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We use the two-flavor Linear Sigma Model with quarks to study the phase structure of isospin
asymmetric matter at zero temperature. The meson degrees of freedom provide the mean field chiral and
isospin condensates on top of which we compute the effective potential accounting for constituent quark
fluctuations at one-loop order. Using the renormalizability of the model, we absorb the ultraviolet
divergences into suitable counterterms that are added respecting the original structure of the theory. These
counterterms are determined from the stability conditions which require the effective potential to have
minima in the condensates directions at the classical values, as well as the transition from the noncondensed
to the condensed phase to be smooth as a function of the isospin chemical potential. We use the model to
study the evolution of the condensates as well as the pressure, energy and isospin densities and the sound
velocity as functions of the isospin chemical potential. The approach does a good average description up to
isospin chemical potentials values not too large as compared to the vacuum pion mass.
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I. INTRODUCTION

Multiple implications of the remarkably rich phase
structure of Quantum Chromodynamics (QCD) have been
extensively explored over the past years. QCD at finite
density is usually characterized by the baryon μB and the
isospin μI chemical potentials. Nature provides us with
physical systems at finite baryon densities with nonzero μI
in the form of isospin asymmetric matter, for example,

compact astrophysical objects such as neutron stars.
Because of this, along with the imminent arrival of new
generation relativistic heavy-ion collision experiments at
the FAIR [1] and NICA [2] facilities, the study of the phase
structure in the temperature T and the chemical potentials
μB and μI has become an ideal subject of scrutiny within the
heavy-ion and astroparticle physics communities [3,4].
A typical T − μB − μI phase diagram is anticipated to

be full of rich phase structures [5]. However, from the
theoretical perspective, systems with finite μB are not
straightforwardly accessible to the first-principle methods
of lattice QCD (LQCD), due to the well-known fermion
determinant sign problem [6,7]. Hence, studies on the
μB − μI plane have been performed mainly using low
energy effective models. These models have revealed the
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existence of an exciting phase structure that includes
Gapless Pion Condensates (GPC), a Bose-Einstein
Condensed (BEC) phase with gaped single particle exci-
tations, a BEC-BCS crossover, etc. [8,9].
On the other hand, LQCD calculations for vanishing and

even small μB do not suffer from the sign problem. These
calculations have predicted the existence of a superfluid
pion condensate phase for high enough μI [10–15]. At zero
temperature, they show that a second order phase transition
at a critical isospin chemical potential (corresponding to
the vacuum pion mass) separates the hadron from the
pion condensate phase [14]. In addition to LQCD, these
phases are also found using chiral perturbation theory
(χPT) [16–31], Hard Thermal Loop perturbation theory
[32], the Nambu-Jona-Lasinio (NJL) model [9,33–48] and
its Polyakov loop extended version [49,50], the quark
meson model (QMM) [51–54] and other low energy
effective models exploiting functional Renormalization
Group studies [55]. Calculations using a LQCD equation
of state for finite μI have investigated the viability of the
existence of pion stars, with a pion condensate as the
dominant core constituent [24,56]. Since LQCD calcula-
tions with μI ≠ 0; μB ¼ μs ¼ T ¼ 0 can be carried out
without being hindered by the sign problem, they can be
used as a benchmark to test effective model predictions. For
example, recently, the NJL model has been used in this
domain and it has been found that results agree exception-
ally well with LQCD results [57,58].
In this work we study another effective QCD model, the

Linear Sigma Model with quarks (LSMq), extended to
consider a finite μI to describe the properties of strongly
interacting systems with an isospin imbalance. The LSMq is
a renormalizable theory that explicitly implements the QCD
chiral symmetry. It has been successfully employed to study
the chiral phase transition at finite T and μB [59–62], as well
as in the presence of a magnetic field [63–72]. The Linear
Sigma Model has been used at finite μI , albeit considering
the meson degrees of freedom as an effective classical
background, in the Hartree or Hartree-Fock approximations
within the Cornwall-Jackiw-Tomboulis formalism [73]. In
contrast, in the LSMq mesons are treated as dynamical
fields able to contribute to quantum fluctuations. Part of the
reason for other models to avoid considering mesons as
dynamical fields, for example the QMM, is that when
mesons become true quantum fields and chiral symmetry is
only spontaneously broken, their masses are subject to
change as a result of medium effects. During this change,
the meson square masses can become zero or even negative.
At zero temperature, this drawback is avoided by consid-
ering an explicit symmetry breaking term that provides
pions with a vacuum finite mass. At finite temperature, the
plasma screening effects need to also be included.
In this work we use the LSMq to describe the evolution

of the chiral and isospin (pion) condensates, as well as
thermodynamical quantities such as pressure, isospin and

energy densities and the sound velocity at zero temperature
and finite μI. We restrict ourselves to considering only the
effects of fermion quantum fluctuations, reserving for a
future work the inclusion of meson quantum fluctuation
effects. We make use of the renormalizability of the LSMq
and describe in detail the renormalization procedure which
is achieved by implementing the stability conditions. The
results thus obtained are valid for the case where μ2I is small
compared to the sum of the squares of the chiral and isospin
condensates multiplied by the square of the boson-fermion
coupling constant g.
The work is organized as follows: In Sec. II we write the

LSMq Lagrangian using degrees of freedom appropriate to
describe an isospin imbalanced system. We work with an
explicit breaking of the chiral symmetry introducing a
vacuum pion mass and expanding the charged pion fields
around the values of their condensates. The effective
potential is constructed by adding to the tree-level potential
the one-loop contribution from the fermion degrees of
freedom. Renormalization is carried out by introducing
counterterms to enforce that the tree-level structure of the
effective potential is preserved by loop corrections. We first
work out explicitly the treatment in the condensed phase to
then work out the noncondensed phase. In Sec. III we study
the condensates evolution with μI as well as that of the
pressure, isospin and energy density and the sound velocity,
and compare to recent LQCD results. We finally summarize
and conclude in Sec. IV. We reserve for a follow-up work
the computation of the meson quantum fluctuations as well
as finite temperature effects. The Appendix is devoted to
the explicit computation of the one-loop fermion contri-
bution to the effective potential.

