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We explore the analytic structure of three-point functions using contour deformations. This method
allows continuing calculations analytically from the spacelike to the timelike regime. We first elucidate the
case of two-point functions with explicit explanations how to deform the integration contour and the cuts in
the integrand to obtain the known cut structure of the integral. This is then applied to one-loop three-point
integrals. We explicate individual conditions of the corresponding Landau analysis in terms of contour
deformations. In particular, the emergence and position of singular points in the complex integration plane
are relevant to determine the physical thresholds. As an exploratory demonstration of this method’s
numerical implementation we apply it to a coupled system of functional equations for the propagator and
the three-point vertex of ϕ3 theory. We demonstrate that under generic circumstances the three-point vertex
function displays cuts which can be determined from modified Landau conditions.
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I. INTRODUCTION

The spectrum of a quantum field theory is encoded in
the spectral properties of appropriate correlation func-
tions. Functional methods like Dyson-Schwinger equa-
tions (DSEs) or the functional renormalization group
provide a continuum approach for its calculation. In the
context of quantum chromodynamics (QCD), they are
tools which are by now well developed for spacelike
momenta. Timelike momenta, on the other hand, still pose
a challenge. Nevertheless, such methods are successfully
used, for example, in the case when suitable simplifying
models can be employed, see, e.g., [1–3] for reviews on
mesons, baryons and tetraquarks. Given the progress in
calculating elementary correlation functions in advanced
truncation schemes for spacelike momenta at a quantita-
tive level, e.g., [4–10], it is of course enticing to envisage
taking this to the timelike regime as well and perform
bound state calculations from first principles. The poten-
tial of this was recently illustrated for glueballs [11,12].

For propagators, various techniques for calculating on
the timelike side are already established, e.g., the contour
deformation method [13–21], the shell method [22], use of
the Cauchy-Riemann equations [23], the covariant spec-
tator theory framework [24], the Cauchy method [25,26],
or spectral representations including the Nakanishi integral
representation [27–41]. Also indirect methods have been
explored. This includes fits with trial functions, the
Bayesian spectral reconstruction method, machine learn-
ing methods, Gaussian processes, the Tikhonov regulari-
zation, or Padé approximants in various forms; see, for
instance, [42–56]. Moreover, purely analytical treatments
can provide additional constraints [46,57–63].
For three-point (and higher n-point) functions, which are

necessary ingredients for bound state calculations as well,
the situation is more complicated due to the presence of three
(or more) independent kinematic variables instead of only
one. However, for the application to the bound state
spectrum of QCD they are essential to go beyond
the widely used rainbow-ladder truncation with its inherent
limitations. Up to now, Bethe-Salpeter equations and tran-
sition form factors were investigated, e.g., with spectral
representations [64–76] or contour deformations [20,77–82],
see also [83,84]. The shell method was used in Ref. [4] to
calculate the quark-gluon vertex.
Here we push further in this direction and explore the

contour deformation method (CDM) for the calculation of
three-point functions. In Ref. [13] it was applied to the
special case of the fermion propagator of QED making use
of a special momentum routing. Later, it was continuously
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developed. For example, it was employed to explain
the Landau conditions for two-point integrals [19]. The
so-called ray method is a special realization using a
predefined grid consisting of rays in the complex
plane [21]. The versatility of the method was demon-
strated, for instance, by the application to scattering
amplitudes [20]. Here we consider general three-point
functions. Because of the more complicated kinematics,
this is more convoluted than in the case of two-point
functions and we start out with simplified kinematics
before we discuss the general case. As a direct application,
we illuminate how the Landau conditions [85,86], which
describe when a singularity in the form of a branch point or
pole in the external momenta arises, are realized within the
CDM. Understanding the origin of nonanalyticities of the
integral is mandatory to be able to perform the integrals
numerically for timelike momenta. In particular, it
becomes clear, as discussed in Sec. IV C, that for the
cases considered here, the positions of poles are not
required to be known exactly to take them into account
in the deformation of the integration contours of numeric
calculations. For the convenience of the reader, we shortly
summarize the Landau conditions in Sec. III, as one of the
main points of this work is their derivation within the
CDM. As an example, we study ϕ3 theory in three
dimensions numerically. En route, we also point out some
details for two-point integrals which were not necessarily
clear from the available literature. A concise summary of
the presented analytic results can be found in Ref. [87].
We will shortly introduce ϕ3 theory and its equations of

motion in the next section. The Landau conditions are
explained in Sec. III. We then discuss the numerical
methods to solve the equations for complex momenta in
Sec. IV and present the results in Sec. V. We conclude with
a summary. In the Appendices we provide details for the
Landau analysis of three-point functions and the generali-
zation to three different masses.

II. SETUP: ϕ3 THEORY AND ITS EQUATIONS
OF MOTION

It is often useful to explore properties of a theory or new
techniques using simple toy models. Here we choose ϕ3

theory to this end. The theory contains a scalar field with a
cubic interaction and is defined by the Lagrangian density

L ¼ 1

2
∂μϕ∂

μϕ −
1

2
m2ϕ2 þ g

3!
ϕ3: ð1Þ

We are interested in the analytic properties of the theory.
Since the most relevant contribution for the vertex is given
by a triangle diagram, see Fig. 1, this provides useful
insights into the methodology also for other theories,
among them QCD, where such diagrams appear.

The analytic analysis can be done in d dimensions. Only
for the numeric part in Sec. V we choose specifically d ¼ 3
because the theory is finite then and we do not need to
renormalize. For Yang-Mills theory, some aspects of the
analytic structure of propagators in lower dimensions were
studied using lattice, e.g., [88–90] or functional methods,
e.g., [7,91–96].
Finally, we need to comment on the fact that the theory is

unstable. Because of the form of the potential, any state can
decay into a state with a lower energy leading to an infinite
cascade. For the analysis of the analytic structure, this is
irrelevant. Perturbation theory can be applied formally [97]
and is known to five-loop order [98]. It should also be kept
in mind that the theory can be made physically meaningful
by embedding it into another theory. As a simple example,
consider adding a quartic interaction term which renders
the potential bounded from below. ϕ3 theory is also closely
related to other model theories like the Wick-Cutkosky
model [99] with its three-point interaction of two scalar
fields.
In the following, we work with Euclidean metric, viz., a

Wick rotation p0 → i p4 from Minkowksi space was
performed. The propagator reads then

Dðp2Þ ¼ 1

p2 þm2 þ Σðp2Þ : ð2Þ

m is the bare mass which is shifted by the self-energy
Σðp2Þ. At one-loop order of perturbation theory, it is (in
three dimensions)

Σðp2Þ ¼ −
g2

8π

arccot
�

2mffiffiffiffi
p2

p
�

ffiffiffiffiffi
p2

p : ð3Þ

The pole is shifted from −m2 by the self-energy and a cut
opens at p2 ¼ −4m2.
For nonperturbative calculations we consider the equa-

tions of motion for the propagator and the vertex from the
three-particle irreducible (3PI) effective action truncated to

FIG. 1. The equations of motion for the propagator (top) and the
vertex (bottom) from the three-loop truncated 3PI effective action of
ϕ3 theory. The former agrees with the one-particle irreducible
Dyson-Schwinger equation. The big blobs denote dressed vertices,
the small ones bare vertices. All internal propagators are dressed.
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three loops shown in Fig. 1 [100,101].1 The resulting
equation for the propagator is identical to its 1PI-DSE; see,
e.g., Refs. [7,100–104] for details on the equations’
derivations and useful tools. For the vertex, we work with
the 3PI equation to avoid the four-point function contained
in the 1PI-DSE. [NB: The respective 1PI-DSE would have
(i) the triangle diagram with one vertex bare instead of all
three dressed, and (ii) an additional swordfish diagram with
a dressed four-point function.] The equation is also
manifestly symmetric in the external legs in contrast to
the corresponding 1PI-DSE. In addition, we know that
quantitatively the 3PI-DSE is preferable over a one-loop
truncated 1PI-DSE in the case of the three-gluon vertex [8];
see Refs. [7,95] for more discussions and comparisons
between equations of motion from the 1PI and 3PI effective
actions. However, the technical aspects of the analysis
below can be repeated identically for the vertex 1PI-DSE
as well.
We parametrize the propagator Dðp2Þ and the vertex

Γðpa; pb; pcÞ as

Dðp2Þ ≔ Zðp2Þ
p2 þm2

ð4Þ

Γðpa; pb; pcÞ ≔ gΓ̄ðp2
a; p2

b; p
2
cÞ: ð5Þ

The equations of motion read

Dðp2Þ−1 ¼p2þm2−
g2

2

Z
q
Dðk2ÞDðq2ÞΓ̄ðk2;q2;p2Þ; ð6aÞ

Γ̄ðp2
a;p2

b;p
2
cÞ ¼ 1þ g2

Z
q
Dðk2aÞDðk2bÞDðq2Þ

× Γ̄ðp2
a;q2; k2aÞΓ̄ðp2

b;q
2; k2bÞΓ̄ðp2

c; k2a; k2bÞ;
ð6bÞ

with
R
q ¼

R
ddq=ð2πÞd and

k ¼ q − p; ka ¼ q − pa; kb ¼ qþ pb: ð7Þ

III. LANDAU CONDITIONS

We shortly summarize the main points of Landau’s
analysis of the analytic structure of Feynman diagrams
leading to the Landau conditions [85], see also [105]. The
starting point is the generic expression of a Feynman
diagram Fðp1;…; pnÞ with n legs, each with a momentum
pi, I internal propagators and L loops:

Fðp1;…; pnÞ ¼
Z YL

l¼1

ddql
ð2πÞd

YI
i¼1

Eðfpjg; fqjgÞ
ðk2i þm2Þ : ð8Þ

The dimension d can remain general. The internal momenta
ki are linear combinations of the external momenta pi
and the loop momenta qi. In general, the numerator
Eðfpjg; fqjgÞ can depend on internal and external
momenta. For ϕ3 theory it is 1 in the perturbative case.
Landau’s original analysis was indeed for perturbative
diagrams, but under certain conditions, to be discussed
in Sec. IV C, the analysis can be extended to nonperturba-
tive diagrams. Equation (8) can be rewritten using Feynman
parametrization:

Fðp1;…; pnÞ ∝
Z YL

l¼1

ddql
ð2πÞd

×
Z

1

0

YI
i¼1

dαi
δð1 −PI

i¼1 αiÞ
ðPI

i¼1 αiðk2i þm2ÞÞI : ð9Þ

In short, the Landau conditions are
(1) For each propagator i ¼ 1;…; I:

(a) k2i ¼ −m2 or
(b) αi ¼ 0.

