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A simple constituent model of gluodynamics that is motivated by lattice field theory and the QCD
Hamiltonian in Coulomb gauge is applied to descriptions of hybrid meson flavor mixing and vector hybrid
configuration mixing. Good agreement with lattice gauge computations is obtained for flavor multiplet
masses, while mixing angles are in approximate agreement, given large errors. The configuration mixing
results are also in rough agreement with lattice NRQCD calculations. Thus the viability of constituent gluon
models of hybrid hadrons and glueballs is supported. The results suggest that a flavor multiplet of vector
hybrids should appear withmasses of approximately 2100, 2200, and 2300MeVand that the isovector vector
hybrid decay constant is about 20MeV. Similarly, the π1 exotic hybrid should have isospin partner states near
1760 and 1900 MeV, and it is suggested that the recently seen η1 hybrid signal is the latter state.
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I. INTRODUCTION

Although the notion of hadrons with explicit gluonic
degrees of freedom has been accepted for nearly 50 years,
remarkably little is known about these particles.
Nevertheless, it is hoped that steady progress in lattice
field theory coupled with new effort at the GlueX, PANDA,
and BESIII experiments will finally shed light on these
enigmatic states.
Models of gluonic degrees of freedom have generally

assumed that they comprise collective stringlike excita-
tions, some sort of quasiparticle [1], or work with gluonic
interpolating fields as in sum rule computations [2].
Recently, the quasiparticle picture has received support
from lattice field theory, where a measurement of the low
lying charmonium hybrid spectrum strongly suggests that
an axial quasigluon with an effective mass of something
less than 1000 MeV can explain the observed systemat-
ics [3]. This intriguing observation has revived interest in
constituent gluon models, wherein early work [4] has
evolved into more sophisticated modeling that builds
on QCD [5–8]. This modeling starts with the QCD
Hamiltonian in Coulomb gauge and constructs gluonic
quasiparticles with an Ansatz that builds gluonic correla-
tions in the vacuum. It is expected that the resulting field
theory admits reliable Fock space truncations which greatly
enhances the ability to model and compute hadronic
properties.

The purpose of this work is to examine the viability of a
simple constituent gluon model of hybrid properties that is
based on the considerations just given. This will be done
by computing flavor mixing of light hybrid mesons and
configuration mixing in vector mesons. The calculation is
also of interest because the flavor mixingmechanism is very
different from that for canonical mesons since the quark pair
is in a color octet state. In particular, the leading order
mechanism annihilates and creates quark pairs via coupling
to the instantaneous Coulomb gauge interaction, while the
next order mechanism couples hybrid mesons to low lying
glueballs. In thiswork, these glueballs are describedwith the
same degrees of freedom and dynamics as employed for
hybrids, thereby testing consistency of the model. Model
validation is possible because a comprehensive computation
of the light meson spectrum in lattice QCDhas beenmade—
a computation that includes isoscalar and isovector low lying
hybrid mesons and their mixing angles [9].
A motivation for the constituent gluon model employed

here will be given in the next section. Section III applies the
model to a computation of the light meson spectrum, which
fixes parameters for the light hybrid spectrum, which
permits investigation of flavor mixing in Sec. IV.
Comparison to lattice gauge results is made in Sec. V. A
simple extension to vector hybrid-vector (qq̄) meson
mixing is presented in Sec. VI. An examination of the
implications of the results on the light hybrid and meson
spectrum is made in Sec. VII and we conclude in Sec. VIII.

II. CONSTITUENT GLUON MODEL

A. Model construction

A model dynamics capable of describing the interaction
of constituent quarks and axial quasigluons has been
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developed [5] and has been applied to glueballs [8], the
gluelump and hybrid spectra [7,10,11], and to heavy hybrid
decays [12]. We briefly summarize the salient features of
the model to place the subsequent development in context.
The starting point for the dynamical model is the

Hamiltonian of QCD in Coulomb gauge. This gauge choice
is expedient for model building because Gauss’s law has
been resolved, all degrees of freedom are physical, and
an explicit interaction potential that operates between
quarks and gluons emerges. This “Coulomb” interaction
is written as

VC ¼ 1

2

Z
d3xd3yJ −1=2ρAðxÞJ 1=2

× K̂ABðx; y;AÞJ 1=2ρBðyÞJ −1=2; ð1Þ

where the Faddeev-Popov determinant is written as
J ≡ detð∇ ·DÞ and D is the adjoint covariant derivative,
DAB ≡ δAB∇ − gfABCAC. The color charge density is
given by

ρAðxÞ ¼ fABCABðxÞ ·ΠCðxÞ þ ψ†ðxÞTAψðxÞ: ð2Þ

The kernel of the Coulomb interaction can be formally
written as [13]

K̂ABðx; y;AÞ≡ hx; Aj g
∇ · D

ð−∇2Þ g
∇ · D

jy; Bi: ð3Þ

Finally, A is the vector potential and Π is the conjugate
momentum given by the negative of the transverse chromo-
electric field.
The Coulomb interaction, along with the quark and

gluon kinetic energies, gluon self-interactions, and the
quark-transverse gluon interaction, −g

R
d3xψ†α ·Aψ ,

comprise a full field-theoretic version of QCD, with its
accompanying nonperturbative features.
A quasigluon that is consistent with the constraints of

QCD can be developed by making a mean field model of
the gluonic vacuum. The ensuing Schwinger-Dyson equa-
tions can be truncated and solved to obtain estimates for the
vacuum expectation of the kernel, K̂AB, and for the gluon
dispersion relationship [5]. Here we choose to accept
standard constituent quark model phenomenology and
lattice results for the static quark interaction, and model
the vacuum expectation of the Coulomb kernel as a
confining potential:

hK̂ABðr;AÞi → δAB
�
−
3

4
C þ aS

r
−
3

4
σr

�
: ð4Þ

Of course this reproduces the successes of the Cornell
potential in nonrelativistic quark models. Higher terms in
the n-body expansion of K̂ can be incorporated in the
formalism as required.