II. LSMq AT FINITE ISOSPIN CHEMICAL
POTENTIAL

The LSMq is an effective theory that captures the
approximate chiral symmetry of QCD. It describes the
interactions among small-mass mesons and constituent
quarks. We start with a Lagrangian invariant under
SUð2ÞL × SUð2ÞR chiral transformations,

L ¼ 1

2
ð∂μσÞ2 þ

1

2
ð∂μπ⃗Þ2 þ

a2

2
ðσ2 þ π⃗2Þ − λ

4
ðσ2 þ π⃗2Þ2

þ iψ̄γμ∂μψ − igψ̄γ5τ⃗ · π⃗ψ − gψ̄ψσ; ð1Þ

where τ⃗ ¼ ðτ1; τ2; τ3Þ are the Pauli matrices,

ψL;R ¼
�
u

d

�
L;R

ð2Þ

is a SUð2ÞL;R doublet, σ is a real scalar field and π⃗ ¼
ðπ1; π2; π3Þ is a triplet of real scalar fields. π3 corresponds
to the neutral pion whereas the charged ones are repre-
sented by the combinations
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π− ¼ 1ffiffiffi
2

p ðπ1 þ iπ2Þ; πþ ¼ 1ffiffiffi
2

p ðπ1 − iπ2Þ: ð3Þ

The parameters a2, λ, and g are real and positive definite.
Equation (1) can be written in terms of the charged and
neutral-pion degrees of freedom as

L ¼ 1

2
½ð∂μσÞ2 þ ð∂μπ0Þ2� þ ∂μπ−∂

μπþ þ a2

2
ðσ2 þ π20Þ

þ a2π−πþ −
λ

4
ðσ4 þ 4σ2π−πþ þ 2σ2π20 þ 4π2−π

2þ

þ 4π−πþπ20 þ π40Þ þ iψ̄=∂ψ − gψ̄ψσ − igψ̄γ5ðτþπþ
þ τ−π− þ τ3π0Þψ ; ð4Þ

where we introduced the combination of Pauli matrices

τþ ¼ 1ffiffiffi
2

p ðτ1 þ iτ2Þ; τ− ¼ 1ffiffiffi
2

p ðτ1 − iτ2Þ: ð5Þ

The Lagrangian in Eq. (4) possesses the following sym-
metries: A SUðNcÞ global color symmetry, a SUð2ÞL ×
SUð2ÞR chiral symmetry and a Uð1ÞB symmetry. The
subindex of the latter emphasizes that the conserved charge
is the baryon number B. A conserved isospin charge can be
added to the LSMq Hamiltonian, multiplied by the isospin
chemical potential μI. The result is that the Lagrangian gets
modified such that the ordinary derivative becomes a
covariant derivative [74]

∂μ → Dμ ¼ ∂μ þ iμIδ0μ; ∂
μ → Dμ ¼ ∂

μ − iμIδ
μ
0: ð6Þ

As a result, Eq. (4) is modified to read as

L ¼ 1

2
½ð∂μσÞ2 þ ð∂μπ0Þ2� þDμπ−Dμπþ þ a2

2
ðσ2 þ π20Þ

þ a2π−πþ −
λ

4
ðσ4 þ 4σ2π−πþ þ 2σ2π20 þ 4π2−π

2þ

þ 4π−πþπ20 þ π40Þ þ iψ̄=∂ψ − gψ̄ψσ þ ψ̄μIτ3γ0ψ

− igψ̄γ5ðτþπþ þ τ−π− þ τ3π0Þψ : ð7Þ

Because of the spontaneous breaking of the chiral
symmetry in the Lagrangian given in Eq. (7), the σ field
acquires a nonvanishing vacuum expectation value,

σ → σ þ v:

To make better contact with the meson vacuum properties
and to include a finite vacuum pion mass, m0, we can add
an explicit symmetry breaking term in the Lagrangian such
that

L → L0 ¼ Lþ hðσ þ vÞ: ð8Þ

The constant h is fixed by requiring that the model
expression for the neutral vacuum pion mass squared in
the noncondensed phase, Eq. (11b), corresponds to m2

0.
Recall that in the noncondensed phase, the tree-level
potential is

V tree ¼ −
a2

2
v2 þ λ

4
v4 − hv:

The condensate v0 is obtained from

dV tree

dv
¼ ðλv3 − a2v − hÞv¼v0 ¼ 0;

or

v0ðλv20 − a2Þ ¼ h:

The quantity in between parentheses, according to
Eq. (11b), is precisely the square of the vacuum pion
mass, m2

0. Therefore

h ¼ m2
0v0:

Also, notice that

a2 þm2
0 ¼ a2 þ λv20 − a2 ¼ λv20;

or

v0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þm2

0

λ

r
:

This yields

h ¼ m2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þm2

0

λ

r
;

≡m2
0fπ; ð9Þ

where in the second line we have used the Partially
Conserved Axial Current statement to identify m2

0fπ with
the small symmetry breaking term represented in the LSMq
by h, with fπ the pion decay constant. Equation (9)
provides a relation for the model parameters a and λ in
terms of fπ .
Before diving into the formalism details, here we first

pause to discuss the symmetry properties of the theory.
Notice that the introduction of μI and h modifies the
structure of the effective Lagrangian given in Eq. (8). In the
presence of a finite μI , the Uð1ÞB × SUð2ÞL × SUð2ÞR
symmetry is reduced to Uð1ÞB ×Uð1ÞI3L ×Uð1ÞI3R for
h ¼ 0, and to Uð1ÞB ×Uð1ÞI3 for h ≠ 0, thereby represent-
ing the explicit breaking of the chiral symmetry [75].
The notation also emphasizes that the third component of
the isospin charge, I3, corresponds to the generator of the
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remaining symmetry Uð1ÞI3. Since in the present work we
are interested in the dynamics of the pion fields, further
simplifications in the pseudoscalar channels can be obtained
using the ansatz hψ̄iγ5τ3ψi ¼ 0 combined with hūiγ5di ¼
hd̄iγ5ui� ≠ 0 [9]. This further breaks the residual Uð1ÞI3
symmetry and corresponds to a Bose-Einstein condensation
of the charged pions. Then, the charged pion fields can be
referred from their condensates as

πþ → πþ þ Δffiffiffi
2

p eiθ; π− → π− þ Δffiffiffi
2

p e−iθ; ð10Þ

where the phase factor θ indicates the direction of theUð1ÞI3
symmetry breaking. We take θ ¼ π for definitiveness. The
shift in the sigma field produces that the fermions and neutral
bosons acquire masses given by

mf ¼ gv ð11aÞ

m2
π0
¼ λv2 − a2 þ λΔ2 ð11bÞ

m2
σ ¼ 3λv2 − a2 þ λΔ2: ð11cÞ

The charged pions also acquire masses. However, in the
condensed phase (Δ ≠ 0) they need to be described in terms
of the π1;2 fields [76]. Since for our purposes pions are not
treated as quantum fluctuations, hereby we just notice that,
as a consequence of the breaking of the Uð1ÞI3 symmetry,
one of these fields becomes a Goldstone boson. In the
absence of the explicit symmetry breaking term in the
Lagrangian of Eq. (8), this mode’s mass would vanish.
However, a finite h prevents this mode from being massless.