(2) For each loop l ¼ 1;…; L:
P

i∈loop l αiki ¼ 0.
We assumed that in the loops the internal momenta ki are
chosen such that the loop momentum enters with positive
sign and prefactor 1, viz., ki ¼ ql þ � � �. If this is not the
case, additional minus signs appear in the second condition.
The first condition corresponds to two different cases. If

the on-shell condition is fulfilled, the propagators lead to a
vanishing denominator and thus a pole in the integrand. If,
on the other hand, for an internal propagator labeled by i
the condition αi ¼ 0 applies, this line will not contribute to
the diagram. Hence, we can contract that line to a point and
analyze the resulting diagram, which is called a contracted
diagram. This can be illustrated by the triangle diagram that
is reduced to a swordfish diagram when one αi ¼ 0, see
Appendix A and Fig. 2. As a consequence, not only the
original diagram but also all contracted variants have to be
analyzed and it needs to be determined which one creates
the leading singularity. The second Landau condition
ensures that the momenta are parallel. Hence, the surfaces
containing a potential singularity approach the integration
path parallel, and the contour cannot be deformed to avoid
the singularity.
To find the singularities of a given diagram, we have to

solve the Landau equations for nonvanishing αi and
consider also all possibilities of αi ¼ 0. Finally, it has to
be determined which of the resulting singularities is
leading.
It is convenient to contract the second condition with the

vectors kj to obtain a more compact representation:

1For conciseness, we also call the equations of motion of nPI
effective actions Dyson-Schwinger equations, although they are
conceptually somewhat different and usually refer to the equa-
tions of motion from the 1PI effective action. When we want to
distinguish equations of motion from different effective actions,
we refer to them as nPI-DSEs.
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Q · α⃗ ¼ 0; ðQÞij ¼ ki · kj; α⃗ ¼

0
BB@

α1

..

.

αn

1
CCA: ð10Þ

A solution to this equation automatically fulfills the second
Landau condition. From Eq. (9), one can see that 0≤αi≤1
with α1 þ α2 þ � � � þ αn ¼ 1. Solutions with other values
of the αi correspond to singularities on nonphysical sheets
which we do not take into account here.
As an illustrative example we show how the Landau

conditions can be used to obtain the branch point of the
one-loop self-energy diagram depicted in Fig. 2. Although
it is immaterial, we can think of k1 and k2 as k1 ¼ q − p
and k2 ¼ q. The matrix Q is given by

Q ¼
�

k21 k1 · k2
k1 · k2 k22

�
: ð11Þ

Because of momentum conservation at the vertices, the
internal momenta k1 and k2 are related by k2 − k1 ¼ p so
that their scalar product yields

k1 · k2 ¼
1

2
ðk21 þ k22 − p2Þ: ð12Þ

From the first Landau condition, we get for nonvanishing αi
that k21 ¼ k22 ¼ −m2. Hence,

Q ¼
 

−m2 −m2 − p2

2

−m2 − p2

2
−m2

!
: ð13Þ

Setting the determinant of Q to zero, we obtain

p2

�
m2 þ p2

4

�
¼ 0: ð14Þ

There are two solutions p2
1;2 to this equation. We still have

to check which of them corresponds to a physical threshold.
We plug the solution p2

1 ¼ 0 into Eq. (10):

Q · α⃗ ¼
�
−m2 −m2

−m2 −m2

��
α1

α2

�
¼ 0⃗: ð15Þ

The only nontrivial solution is

α1 ¼ −α2; ð16Þ

which cannot be fulfilled by two positive numbers. Thus,
for p2

1 ¼ 0 we would need to deform the integration
contour for the Feynman parameter integration, and we
cannot determine if this singularity is on the first Riemann
sheet; see, e.g., Ref. [106] for more details.
The case p2

2 ¼ −4m2 leads to

Q · α⃗ ¼
�
−m2 m2

m2 −m2

��
α1

α2

�
¼ 0⃗: ð17Þ

The solution is

α1 ¼ α2: ð18Þ

From α1 þ α2 ¼ 1 we obtain then

α1 ¼ α2 ¼
1

2
: ð19Þ

Thus, p2 ¼ −4m2 is a physical singularity of the self-
energy diagram.
For the triangle diagram the same analysis can be

repeated. The procedure is exactly the same as before.
We refer to Appendix A for details and continue here with
the solution. For the external momenta pa, pb, and pc, the
position of the branch point is determined by

FIG. 2. Momentum routing for the propagator’s one-loop self-energy (left), the triangle diagram (center), and the swordfish
diagram (right).
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p2
ap2

bp
2
c ¼ m2ðp4

a þ p4
b þ p4

c − 2ðp2
ap2

b þ p2
ap2

c þ p2
bp

2
cÞÞ: ð20Þ

The analysis in Appendix A shows that the physical thresholds are given by

p2
c ¼

2m2ðp2
a þ p2

bÞ þ p2
ap2

b þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
að4m2 þ p2

aÞ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
bð4m2 þ p2

bÞ
q

2m2

for − 4m2 ≤ p2
a; p2

b ≤ 0; and p2
a þ p2

b ≤ −4m2

p2
a ¼ −4m2 for p2

b þ p2
c ≥ −4m2

p2
b ¼ −4m2 for p2

c þ p2
a ≥ −4m2

p2
c ¼ −4m2 for p2

a þ p2
b ≥ −4m2: ð21Þ

The two distinct regions stem from the full triangle diagram
and the contracted triangle diagram, viz., the swordfish
diagram; see Fig. 2 and Appendix A.
Finally, we state the Landau condition for the specific

kinematic configuration p2
a ¼ p2

b ¼ p2 for which p2
c ¼

2p2ð1þ cos θÞ with θ the angle between pa and pb. As
derived in Appendix A, the branch point p2

B is then

p2
B ¼

(
−4m2 sin2 θ

2
for π=2 ≤ θ ≤ π;

−m2

cos2 θ
2

for 0 ≤ θ ≤ π=2:
ð22Þ

As an alternative to an explicit calculation, one can directly
plug the given kinematics into Eq. (21) to arrive at this
result. From the condition p2

a þ p2
b ¼ 2p2 < −4m2 it

follows that p2 ¼ −2m2 separates the two solutions. The
condition in terms of the angle θ follows from setting p2 ¼
−2m2 in p2

c ¼ 2p2ð1þ cos θÞ ¼ −4m2. Graphically, one
can visualize this by setting p2

a ¼ p2
b in Fig. 21.

IV. INTEGRATION FOR COMPLEX MOMENTA

We will now turn to the evaluation of integrals using
contour deformations. Such deformations are necessary
due to singularities in the integrand. In analogy to the
Landau analysis, we start with perturbative two- and three-
point integrals. Understanding this setup is key for non-
perturbative calculations which are discussed afterwards. In
the perturbative case, only the poles of the propagators are
relevant, but contour deformations can also handle poles
from dressed n-point functions or branch cuts and are thus
applicable to fully nonperturbative calculations as well. The
basic strategy is to deform the integration contour such as to
avoid poles and branch cuts of the integrand.
The integration is most conveniently performed in hyper-

spherical coordinates. The integration over angles θi can
create cuts for the radial integration variable r ¼

ffiffiffiffiffi
q2

p
.

These cuts have to be distinguished from the physical cuts

of correlation functions. If these cuts in the integrand cross
the positive real axis, the integration of the radial variable
can no longer be performed directly along the real axis.
Instead, a contour deformation is necessary moving the
integration path into the complex plane. The position of
the poles and branch cuts in the integrand can tell us about
the analytic structure of the integral as will be detailed
below. We discuss how to determine them and how to
choose the integration paths appropriately. These paths can
then also be employed in numerical calculations. We will
use the propagator, for which the corresponding techniques
have already been studied to some extent, to introduce the
basic idea and discuss some details of the method before we
turn to the more complicated case of the vertex.