The vacuum model also gives rise to a quasigluon that
can be described by a field expansion parametrized with a
dispersion relationship, ω ¼ ωðkÞ. Direct computation in
the vacuum Ansatz yields an expression that is well
approximated by [5]

ω2 ¼ k2 þm2
ge−k=bg ð5Þ

where the dynamical gluon mass is mg ≈ 600 MeV and the
parameter bg ≈ 6000 MeV. We stress that the gluon
remains transverse and properties, such as Yang’s theorem,
remain in place. Other vacuum Ansätze are possible, for
example a Gaussian wavefunctional (equivalent to the
mean field approximation described) can be combined
with the Faddeev-Popov operator, which gives rise to a
dispersion relation that is well described by the Gribov
form, ω2 ¼ k2 þm4

g=k2 [14].
The model can be validated by computing the excited

gluonic potentials in the case of fixed color sources. Doing
so reveals that the potential surfaces are not ordered
according to lattice results. The discrepancy can be cor-
rected by including trilinear gluonic terms in K̂AB in the
computation [10]. These contributions are zero for the
lowest surface, which are dealt with exclusively in this
work, thus trilinear couplings are neglected.
The resulting model can be thought of as a minimal

extension of the constituent quark model with the addition
of constituent gluon degrees of freedom and possible
additional couplings (for example, the trilinear gluon
coupling or the gluon–Coulomb interaction).

B. Hybrid states

As is traditional, it is assumed that hybrid mesons are
dominated by Fock states with the lowest number of
constituents. This approximation is unreasonable in per-
turbative QCD but is made plausible here by the relatively
large quasigluon mass. As stated above, one of the goals of
this study is to test this statement.
It is convenient to construct the total gluon spin, jg, by

coupling the gluon spin projection to the gluon angular
momentum, lg. Converting to the gluon helicity basis and
assuming that lg ¼ jg reduces the product of two Wigner
matrices to one and produces a factor of

χð−Þλ;μ ≡ h1λlg0jlgμi ¼
� 0;lg ¼ 0

λffiffi
2

p δλ;μ;lg ≥ 1
: ð6Þ

This represents a transverse electric (TE) gluon in our
model and forms the explicit realization of the axial
constituent gluon. Alternatively, one may set lg ¼ jg � 1

and obtain a transverse magnetic (TM) gluon with a

Clebsch factor given by χðþÞ
λ;μ ¼ δλ;μ=

ffiffiffi
2

p
. Here we work

exclusively with low lying TE hybrid mesons.
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Combining with quark spins yields the final expression
for a hybrid creation operator

jJM½LSljgξ�i ¼
1

2
TA
ij

Z
d3q
ð2πÞ3

d3k
ð2πÞ3 Ψjg;lml

ðk;qÞ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jg þ 1

4π

r
D

jg�
mgμðk̂ÞχðξÞμ;λ

�
1

2
m
1

2
m̄

����SMS

�
× hlml; jgmgjLMLihSMS; LMLjJMi
× b†

q−k
2
;i;m

d†−q−k
2
;j;m̄

a†k;A;λj0i: ð7Þ

Quark and gluon particle operators are understood to create
quasiparticles and j0i refers to the correlated vacuum
discussed above.
By construction, the hybrid state is an eigenstate of

parity and charge conjugation with eigenvalues given by

P ¼ ξð−1Þlþjgþ1 and C ¼ ð−1ÞlþSþ1: ð8Þ

C. Glueball states

A reasonably large quasigluon mass encourages model-
ing charge-conjugation positive (negative) glueballs as two
(three) quasigluon states. Again, it is preferable to work in
the helicity basis, where much of the algebra simplifies.
Combining two gluons into states with good parity and
total angular momentum J can be achieved with [8]

jJM; ηi ¼ 1ffiffiffi
2

p ðjJM; λ; λ0i þ ηjJM;−λ;−λ0iÞ; ð9Þ

for which PjJM; ηi ¼ ηð−ÞJjJM; ηi and η ¼ �1.
The helicity states are constructed as

jJM; λ; λ0i ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðN2

c − 1Þ
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2J þ 1

4π

r Z
d3k
ð2πÞ3 ψðkÞ

×DJ�
M;λ−λ0 ðϕ; θ;−ϕÞΠa†ðk; λ; AÞ

× a†ð−k; λ; AÞj0i: ð10Þ

The number of colors is denoted Nc, A is an adjoint color
index, and Π is a Jacob-Wick phase that will not be
important to the following development. The wave function
ψ is determined by solving the Tamm-Dancoff equation
that is obtained by evaluating the QCD Hamiltonian in the
appropriate JP channel. This yields the leading order
contribution involving the Coulomb interaction, Eq. (1).
Higher order contributions from gluon exchange and the
four-gluon interaction can be incorporated if desired. The
resulting spectrum is reported in Ref. [8], where it is
compared to lattice field theory computations. The spectra
agree quite well where they overlap, with the largest
deviation being about 200 MeV.

III. LIGHT HYBRID SPECTRUM

A. Model parameter selection

Because the primary goal is to compute hybrid mixing
masses and angles, it is not necessary to obtain a precise
hybrid spectrum. This is convenient because very little is
known experimentally and because lattice field computa-
tions at physical pion masses and with coupled channel
effects are not yet available. We therefore focus on spin-
averaged hybrid multiplets in the following. In practice this
means neglecting transverse gluon exchange contributions
to the quark and gluon interactions. Thus the model
parameters are the quark mass, the Coulomb coefficient,
the string tension, and the constant shift:m, aS, σ, C. Recall
that the gluonic parameters mg and bg have been fixed by
the vacuum model. Including transverse gluons will intro-
duce the coupling g as well, which can be fixed by aS ¼
g2=ð4πÞ or from other considerations to be discussed.
Model parameters will be fixed by fitting to 16 light

isovector nonexotic meson masses. As a check of stability
we also fit to 30 isospin 0, 1=2, and 1 light mesons whose
identities are reasonably well established. This is not
necessarily a simple procedure since identifying “nonca-
nonical” properties in the light mesons is notoriously
difficult. Famous examples include the f0ð500Þ which
has come and gone in the Review of Particle Physics
(PDG) over the years. Similarly, the a0ð980Þ has been
identified as a qq̄ state, a tetraquark, or aKK̄ bound state by
various authors. Lastly, the pion is a pseudo Goldstone
boson, hence simple quark models cannot be expected to
reproduce its properties.
We do not presume to have a definitive description of

light mesons and therefore will fit several model variations
to obtain a sense of parameter stability in the subsequent
work. These models are (i) spin-independent interaction
[Eq. (4)] with a smeared hyperfine interaction, (ii) spin-
independent interaction, (iii) spin-dependent interaction,
(iv) variation on (iii), and (v) spin-dependent interaction fit
to 30 mesons. For the sake of comparison, results for
models with relativistic quark kinetic energies are also
given below, although these are not used in the subsequent
analysis.
The hyperfine interaction used in model (i) is given by