A. Condensed phase

In the condensed phase the tree-level potential, extracted
from Eqs. (7) and (8), can be written as

V tree ¼ −
a2

2
ðv2 þ Δ2Þ þ λ

4
ðv2 þ Δ2Þ2 − 1

2
μ2IΔ2 − hv:

ð12Þ

The fermion contribution to the one-loop effective
potential becomes

X
f¼u;d

V1
f ¼ −2Nc

Z
d3k
ð2πÞ3 ½E

u
Δ þ Ed

Δ�; ð13Þ

with (see the Appendix)

Eu
Δ ¼

n� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

f

q
þ μI

�
2 þ g2Δ2

o
1=2

; ð14aÞ

Ed
Δ ¼

n� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

f

q
− μI

�
2 þ g2Δ2

o
1=2

; ð14bÞ

where we chose that

μd ¼ μI

μu ¼ −μI: ð15Þ

Equation (13) is ultraviolet divergent. Ultraviolet diver-
gences are a common feature of loop vacuum contributions.
However, since Eq. (13) depends on μI , this divergence
needs to be carefully treated given that matter contributions
cannot contain ultraviolet divergences. To identify the
divergent terms, we work in the approximation whereby
the fermion energies, Eq. (14), are expanded in powers of
μ2I =½g2ðv2 þ Δ2Þ�. Considering terms up to Oðμ4I Þ, we
obtain

X
f¼u;d

Ef
Δ ≃ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

f þ g2Δ2
q

þ μ2I g
2Δ2

ðk2 þm2
f þ g2Δ2Þ3=2

þ μ4I ½4ðk2 þm2
fÞg2Δ2 − g4Δ4�

4ðk2 þm2
f þ g2Δ2Þ7=2 þOðμ6I Þ: ð16Þ

Notice that the ultraviolet divergent part corresponds only
to the first and second terms on the right-hand side of
Eq. (16). In this approximation, and up to terms of order μ2I ,
the expression for the leading fermion contribution to the
one-loop effective potential is given by

X
f¼u;d

V1
f ¼ −2Nc

Z
d3k
ð2πÞ3

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

f þ g2Δ2
q

þ μ2I g
2Δ2

ðk2 þm2
f þ g2Δ2Þ3=2

�
: ð17Þ

This expression can be readily computed using dimen-
sional regularization in the MS scheme, with the result (see
the Appendix)

X
f¼u;d

V1
f ¼ 2Nc

g4ðv2 þ Δ2Þ2
ð4πÞ2

�
1

ϵ
þ 3

2
þ ln

�
Λ2=g2

v2 þ Δ2

��

− 2Nc
g2μ2IΔ2

ð4πÞ2
�
1

ϵ
þ ln

�
Λ2=g2

v2 þ Δ2

��
; ð18Þ

where Nc ¼ 3 is the number of colors, Λ is the dimensional
regularization ultraviolet scale and the limit ϵ → 0 is to be
understood. The explicit computation of Eq. (18) is
described also in the Appendix. Notice that Eq. (18)
contains an ultraviolet divergence proportional to μ2IΔ2.
Since a term with this same structure is already present in
the tree-level potential, Eq. (12), it is not surprising that this
ultraviolet divergence can be handled by the renormaliza-
tion procedure with the introduction of a counterterm with
the same structure, as we proceed to show.
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To carry out the renormalization of the effective potential
up to one-loop order, we introduce counterterms that
respect the structure of the tree-level potential and deter-
mine them by accounting for the stability conditions. The
latter are a set of conditions satisfied by the tree-level
potential and that must be preserved when considering loop
corrections. These conditions require that the position of
the minimum in the v and Δ directions remains the same as
the tree-level potential ones. Notice that this approach is
different from the one followed in Ref. [77], where the
counterterms are determined by requiring the finiteness of
the propagator and the four-point boson vertex. As a result a
shift of the onset of pion condensation happens when the
coupled equations that determine the condensates receive
loop corrections.
The tree-level minimum in the v, Δ plane is found from

∂V tree

∂v
¼ ½λv3 − ða2 − λΔ2Þv − h�

			
v0;Δ0

¼ 0 ð19aÞ

∂V tree

∂Δ
¼ ½λΔ2 − ðμ2I − λv2 þ a2Þ�

			
v0;Δ0

¼ 0: ð19bÞ

Notice that Eq. (19b) admits a real, nonvanishing solution,
only when

μ2I > λv2 − a2 ¼ m2
0; ð20Þ

which means that a nonzero isospin condensate is devel-
oped only when, for positive values of the isospin chemical
potential, the latter is larger than the vacuum pion mass.
This is what we identify as the condensed phase. The
simultaneous solutions of Eq. (19) are

v0 ¼
h
μ2I

; ð21aÞ

Δ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2I
λ
−
h2

μ4I
þ a2

λ

s
: ð21bÞ

Hereafter, we refer to the expressions in Eq. (21) as the
classical solution.
The effective potential, up to one-loop order in the

fermion fluctuations, including the counterterms, can be
written as

Veff ¼ V tree þ
X
f¼u;d

V1
f −

δλ

4
ðv2 þ Δ2Þ2

þ δa
2
ðv2 þ Δ2Þ þ δ

2
Δ2μ2I : ð22Þ

The counterterms δλ and δ are determined from the gap
equations

∂Veff

∂v

				
v0;Δ0

¼ 0; ð23aÞ

∂Veff

∂Δ

				
v0;Δ0

¼ 0: ð23bÞ

These conditions suffice to absorb the infinities of Eq. (18).
The counterterm δa is determined by requiring that the
slope of Veff vanishes at μI ¼ m0,

∂Veff

∂μI

				
μI¼m0

¼ 0; ð24Þ

or in other words, that the transition from the noncondensed
to the condensed phase be smooth. The resulting effective
potential is alsoΛ independent. This can be seen by noticing
that the coefficients of the 1=ϵ terms are common to those
of the lnðΛ2Þ terms. Since the counterterms cancel the 1=ϵ
divergence, they also cancel the lnðΛ2Þ dependence.

B. Noncondensed phase

In the noncondensed phase, 0 ≤ μI ≤ m0, the only
allowed solution for Eq. (19b) is Δ ¼ 0. For this case,
Eq. (19a) becomes a cubic equation in v. The only real
solution is

ṽ0 ¼
� ffiffiffi

3
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

27h2λ4 − 4a6λ3
p

þ 9hλ2
�
1=3

ð18Þ2=3λ

þ ð2=3Þ1=3a2� ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27h2λ4 − 4a6λ3

p
þ 9hλ2

�
1=3 : ð25Þ

In the limit when h is taken as small, one gets

ṽ0 ≃
affiffiffi
λ

p þ h
2a2

; ð26Þ

an approximation that sometimes is considered. However,
hereafter we work instead with the full expression given
by Eq. (25).
The effective potential Vnoncond

eff up to one-loop order can
be obtained from the corresponding one in the condensed
phase, by setting Δ ¼ 0. Therefore, we can write

Vnoncond
eff ¼ λ

4
v4 −

a2

2
v2 − hv −

δ̃1
4
v4 þ δ̃2

2
v2

þ 2Nc
g4v4

ð4πÞ2
�
1

ϵ
þ 3

2
þ ln

�
Λ2

g2v2

��
: ð27Þ

In this case, only two conditions are needed to stabilize the
vacuum. We take these as the requirement that the position
and curvature of Vnoncond

eff remain at its classical value when
evaluated at ṽ0, namely,
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∂Vnoncond
eff

∂v

				
ṽ0

¼ 0 ð28aÞ

∂
2Vnoncond

eff

∂v2

				
ṽ0

¼ 3λṽ20 − a2; ð28bÞ

from where the counterterms δ̃1, δ̃2 can be determined.
Therefore, in the noncondensed phase, in addition to
Δ ¼ 0, the v condensate is simply given by the constant
ṽ0 given in Eq. (25). As for the case of the condensed
phase, in the noncondensed phase the effective potential is
ultraviolet finite as well as Λ independent.