A. Propagator

The one-loop two-point integral of Eq. (6a) was already
discussed in Ref. [19], in particular how to determine the
branch cuts. Here, we will add some more details con-
cerning deformations of the cuts necessary to avoid
seemingly singular points in the integration. We will also
switch from the quadratic variable q2 to r ¼

ffiffiffiffiffi
q2

p
. This not

only disentangles some ambiguities for the propagator
analysis but is actually necessary for the three-point
function as will be explained in Sec. IV B. We use a
generic mass m which could be the bare mass or a physical
(renormalized) mass. We set all dressings to one and
consider the denominators of the propagators. In general,
for any one-loop diagram they are of the form k2i þm2,
where ki is a linear combination of the external and internal
momenta. The integrand is singular when any denominator
is zero, hence we solve

k2i þm2 ¼ 0 ð23Þ

for r. For the propagator, we can choose the ki as q − p
and q, see Eq. (6a), where p and q are the external and
internal momenta, respectively. In the first case, the
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solution to Eq. (23) for a given value of p depends on the
angle θ1 between the momenta. We can consider the
solution as a parametric curve in θ1 ∈ ½0; π� or equiva-
lently in z1 ¼ cos θ1 ∈ ½−1; 1�:

γ�ðz1;p2;m2Þ ¼
ffiffiffiffiffi
p2

q
z1 � i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þp2ð1− z21Þ

q
¼

ffiffiffiffiffi
p2

q
cos θ1 � i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þp2 sin2 θ1

q
: ð24Þ

The parametrization for a cut will be central for the
remainder of this analysis and will also appear for the
three-point integral. For reference and comparison with
Ref. [19] we also give the solution for q2:

γ2�ðz1;p2;m2Þ ¼ −m2 −p2ð1− 2z21Þ
� 2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2z21ðm2 þp2ð1− z21ÞÞ

q
¼ −m2 þp2 cos ð2θ1Þ
� 2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 cos2 θ1ðm2 þp2 sin2 θ1Þ

q
: ð25Þ

Examples of these curves in the complex r ¼
ffiffiffiffiffi
q2

p
plane

are shown in Fig. 3. The singular points r ¼ �im from the
second denominator are also shown (green points). When
performing the r integration from the origin to the UV

cutoff, the branch cut must not be crossed which might
require deforming the contour. For the example when p2 is
purely imaginary, e.g., p2 ¼ im2 as in the left plot of Fig. 3,
the integration can be done in the standard way along the
real line. In the second example on the right, however, the
cuts cross the real line and the integration contour has to be
deformed by moving it into the upper half-plane. As
discussed in Ref. [19], a branch point p2

B emerges for
the external momentum if an end point of a curve touches a
pole and the integration contour cannot be deformed
anymore. We stress that the end points are important as
the cut can be deformed by moving also the angle
integration into the complex plane. The end points, how-
ever, are fixed. For values of p2 beyond p2

B, the possibility
of going around the pole on either side leads to a
discontinuous behavior and thus a cut in the external
momentum starting at p2 ¼ p2

B.
As it will be useful for the analysis of the three-point

integral, we have a more detailed look at the case when
p2 < 0 is real. The cuts are then either lines along the
imaginary axis if −m2 < p2 < 0, as both terms in Eq. (24)
are purely imaginary in this case, or they will be semi-
circles with attached lines on the imaginary axis. An
example for this is shown in Fig. 4. We have a problem
now, because the inner parts of the cuts run over the poles
at �i m and we would like to make a contour integration

FIG. 3. Examples for the singularity structure γ�ðz1;p2; m2Þ of the propagator r ¼
ffiffiffiffiffi
q2

p
integrand for p2 ¼ i m2 (left) and p2 ¼

ð−3þ 0.2iÞm2 (right). The lines denote branch cuts stemming from the angular integral with the value of the angle θ1 indicated by the
color. γþðz1;p2; m2Þ is the line extending further to the top. The green dots are the poles from the second propagator. The red dots
indicate the external p2 and are only plotted for reference.
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between the pole and the cut. In addition, the two cuts
touch at �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
. The solution lies in the complex-

ification of the angular integral. As for the r integral, we
do not need to perform the integral in a straight line but
can deviate from that path without changing the result. To
avoid the pole, we can use the following path which
avoids a given value θ�1 via a semicircle:

θ1 → θ�1 ¼
(
θ�1 þ s e�i

θ1−θ
�
1
−s

s
π
2 jθ1 − θ�1j < s

θ1 otherwise:
ð26Þ

s is a radius which we can choose conveniently. The sign
of the phase determines on which side the semicircle
passes θ�1 and must be chosen appropriately. The defor-
mation leads to a bulge in the cut which moves with θ�1.
Figure 5 illustrates this graphically for the positive sign.
As can be seen there, the created bulges always stay on
one side of the cut.
We can use such deformations of the θ1 integration to

avoid critical points in the r plane. For the propagator, we
have four such critical values of θ1. Two arise when the cut
is at the pole and can be determined directly from equating
the two denominators and setting q2 ¼ −m2 as

FIG. 4. Examples for the singularity structure of the propagator r ¼
ffiffiffiffiffi
q2

p
integrand for p2 ¼ −3m2. The left plot shows the cuts when

the angle integral in θ1 is performed in a straight line from 0 to π. The right plot shows the cuts when the angle integral is performed such
as to avoid the poles at �i m and gaps are opened at � ffiffiffiffiffiffi

−2
p

m using the path of Eq. (26). The two bulges at �2i m are a consequence of
deforming θ1 around �i m.

FIG. 5. Bulges from deforming the angle integration in θ1 via θ
þ
1

as given in Eq. (26) for the indicated values of θ�1.
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θ�p�1 ¼ arccos

�
�i

ffiffiffiffiffi
p2

p
2m

�
: ð27Þ

Two more are determined from the point where the four
cuts touch. There, the argument of the square root must
vanish, which leads to

θ�c�1 ¼ arcsin

�
�i

mffiffiffiffiffi
p2

p �
: ð28Þ

We distinguish the four cases by the letters p and c for
“pole” and “crossing,” respectively, as well as � in the
superscript. A path with such deformations is illustrated in
Fig. 4 for p2 ¼ −3m2. According to the rules for the
orientation of the created bulges described above, the signs
of the phases of the deformations have the signature 1, 1,
−1, −1 when θ1 goes from 0 to π. The first and fourth
bulges are for circumventing the poles at θ�p�1 , while the
second and third are for opening gaps at θ�c�1 . Formerly, the
deformations in the lower half-plane are not necessary
when integrating via the gap in the upper half-plane but
included here for completeness. The deformations are only
necessary for one cut, but naturally they introduce bulges
for the other cut as well.
When p2 moves to lower values, the end points inside the

semicircle move towards �i m. They arrive there for

p2
B ¼ −4m2: ð29Þ

Now there is no way left to perform the contour deforma-
tion as required, and a branch point p2

B appears in p2. It can
be determined directly from

γ−ð1;p2; m2Þ ¼ i m; ð30Þ

γþð1;p2; m2Þ ¼ −i m: ð31Þ

Depending on the imaginary part of
ffiffiffiffiffi
p2

p
, the upper or

lower pole obstructs the contour deformation. It is worth
pointing out that in the formulation with q there is no
solution p2 ¼ 0 which arises in the formulation with q2.
However, in that case a dedicated check confirms that for
p2 ¼ 0 no problem for the integration arises and the
solution can be discarded [19].
For the numerical integration an explicit integration

contour in the r plane needs to be chosen. A straightforward
choice is along a ray from the origin through the value of
the external

ffiffiffiffiffi
p2

p
up to some fixed end point and from there

to the UV cutoff, for details, see Appendix A of [21]. With
this particular choice of the contour, the method is also
known as the ray method, but any other contour not
crossing any cuts is allowed as well.
It is illuminating to have a closer look at the case of

vanishing mass. The condition for the branch point, Eq. (29),

yields a branch point at the origin. Nevertheless, cuts appear
in the form of two semicircles with starting points at
r ¼

ffiffiffiffiffi
p2

p
. So it might seem that no integration from the

origin to the UV is possible. However, as discussed in
Ref. [21], the cut can be passed by

ffiffiffiffiffi
p2

p
if the integrand or

the integral measure counteract the singularity there, viz., the
circle is open at exactly this point. This is realized, for
example, for QCD in three and four dimensions. A counter-
example is QCD in two dimensions, where the contour
cannot be deformed in perturbative calculations and pertur-
bation theory is hence ill defined. Nonperturbatively, the
gluon propagator is sufficiently suppressed to overcome
this [44,88,92,94], and the theory is well defined.
We close the discussion of the propagator with the

consideration of additional nonanalyticities in the propaga-
tor. Up to now we only considered a pole. However,
although the analysis was done perturbatively, it applies
equally to any mass irrespective of its origin. Of importance
is only the fact that the propagator has a pole, which in a
nonperturbative calculation will be at the dynamically
determined value of the mass. Wewill explicitly demonstrate
this in Sec. V for a scalar propagator where the bare mass is
shifted to a lower value by the interaction. The analysis also
applies to complex values of masses. The phase just leads to
a rotation of the related cut but otherwise the structure is
identical. The case of complex conjugate poles in this
context was investigated in Refs. [16,82,107,108].