VH ¼ 32πaS
9mqmq̄

�
ςffiffiffi
π

p
�

3

expð−ς2r2ÞSq · Sq̄; ð11Þ

with the smearing parameter set to ς ¼ 0.897 GeV. For the
other models, the spin-dependent interaction is defined by
VSD ¼ VH þ VLS þ VT with:

VH ¼ 8αH
3

b20
e−b0r

3mqmq̄r
Sq · Sq̄; ð12Þ
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VLS ¼
�
4αH
3ρ3

þ ϵσ

ρ

�
L · S
mqmq̄

þ 1

2

�
4

3

αH
ρ3

þ ð2ϵ − 1Þσ
ρ

��
L · Sq

m2
q

þL · Sq̄

m2
q̄

�
; ð13Þ

and

VT ¼ 4αH
3mqmq̄ρ

3
ðSq · r̂Sq̄ · r̂ − Sq · Sq̄Þ: ð14Þ

The ultraviolet singularity in these expressions has been
regulated by freezing r at r0 once r < r0; this is denoted as
ρ in the equations. The parameter ϵ that appears in the spin-
orbit tensor interaction represents a mixture of “scalar” and
“vector” confinement models. Lattice computations find
that ϵ ≈ 0.25 [15], which is used in model (v).
Results for the fits are presented in Table I and will be

used to model hybrid mesons.

B. Hybrid mesons

Spin-independent hybrid wave functions are obtained
by considering the nonrelativistic limit of the interaction
of Eq. (1) [with Eq. (4)]. The resulting spectrum can be
categorized according to interpolating operators, as indi-
cated in Table II [16]. Here B is the chromomagnetic field,
and ψ and χ are heavy quark and antiquark fields,
respectively. The remaining columns give the correspond-
ing quantum numbers in the present model and the hybrid
meson quantum numbers in the specified multiplet.
The bound state equation is obtained from the model

QCD Hamiltonian by computing the expectation value,
hJ0M0½L0S0l0j0ξ0�jHjJM½LSljξ�i. As mentioned, we seek

spin-independent multiplets and therefore consider the
nonrelativistic limit of the currents in Eq. (1). This gives
rise to instantaneous quark-antiquark and (anti)quark-gluon
interactions that generate the bound state.
A novel method for solving the quantum mechanical

three-body problem was applied to solve the resulting
Schrödinger equation. This consisted of writing the
hybrid wave function as a sum over a product Ansatz of
the form

Ψjg;lml
ðk;qÞ ¼ χjgðkÞφlðqÞYl;ml

ðq̂Þ: ð15Þ

hismakes explicit the angular momentumdependence in the
q coordinate, while the gluon angular momentum depend-
ence is contained in theWigner rotation matrix in Eq. (7). In
practice the basis used is nearly diagonal in the quantum
numbers, having only a coupling between the H1 and H2

multiplets induced by mixing between TM and TE hybrids
(for spin-independent interactions). This will be small and is
neglected. It is thus possible to solve for φ and χ separately
and iterate the coupled equations to convergence.
We sketch the idea here, ignoring all indices for simplicity.

Write the Hamiltonian generically as Kq þ Kg þ V, where
the first two terms are the quark and gluon kinetic energy
operators obtained from the QCD Hamiltonian and the
potential includes the sum over the three possible instanta-
neous interactions. Then vary hφχjHjφχi þ λðhφχjφχi − 1Þ
with respect to φ and χ. Eliminating the Lagrange multiplier
yields

Kqφþ
Z

χ�Kgχ · φþ
Z

χ�Vχ · φ ¼ Eφ

Kgχ þ
Z

φ�Kqφ · χ þ
Z

φ�Vφ · χ ¼ Eχ: ð16Þ

Eq. (16) reduces to two one-dimensional equations. We
solve this system by using a simple and accurate discre-
tization method [17], diagonalizing the Laplacian operator
to deal with the (momentum space) gluonic kinetic
energy [17], and iterating. The latter step requires an initial
guess for φ and χ, which is obtained variationally. In

TABLE I. Model parameters for the isovector meson spectrum.

Model mðmsÞ ðMeVÞ aS σ ðGeV2Þ C ðMeVÞ αH b0 ðGeV−1Þ r0ðGeV−1Þ ϵ ðGeV−1Þ Rel error
Avg deviation

(MeV)

i. [hyp] 335 0.59 0.16 −697 � � � � � � � � � 0 9% 94
ii. [SI] 300 1.52 0.071 110 � � � � � � � � � 0 7% 66
iii. [SD] 400 1.8 0.06 230 1.3 0.60 4.7 0 5% 54
iv. [SD] 330 2.1 0.055 385 1.3 0.53 5.2 0 5% 54
v. [30] 375 (525) 1.53 0.059 168 1.2 0.56 7.5 0.25 7% 79
Rel=SI 200 0.59 0.14 −246 � � � � � � � � � 0 6% 59
Rel=SD 400 0.72 0.14 −359 1.1 0.20 4.4 0 5% 55

TABLE II. JPC Hybrid multiplets.

Multiplet Operator ξ jg l L JPCS ¼ 0 ðS ¼ 1Þ
H1 ψ†Bχ −1 1 0 1 1−−, ð0; 1; 2Þ−þ
H2 ψ†∇ × Bχ −1 1 1 1 1þþ, ð0; 1; 2Þþ−

H3 ψ†∇ ·Bχ −1 1 1 0 0þþ, ð1þ−Þ
H4 ψ†½∇B�2χ −1 1 1 2 2þþ, ð1; 2; 3Þþ−
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practice the method converges very quickly, and a precise
solution to the quantum bound state problem is obtained.
Calculations were done with the gluon dispersion rela-

tionship of Eq. (5) with mg set to 600 MeV. Performing the
same calculations with the Gribov form of the dispersion
relationship and the same mass scale yielded very similar
hybrid masses, with typical results being approximately
10 MeV heavier than given with Eq. (5).
The resulting hybrid multiplet mass splittings with

respect to H1 are shown in Fig. 1. Detailed model
validation is not feasible at present. A lattice computation
of the light meson spectrum at a pion mass of 391 MeV
exists, but it has not been able to distinguish enough hybrid
states to determine the spin-averaged spectrum [9]. This
calculation does, however, set the scale for the spin-
averaged H1 multiplet (taken to be the S ¼ 0 1−− mass)
to be 2190� 20 MeV.
On the experimental side, the situation is even more

sparse and confused. Past claims to exotic π1 states near
1400 and 1600 MeV [18] have recently been challenged,
with a consensus emerging that only one π1 exists
near 1600 MeV (results from two analyses are M¼
1564�24�86MeV, Γ ¼ 492� 54� 102 MeV [19] and
M¼1623�47�50MeV, Γ¼ 455�88�150MeV [20]).
Figure 1 displays a very large predicted splitting,