III. THERMODYNAMICS OF THE
CONDENSED PHASE

Armed with the expressions for the effective potential, we
can now proceed to study the dependence of the condensates
as well as of the thermodynamical quantities as functions of
μI . Since the μI dependence in the noncondensed phase is
trivial, we concentrate on the description of the behavior of
these quantities in the condensed phase.
The model requires fixing three independent parameters:

the boson self-coupling λ, the boson-fermion coupling g,
and the mass parameter a. For this purpose, notice that from
Eq. (11) in vacuum we have

m2
σ − 3m2

0 ¼ 3λv20 − a2 − 3λv20 þ 3a2 ¼ 2a2;

or

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

σ − 3m2
0

2

r
:

Also

g ¼ mq

v0
¼ mq

fπ
;

and λ is obtained from Eq. (9) as

λ ¼ m2
σ −m2

0

2f2π
:

For mq ¼ 235 MeV, mσ ¼ 400 MeV, m0 ¼ 140 MeV,
and fπ ¼ 93 MeV, one readily obtains λ ¼ 8.12,
a ¼ 225 MeV, and g ¼ 2.53. The phase space for these
parameters is limited since, for certain combinations, the
gap equation conditions in the v-Δ plane become saddle
points rather than global minima. A more exhaustive search
in the parameter space to optimize the parameter choice
will be discussed elsewhere.
Figure 1 shows the v and Δ condensates as functions of

the scaled variable μI=m0. The behavior is qualitatively as

expected: for μI ≥ m0, the v condensate decreases while the
Δ condensate increases.
Figure 2 shows the normalized pressure, defined as the

negative of the effective potential referred from its value at
μI ¼ m0, as a function of the scaled variable μI=m0 and
divided by m4

0. Shown are the results obtained by using the
tree-level and the fermion one-loop corrected effective
potentials, compared to the results from a SUð2Þ NJL
model [57], a SUð2Þ χPT [31], and the LQCD results from
Refs. [78,79]. The χPT results consist of a leading order
(LO) and a next to leading order (NLO) calculations. The
NLO ones depend on low energy constants. We show both
results with a yellow band [31]. The LQCD results from

FIG. 1. v and Δ condensates as functions of the scaled variable
μI=m0. For μI ≥ m0, the v condensate decreases while the Δ
condensate increases.

FIG. 2. Normalized pressure as a function of the scaled variable
μI=m0. Shown are the tree-level and one-loop fermion improved
pressures compared to the results from Refs. [31,57] together
with the LQCD results from a private communication with the
authors of Refs. [78,79].

ALEJANDRO AYALA et al. PHYS. REV. D 107, 074027 (2023)

074027-6



Refs. [78,79] were obtained using simulations with three
dynamical flavors at physical quark masses. The labels
243 × 32 and 323 × 48 refer to the lattice sizes in the space
and time directions. The lattice spacing of the former is a ≈
0.22 fm and for the latter a ≈ 0.15 fm. The pion mass used
in the LQCD calculation is m0 ¼ 135 MeV. However,
notice that since we report the results as functions of the
scaled variable μI=m0, these can be safely compared to the
LQCD results. Notice that the one-loop improved calculation
does a better description than the tree-level one and that
deviations from the LQCD result appear for μI ≳ 1.5m0.
Figure 3 shows the normalized isospin density,

nI ¼ dP=dμI , divided by m3
0 as a function of the scaled

variable μI=m0 compared to results obtained using the tree-
level potential as well as to the results from Ref. [57] together
with the LQCD results from Refs. [78,79]. Notice that the
one-loop improved calculation is close to the NJL one up to
μI ∼ 1.5m0 but the latter does a better job describing the
LQCD results for μI ≳ 1.5m0. However, it is fair to say that
none of the current calculations reproduce the change of
curvature that seems to be present in the LQCD result.
Figure 4 shows the normalized energy density, ϵ=m4

0,
with ϵ defined as

ϵ ¼ −Pþ nIμI;

as a function of the scaled variable μI=m0, compared to the
results from Ref. [57] together with the LQCD results from
Refs. [78,79]. Although the change in curvature shown by
the LQCD results is not described by the present calcu-
lation, it is fair to say that neither the NJL calculation
captures such trend. The one-loop improved calculation
does a better average description of the LQCD result
although deviations appear for μI ≳ 1.5m0.

Figure 5 shows the equation of state, pressure vs energy
density, compared to the results from Ref. [57] together
with the LQCD results from Refs. [78,79]. Notice that
for the latter, the vacuum pion mass is taken as
m0 ¼ 135 MeV. As can be seen, the initial increasing
trend of LQCD results is properly described by the low-
energy models considered. Given that the accuracy of our
results is limited to the low μI domain, the NJL calculation
does a better description of the LQCD results.
Figure 6 shows the square of the speed of sound, c2s , as a

function of the scaled variable μI=m0. Shown are the one-
loop results compared to the results from Ref. [57] together
with the LQCD results from Refs. [78,79]. The apparent
peak in the LQCD results is not reproduced by any model.

FIG. 3. Normalized isospin density as a function of the scaled
variable μI=m0. Shown are the tree-level and one-loop fermion
improved effective potentials compared to a recent SUð2Þ NJL
calculation [57], two-flavor χPT [31], and the LQCD results from
Refs. [78,79].

FIG. 4. Normalized energy density as a function of the scaled
variable μI=m0. Shown are the tree-level and one-loop fermion
improved effective potentials compared to the results from
Refs. [31,57] together with the LQCD results from Refs. [78,79].

FIG. 5. Equation of state, pressure vs energy density. Shown are
the tree-level and one-loop fermion improved effective potentials
compared to the results from Refs. [31,57] together with the
LQCD results from Refs. [78,79].
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However, notice that for the range of shown μI values, the
one-loop improved result is above, although closer to the
conformal bound, shown as a horizontal line at c2s ¼ 1=3.
Figure 7 also shows c2s , this time as a function of ϵ=m4

0

compared with results from Ref. [57] together with the
LQCD results from Refs. [78,79]. Although for lower
values of the energy density the tree-level line lies below all
other curves, after crossing the conformal bound, the one-
loop improved result remains closer to the latter.