B. Vertex

We now proceed to the triangle diagram, see Fig. 2, with
external momenta pa, pb, and pc. For the internal momenta
ki, i ¼ 1, 2, 3, we choose

k1 ¼ ka ¼ q − pa; ð32aÞ

k2 ¼ kb ¼ qþ pb; ð32bÞ

k3 ¼ kc ¼ q: ð32cÞ

The angle between the two external momenta pa and pb is
θ, and the internal momentum q contains two relevant
angles θ1 and θ2:

pa ¼ jpaj

0
BBB@

0

0

0

1

1
CCCA; pb ¼ jpbj

0
BBB@

0

0

sin θ

cos θ

1
CCCA;

q ¼ r

0
BBB@

sin θ1 sin θ2 sin ϕ

sin θ1 sin θ2 cos ϕ

sin θ1 cos θ2
cos θ1

1
CCCA: ð33Þ
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We have taken the number of dimensions to be four. The
angle ϕ can be integrated out trivially as no quantity
depends on it. We thus set it to zero here. The analysis can
be straightforwardly extended to three or more than four
dimensions. For two dimensions, only one angle, θ1,
appears, but as will become clear below, θ2 plays no
crucial role and the same arguments apply. Note that in
Eq. (6b) the momenta squared were used as arguments of
the vertex dressings. In the following we will also use two
momenta squared (p2

a, p2
b) and the angle between them (θ)

which is related to the third momentum square by

cos θ ¼ ðp2
c − p2

a − p2
bÞ=

ffiffiffiffiffiffi
p2
a

p ffiffiffiffiffiffi
p2
b

q
. These two sets of

variables are equivalent and we choose the one most
suitable for the task at hand.
One propagator creates poles at �i m. The others

produce branch cuts for

k2a þm2 ¼ q2 þ p2
a þm2 − 2

ffiffiffiffiffiffiffiffiffiffi
q2p2

a

q
cos θ1; ð34aÞ

k2bþm2 ¼ q2þp2
bþm2

þ2

ffiffiffiffiffiffiffiffiffiffi
q2p2

b

q
ðcos θ cos θ1þ sin θ sin θ1 cos θ2Þ:

ð34bÞ
We call the resulting cuts γa�ðz1;p2

a; m2Þ and
γb�ðz̃;p2

b;m
2Þ, where

z̃ ¼ cos θ̃ ¼ cos θ cos θ1 þ sin θ sin θ1 cos θ2: ð35Þ

Again, we use the cosines of the angles where convenient.
As required, z̃ ∈ ½−1; 1�. The branch cuts have the same
form as in Eq. (24) but with their own values for the angles
and external momenta, viz.,

γa�ðz1;p2
a; m2Þ ¼ γ�ðz1;p2

a; m2Þ; ð36aÞ

γb�ðz̃;p2
b; m

2Þ ¼ γ�ð−z̃;p2
b; m

2Þ: ð36bÞ

The minus before z̃ stems from the different sign of the
external momentum in kb. The two cuts lead to a compli-
cated structure of the r integrand in the complex plane as
illustrated in Fig. 6.
Before we continue, it is useful to clarify the different

types of cuts that appear and their interrelation to the
integration contours. The considered triangle integral has
the following form reduced to the relevant parts:

Z
drrd−1fðq2; p2

a; p2
b; p

2
cÞ ð37Þ

with

FIG. 6. Examples for the singularity structure of the triangle r ¼
ffiffiffiffiffi
q2

p
integrand. The lines denote branch cuts stemming from the

angle integral with the value of the angle θ1 indicated by the color. The green dots are the pole from the third propagator, the red dots
indicate the external p2

a and p2
b. The external angle is set to θ ¼ π.
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fðq2; p2
a; p2

b; p
2
cÞ ¼

Z
dΩ

1

q2 þm2

1

ðq − paÞ2 þm2

×
1

ðqþ pbÞ2 þm2
; ð38Þ

where dΩ represents the angular part of the d-dimensional
integration. The radial integration is in r ¼

ffiffiffiffiffi
q2

p
. The

angular integrations lead to cuts of the function f in the
internal variable r due to the poles of the second and third
propagators. The first propagator, on the other hand, creates
poles. The cuts and poles shown in the figures correspond to
these cuts and poles. The standard integration for the angles
is from 0 to π, but it can be deformed leading to a different
form of the cuts. For the integration of the radial variable in
Eq. (37), we need to find an integration contour that avoids
the cuts and the pole. This determines the integration contour
for r. Finally, if such contour deformations are not possible,
nonanalyticities in the externalmomenta emerge in the form
of a threshold surface (corresponding to a simple branch
point for the two-point integral).
We will now discuss this in detail for a kinematically

simpler case before we come to the general one.

1. Restricted kinematics

The situation is simplified by restricting the kinematics
to p2

b ¼ p2
a ¼ p2. The second cut (from kb) is then always

on top of the first (from ka) and the third momentum
squared is p2

c ¼ 2p2ð1þ cos θÞ.
We start with a single specific point for which the

situation is not only trivial but also physically clear. When
θ ¼ π, the external momenta pa and pb are antialigned.
The two denominators agree then and effectively we have a
two-point integral. Hence, the branch point for p2 is
at p2

B ¼ −4m2.2

For θ < π, one needs to determine the points in r which
affect the contour deformation. We call them singular
points. In the case of the two-point integral this happens
when the end point of the cut lies at a pole of the other
propagator, viz., the singular points are �i m. Here, how-
ever, we can also encounter a nonanalyticity in the integrand
when there is a set of θ1 and θ2 for which both cuts are at the
pole or cuts coincide otherwise in a certain way. For the
two-point integral, the end points of the angle integral are
relevant, because they cannot be changed whereas the
integration contour between them can be deformed. For
the three-point integral, there are two angles and the end
points of the innermost angle integral become important,
viz., θ2 ¼ 0 or π, while the θ1 integral requires more care.
For values of θ2 between 0 and π, the related cut γb� is

restricted to a subset of the other one, γa�. Only γb�
depends on the external angle θ. Varying θ moves the
starting and end points and can also restrict γb� to a subset
of γa�.
In Fig. 7 the cut structure in the complex r plane is

illustrated for θ2 ¼ π. There are four cuts (two from each γ)
which are partially on top of each other. To disentangle
them, the value of θ1 is shown along the third axis. The
decisive observation is that a single line can be deformed by
taking the angle θ1 into the complex plane, but if there are
several lines, this will affect the others as well. Hence, it is
possible that no suitable deformation of the angle integra-
tion contour exists. When this happens, we have found a
threshold in the external momenta. Clearly, such a situation
can only arise if two cuts come close to each other for a
certain value of the angle. Thus, we will first determine
when the two cuts agree for general θ1.
To this end, we compare the solutions for r, see Eq. (36).

They agree if the following equation is fulfilled for p2
b ¼

p2
a ¼ p2 and θ2 ¼ 0 or π (denoted by the two signs)3:

− cos θ1 ¼ cos θ cos θ1 � sin θ sin θ1: ð39Þ

Dividing by cos θ1 (excluding θ1 ¼ π=2 for now) we can
rewrite this as

−1− cos θ ¼ −2 cos2
�
θ

2

�
¼�2 cos

�
θ

2

�
sin

�
θ

2

�
tan θ1;

− cot

�
θ

2

�
¼� tan θ1 ¼ tanð�θ1Þ: ð40Þ

Using cotðxÞ ¼ − tanðx − π=2Þ, we find the solution

θ1;c� ¼ � θ

2
þ π

2
: ð41Þ

Alternatively, one can show this directly from Eq. (39) by
using an elementary angle addition theorem.
We distinguish now two cases for the agreement of the

two cuts. One possibility is that they meet at the position of
one of the poles of the third denominator, r ¼ �im. To
determine the branch point in the external momentum, we
set the first branch cut equal to �im. This leads to

ffiffiffiffiffiffiffiffiffi
p2
B;1

q
¼∓ 2im cos θ1; ð42Þ

where the upper/lower sign is the solution for γaþ=γa−.
Note that this is in agreement with the two-point case
before setting θ1 to zero. The difference here is that θ1 is
determined by the agreement of the two cuts. Thus, we plug

2When the present case is generalized beyond perturbation
theory, one has to ensure that no kinematic divergences occur in
special cases. Then, as discussed in Ref. [109], the limit θ → 0
and the integration cannot be interchanged.

3It should be noted that γaþ can only agree with γbþ (and
similar for γa− and γb−) except when all four cuts come together
for the same value of θ1. However, the two solutions lead to the
same result which is why we ignore this subtlety here.
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in the solution θ1;c�, Eq. (41). Here, one needs to choose θ2
as 0 or π based on which pole one wants to avoid. However,
the final result for p2

B is independent of that choice:

p2
B;1 ¼ −4m2 cos2

�
� θ

2
þ π

2

�
¼ −4m2 sin2

θ

2
: ð43Þ

This is one possible branch point, arising from the end
points in the θ2 integration touching a pole at �i m for the
given θ1.
We illustrate now why the situation with the cuts from

two propagators agreeing at the pole of the third propagator
leads to a threshold. We start with a point p2 before the
threshold so that the crossing of the cuts happens before
�i m. It is then possible to deform each cut such that it
bypasses the pole in the upper half-plane, e.g., by using
semicircles as given by Eq. (26). The pole is passed for the
following values of θ1 for the first and second cut:

θ�a�1;pole ¼ arccos

�
�i

ffiffiffiffiffi
p2

p
2m

�
; ð44Þ

θ�b�1;pole ¼ arccos

�
�i

ffiffiffiffiffi
p2

p
2m

�
� θ; ð45Þ

respectively. As it turns out, we need to choose opposite
signs for the phases of the semicircles for the two cuts. Of
course, every deformation in one cut also introduces a
deformation in the other. Thus, as the crossing of the cuts
comes closer to �i m, the two deformations start to
interfere until they are no longer possible if eventually
the crossing is at�i m. The situation with p2 slightly before
the threshold is illustrated in Fig. 8. For completeness,
also the necessary deformations to open a gap where all
cuts meet, which happens for