H2 −H1 ≈ 500 MeV. This splitting can be estimated from
the lattice calculation of Ref. [9] using the JPC ¼ 2þ− to
1−− mass difference (assuming that the 2þ− mass is
approximately the 1þ− mass, which is supported by lattice
calculations at the charmonium mass [21,22]), yielding a
value of approximately 250 MeV. Notice also that H3 lies
above H4. This situation also occurs in a similar model
calculation for charmonium hybrids, reported in Ref. [12],
where it is seen to disagree with the lattice ordering,
H4 > H3. Thus, although the model broadly agrees with

lattice field theory calculations, where available, it appears
that additional effects, such as occur at higher order in the
1=m expansion, and further model tuning may be important
to obtaining detailed agreement.
It is useful to find Gaussian estimates to the exact wave

functions considered here so that an analytic evaluation of
the mixing matrix elements (to be discussed in the next
section) can be made. For this purpose we write χjg¼1ðkÞ ∝
k expð−k2=β2gÞ and φlðqÞ ∝ ql expð−q2=α2qÞ. The param-
eters are estimated by optimizing the energy variationally
and are shown to the right in Fig. 1 for the five models
considered here.

IV. HYBRID FLAVOR MIXING

The topic of light meson flavor mixing is replete with
experimental data, with much to be gleaned from a plethora
of decay modes. In contrast, theoretical understanding of
the issue is essentially nonexistent. The only certainty is
that mixing occurs via nonperturbative gluodynamics,
presumably dominated by coupling to intermediate glue-
balls, or by coupling to higher Fock states [discussed
after Eq. (18)]. Since so little is known of glueballs and
their dynamics, theory is largely guesswork. (We remark
that mixing in the η − η0 system is unique in that the
axial anomaly makes a quantifiable nonperturbative
contribution.)
In contrast to the rather grim situation with canonical

mesons, hybrid mesons have their dominant quark con-
figuration in a color octet, and can therefore mix perturba-
tively. The general situation in a given isospin multiplet
involves amplitudes for mixing uū ↔ uū and uū ↔ dd̄.
These are expected to be nearly identical, hence both are
labeled Ann. Mixing uū ↔ ss̄ will be denoted Ans, while
ss̄ ↔ ss̄ will be Ass.
As we have mentioned, mixing with positive charge

conjugation glueballs is first order in the strong coupling,
and can therefore be expected to be important. We label
these amplitudes AðnÞ

f where f ¼ n, s denotes the annihi-
lated quark flavor and (n) denotes a radially excited
glueball of the relevant quantum numbers. We will show
that this sum saturates quickly, so only the ground state
glueball is considered in the following.
Diagonal elements of the QCD Hamiltonian will be

written as m for the uū and dd̄ cases, mþ Δm for ss̄, and
Mgb for the bare glueball mass. Thus, in the uū, dd̄, ss̄ basis
the matrix elements of the QCD Hamiltonian are

Huds¼

0
BBBBB@
mþAnn Ann Ans Að0Þ

n

Ann mþAnn Ans Að0Þ
n

Ans Ass mþΔmþAss Að0Þ
s

Að0Þ
n Að0Þ

n Að0Þ
s Mgb

1
CCCCCA: ð17Þ

FIG. 1. Hybrid multiplet mass splittings and H1 variational
parameters. Model i (red), ii (black), iii (green), iv (blue), and
v (purple).
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Switching to the isospin basis ðuū − dd̄Þ= ffiffiffi
2

p
,

ðuūþ dd̄Þ= ffiffiffi
2

p
, partially diagonalizes the mass matrix:

Hiso ¼

0
BBBBB@

m 0 0 0

0 mþ 2Ann

ffiffiffi
2

p
Ans

ffiffiffi
2

p
Að0Þ

n

0
ffiffiffi
2

p
Ans mþΔmþAss Að0Þ

s

0
ffiffiffi
2

p
Að0Þ

n Að0Þ
s Mgb

1
CCCCCA: ð18Þ

A final diagonalization then gives the isovector, isoscalar,
and glueball masses and mixing angles.
The leading (order g2) sources of hybrid mixing are

direct annihilation (Fig. 2, left), which occurs at first order
in perturbation theory, second order mixing via glueball
states (Fig. 2, right), or second order mixing to the meson-
meson continuum. Flavor mixing via coupling to the
meson-meson continuum has been enigmatic since the
beginnings of the quark model. The issue, first stressed by
Lipkin [23], is that continuum mixing can vitiate the
Okubo-Zweig-Iizuka (OZI) rule because a process such
as J=ψ → DD̄ → ω is not suppressed. How the OZI rule
arises in spite of this mechanism has been explored by
Geiger and Isgur, who argue that cancellations occur when
all possible intermediate meson-meson channels are
summed, giving rise to an emergent scale that is much
smaller than ΛQCD [24,25]. We shall assume that hybrid
mixing via coupling to the meson-meson continuum is
similarly suppressed in the case of hybrid states.
The leading order expression for the mixing amplitude,

shown in Fig. 2, is given by

Aff0 ¼
1

mfmf0

Z
k2dk
ð2πÞ3

d3q
ð2πÞ3

d3q0

ð2πÞ3
×Ψfðk;qÞΨ�

f0 ðk;q0Þk2VðkÞBJ

¼ FfFf0

8mfmf0

Z
k2dk
ð2πÞ3 jχ1ðkÞj

2k2VðkÞBJ: ð19Þ

The potential VðkÞ is the Fourier transform of Eq. (4).
Wigner rotation matrices have been integrated and Clebsch-
Gordan sums have been done to give the first form. The
second follows from the product Ansatz of Eq. (15) and

introduces the “octet decay constant” Ff ¼
R d3q

ð2πÞ3 φl¼0ðqÞ,
where implicit flavor-dependence is labeled with f.
Evaluation of the discrete sums is considerably simplified
because the quark vertex forces S ¼ S0 ¼ 1 and
l ¼ l0 ¼ 0. Thus hybrid mixing at this order only exists
in the spin-triplet portion of the H1 multiplet with relative
strengths given by the Clebsch factor