IV. SUMMARY AND CONCLUSIONS

In this work we have used the LSMq, with two
constituent quark flavors, to study the phase structure of
isospin asymmetric matter at zero temperature. The meson
degrees of freedom are taken as providing the mean field
on top of which we include quantum constituent quark
fluctuations at one-loop order. We have used the renorm-
alization of the LSMq to absorb the ultraviolet divergences
with the addition of counterterms that respect the original
structure of the theory. An interesting aspect of the method
is that it allows the proper handling of the disturbing
μI-dependent ultraviolet divergence. The one-loop con-
stituent quark contributions are treated in the approxima-
tion whereby μ2I is taken as small compared to g2ðv2 þ Δ2Þ
and working up to Oðμ2I Þ. After determining the model
parameters, we have studied the evolution of the chiral and
isospin condensates as well as the pressure, energy and
isospin densities and the sound velocity. We have compared
the model results with a recent NJL calculation of the same
quantities and with LQCD data. The model does a good
description for μI ≲ 1.5m0, except perhaps for the sound
velocity for which it does not reproduce the peak seemingly
appearing in the LQCD calculations.
The results are encouraging and set the stage to explore

whether the method can be used to incorporate the effect of
meson fluctuations. The method also lends itself to include
in the description higher powers of μ2I as well as finite
temperature effects. We are currently exploring these avenues
and will report on the findings elsewhere in the near future.
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FIG. 6. Square of the speed of sound as a function of the scaled
variable μI=m0. Shown are the tree-level and one-loop fermion
improved effective potentials compared to recent SUð2Þ NJL,
χPT and the LQCD results from Refs. [78,79]. The conformal
bound is shown as a horizontal line.

FIG. 7. Square of the speed of sound as a function of the scaled
energy density. Shown are the tree-level and one-loop fermion
improved effective potentials compared to recent SUð2Þ NJL,
χPT and the LQCD results from Refs. [78,79]. The conformal
bound is shown as a horizontal line.
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APPENDIX: ONE-LOOP CONSTITUENT QUARK
CONTRIBUTION TO THE EFFECTIVE

POTENTIAL

The thermodynamic potential accounting for the con-
stituent quark contribution at one-loop order is given by

V1
f ¼ iV−1 lnðZ1

fÞ; ðA1Þ

where

lnðZ1
fÞ ¼ ln ðdetfðS−1mfÞgÞ; ðA2Þ

and V is the space-time volume. Also here, S−1mf is the
inverse propagator of the two light-constituent quark
species. Therefore, we are bound to compute the determi-
nant of a matrix M of the form

M ¼
�
A B

C D

�
; ðA3Þ

where A, B, C,D can be thought of as p × p, p × q, q × p,
and q × q complex matrices, respectively. When A and D
are invertible, the determinant of M is given by

detfðMÞg ¼ detfðAÞg detfðD − CA−1BÞg; ðA4Þ

detfðMÞg ¼ detfðDÞg detfðA − BD−1CÞg: ðA5Þ

Equation (A4) can be written as

detfðMÞg ¼ detfðAÞg detfðD − CA−1BÞg
¼ detfðAÞg detfðC−1CÞg detfðD − CA−1BÞg
¼ detfð−C2A−1BC−1Aþ CDC−1AÞg; ðA6Þ

whereas Eq. (A5) as

detfðMÞg ¼ detfðDÞg detfðA − BD−1CÞg
¼ detfðDÞg detfðC−1CÞg detfðA − BD−1CÞg
¼ det fð−CBþ CAC−1DÞg: ðA7Þ

For our purposes, B ¼ C ¼ igΔγ5. Thus, from Eqs. (A6)
and (A7), we obtain

detfðMÞg ¼ detfð−C2 þ CDC−1AÞg; ðA8Þ

detfðMÞg ¼ detfð−C2 þ CAC−1DÞg: ðA9Þ

We explicitly compute both expressions. First, we use that
the standard spin projectors Λ� satisfy

γ0Λ�γ0 ¼ Λ̃∓; ðA10Þ

and

γ5Λ�γ5 ¼ Λ̃�; ðA11Þ

with the projectors Λ̃� defined as

Λ̃� ¼ 1

2

�
1� γ0ðγ⃗ · k⃗ − gvÞ

Ek

�
: ðA12Þ

Next, we notice that A ¼ S−1u and D ¼ S−1d . Therefore,
working first in the absence of an isospin chemical
potential, for which

S−1u ¼ S−1d ¼ k0γ0 − γ⃗ · k⃗ − gv; ðA13Þ

D1 ≡ −C2 þ CDC−1A

¼ g2Δ2 þ ðigΔγ5ÞS−1d
�

1

igΔ
γ5
�
S−1u

¼ g2Δ2 − ½k20 − ðEu
kÞ2�Λ− − ½k0 − ðEd

kÞ2�Λþ; ðA14Þ

and

D2 ≡ −C2 þ CAC−1D

¼ g2Δ2 þ γ5S−1u γ5S−1d
¼ g2Δ2 − ½k20 − ðEd

kÞ2�Λ− − ½k20 − ðEu
kÞ2�Λþ: ðA15Þ

Thus, using that Λþ þ Λ− ¼ 1 and defining Eq
Δ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðEq
kÞ2 þ g2Δ2

q
, we have

D1 ¼ −ðk20 − ðEu
ΔÞ2ÞΛ− − ðk0 − ðEd

ΔÞ2ÞΛþ; ðA16Þ

D2 ¼ −ðk20 − ðEd
ΔÞ2ÞΛ− − ðk20 − ðEu

ΔÞ2ÞΛþ; ðA17Þ

and

detfðS−1mfÞg ¼ detfðD1Þg ¼ detfðD2Þg: ðA18Þ

Note that

lnðZ1
fÞ ¼ ln ðdetfðS−1mfÞgÞ

¼ 1

2
ln ðdetfðS−1mfÞ2gÞ

¼ 1

2
ln ðdetfðD1D2ÞgÞ

¼ 1

2
Tr½ln ðD1D2Þ�; ðA19Þ

and since the product D1D2 is given by

D1D2 ¼ ðk20 − ðEu
ΔÞ2Þðk20 − ðEd

ΔÞ2Þ; ðA20Þ

we get
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lnðZ1
fÞ ¼

1

2

X
q¼u;d

Tr½ln ðk20 − ðEq
ΔÞ2Þ�; ðA21Þ

where the trace is taken in Dirac, color (factors of 4 and Nc,
respectively), and in coordinate spaces, namely,

lnðZ1
fÞ¼2Nc

X
q¼u;d

Z
d4xhxjlnðk20−ðEq

ΔÞ2Þjxi

¼2Nc

X
q¼u;d

Z
d4x

Z
d4k
ð2πÞ4 lnðk

2
0−ðEq

ΔÞ2Þ: ðA22Þ

Therefore

lnðZ1
fÞ ¼ 2VNc

X
q¼u;d

Z
d4k
ð2πÞ4 ln ðk

2
0 − ðEq

ΔÞ2Þ: ðA23Þ

In order to obtain a more compact expression, we integrate
and differentiate with respect to Eq

Δ as follows:

lnðZ1
fÞ ¼ 2VNc

X
q¼u;d

Z
d4k
ð2πÞ4

Z
dEq

Δ
Eq
Δ

k20 − ðEq
ΔÞ2

: ðA24Þ

Performing a Wick rotation k0 → ik4, we obtain

lnðZ1
fÞ¼4iVNc

X
q¼u;d

Z
d4kE
ð2πÞ4

Z
dEq

Δ
Eq
Δ

k20−ðEq
ΔÞ2

; ðA25Þ

and integrating over k4 and Eq
Δ, in this order, we get

lnðZ1
fÞ ¼ 2iVNc

X
q¼u;d

Z
d3k
ð2πÞ3 E

q
Δ; ðA26Þ

with ReðEq
ΔÞ2� ≥ 0. Therefore, the constituent quark

contribution to the effective potential at one-loop order
is given by

V1
f ¼ iV−1 lnðZ1

fÞ: ðA27Þ

Thus,

V1
f ¼ −2Nc

X
q¼u;d

Z
d3k
ð2πÞ3 E

q
Δ: ðA28Þ

In the presence of an isospin chemical potential for which

S−1u ¼ ðk0 þ μIÞγ0 − γ⃗ · k⃗ − gv;

S−1d ¼ ðk0 − μIÞγ0 − γ⃗ · k⃗ − gv; ðA29Þ

and repeating the steps starting from Eq. (A14), we obtain
Eq. (A28), with the energies Eu

Δ and Ed
Δ given by Eq. (14).