θ�a�1;gap ¼ arcsin

�
�i

mffiffiffiffiffi
p2

p �
; ð46Þ

θ�b�1;gap ¼ arcsin

�
�i

mffiffiffiffiffi
p2

p �
� θ; ð47Þ

are included.
The second relevant possibility is realized differently,

and the poles at �i m are not involved because a singular
point is reached for r closer to the origin. As illustrated in
Fig. 8 from the previous example, it is also necessary to
deform the contour at the point where all four cuts meet on
the imaginary axis. Again, this is possible when different
signs for the phases in the deformations, Eq. (26), can be

FIG. 7. Examples for the singularity structure of the triangle r ¼
ffiffiffiffiffi
q2

p
integrand. The lines denote branch cuts stemming from the θ1

angle integral. The red line is γaþ, the orange line γa−, the blue line γbþ, and the cyan line γb−. The green dots are the poles from a
propagator, the magenta ones indicate where the relevant crossings of cuts/poles are. Left: p2 ¼ −3m2, θ ¼ 2π=3, θ2 ¼ π, two cuts cross
at i m so the magenta dot is at the same point as a green one. Right: p2 ¼ −4m2=3, θ ¼ π=3, θ2 ¼ π, four cuts touch at −m2=3. The
black lines are projections of the cuts into one plane.
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chosen, but it is prevented when the cuts meet for the same
values of θ1. Then it is impossible to open a gap through
which the r integration can be performed and a branch
point emerges.
To find this point, we take the solutions for the branch

cuts from the first denominator, γa�, and determine when

the last term, which distinguishes the two solutions, is zero.
From setting the argument of the square root to zero, see
Eq. (24), we obtain the condition

p2
B;2 ¼ −

m2

1 − z21
¼ −

m2

sin2 θ1
: ð48Þ

[NB: Equation (46) was actually determined from this
condition.] Plugging in the solutions Eq. (41) for θ1, this
leads to

p2
B;2 ¼ −

m2

sin2 ð� θ
2
þ π

2
Þ ¼ −

m2

cos2 θ
2

: ð49Þ

There is an alternative approach to obtain this result.
From a naive analysis that takes into account only the two
propagators with the momenta ka and kc, which actually
corresponds to the analysis of a contracted diagram, we
know that there is a branch point for p2

a ¼ −4m2.
However, we discarded it because of the branch point
at p2

a > −4m2. The former branch point also exists for p2
c.

Thus, using p2
c ¼ 4p2

a cos2 ðθ=2Þ, we can rewrite this to a
condition for p2

a: p2
a ¼ −m2=cos2ðθ=2Þ. This is Eq. (49)

from before.
We now have identified two possible branch points in p2:

p2
B;1 and p2

B;2. It remains to be checked under what
conditions which one is relevant. In Fig. 9 we show the
two solutions and the corresponding singular points as a
function of q2 which prevent a proper integration, viz., the
points where cuts or poles intersect. For the first solution
this happens at q2c;1 ¼ −m2, for the second at

q2c;2 ¼ γ2a�ðθ1;c;p2
B;2; m

2Þ ¼ −m2 tan2
θ

2
; ð50Þ

FIG. 9. Left: the positions of the two potential branch points from Eqs. (43) and (49). Right: the critical points as functions of θ. The
dashed lines correspond to the irrelevant cases and the continuous ones to the physical solutions.

FIG. 8. Cut structure for the triangle r ¼
ffiffiffiffiffi
q2

p
integrand at

p2
a ¼ p2

b ¼ −2.5m2, θ ¼ 2π=3, and θ2 ¼ π when θ1 is deformed
such as to avoid the singular points. The threshold for this value
of θ would start at p2 ¼ −3m2. The avoidance of singular points
can clearly be seen in the projection (black). Colors are as in
Fig. 7. The poles at �i m are denoted by the green lines. The
jumps in the colors for some deformations are due to the chosen
parametrization of the cuts.
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where we plugged in the solutions for θ1 and p2, Eqs. (41)
and (49), respectively, into the expression for the
cut, Eq. (24).
At θ ¼ π=2 both solutions agree. For θ > π=2, it is clear

from Fig. 9 that the relevant solution is p2
B;1, as the pole in

q2 at −m2 is the first critical point hit. For θ < π=2, on the
other hand, the first singular point hit comes from the
second solution which is, consequently, relevant in this case.
We want to add that all of these considerations were

checked graphically by plotting the branch cuts in the r
plane for and around the respective solutions to confirm
that the contour deformation is indeed prohibited by these
configurations. In this context it should also be mentioned
why we chose to work with r ¼

ffiffiffiffiffi
q2

p
instead of q2. The

reason is that ambiguities can arise when q2 is used because
one value of q2 corresponds to two values of r. Hence, it is
possible that a contour deformation is not possible in q2 but
it is in r. This can be seen in the parametrizations of the cuts
in r and q2, Eqs. (24) and (25), respectively. The latter is
oblivious of the sign of cos θ1. Solving the condition for
agreement between the two cuts requires then to solve also
for the opposite sign and leads to the additional solutions
θ1 ¼ θ

2
and π − θ

2
. It can indeed happen that for certain

kinematic configurations no contour deformation in q2 is
possible for these values but in r it is. Hence this is an
artifact, and we use r throughout. For the propagator self-
energy this problem did not appear and working in q2 is
thus possible.
To summarize, for the chosen kinematics there is a

branch point at

p2
B ¼

8<
:

−4m2 sin ðθ
2
Þ2 π

2
≤ θ ≤ π

−m2

cos ðθ
2
Þ2 0 ≤ θ ≤ π

2
:

ð51Þ

This agrees with the Landau analysis discussed in
Appendix A. The existence of different solutions below
and above θ ¼ π=2 in both approaches can be directly
related. For θ > π=2, the branch points come from the
interplay of all three denominators. On the other hand, the
solution for θ < π=2 arises from a contracted diagram in
the Landau analysis. This is also evident in the contour
analysis, as this branch point is created from only two
propagators.

2. General kinematics

Finally, we consider general kinematics. We start with
the case where all three propagators are involved in creating
the threshold. As for the restricted kinematics discussed
above, this corresponds to the case of the triangle diagram
without any contractions for the Landau analysis. In our
choice of routing, there is one propagator that creates poles
at�i m. We thus have to determine when the other two cuts

cross that point. This can be derived, for example, by
setting Eq. (36) to �i m. This leads to the conditions

ffiffiffiffiffiffi
p2
a

q
¼ 2i m cos θ1; ð52aÞ

ffiffiffiffiffiffi
p2
b

q
¼ −2i mðcos θ cos θ1 þ sin θ sin θ1Þ; ð52bÞ

where we have chosen the specific end point θ2 ¼ 0 in the
second case and used the pole at i m. θ1 is now fixed from

2i m ¼
ffiffiffiffiffiffi
p2
a

p
cos θ1

¼ −

ffiffiffiffiffiffi
p2
b

q
cos θ cos θ1 þ sin θ sin θ1

ð53Þ

as

tan θ1;s ¼
−

ffiffiffiffi
p2
b

pffiffiffiffi
p2
a

p − cos θ

sin θ
: ð54Þ

Plugging this into Eq. (52a) yields

p2
a ¼ −

4p2
am2 sin2 θ

p2
a þ p2

b þ 2
ffiffiffiffiffiffi
p2
a

p ffiffiffiffiffiffi
p2
b

q
cos θ

; ð55Þ

where we used cos arctan x ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
. Finally, we

express the angle θ by the external momenta, cos θ ¼
ðp2

c − p2
a − p2

bÞ=ð2
ffiffiffiffiffiffiffiffiffiffiffi
p2
ap2

b

q
Þ, leading to

p2
a ¼ −4m2p2

a
4p2

ap2
b − ðp2

c − p2
a − p2

bÞ2
4p2

ap2
b

1

p2
c
;

p2
ap2

bp
2
c ¼ m2ðp4

a þ p4
b þ p4

c − 2ðp2
ap2

b þ p2
ap2

c þ p2
bp

2
cÞÞ:
ð56Þ

This is identical to the Landau condition, Eq. (A6), derived
in Appendix A.
We know from the Landau analysis in Appendix A that

this solution only applies for certain values of the external
momenta. In summary, only one solution of this quadratic
equation corresponds to a threshold and the condition p2

a þ
p2
b < −4m2 needs to be fulfilled. We will first explain why

only one solution is relevant. To this end, we solve the
condition for p2

c:

p2
c� ¼ 1

2m2

�
2ðp2

a þ p2
bÞm2 þ p2

ap2
b

�
ffiffiffiffiffiffi
p2
a

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2 þ p2

a

q ffiffiffiffiffiffi
p2
b

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2 þ p2

b

q �
: ð57Þ
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For given p2
a and p2

b, one can calculate the angle between
pa and pb from this which we call θ�. This angle
influences the cut of only one propagator. As it turns
out, there is a decisive difference for the position where the
cuts from θþ and θ− touch, see Fig. 10 for an example. For
θ−, the contour can be deformed around this singular point
and thus no threshold emerges. For θþ, on the other hand,
one cut has the opposite direction and, similar to the
discussion for the restricted kinematics, this leads to the
opposite orientations of the semicircles. The solution
leading to a threshold is thus p2