BJ ¼
8<
:

0 J ¼ 0

1 J ¼ 1

3=5 J ¼ 2

: ð20Þ

Finally, the integrals can be performed if Gaussian approxi-
mate wave functions are employed, giving

Aff0 ¼
πBJ

2mfmf0

�
αfαf0

π

�
3=2

	
aS þ

b
β2g



; ð21Þ

where βg is the gluonic scale introduced after Eq. (16).
Second order mixing via intermediate glueballs can be

computed with the amplitude of Fig. 2 (right). This diagram
also features quark-antiquark annihilation in the 3S1 chan-
nel, and therefore mixing is predicted to be zero for hybrids
in theH2,H3, andH4 multiplets, as well as the light vector,
H1ð1−−Þ multiplet. This striking observation can only be
reasonably evaded by mixing to negative charge conjuga-
tion (three-quasigluon) glueballs, which is expected to be
small, or by coupling to the meson-meson continuum,
which remains an enigmatic feature of hadronic physics.
The expression for the amplitude coupling a hybrid to the

nth radial glueball excitation is

AðnÞ
f ¼ −

i½gFf�
4

Z
k2dk
ð2πÞ3

ψ�
nðkÞχðkÞffiffiffiffiffiffiffiffiffiffi
ωðkÞp CJ; ð22Þ

where

CJ ¼
8<
:

4; J ¼ 0

0; J ¼ 1

4=
ffiffiffiffiffi
10

p
; J ¼ 2

: ð23Þ

Note that the octet decay constant, Ff, appears in the
glueball amplitude, this time combined with the strong
coupling constant. Evidently, obtaining an accurate esti-
mate of the decay constant is important. This can be
problematic because it is known that the nonrelativistic
approximation overestimates the value of (traditional)
meson decay constants. Incorporating relativistic effects
helps, but it appears that further softening is required. This
softening can occur, for example, via the effect of the
running coupling on the wave function at the origin [26].
These issues are exacerbated in the case of glueball mixing
[Eq. (22)] because the strong coupling constant is explicit.

FIG. 2. (left) First order mixing diagram. (right) Hybrid-gluball
mixing (crossed diagram not shown).
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One can set the value of the strong coupling from the model
via g ¼ ffiffiffiffiffiffiffiffiffiffi

4πaS
p

. This has the appeal of consistency, but
might not be optimal because aS is a model parameter that
is determined by bulk light hadron properties that are
dominated by distances near one fm. Alternatively, a decay
constant is a short range phenomenon—roughly speaking
we wish to evaluate ½gFf� ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αSðr ¼ 0Þp

φðr ¼ 0Þ. Of
course this implies a nontrivial infrared fixed point for
the running coupling, which will be assumed here. A better
way to proceed is to write ½gFf� ∼ αSðQ�Þφðr ¼ 0Þ where
Q� is a scale that is tuned to the physics. An alternative, that
is adopted here, is to implicitly fix the scale by averaging;
thus we set

½gFf� ¼
Z

d3q
ð2πÞ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4παVðqÞ

p
ϕl¼0ðqÞ ð24Þ

where the running coupling is parametrized as

αVðqÞ ¼
4π

b0 logðq
2þM2

Λ2
V

Þ
; ð25Þ

with b0 ¼ 11 − 2nf=3 ¼ 9 for our case. This is a reason-
ably common model that has been advocated for renorm-
alizing exclusive processes [27] and has been used in
modeling heavy meson properties [26]. Parameters chosen
in these studies were M ¼ 870 MeV, ΛV ¼ 160 MeV
or M ¼ 1000 MeV, and ΛV ¼ 250 MeV, respectively.
Results for both model choices (

ffiffiffiffiffiffiffiffiffiffi
4πaS

p
and

ffiffiffiffiffiffiffiffiffiffiffi
4παV

p
) will

be presented in the following section.
Lastly, we address the issue of the convergence of

the hybrid mixing amplitude in the sum over glueball
excitations. The perturbative glueball mixing amplitude is
given by

Agb
ff0 ¼

X
n

AðnÞ
f

�AðnÞ
f0

Mhyb −MðnÞ
gb

: ð26Þ

This sum is expected to converge quickly because
the integral in Eq. (22) rapidly decreases with radial
quantum number. In fact, the integral would be zero
(for n > 0) in a simple harmonic approximation to the
wave functions if the glueball and hybrid scales were the
same. An explicit calculation in the JPC¼0−þ case shows

that Að1Þ
n ≈0.37Að0Þ

n . The corresponding term in Agb
nn is

further suppressed by the larger radial glueball mass, giving
a final contribution that is only 1% of the leading term in the
sum. Because of this we only considered hybrid coupling to
the lowest mass glueball in a given JP channel in Eq. (18).

V. COMPARISON TO LATTICE COMPUTATIONS

We proceed by diagonalizing the matrix of Eq. (18) for
the three nontrivial cases, JPC ¼ 0−þ, 1−þ, and 2−þ (recall

that all other hybrid mesons are predicted to have negligible
mixing). The resulting masses are shown in Fig. 3, along
with lattice masses computed in Ref. [9]. The latter are
computed at a pion mass of 391 MeV and therefore may
experience some shifts in going to physical quark masses.
In view of this, the model results have been normalized by
settingm to the isovector mass (shown in blue) for each JPC

multiplet. Model isoscalar masses are also shown as black
oblongs in the figure (states dominated by glueball com-
ponents lie substantially higher and are not shown).
Computing masses over the models of Table I gives an
indication of parameter dependence. This dependence is
indicated in the figure by vertical gray bars.
As discussed above, no mixing is expected outside the

H1 multiplet. Evidently this prediction agrees very well
with the lattice results for the JPC ¼ 0þ−, 2þ−, and 2þ−0
multiplets. Countering this is the 1−− multiplet, where the
lowest isoscalar is computed to be approximately 140 MeV
above the isoscalar, rather than degenerate with it as
predicted here. This curious situation is difficult to recon-
cile with the current model. The dominant mixing effect
would be via negative parity glueballs, which requires a
gluon emission followed by a quark spin flip and then
quark pair annihilation. This process will be suppressed by
a relatively large three-quasigluon glueball mass and the
spin flip.
Turning attention to the 2−þ multiplet, reasonable agree-

ment is seen for the lowest isoscalar mass, with some
overlap for the higher isoscalar—especially for the pre-
ferred running coupling octet decay constant of Eq. (24).
In this case we suspect that the higher lattice mass is

FIG. 3. Isovector and isoscalar hybrid masses. Lattice results
are blue (isovector) and gray boxes (isoscalars). The box heights
indicate statistical uncertainty. Model results for isoscalar masses
are shown in black with model variation as vertical bars. Stars
indicate model results with the running octet decay constant
model of Eq. (24).