We now proceed to the explicit computation of Eq. (13).
In the limit where μ2I =½g2ðv2 þ Δ2Þ� is small, Eq. (A28) can
be written as in Eq. (17). We use dimensional regulariza-
tion. The first of the integrals on the right-hand side of
Eq. (17) is expressed as

Z
d3k
ð2πÞ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ g2v2 þ g2Δ2

q
→ Λ3−d

Γ
�
− 1

2
− d

2

�
ð4πÞd2Γ

�
− 1

2

��
1

g2v2 þ g2Δ2

�
−1
2
−d
2

: ðA30Þ

Taking d → 3 − 2ϵ and working in the MS scheme

Λ2 →
Λ2eγE

4π
; ðA31Þ

where γE is the Euler-Mascheroni constant, we get

Z
d3k
ð2πÞ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ g2v2 þ g2Δ2

q
→ −

ðg2v2 þ g2Δ2Þ2
2ð4πÞ2

�
1

ϵ
þ 3

2
þ ln

�
Λ2

g2v2 þ g2Δ2

��
: ðA32Þ

The second of the integrals on the right-hand side of Eq. (17) is expressed as

Z
d3k
ð2πÞ3

1

ðk2 þ g2v2 þ g2Δ2Þ3=2 → Λ3−d
Γ
�
3
2
− d

2

�
ð4πÞd2Γ

�
3
2

��
1

g2v2 þ g2Δ2

�3
2
−d
2

: ðA33Þ
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Taking d → 3 − 2ϵ and working in the MS scheme we get

Z
d3k
ð2πÞ3

1

ðk2 þ g2v2 þ g2Δ2Þ3=2 →
2

ð4πÞ2
�
1

ϵ
þ ln

�
Λ2

g2v2 þ g2Δ2

��
; ðA34Þ

from where the result of Eq. (18) follows.

[1] K. Agarwal (CBM Collaboration), Acta Phys. Pol. B Proc.
Suppl. 16, 142 (2023).

[2] V. Abgaryan et al. (MPD Collaboration), Eur. Phys. J. A 58,
140 (2022).

[3] K. Fukushima and T. Hatsuda, Rep. Prog. Phys. 74, 014001
(2011).

[4] M. G. Alford, A. Schmitt, K. Rajagopal, and T. Schäfer,
Rev. Mod. Phys. 80, 1455 (2008).

[5] NUPECC, Long range plan, http://www.nupecc.org/
lrp2016/Documents/lrp2017.pdf, accessed 2021-01-20.

[6] F. Karsch, Lect. Notes Phys. 583, 209 (2002).
[7] S. Muroya, A. Nakamura, C. Nonaka, and T. Takaishi, Prog.

Theor. Phys. 110, 615 (2003).
[8] D. T. Son and M. A. Stephanov, Phys. Rev. A 74, 013614

(2006).
[9] C.-f. Mu, L.-y. He, and Y.-x. Liu, Phys. Rev. D 82, 056006

(2010).
[10] J. B. Kogut and D. K. Sinclair, Phys. Rev. D 66, 034505

(2002).
[11] J. B. Kogut and D. K. Sinclair, Phys. Rev. D 66, 014508

(2002).
[12] B. B. Brandt and G. Endrodi, Proc. Sci. LATTICE2016

(2016) 039 [arXiv:1611.06758].
[13] B. B. Brandt, G. Endrodi, and S. Schmalzbauer, EPJ Web

Conf. 175, 07020 (2018).
[14] B. B. Brandt, G. Endrodi, and S. Schmalzbauer, Phys. Rev.

D 97, 054514 (2018).
[15] B. B. Brandt, G. Endrodi, and S. Schmalzbauer, Proc. Sci.

Confinement2018 (2018) 260 [arXiv:1811.06004].
[16] D. T. Son and M. A. Stephanov, Phys. Rev. Lett. 86, 592

(2001).
[17] D. T. Son and M. A. Stephanov, Phys. At. Nucl. 64, 834

(2001).
[18] K. Splittorff, D. T. Son, and M. A. Stephanov, Phys. Rev. D

64, 016003 (2001).
[19] M. Loewe and C. Villavicencio, Phys. Rev. D 67, 074034

(2003).
[20] M. Loewe and C. Villavicencio, Phys. Rev. D 71, 094001

(2005).
[21] E. S. Fraga, L. F. Palhares, and C. Villavicencio, Phys. Rev.

D 79, 014021 (2009).
[22] T. D. Cohen and S. Sen, Nucl. Phys. A942, 39 (2015).
[23] O. Janssen, M. Kieburg, K. Splittorff, J. J. M. Verbaarschot,

and S. Zafeiropoulos, Phys. Rev. D 93, 094502 (2016).
[24] S. Carignano, L. Lepori, A. Mammarella, M. Mannarelli,

and G. Pagliaroli, Eur. Phys. J. A 53, 35 (2017).

[25] L. Lepori and M. Mannarelli, Phys. Rev. D 99, 096011
(2019).

[26] P. Adhikari and J. O. Andersen, Eur. Phys. J. C 80, 1028
(2020).

[27] P. Adhikari, J. O. Andersen, and M. A. Mojahed, Eur. Phys.
J. C 81, 173 (2021).

[28] P. Adhikari, J. O. Andersen, and M. A. Mojahed, Eur. Phys.
J. C 81, 449 (2021).

[29] P. Adhikari and J. O. Andersen, Phys. Lett. B 804, 135352
(2020).

[30] A. Gómez Nicola and A. Vioque-Rodríguez, Phys. Rev. D
106, 114017 (2022).

[31] P. Adhikari, J. O. Andersen, and P. Kneschke, Eur. Phys. J.
C 79, 874 (2019).

[32] J. O. Andersen, N. Haque, M. G. Mustafa, and M.
Strickland, Phys. Rev. D 93, 054045 (2016).

[33] M. Frank, M. Buballa, and M. Oertel, Phys. Lett. B 562, 221
(2003).