cþ in agreement with the
analysis in Appendix A.
Now we turn to the question of how the condition p2

a þ
p2
b < −4m2 emerges. Again, the reason is that for certain

configurations there are singular points in the r plane which
are closer to the origin than �i m. We first motivate the
existence of further thresholds by considering only two
propagators. For one, we choose the form q2 þm2 and for
the other ðq − piÞ2 þm2, where i ∈ fa; b; cg. This leads to
the following three thresholds:

p2
a ¼ −4m2; ð58Þ

p2
b ¼ −4m2; ð59Þ

p2
c ¼ −4m2: ð60Þ

Consequently, there is a threshold for all three external
momenta squared at −4m2. However, changing the routing
during an actual numerical calculation would be tedious.
Furthermore, we do not know if these thresholds really
come from singular points closer to the origin than �i m.
Thus we continue now with the original kinematics,
Eq. (32), and determine the singular point.
In the following we assume p2

b < p2
a without loss of

generality. First, we distinguish three cases depending on
where the poles at �i m are in relation to the cuts. Since
they can be inside or outside of the circles, there are three
possible combinations. For p2

b < p2
a < −2m2, the poles are

inside both circles and p2
a þ p2

b < −4m2. From the results
obtained above we know that we can deform the contour
appropriately in this case. For −2m2 < p2

b < p2
a, the pole is

outside of the circles. However, the cuts touch before
creating a singular point. Also for p2

b < −2m2 < p2
a the

cuts touch before the pole which lies inside the circle
related to pa and outside of the one related to pb. Testing
p2
c ¼ −4m2, as determined from the considerations above,

we find that the cuts touch at one point but do not cross, see
Fig. 11 for an example. Shifting θ determined from
c ¼ −4m2, the cuts either do not cross anymore or cross
at two points. The crucial point is that we need to deform
the contour such that a gap opens between the two cuts.
This is not possible when the cuts only touch, but when the
cuts cross in two places, it can be realized, because we can

FIG. 10. The cuts for p2
a ¼ −1.8m2, p2

b ¼ −2.4m2, and θ1 ∈ ½0; π=2�. In the left/right plot, θþ=θ− is used. The contours are
deformed around the point where the cuts touch. This opens a path for θ− but not for θþ as can be seen in the projections (black). Colors
are as in Fig. 7.
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use several deformations with opposite orientations. Since
the effect of deforming θ is different for the two cuts, viz.,
the distance to the original path differs, a gap can be opened
by choosing the parameters appropriately; see Fig. 11 for
an example.
The position of the touching point isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2

a þ p2
bÞ=2þm2

q
. The poles at �i m also create thresh-

olds. Thus, they create the highest threshold if
p2
a þ p2

b < −4m2. Otherwise, the two cuts touching before
the poles create it. This explains the result of the Landau
analysis in terms of singular points in the r integration.
Finally, we can set p2

b ¼ p2
a ¼ p2 to compare with the

results from IV B 1. The singular point is then atffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
. Plugging in the value for p2 at the branch

point from Eq. (49), we recover Eq. (50).

C. Generalization to the nonperturbative case

The analyses of the propagator and the vertex were using
perturbative expressions. For nonperturbative calculations,
we need to consider a few generalizations. However, it
should be emphasized that in the nonperturbative case only
one-loop diagrams appear for the case considered here;
see Fig. 1.

We start by discussing the propagator. In the perturbative
case, it has a pole corresponding to the bare mass m.
Nonperturbatively, this mass is shifted, but besides a
different numeric value of the mass, the analysis of the
equation and the procedure to deform the contour remain
the same. Note that it is not even necessary to know the
value of the mass extremely precisely, as the deformed
contour is typically chosen not to pass the pole very closely.
For example, the extraction of the mass in the example of
Sec. V works reasonably well.
Beyond poles, we also need to consider branch cuts of

the propagators which also create singularities in the r
integration that have to be avoided. If such a cut exists, it
can be treated in a similar way as poles by considering it as
a continuum of points �i mc starting at a threshold value
and going to �i∞. For each point of the propagator cuts,
the angle integration results in cuts in the plane of the r
integration as given by Eq. (24) but withm replaced bymc.
Having a continuum of such points, this gives an area in
the r plane forbidden for the integration. Such a region is
illustrated in Fig. 12 where it is plotted form2

c ∈ ½m2; 3m2�.
Although it seems that the freedom for the integration is

very restricted, a simple integration path passing
ffiffiffiffiffi
p2

p
works. Also curves for higher values ofm2

c do not interfere

FIG. 11. Cuts of the triangle diagram for p2
a ¼ −1.2m2, p2

b ¼ −2.2m2, and θ1 ∈ ½0; π=2�. In the left plot, p2
c ¼ −4m2, and the cuts

touch at
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2

a þ p2
bÞ=2þm2

p
. In the right plot, the value for θ is slightly shifted compared to the left plot and the cuts cross at two

points. However, a contour deformation can be found that allows to lead the integration out of the two circles as can be seen by the
projected cuts in black. Colors are as in Fig. 7.
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with such an integration contour. Formally, the area
forbidden by a cut in the propagator is given by

γcut� ðz1;p2; m2
cÞ ¼

ffiffiffiffiffi
p2

q
z1 � i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

c þ p2ð1 − z21Þ
q

¼
ffiffiffiffiffi
p2

q
cos θ1 � i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

c þ p2 sin2 θ1

q
; ð61Þ

where mc varies from the start of the cut until infinity
and θ1 ∈ ½0; π�.
It remains to discuss nonperturbative vertices. Again, we

identify singularities in the dressing functions. In an
iterative solution, one can start with the perturbative
expressions and then include the created branch cuts in
the next step. Let us consider the dressed vertex in the
propagator equation, see Eq. (6a) and Fig. 1, as the simplest
case. The three incoming momenta are −p, −qþ p, and q.
For general kinematics, it is advantageous to employ
convenient variables of the dressing. We choose variables
based on the permutation group S3 [110], which are also
used in applications in QCD, e.g., [4,8,110]. We have then
two angles and one scale variable S0 ¼ ðp2

a þ p2
b þ p2

cÞ=6
in which the singularities are expected. In the propagator
equation, S0 ¼ ðp2 þ q2 þ p · qÞ=3. Note that this looks in

structure similar to the arguments of the propagators with
the exception of a missing factor 2 in front of p · q and the
overall factor 1=3. We thus have to solve S0 ¼ −m2

s , where
−ms is the singularity in the dressing. The sign was chosen
in analogy to poles in the propagator. This yields

γS0� ðz1;p2;m2
sÞ¼

1

2

ffiffiffiffiffi
p2

q
z1� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3
m2

sþp2

�
1−

1

4
z21

�s
: ð62Þ

The resulting forbidden region does not introduce a new
singularity in the integral. In general, one can convince
oneself graphically that the solution of an equation of the
form p2 þ q2 þ np · q ¼ −sm2 depends on the variable n
and s as follows: s determines the form of the curve and n
varies its length. Since we have studied the case s ¼ 1 and
n ¼ 2 in detail, we can directly infer that changing n and s
does not introduce any new relevant obstructions. In
addition, we also tested the effect of introducing a phase,
although our results only show cuts for real m2

s , Even then
we did not find additional relevant obstructions and
conclude that the nonperturbative propagator can be
calculated as determined in the purely perturbative
case. A convenient integration contour is from the origin
via

ffiffiffiffiffi
p2

p
beyond all the cuts and then in an arc to the

UV cutoff.
Finally, the same procedure needs to be applied to the

triangle diagram. The S0 variable for two vertices falls into
the same class as the propagators with momenta q − pa and
qþ pb. The third one is slightly more complicated, but
again a graphical analysis shows no new obstructions occur
as long as the vertex singularity is further away from the
origin as the one from the propagators. For the numeric
calculation of Sec. V, where we restricted ourselves to the
kinematics of Sec. IVA, this is automatically the case as
can be seen from Eq. (51). Of course, m is now the
nonperturbative mass. The numeric results confirm that
conclusion.

V. NUMERICAL SOLUTION OF THE
COUPLED SYSTEM

To test the analytic findings of the preceding section, we
implement the coupled system of propagator and vertex
DSEs numerically for the simplified kinematics p2

a ¼
p2
b ¼ p2, see Sec. IV B 1 for details. The system is solved

by a fixed point iteration starting from Zðp2Þ ¼ 1 ¼
Γ̄ðpa; pb; pcÞ using standard methods, see, e.g., [111].
As the system is very stable, we can calculate directly on a
momentum grid in the complex plane and no more
complicated methods like rays [21] are required. We work
in three dimensions where all integrals are finite. We will
give all dimensionful quantities in units of mass which we
set to one if not stated explicitly.