LIGHT HYBRID MESON MIXING AND PHENOMENOLOGY PHYS. REV. D 107, 074028 (2023)

074028-7



anomalously low since it is implausible for isoscalars to
shift mass with respect to the isovector while remaining
degenerate. In contrast, the 1−þ multiplet splits as expected
and in reasonable agreement with the model calculation.
Finally, the 0−þ multiplet is very unusual—the lattice

results imply very small mixing, in contrast to the
ffiffiffiffiffi
aS

p
model, which predicts that the light isoscalar lies from 50 to
several hundred MeV below the isovector. This is because
there is no direct mixing, AnnðJPC ¼ 0−þÞ ¼ 0, and mixing
with the pseudoscalar glueball drives the light isoscalar
mass down. The upward shift of the glueball is comparable
to the downward shift of the light isoscalar, hence if the
larger isoscalar shift proves correct, then unquenched
lattice calculations of the pseudoscalar glueball mass
should find it shifted several hundred MeV above the
unquenched value of approximately 2600 MeV [28]. Of
course the lattice results of Fig. 3 argue against this, and
imply that the splittings are at the small end of the predicted
range. Alternatively, the preferred running octet decay
constant model gives a much smaller mixing that is
reasonably close to lattice results, although still indicating
a novel light isoscalar.
The authors of Ref. [9] also report mixing angles

between the two lightest isoscalar mesons. These were
computed under the assumption that the states do not mix
with nearby glueballs. Of course this assumption is not
made here; however, the erstwhile mixing angle can still be
computed. This will lead to an ambiguous result if mixing
to glueballs is substantial. As shown in Table III, we find
that this is not the case for all multiplets except JPC ¼ 0−þ
(in the

ffiffiffiffiffi
aS

p
model). Lattice mixing angles for three

volumes are shown in blue in Fig. 4; model results are
displayed as black oblongs. As with the meson masses, the
results are in broad agreement with lattice (in view of
the large errors), with the largest discrepancy being in the
vector multiplet again.

VI. HYBRID-CANONICAL MESON MIXING

The encouraging results of the previous section motivate
the consideration of hybrid meson mixing with canonical
mesons.Work of this sort dates back to the beginnings of the
bagmodel andQCD, see for example [29]. For a computation
based the Born-Oppenheimer approach, see Ref. [30].
Following the philosophy advocated here, this process

will be mediated by gluon production from quark and anti-
quark lines. Thus we seek H≡ hqq̄gjig R ψ†α ·Aψ jqq̄i.
Configuration mixing of this sort is of most interest for
vector states since it has implications on the coupling of
vector hybrids to eþe−.
Taking the nonrelativistic limit of the vertex, performing

integrals over the angles of k, and doing the Clebsch sums
gives a result involving an integral of the hybrid wave
function convoluted with the vector quarkonium wave
function:

H¼−i
g
m
2

ffiffiffiffiffiffi
4π

p

3

Z
d3q
ð2πÞ3

k2dk
ð2πÞ3

kffiffiffiffiffiffiffiffiffiffi
ωðkÞp Ψ�ðk;qÞψðqþk=2Þ:

ð27Þ

The hybrid wave function is obtained with the method of
Sec. III B for uūg, cc̄g, and bb̄g H1 vector hybrids. Wave
functions corresponding to ρ, J=ψ , and ϒ mesons were
obtained as outlined in Sec. III A. The numerical results are

H¼ −ig

8<
:

84 MeV2=mq; ρ

190 MeV2=mc; J=ψ

225 MeV2=mb; ϒ

≈−i

8<
:

210 MeV; ρ

60 MeV; J=ψ

20 MeV; ϒ

:

ð28Þ

FIG. 4. Lattice and model mixing angles. Lattice mixing angles
for three volumes (163, 203, 243) with statistical errors indicated
by the box height (blue). Model results (black) with model
variation shown as vertical bars. Stars indicate model results with
the running octet decay constant model of Eq. (24).

TABLE III. Model hybridH1 multiplet Fock space components
(%). Results for the running octet decay constant model of
Eq. (24) are shown in square brackets.

JPC Nominal state uūg ss̄g gg

1−− Light ≈100 ≈0 ≈0
Heavy ≈0 ≈100 ≈0
Glueball ≈0 ≈0 ≈100

0−þ Light 62 [87] 17 [6] 21 [7]
Heavy 24 [8] 75 [91] 0.5 [1]
Glueball 13 [5] 8 [3] 78 [92]

1−þ Light 37 63 0
Heavy 63 37 0
Glueball 0 0 100

2−þ Light 54 [59] 46 [41] 0.1 [0]
Heavy 32 [38] 67 [61] 1 [1]
Glueball 2 [0.4] 1 [0.6] 97 [99]
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Model validation is not simple because phenomenologi-
cal mixing information is not available (since hybridmesons
of any type are not firmly established). Comparison to lattice
field theory is difficult because the formalism automatically
produces eigenstates over the qq̄ and qq̄g Fock state sectors.
There is, however, one lattice computation (that I am aware
of) that uses the nonrelativistic QCD (NRQCD) formalism.
This permits defining bare Fock states and measuring their
overlap, in this case due to the operator gσ ·B=ð2mÞ [31].
The computation is not easy (the authors note, “Our
charmonium results are plagued with systematic errors
which are not easily quantified”), involving a poorly
determined renormalization constant, and difficulties in
scale setting. Nevertheless, the authors estimate a hybrid
component of approximately 2.3% in the J=ψ and 0.4% in
the ϒ. Approximating these as jH=ðMhyb −MVÞj2 and
using the measured charmonium vector mass splitting of
approximately 1150 MeV [21] gives

HNRQCD ≈ 170 MeVðJ=ψÞ ≈ 70 MeVðϒÞ:

The results of Eq. (28) are approximately a factor of three
below these. Nevertheless, both computations contain large
unquantified uncertainties, and it is encouraging that they
are comparable in size and that the ratio of results does not
follow the naively expected inverse quark mass relationship
for either calculation. Over all, we take these results as
evidence in favor of the utility of the constituent gluon/
Coulomb gauge model presented here. Application of the
formalism to the isovector vector mesons will be presented
in the following section.