[34] D. Toublan and J. B. Kogut, Phys. Lett. B 564, 212 (2003).
[35] A. Barducci, R. Casalbuoni, G. Pettini, and L. Ravagli,

Phys. Rev. D 69, 096004 (2004).
[36] L. He and P. Zhuang, Phys. Lett. B 615, 93 (2005).
[37] L.-y. He, M. Jin, and P.-f. Zhuang, Phys. Rev. D 71, 116001

(2005).
[38] L. He, M. Jin, and P. Zhuang, Phys. Rev. D 74, 036005 (2006).
[39] D. Ebert and K. G. Klimenko, J. Phys. G 32, 599 (2006).
[40] D. Ebert and K. G. Klimenko, Eur. Phys. J. C 46, 771

(2006).
[41] G.-f. Sun, L. He, and P. Zhuang, Phys. Rev. D 75, 096004

(2007).
[42] J. O. Andersen and L. Kyllingstad, J. Phys. G 37, 015003

(2009).
[43] H. Abuki, R. Anglani, R. Gatto, M. Pellicoro, and M.

Ruggieri, Phys. Rev. D 79, 034032 (2009).
[44] T. Xia, L. He, and P. Zhuang, Phys. Rev. D 88, 056013

(2013).
[45] T. G. Khunjua, K. G. Klimenko, and R. N. Zhokhov, Eur.

Phys. J. C 79, 151 (2019).
[46] T. G. Khunjua, K. G. Klimenko, and R. N. Zhokhov, Phys.

Rev. D 98, 054030 (2018).
[47] T. G. Khunjua, K. G. Klimenko, R. N. Zhokhov, and V. C.

Zhukovsky, Phys. Rev. D 95, 105010 (2017).
[48] D. Ebert, T. G. Khunjua, and K. G. Klimenko, Phys. Rev. D

94, 116016 (2016).
[49] S. Mukherjee, M. G. Mustafa, and R. Ray, Phys. Rev. D 75,

094015 (2007).

QCD EQUATION OF STATE AT FINITE ISOSPIN DENSITY … PHYS. REV. D 107, 074027 (2023)

074027-11

https://doi.org/10.1140/epja/s10050-022-00750-6
https://doi.org/10.1140/epja/s10050-022-00750-6
https://doi.org/10.1088/0034-4885/74/1/014001
https://doi.org/10.1088/0034-4885/74/1/014001
https://doi.org/10.1103/RevModPhys.80.1455
http://www.nupecc.org/lrp2016/Documents/lrp2017.pdf
http://www.nupecc.org/lrp2016/Documents/lrp2017.pdf
http://www.nupecc.org/lrp2016/Documents/lrp2017.pdf
http://www.nupecc.org/lrp2016/Documents/lrp2017.pdf
http://www.nupecc.org/lrp2016/Documents/lrp2017.pdf
https://doi.org/10.1007/3-540-45792-5
https://doi.org/10.1143/PTP.110.615
https://doi.org/10.1143/PTP.110.615
https://doi.org/10.1103/PhysRevA.74.013614
https://doi.org/10.1103/PhysRevA.74.013614
https://doi.org/10.1103/PhysRevD.82.056006
https://doi.org/10.1103/PhysRevD.82.056006
https://doi.org/10.1103/PhysRevD.66.034505
https://doi.org/10.1103/PhysRevD.66.034505
https://doi.org/10.1103/PhysRevD.66.014508
https://doi.org/10.1103/PhysRevD.66.014508
https://doi.org/10.22323/1.256.0039
https://doi.org/10.22323/1.256.0039
https://arXiv.org/abs/1611.06758
https://doi.org/10.1051/epjconf/201817507020
https://doi.org/10.1051/epjconf/201817507020
https://doi.org/10.1103/PhysRevD.97.054514
https://doi.org/10.1103/PhysRevD.97.054514
https://doi.org/10.22323/1.336.0260
https://doi.org/10.22323/1.336.0260
https://arXiv.org/abs/1811.06004
https://doi.org/10.1103/PhysRevLett.86.592
https://doi.org/10.1103/PhysRevLett.86.592
https://doi.org/10.1134/1.1378872
https://doi.org/10.1134/1.1378872
https://doi.org/10.1103/PhysRevD.64.016003
https://doi.org/10.1103/PhysRevD.64.016003
https://doi.org/10.1103/PhysRevD.67.074034
https://doi.org/10.1103/PhysRevD.67.074034
https://doi.org/10.1103/PhysRevD.71.094001
https://doi.org/10.1103/PhysRevD.71.094001
https://doi.org/10.1103/PhysRevD.79.014021
https://doi.org/10.1103/PhysRevD.79.014021
https://doi.org/10.1016/j.nuclphysa.2015.07.018
https://doi.org/10.1103/PhysRevD.93.094502
https://doi.org/10.1140/epja/i2017-12221-x
https://doi.org/10.1103/PhysRevD.99.096011
https://doi.org/10.1103/PhysRevD.99.096011
https://doi.org/10.1140/epjc/s10052-020-08574-8
https://doi.org/10.1140/epjc/s10052-020-08574-8
https://doi.org/10.1140/epjc/s10052-021-08948-6
https://doi.org/10.1140/epjc/s10052-021-08948-6
https://doi.org/10.1140/epjc/s10052-021-09212-7
https://doi.org/10.1140/epjc/s10052-021-09212-7
https://doi.org/10.1016/j.physletb.2020.135352
https://doi.org/10.1016/j.physletb.2020.135352
https://doi.org/10.1103/PhysRevD.106.114017
https://doi.org/10.1103/PhysRevD.106.114017
https://doi.org/10.1140/epjc/s10052-019-7381-4
https://doi.org/10.1140/epjc/s10052-019-7381-4
https://doi.org/10.1103/PhysRevD.93.054045
https://doi.org/10.1016/S0370-2693(03)00607-5
https://doi.org/10.1016/S0370-2693(03)00607-5
https://doi.org/10.1016/S0370-2693(03)00701-9
https://doi.org/10.1103/PhysRevD.69.096004
https://doi.org/10.1016/j.physletb.2005.03.066
https://doi.org/10.1103/PhysRevD.71.116001
https://doi.org/10.1103/PhysRevD.71.116001
https://doi.org/10.1103/PhysRevD.74.036005
https://doi.org/10.1088/0954-3899/32/5/001
https://doi.org/10.1140/epjc/s2006-02527-5
https://doi.org/10.1140/epjc/s2006-02527-5
https://doi.org/10.1103/PhysRevD.75.096004
https://doi.org/10.1103/PhysRevD.75.096004
https://doi.org/10.1088/0954-3899/37/1/015003
https://doi.org/10.1088/0954-3899/37/1/015003
https://doi.org/10.1103/PhysRevD.79.034032
https://doi.org/10.1103/PhysRevD.88.056013
https://doi.org/10.1103/PhysRevD.88.056013
https://doi.org/10.1140/epjc/s10052-019-6654-2
https://doi.org/10.1140/epjc/s10052-019-6654-2
https://doi.org/10.1103/PhysRevD.98.054030
https://doi.org/10.1103/PhysRevD.98.054030
https://doi.org/10.1103/PhysRevD.95.105010
https://doi.org/10.1103/PhysRevD.94.116016
https://doi.org/10.1103/PhysRevD.94.116016
https://doi.org/10.1103/PhysRevD.75.094015
https://doi.org/10.1103/PhysRevD.75.094015


[50] A. Bhattacharyya, S. K. Ghosh, A. Lahiri, S. Majumder, S.
Raha, and R. Ray, Phys. Rev. C 89, 064905 (2014).