FIG. 12. Forbidden region in the complex r ¼
ffiffiffiffiffi
q2

p
plane for

different values of the mass parameter m2
c, which is indicated by

color, and the external p2 ¼ ð−3þ 0.1iÞm2.
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To get an idea about the effect of the kinematic
approximation, we compare this setup with the full setup
for Euclidean momenta. In this case, the integration contour
can be along the positive real axis. The results are shown in
Fig. 13. As can be seen, the effect of the approximation on
the propagator is tiny. For the vertex, the dressing shows a
quantitative change for small momenta, which, however, is
also small. Nevertheless, it should be noted that small
differences in the spacelike region do not forbid qualitative
differences on the timelike side, see Refs. [80,81] for an
example.
For the calculations in the complex plane, we continue

with the restricted kinematics only. For momenta with a
nonvanishing imaginary part, the contour deformation can
be directly implemented as the cuts have broad openings
as illustrated in Fig. 3. Only for real p2 < −m2, more care
is required due to the cut structure as shown in Fig. 4.
Instead of deforming the angle integration as described in
Sec. IVA, we simply avoid the negative real axis and
always keep a small imaginary part. This turned out to be
sufficient.
As expected, we observed that the perturbative pole of

the propagator moves to a smaller value, viz., mr < m
wheremr is the effective mass. We also find a branch cut on
the timelike semiaxis. The discontinuity of the branch cut is
maximal at the branch point. The positions of the pole and
the branch point depend on the coupling. Results for the
propagator dressing in the complex plane are shown in
Fig. 14 for a chosen value of the coupling.
The spectral density, given by

ρðsÞ ¼ −
Dð−sþ iϵÞ −Dð−s − iϵÞ

2πi

¼ −
discDð−sÞ

2πi
¼ −

1

π
ImDð−sÞ; ð63Þ

is shown in Fig. 15. Since we extract it at a finite distance ϵ
to the real axis, the pole at m2

r is not a delta peak but has a
finite width. The threshold at 4m2

r is clearly visible.
We varied the coupling constant g from the perturbative

to the nonperturbative regime. The positions of the
obtained poles and branch points in the propagator are
given in Table I. One can see that the branch points fulfill
the relation pB ¼ −4m2

r with the errors from determining
the position of the pole. The grid width is the main cause
for the errors Δm2

r and Δp2
B;prop. We compare the effective

masses mr with the one-loop perturbative mass mp in
Table I. mp is determined by setting the denominator of
the propagator to zero using the one-loop self-energy from
Eq. (3). The dependence of the effective mass on the
coupling is also shown in Fig. 16. We can see that the mass
shift deviates significantly from the perturbative predic-
tion for g > 3 due to nonperturbative effects. We fit the
behavior of the effective mass by

fðgÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − agb

q
: ð64Þ

For the parameters a and b we obtain

a ¼ 0.0368; b ¼ 2.261: ð65Þ

From the fit we can estimate the critical coupling, where
the mass reaches zero, as g� ≈ 4.30. Alternatively, we fix
b ¼ 2 and perform a one-parameter fit which leads to

a ¼ 0.0502: ð66Þ

From this fit, we obtain g� ≈ 4.46.
The calculation of the vertex is numerically more

demanding due to the more complicated cut structure of

FIG. 13. The propagator dressing (left) and the vertex dressing with θ ¼ π=2 (right) for Euclidean momenta. The blue curves were
obtained with full kinematic dependence and the red ones with the approximation p2

a ¼ p2
b ¼ p2.
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FIG. 14. Contour (top) and 3d (bottom) plots for the real (left) and imaginary (right) parts of the propagator Dðp2Þ for g ¼ 3. One can
clearly see the pole at approximately p2 ¼ −0.75m2 ¼ −m2

r and a branch cut starting approximately at −3m2 ¼ −4m2
r .

FIG. 15. Spectral density, Eq. (63), of the scalar propagator for
g ¼ 3. Since we extract the spectral density at a finite distance
from the real axis, the pole contribution has a finite width.

TABLE I. Perturbative (one-loop) and nonperturbative masses,
mp and mr, respectively, as well as the position of the branch
points p2

B;prop for different couplings g. The line in bold
corresponds to the solution shown in the figures. All masses
are given in multiples of the bare mass m.

g
Perturbative
mass m2

p

Effective
mass m2

r Δm2
r p2

B;prop Δp2
B;prop

0.1 1.0 1.0 0.02 −4.00 0.02
1 0.978 0.97 0.02 −3.90 0.02
2 0.913 0.90 0.02 −3.63 0.02
2.5 0.865 0.84 0.02 −3.41 0.02
3 0.807 0.75 0.02 −3.09 0.02
3.25 0.775 0.69 0.02 −2.81 0.02
3.4 0.754 0.66 0.02 −2.72 0.02
3.5 0.739 0.59 0.02 −2.41 0.02
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the radial integrand. For the propagator, it was possible to
integrate quite close to the cuts and still get reasonable
accuracy. For the vertex, however, calculations are more
sensitive to the neighborhood of cuts. We tested how close
one can calculate reliably and extrapolated beyond that.
Typically, imaginary parts of the order of 0.05 could be
reached. The extracted branch point positions are shown in
Fig. 17 for different couplings. The error is larger than for
the propagator, owing to the fact that we cannot get as close
to the real axis as for the propagator. In Fig. 18 we show an
exemplary result. Close to the cut, fluctuations are clearly
visible. However, the start of the cut can be seen by the
increase, which we checked to be not caused by a pole. It
should also be noted that, within the employed kinematic
approximation, the vertex dressing arguments can be
chosen such that the numerically unstable region does

not influence the region away from the cut and the error
does thus not propagate. Hence, this calculation is suffi-
cient for illustrational purposes. In a future calculation this
will be overcome.

VI. SUMMARY AND CONCLUSIONS

In this work we explored the contour deformation
method as a tool for analyzing the analytic structure of
one-loop integrals of two- and three-point functions. An
advantage of this method is that it can also be applied
numerically providing access to the evaluation of these
integrals for arbitrary complex momentum variables. As a
new aspect, we treated the deformation of the angle
integration contour to explain the analytic structure of
the total integral in detail. Such deformations are necessary
to route the cuts around the poles in the integrand. For the
triangle integral of three-point functions their analysis is
crucial as one needs to determine if such deformations are
possible or not. In the latter case, a threshold surface
emerges in the external momenta. This happens when two
required deformations are in conflict as any deformation of
the angle integral affects all cuts. We also explained that
using q2 as a radial integration variable can lead to

ambiguities and thus r ¼
ffiffiffiffiffi
q2

p
should be used instead.

With the CDM we could reproduce the solution for the
threshold surface as known from the Landau analysis for
general kinematics. We found a direct correspondence
between singularities coming from contracted diagrams
in the Landau analysis and their emergence from two
instead of three propagators in the CDM. We illustrated the
numerical applicability of the method by solving the
coupled propagator and vertex equations of motion of
ϕ3 theory for simplified kinematics in a three-loop trunca-
tion of the 3PI effective action.
The analytical part of the analysis was first performed

based on the perturbative form of the propagators, because
it elucidates the general mechanism which can be trans-
ferred to the nonperturbative setting as well. We explained
the generalization to the nonperturbative setup, for which
shifted poles and cuts in the dressings need to be taken into
account, in Sec. IV C. This was explicitly illustrated
numerically for the scalar propagator in Sec. V.
While we explained the general mechanism for the

emergence of thresholds, we also saw that the calculational
complexity increases for three-point functions. It will be
challenging to implement this fully generally for theories
like QCD. Any simplifications will be helpful. A good
starting point might be the three-gluon vertex which can be
described remarkably well by only one single kinematic
variable [5,8,110,112–114]. Automatization of contour
deformations would also be helpful, for instance, using
machine learning for identifying the cuts [115] and finding
appropriate contours [116].

FIG. 16. Ratios of the perturbative and nonperturbative
masses over the bare mass as a function of the coupling g.
The numerical fits (64) with parameters (65) and (66) respec-
tively, are also shown.

FIG. 17. Branch points determined from calculations (dots) and
as predicted by the Landau and contour deformation analyses
(lines) for different values of the coupling g.
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APPENDIX A: LANDAU CONDITION FOR THE
THREE-POINT FUNCTION

For the triangle diagram, depicted in Fig. 2, we get the
following for the matrix Q:

Q ¼

0
BB@

k21 k1 · k2 k1 · k3
k1 · k2 k22 k2 · k3
k1 · k3 k2 · k3 k23

1
CCA: ðA1Þ

Assuming that the αi do not vanish, we set

k21 ¼ k22 ¼ k23 ¼ −m2: ðA2Þ

With the choice of momenta given in Eq. (32) and using
momentum conservation at each vertex of the triangle, we
write the mixed terms as

FIG. 18. Contour (top) and 3d (bottom) plots of the vertex dressing function for g and θ ¼ 0.66. The fluctuations arise from integration
close along the cut.
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k1 · k3 ¼ −m2 −
p2
a

2
; ðA3Þ

k2 · k3 ¼ −m2 −
p2
b

2
; ðA4Þ

k1 · k2 ¼ −m2 −
p2
c

2
: ðA5Þ

We now set the determinant of Q to zero:

p2
ap2

bp
2
c ¼ m2ðp4

a þ p4
b þ p4

c − 2ðp2
ap2

b þ p2
ap2

c þ p2
bp

2
cÞÞ:
ðA6Þ

This equation describes a two-dimensional surface in three-
dimensional ða; b; cÞ space, see Fig. 19. It can also be
written as

p2
ap2

bp
2
c ¼ m2λðp2

a; p2
b; p

2
cÞ; ðA7Þ

where λða; b; cÞ is the Källèn function [117],

λðp2
a;p2

b;p
2
cÞ≔ p4

a þp4
b þp4

c − 2p2
ap2

b − 2p2
bp

2
c − 2p2

ap2
c:

ðA8Þ

It is related to the angle θ via

sin2 θ ¼ −λðp2
a; p2

b; p
2
cÞ

4p2
ap2

b

: ðA9Þ

We now have to find solutions of Eq. (A6) for which
0 ≤ αi ≤ 1 and α1 þ α2 þ α3 ¼ 1. The surface described
by Eq. (A6) consists of five disjunct regions, see Fig. 19.
We can distinguish them as follows:

(i) Region 1 is in the first octant for which p2
a > 0,

p2
b > 0 and p2

c > 0.
(ii) For three regions, two momentum squares are

smaller than −4m2 and one is positive, e.g.,
p2
a < −4m2, p2

b < −4m2 and p2
c > 0.