VII. HYBRID PHENOMENOLOGY

We examine the impact of the results presented here on
interpreting the light meson spectrum, with a focus on
vector states since these can be made in eþe− machines. It
is unfortunate that experimental knowledge of the excited
rho spectrum is spotty. For example, the ρð1450Þ and
ρð1700Þ are both seen in 4π or a1π decay modes, which is a
signal for hybrid structure. Clarifying the situation with
further experimental and lattice field effort is clearly of

interest. Similarly, the ρð1900Þ region has conflicting
signals and complications from the NN̄ threshold [18].
Finally, the BABAR collaboration has measured eþe− →
2ðπþπ−Þπ0, which reveals interesting (although low sta-
tistics) features near 2100 MeV [32].
A summary of possible quark model identifications for

the rho spectrum is shown in Table IV. Models (iv) and
(v) masses are in rough agreement, but notice that devia-
tions of tens of MeV low in the spectrum become 90 MeV
by the 4S state. This seemingly minor difference can lead to
substantial changes in interpretation. For example, there is
no vector state near 1700 MeV in model (iv), raising the
possibility that the ρð1700Þmay be a hybrid state. The large
symbols in Fig. 5 are from a lattice computation at
mπ ¼ 391 MeV [9]. The 1−þ state is measured at
2026 MeV, requiring a shift of 430 MeV to bring it to
agreement with a presumed π1ð1600Þ. This then implies
that the H1ð−−Þ should have a mass of 1760 MeV. In view
of this it is tempting to make the particle identifications
shown in column 5 of Table IV.
The smaller points in Fig. 5 (obtained from Ref. [3])

show H1 hybrid masses computed at mπ ¼ 702, 524, 444,
and 396 MeV. These data permit a rough extrapolation to

FIG. 5. Lattice H1 masses [3] (large symbols Ref. [9]) vs. pion
mass. The π1 is indicated at lower left.

TABLE IV. Model assignments and experimental isovector vector states (MeV).

State Ref. Mass Width Model (iv) Mass Model (v) Mass

ρð770Þ PDG 775.2� 0.2 147.4� 0.8 13S1 720 13S1 730
ρð1450Þ PDG 1465� 25 400� 60 23S1 1440 23S1 1390
ρð1570Þ PDG 1570� 70 144� 90 13D1 1510 13D1 1480
ρð1700Þ PDG 1720� 20 250� 100 H1ð1−−Þ 1760 33S1 1780

23D1 1845
33S1 1850

ρð1900Þ [33] 1900� 30 50� 30 23D1 1910 43S1 2090
ρð2150Þ [34] 2034� 16 234� 39 43S1 2170 H1ð1−−Þ 2100

33D1 2220 33D1 2140
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the physical light quark mass (evidently the data are not in
the chiral regime, so a simple extrapolation in mπ is used
here). We estimate a H1ð1−þÞ mass of 1750 MeV, which
implies an additional shift of 150 MeV. Performing the
same procedure for the H1ð1−−Þ gives an estimated
physical mass of 2100 MeV for the vector hybrid. A
natural candidate for this state is the ρð2150Þ. The 3S mass
in model (v) matches the ρð1700Þwell, and we arrive at the
alternative scenario spelled out in the last two columns of
Table IV.
There is a clear moral to this story: particle identification

relies on correctly interpreting mass differences of order
100 MeV. Both lattice and model variations can easily
generate deviations of this magnitude, thus it is important to
track model sensitivity in making assignments.
In spite of the lack of moral clarity, it is likely that

model (v) is more robust than model (iv) because it is fit to a
much larger array of meson masses. Themodel (iv) scenario
also has a missing 3S state, which is more unlikely than the
missing 2D state of model (v). It also seems clear that the
lattice 1−þ mass has a larger quark mass-dependence
than the 1−− mass. Lastly, as mentioned above, intriguing
structure is seen in eþe−→2ðπþπ−Þπ0 near 2100MeV [32].
In sum, we feel that the scenario of model (v) should be
taken seriously.
If the π1ð1600Þ is confirmed as a hybrid meson and a

ρð2100Þ is found that matches expectations for hybrid
production and decay, it is natural to inquire into the
accompanying flavor multiplets that must exist. Taken
together, the model and lattice results of Sec. V imply
that an isoscalar η1 should exist at 1750–1780 MeV, while
the “ss̄” isoscalar should have a mass of approximately
1900 MeV. Interestingly, the BESIII collaboration recently
announced the discovery [35] of an exotic isoscalar meson
with JPC ¼ 1−þ quantum numbers, a Breit-Wigner mass of
1855� 9� 4 MeV, and a width of 188� 18� 5 MeV.
Given the discussion it is natural to identify this state with
the ss̄ isoscalar partner of the π1ð1600Þ, and suggests that
searching for η1ð1760Þ is in order.
As discussed in Sec. VI, the H1ð1−−Þ hybrid is expected

to mix with nearby canonical vectors. This mixing is
explored here to set expectations for the isovector vector
hybrid, whose lattice mass we have suggested is near
2100MeV. Using typical values for the strong coupling and
light quark masses gave a mixing matrix element of H1S ≈
210 MeV for the ρð770Þ [see Eq. (28)]. Repeating the
calculation for radially excited rho mesons gives

H1S ≈ 210 MeV H2S ≈−130 MeV H3S ≈ 68 MeV

H4S ≈−35 MeV H5S ≈ 16 MeV H6S ≈−8 MeV:

The effect of this mixing on the spectrum is obtained by
diagonalizing a matrix with the diagonals set by the quark
model masses of model (v) (see Table IV). (Strictly
speaking bare quantities should appear in the mixing

matrix. But the lattice hybrid mass should already account
for mixing, while the quark model should absorb the effects
of this mixing [where possible] in its parameters. However,
as will be demonstrated next, mixing is small and hence this
procedure serves as a useful illustration of the expected size
of the effect.) The hybrid entry is set to 2100 MeV, while
the off-diagonal entries are set to HnS in the hybrid∶ðnSÞ
entry. The resulting spectrum is displayed versus the strong
coupling in Fig. 6. It appears that mixing effects are small,
with the chief outcome being that the ρð770Þ and H1ð1−−Þ
repel as the coupling is increased. Experimental masses and
widths are displayed as boxes and vertical bars in the figure.
The agreement between expectations and experiment is
reasonable. Note especially that the 4S −H1ð1−−Þ splitting
is comparable to the ρð2150Þ − ρð1900Þ splitting near
g ¼ 1.0, lending support to the “model (v)” scenario
presented above.
With the isovector vector hybrid mass estimated to be

2100 MeV, the lattice and model results of Sec. V imply
that an isoscalar vector hybrid should have a mass of
2100–2250 MeV, while the “ss̄” isoscalar should lie in the
range 2220–2350 MeV.
If a vector hybrid is to be discovered in eþe− annihilation

its decay constant should be comparable to other excited ρ
states. Presumably this coupling is set by the qq̄ content of
the hybrid, which can be obtained from the mixing matrix
just described. The bare qq̄ component of the full hybrid is
shown as a function of the strong coupling in Fig. 7, where
it is seen that approximately 20% of the state is qq̄ in
various configurations.
This observation can be used to compute the hybrid

decay constant. Defining a decay constant in the usual way

h0jψ̄γμψð0ÞjVðλÞi ¼ mVfVϵμðλÞ ð29Þ

permits one to obtain the decay (neglecting electron
masses)

FIG. 6. Vector isovector masses with hybrid mixing as a
function of the strong coupling. Boxes indicate experimental
masses and their uncertainties. Gray bars indicate state widths.
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ΓðV → eþe−Þ ¼ 4πα2Q2
eff

3mV
f2V ð30Þ

where Qeff ¼ Qu=
ffiffiffi
2

p þQd=
ffiffiffi
2

p
is the effective charge of

an isovector meson in units of the electron charge. In the
case of the hybrid meson, allowing the state to be a sum
over components gives

fH ¼ 1ffiffiffiffiffiffiffiffi
MH

p
X
n≠H

ffiffiffiffiffiffiffi
Mn

p
fðnÞV Cn ð31Þ

where Cn ¼ hnSjH1ð1−−Þi are the state components
obtained previously.
Unfortunately, only the ρð770Þ decay constant is known,

so we must model the remaining decay constants.
Following the methodology of Ref. [26], the decay constant
is written as

fðnÞV ¼
ffiffiffiffiffiffiffi
3

Mn

s Z
d3k
ð2πÞ3 ψ

ðnÞðk⃗Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þmq

Ek

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þmq̄

Ek̄

r

×

�
1þ k2

3ðEk þmqÞðEk̄ þmq̄Þ
�
: ð32Þ

The mass in this expression originates in the relativistic
normalization of the state vector, and is the reason the
square roots of meson mass appear in Eq. (31).
Evaluating Eq. (32) for the ρð770Þ gives fρ ¼ 300 MeV,

to be compared to the experimental value of 220 MeV
(the simple quark model is known to give decay con-
stants that are too large). Other decay constants obtained in
this way are fρð2SÞ ¼160MeV, fρð3SÞ ¼ 130 MeV, fρð4SÞ ¼
110 MeV, fρð5SÞ ¼ 100 MeV, and fρð6SÞ ¼ 95 MeV.
Evaluating Eq. (31) then yields

fH1ð1−−Þ ≈ 20 MeV; ð33Þ

where we have accounted for the tendency to overpredict
decay constants. Thus one can expect production of the
vector hybrid in eþe− annihilation at approximately 1% of
the strength of canonical mesons.

VIII. CONCLUSIONS

A constituent gluon model of gluodynamics has been
explored. This model permits describing glueballs and
hybrid mesons as simple bound states in a formalism
that can be considered a minimal extension of typical
constituent quark models. The model is commensurate
with lattice field theory results and leverages the
Hamiltonian of QCD in Coulomb gauge to describe the
relevant dynamics.
This picture was used to model hybrid meson flavor

mixing, assuming that hybrids and glueballs are dominated
by the minimal number of quasigluons required by the
state. Hybrid flavor mixing is unique in that it can be
described by low order diagrams because the quark-
antiquark pair is in a color octet state. In this case
annihilation can happen via a transverse gluon or an
instantaneous (potential) gluon. Both cases require quark
annihilation in the ð2Sþ1ÞLJ ¼ 3S1 state, which in turn
restricts substantial flavor mixing to the H1ð0−þÞ,
H1ð1−þÞ, and H1ð2−þÞ multiplets. Comparison to lattice
results computed with a pion of mass 391 MeV show broad
agreement, with the largest discrepancy in the vector
multiplet. This discrepancy is difficult to reconcile in the
present model, and if confirmed, likely implies that the
quasigluon approximation needs to be abandoned or
heavily modified. Of course, any new model must continue
to explain the weak mixing computed in the H2 (and
presumably other) multiplets. Alternatively, the model
agrees broadly with lattice data, implying that the assump-
tions made may be reasonable, and that quasigluons do
indeed serve as a useful description of low-lying gluonic
excitations.
A similar computation of configuration mixing of hybrid

and canonical mesons yielded reasonable agreement with
an NRQCD computation for J=ψ and ϒ mixing (within
large errors for both methods). Thus the quasigluon
approach proves useful in this context as well.
Combining the model computations leads to a picture in

which an isovector vector hybrid is expected with a mass
of approximately 2100 MeV. This vector does not mix
extensively with canonical mesons, and has a decay
constant of approximately 20 MeV, perhaps permitting
its observation in eþe− scattering. The state’s isospin
partners are expected at 2100–2250 MeV and 2220–
2350 MeV. Similarly, if the π1ð1600Þ is confirmed then
isospin partners are expected at 1750–1780 MeV and
around 1900 MeV. This last state is a natural identification
of the recently seen η1.

FIG. 7. qq̄g fraction of vector hybrid.
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The results of this investigation encourage further work
on the hybrid spectrum with the goal of achieving detailed
agreement. This will likely require the addition of higher
order spin-dependent and spin-independent interactions. It
will also be of interest to compute light hybrid strong decay
rates as these will be crucial to identifying novel hadrons.
Finally, the topic of radiative transitions of hybrid mesons
remains relatively unexplored.
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