[51] K. Kamikado, N. Strodthoff, L. von Smekal, and J.
Wambach, Phys. Lett. B 718, 1044 (2013).

[52] H. Ueda, T. Z. Nakano, A. Ohnishi, M. Ruggieri, and K.
Sumiyoshi, Phys. Rev. D 88, 074006 (2013).

[53] R. Stiele, E. S. Fraga, and J. Schaffner-Bielich, Phys. Lett. B
729, 72 (2014).

[54] P. Adhikari, J. O. Andersen, and P. Kneschke, Phys. Rev. D
98, 074016 (2018).

[55] J. Braun and B. Schallmo, Phys. Rev. D 106, 076010
(2022).

[56] B. B. Brandt, G. Endrodi, E. S. Fraga, M. Hippert, J.
Schaffner-Bielich, and S. Schmalzbauer, Phys. Rev. D 98,
094510 (2018).

[57] S. S. Avancini, A. Bandyopadhyay, D. C. Duarte, and
R. L. S. Farias, Phys. Rev. D 100, 116002 (2019).

[58] B. S. Lopes, S. S. Avancini, A. Bandyopadhyay, D. C.
Duarte, and R. L. S. Farias, Phys. Rev. D 103, 076023
(2021).

[59] A. Ayala, B. A. Zamora, J. J. Cobos-Martínez, S.
Hernández-Ortiz, L. A. Hernández, A. Raya, and M. E.
Tejeda-Yeomans, Eur. Phys. J. A 58, 87 (2022).

[60] A. Ayala, L. A. Hernández, M. Loewe, J. C. Rojas, and R.
Zamora, Eur. Phys. J. A 56, 71 (2020).

[61] A. Ayala, S. Hernandez-Ortiz, and L. A. Hernandez, Rev.
Mex. Fis. 64, 302 (2018).

[62] A. Ayala, A. Bashir, J. J. Cobos-Martinez, S. Hernandez-
Ortiz, and A. Raya, Nucl. Phys. B897, 77 (2015).

[63] A. Ayala, L. A. Hernández, M. Loewe, and C. Villavicencio,
Eur. Phys. J. A 57, 234 (2021).

[64] A. Ayala, J. L. Hernández, L. A. Hernández, R. L. S. Farias,
and R. Zamora, Phys. Rev. D 103, 054038 (2021).

[65] A. Ayala, J. L. Hernández, L. A. Hernández, R. L. S. Farias,
and R. Zamora, Phys. Rev. D 102, 114038 (2020).

[66] A.Ayala,R. L. S. Farias, S.Hernández-Ortiz, L. A.Hernández,
D.M. Paret, and R. Zamora, Phys. Rev. D 98, 114008 (2018).

[67] A. Ayala, C. A. Dominguez, L. A. Hernandez, M. Loewe,
and R. Zamora, Phys. Rev. D 92, 096011 (2015); 92,
119905(A) (2015).

[68] A. Ayala, M. Loewe, and R. Zamora, Phys. Rev. D 91,
016002 (2015).

[69] A. Ayala, M. Loewe, A. J. Mizher, and R. Zamora, Phys.
Rev. D 90, 036001 (2014).

[70] A. Ayala, L. A. Hernández, A. J. Mizher, J. C. Rojas, and C.
Villavicencio, Phys. Rev. D 89, 116017 (2014).

[71] A. Das and N. Haque, Phys. Rev. D 101, 074033 (2020).
[72] R. Ghosh and N. Haque, Phys. Rev. D 105, 114029 (2022).
[73] H. Mao, Nucl. Phys. A925, 185 (2014).
[74] M. Mannarelli, Particles 2, 411 (2019).
[75] S. P. Klevansky, Rev. Mod. Phys. 64, 649 (1992).
[76] A. Schmitt, Introduction to Superfluidity: Field-Theoretical

Approach and Applications (2015), Vol. 888, 10.1007/978-
3-319-07947-9.

[77] T. Herpay and P. Kovács, Phys. Rev. D 78, 116008 (2008).
[78] B. B. Brandt, F. Cuteri, and G. Endrödi, Proc. Sci. LAT-

TICE2022 (2023) 144 [arXiv:2212.01431].
[79] B. B. Brandt, F. Cuteri, and G. Endrodi, arXiv:2212.14016.

ALEJANDRO AYALA et al. PHYS. REV. D 107, 074027 (2023)

074027-12

https://doi.org/10.1103/PhysRevC.89.064905
https://doi.org/10.1016/j.physletb.2012.11.055
https://doi.org/10.1103/PhysRevD.88.074006
https://doi.org/10.1016/j.physletb.2013.12.053
https://doi.org/10.1016/j.physletb.2013.12.053
https://doi.org/10.1103/PhysRevD.98.074016
https://doi.org/10.1103/PhysRevD.98.074016
https://doi.org/10.1103/PhysRevD.106.076010
https://doi.org/10.1103/PhysRevD.106.076010
https://doi.org/10.1103/PhysRevD.98.094510
https://doi.org/10.1103/PhysRevD.98.094510
https://doi.org/10.1103/PhysRevD.100.116002
https://doi.org/10.1103/PhysRevD.103.076023
https://doi.org/10.1103/PhysRevD.103.076023
https://doi.org/10.1140/epja/s10050-022-00732-8
https://doi.org/10.1140/epja/s10050-020-00086-z
https://doi.org/10.31349/RevMexFis.64.302
https://doi.org/10.31349/RevMexFis.64.302
https://doi.org/10.1016/j.nuclphysb.2015.05.014
https://doi.org/10.1140/epja/s10050-021-00534-4
https://doi.org/10.1103/PhysRevD.103.054038
https://doi.org/10.1103/PhysRevD.102.114038
https://doi.org/10.1103/PhysRevD.98.114008
https://doi.org/10.1103/PhysRevD.92.096011
https://doi.org/10.1103/PhysRevD.92.119905
https://doi.org/10.1103/PhysRevD.92.119905
https://doi.org/10.1103/PhysRevD.91.016002
https://doi.org/10.1103/PhysRevD.91.016002
https://doi.org/10.1103/PhysRevD.90.036001
https://doi.org/10.1103/PhysRevD.90.036001
https://doi.org/10.1103/PhysRevD.89.116017
https://doi.org/10.1103/PhysRevD.101.074033
https://doi.org/10.1103/PhysRevD.105.114029
https://doi.org/10.1016/j.nuclphysa.2014.02.011
https://doi.org/10.3390/particles2030025
https://doi.org/10.1103/RevModPhys.64.649
https://doi.org/10.1007/978-3-319-07947-9
https://doi.org/10.1007/978-3-319-07947-9
https://doi.org/10.1103/PhysRevD.78.116008
https://doi.org/10.22323/1.430.0144
https://doi.org/10.22323/1.430.0144
https://arXiv.org/abs/2212.01431
https://arXiv.org/abs/2212.14016