(iii) For the fifth region (the central one), for all mo-
mentum squares −4m2 < p2

a; p2
b; p

2
c < 0 holds.

Solving Eq. (A6) for p2
c yields

p2
c� ¼ 1

2

�
2m2ðp2

a þ p2
bÞ þ p2

ap2
b

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
að4m2 þ p2

aÞ
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
bð4m2 þ p2

bÞ
q �

: ðA10Þ

We plug the solutions for p2
c into Q and solve Q · α⃗ ¼ 0

together with α1 þ α2 þ α3 ¼ 1. This leads to the following
expressions for α⃗:

α1− ¼ 2m2ð4m2 þ p2
aÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
ap2

bð4m2 þ p2
aÞð4m2 þ p2

bÞ
q

− p2
bð4m2 þ p2

aÞ
;

ðA11Þ

α2−¼
2m2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4m2þp2

aÞð4m2þp2
bÞ

q
4m2

ffiffiffiffiffiffiffiffiffiffiffi
p2
ap2

b

q
þ

ffiffiffiffiffiffiffiffiffiffiffi
p6
ap2

b

q
−p2

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4m2þp2

aÞð4m2þp2
bÞ

q ;

ðA12Þ

α1þ ¼ −
2m2ð4m2 þp2

aÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
ap2

bð4m2 þ p2
aÞð4m2 þp2

bÞ
q

þp2
bð4m2 þ p2

aÞ
;

ðA13Þ

α2þ ¼ −
2m2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4m2 þ p2

aÞð4m2 þ p2
bÞ

q
4m2

ffiffiffiffiffiffiffiffiffiffiffi
p2
ap2

b

q
þ

ffiffiffiffiffiffiffiffiffiffiffi
p6
ap2

b

q
þ p2

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4m2 þ p2

aÞð4m2 þ p2
bÞ

q ; ðA14Þ

FIG. 19. Surface described by Eq. (A6) in ðp2
a; p2

b; p
2
cÞ space.

Blue corresponds to cþ and green to c−.
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α3� ¼ 1 − α1� − α2�: ðA15Þ

We require 0 ≤ αi ≤ 1. Plotting these constraints, we
find that the following four regions allow solutions:

(i) region I: p2
a < −4m2, p2

b < −4m2,
(ii) region II: p2

a < −4m2, −p2
a − 4m2 < p2

b,
(iii) region III: p2

b < −4m2, −p2
b − 4m2 < p2

a, and
(iv) region IV: −4m2 < p2

a, −4m2 < p2
b < −4m2 − p2

a.
They are illustrated in Fig. 20. Regions I–III belong to p2

c−.
As will be seen shortly, they are not relevant. Region IV
belongs to p2

cþ.

We now consider the contracted diagram, viz. the
swordfish diagram, see Fig. 2. The resulting matrix Q is
the same matrix as for the propagator with p one of the
external momenta pa, pb or pc. The thresholds are then
p2
a; p2

b; p
2
c ¼ −4m2. Thus regions I–III from above are

excluded because they are beyond that.
The final threshold surface consists thus of the walls at

−4m2 plus the surface of region IV from the p2
cþ solution of

the triangle diagram:

p2
c ¼

2m2ðp2
a þ p2

bÞ þ p2
ap2

b þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
að4m2 þ p2

aÞ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
bð4m2 þ p2

bÞ
q

2m2

for − 4m2 ≤ p2
a; p2

b ≤ 0; and p2
a þ p2

b ≤ −4m2

p2
a ¼ p2

b ¼ p2
c ¼ −4m2 else: ðA16Þ

The last line is not a point but a shorthand notation
representing the walls as illustrated in Fig. 21. The detailed
expression can be found in Eq. (21).
Finally, we extract the Landau conditions for

the momentum configuration used in the numerical
calculations. To this end, we set p2

b ¼ p2
a ¼ p2 and

p2
c ¼ 2p2ð1þ cos θÞ. The Landau condition Eq. (A6)

then becomes

p4ð1þ cos θÞðp2 þ 2m2ð1 − cos θÞÞ ¼ 0: ðA17Þ

The solutions p2 ¼ 0 and θ ¼ π are again on an
unphysical sheet, while the remaining solution is given by

p2
B;1 ¼ −2m2ð1 − cos θÞ: ðA18Þ

The solution for α⃗ is then

FIG. 20. Thresholds for p2
a and p2

b. The allowed values for p2
c

follow from Eq. (A10).
FIG. 21. Full solution for thresholds of the triangle diagram
including contracted diagrams.
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α1 ¼
− cos θ
1 − cos θ

; α2 ¼ α3 ¼
1

2ð1 − cos θÞ : ðA19Þ

Taking into account the condition 0 ≤ αi ≤ 1, we see that
this singularity is physical for θ ≥ π=2. For θ < π=2, the
contracted diagrams are relevant which we consider next.
We can distinguish two cases of contractions, see Fig. 2:

First, the momentum square at the top is p2 or
2p2ð1þ cos θÞ. This case leads to the same matrix as
for the propagators, Eq. (13), and hence exhibits the same
threshold p2 ¼ −4m2. The second case has the threshold at
2p2ð1þ cos θÞ ¼ −4m2 which can be reformulated as

p2
B;2 ¼ −

2m2

1þ cos θ
: ðA20Þ

This is valid for 0 ≤ θ ≤ π. Alternatively, one can also
derive this via the matrix Q again.
For the two thresholds p2

B;1 and p2
B;2 the following

inequality holds for π=2 ≤ θ ≤ π:

p2
B;2 ¼

−2m2

1þ cos θ
≤ −2m2ð1 − cos θÞ ¼ p2

B;1: ðA21Þ

Consequently, the relevant singularity is given by p2
B;1

for θ ≥ π=2.
To summarize, we find the following behavior for the

thresholds of the restricted momentum configuration:

p2
B ¼

(
−2m2ð1 − cos θÞ π=2 ≤ θ ≤ π
−2m2

1þcos θ 0 ≤ θ ≤ π
2
:

ðA22Þ

This can be rewritten to

p2
B ¼

8>><
>>:

−4m2 sin
�
θ
2

�
2 π

2
≤ θ ≤ π

−m2

cos ðθ
2
Þ2 0 ≤ θ ≤ π

2
:

ðA23Þ

APPENDIX B: TRIANGLE INTEGRAL
WITH THREE DIFFERENT MASSES

The analysis of Sec. IV B 2 can be generalized to three
different masses as follows. We call the three masses m1,
m2, and m3 belonging to the three propagators with
momenta given in Eq. (34). Without loss of generality
we takem1 ≥ m2 ≥ m3. We then put the first two cuts at the
poles �im3. In contrast to the equal mass case, the masses
do not cancel and we obtain

0 ¼ −m2
3 þ p2

a − 2im3

ffiffiffiffiffiffi
p2
a

q
cos θ1 þm2

1; ðB1aÞ

0 ¼ −m2
3 þ p2

b þ 2im3

ffiffiffiffiffiffi
p2
b

q
cos θ̃ þm2

2: ðB1bÞ

Bringing both expressions into the form 2im3 ¼ …, we can
equate them and solve for θ1. This leads to

tan θ1;s ¼
− B

A − cos θ

sin θ
; ðB2Þ

where

A ¼ ðm2
2 −m2

3 þ p2
bÞ=

ffiffiffiffiffiffi
p2
a

q
;

B ¼ ðm2
1 −m2

3 þ p2
aÞ=

ffiffiffiffiffiffi
p2
b

q
: ðB3aÞ

From this we can calculate

cos2 θ1 ¼
A2 sin2 θ

A2 þ B2 þ 2AB cos θ
: ðB4Þ

Plugging it into Eq. (B1a), we obtain

m2
1 −m2

3 þp2
a

¼
im3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−λðp2

a;p2
b;p

2
cÞ

q
ffiffiffiffiffiffi
p2
b

q
×

A�
A2 þB2 þ 2ABðp2

c −p2
a −p2

bÞ=
�
2
ffiffiffiffiffiffi
p2
a

p ffiffiffiffiffiffi
p2
b

q ��1
2

:

ðB5Þ

The Källèn function λ is given in Eq. (A8). The thresholds
corresponding to the contracted diagrams are inferred from
−ðmi þmjÞ2 [19,108,118], where mi and mj are the
masses involved in its creation. Following the kinematics
depicted in Fig. 2, the thresholds are

p2
a ¼ −ðm1 þm3Þ2; ðB6Þ

p2
b ¼ −ðm2 þm3Þ2; ðB7Þ

p2
c ¼ −ðm1 þm2Þ2: ðB8Þ
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Salpeter equation in Minkowski space for a fermion-scalar
system, Phys. Rev. D 100, 016021 (2019).

[75] C. Gutierrez, V. Gigante, T. Frederico, G. Salmè, M.
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