ω0
S;i ¼

dijqiBmj2
2π2

Xνmax
i

ν¼1

ν

Z
pF

ΛIR

3

Rp
arctanðxiÞ

dpz

Ei
: ð20Þ

B0
S;i ¼

dijqiBmj2
2π2

Xνmax
i

ν¼0

ν
3

R

Z
μi

m�

Z
pF

ΛIR

�
1

p2Ei
− 2

μi
E4
i
þ m
p3E3

i

× ðE2
i þ p2Þ arctan

�
mi

p

��
dm�

i

dμi
dpzdμi: ð21Þ

It can be well understood that the anisotropy of dense quark
matter may stem from the magnetization along the field
direction resulted by two reasons, namely, the arrangement
of free particles and the medium effect.

III. NUMERICAL RESULT AND CONCLUSION

In the present paper we take the current mass m0 ¼
5.6 MeV and μu ¼ μd ¼ μ for isospin-symmetric quarks
and the bag constant B0 ¼ ð145 MeVÞ4 for bulk case. The
main advantage of the quasiparticle model is the combi-
nation of the medium effect into both the effective quark
mass and the bag function B�. For the intensity of the field
eBm < μ2, the validity of the spherical geometry could be
approximately available to some extent.
The chemical potential dependent bag function plays an

important role in the description of the deconfinement
transition. The bag function would play as a function of the
chemical potential and the finite size. The magnetic field
effect and the coupling constant are considered separately.
In Fig. 1, the bag function decreases with the increase of the
chemical potential, which indicates a signal of the decon-
finement transition. As the coupling constant becomes
larger and/or the magnetic field becomes stronger, the
decreasing behavior of the bag function would happen at a
smaller chemical potential, which indicates a critical
chemical potential is similar to the temperature behavior
characterized by the inverse magnetic catalysis effect [60].
In Fig. 2, the effect of the finite size volume is shown on
the bag function. The two horizontal dotted lines are the
corresponding bag functions for bulk strange quark matter.
The bag function increases as the spherical size decreases.
As the spherical radius R approach the infinite value, the
bag function is gradually close to the constant B0 for the
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bulk matter, which indicates the disappearance of the finite
size effect.
At the larger chemical potential, a direct transition from

the vacuum to quark matter happens possibly depending
on the surface tension of bubble quark matter [61]. The
surface tension is plotted as a function of the magnetic
field in Fig. 3. The chemical potential and the finite size
are adopted as μ ¼ 300 MeV and V=S ¼ 10 fm. The
different coupling constants g ¼ 1, 2, and 3 are marked
by the black, the red, and the blue curves from bottom to
top. The longitudinal and transverse surface tensions are
denoted by the solid and dashed curves respectively. It can
be found that the longitudinal component increases with
the magnetic field eBm and coupling constant g. In
particular, the longitudinal surface tension is proportional
to the magnetic field in the strong field limit. It can be
simply understood that the magnetic field only has

contribution to the coefficient in front of the integral of
Eqs. (12) and (13). On the contrary, the transverse surface
tension would decrease as the increasing magnetic field.
Furthermore, the transverse component feels the Landau
level effect more sensitively, which results in a oscillation
behavior. At weak magnetic field, the value of the surface
tension is in agreement with the result estimated as the
order as ð70 MeVÞ3 [40]. As the magnetic field becomes
much stronger, the anisotropy structure would be enhanced
greatly.
In Fig. 4, the transverse surface tension is plotted as

function of the magnetic field at four different chemical
potentials μ ¼ 150, 200, 250, 300 MeV and the fixed size
V=S ¼ 10 fm. The oscillation behavior is shown clearly in
the weaker magnetic field. The more quarks located in high

FIG. 2. The effective bag function B�ðμÞ at the coupling
constant is shown as a function of the radius of the spherical
system.

FIG. 3. The parallel and transverse surface tensions with V=S ¼
10 fm and μ ¼ 300 MeV at vanishing temperature are shown as
function of the magnetic field strength.

FIG. 1. The effective bag function B�ðμÞ at the coupling
constant is shown as a function of the chemical potential.

FIG. 4. The behavior of the transverse surface tension σ⊥ is
shown as a function of the magnetic field at four different
chemical potentials with V=S ¼ 10 fm.
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Landau levels have a finite contribution to the motion
perpendicular to the magnetic field. At the much stronger
magnetic field, the transverse surface tension would drop
down and vanish in the end, which can be understood that
all quarks located in the LLL have no contribution to the
transverse motion. It is suggested that the vanishing of the
transverse surface tension is a signal of all charged particle
occupied in the LLL. Moreover, the threshold value of the
magnetic field for the vanishing of σ⊥ would increase with
the increase of the chemical potential.
To mimic a realistic magnetic field in compact stars, the

magnetic field is recently suggested to increase polynomial
instead of exponential as the chemical potential [62]. In
Fig. 5, the anisotropic surface tension is investigated as a
function of the chemical potential. The nonuniform mag-
netic field BmðμÞ and the fixed strength Bmðμ0Þ are marked
by the solid lines and the dashed lines, respectively. The
initial point μ0 is associated to the surface chemical
potential μ0 of compact stars [62,63]. The parallel surface
tension σk on left panel and transverse one σ⊥ on right
panel are calculated at different couplings g ¼ 2 and 3. The
transverse surface tension is apparently smaller than the
parallel one in the whole range of the chemical potential,
which reflects the anisotropic structure. It should be
emphasized that the transverse surface tension would
decrease as the increasing the magnetic field at high
densities, which is indicated in Fig. 4. However, the surface
tension is enlarged by the increasing chemical potential.
Therefore, the transverse surface tension is shown as an
increasing function of the chemical potential. The tiny
oscillation behavior occurs at low chemical potential due to
the Landau-level transition. The transverse surface tension

under the magnetic field BmðμÞ is smaller than that of the
case Bmðμ0Þ. On the contrary, the parallel tension is larger
and grows more rapidly under the magnetic field pro-
file BmðμÞ.

IV. SUMMARY

In this paper, the thermodynamics of magnetized quark
matter in the finite size has been obtained in the quasi-
particle model. The dense medium effect is included
through the effective bag function, which depends on the
chemical potential and the magnetic field. The bag function
plays as an appropriately chosen vacuum energy constant
ensuring thermodynamic consistency. On the other hand, it
provides a measure for nonperturbative physics which
cannot be described by the effective masses. Its variation
would be helpful to investigate the deconfinement tran-
sition. As expected, it has been numerically shown that the
bag function is a decreasing function of the chemical
potential. The drop-down behavior would be strengthened
by the increase of both the magnetic field and the coupling
interaction constant. It was verified that the bag function B�
would gradually approach the bulk limit B0 as the size
becomes infinitely large. We have employed the extended
quasiparticle model to the surface tension. It is found that
the medium effect represented by the bag function would
lead to an additional term in the surface tension. The
anisotropy of the longitudinal and transverse surface
tensions is enhanced by an increase of the magnetic field.
The longitudinal surface tension is an increasing function
of the magnetic field. But the transverse component would
decrease and drop down to zero at extreme strong magnetic
fields. The vanishing of transverse surface tension coin-
cides with the condensation of all quarks in LLL. Finally,
the new expression of the surface tension modified by the
medium effect would be useful to generalize the current
investigation on the bubble formation in the QCD tran-
sition. Last, but not least, the infrared cutoff for avoiding
the negative density of state is relevant with the confine-
ment phenomenon. The more reasonable confinement
mechanism should be produced by the self-consistent
combination of the infrared cutoff and the bag constant
in future work.
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FIG. 5. The parallel and transverse surface tensions are shown
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